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Abstract. It is shown theoretically that due to the flexoelectric effect the electric field driven
Frèedericksz transition can take place in chiral nematic (cholesteric) liquid crystal with negative
dielectric anisotropy. It is especially noteworthy, since such a transition in a plane parallel cell
is impossible in the absence of flexoelectricity. The spatial inhomogeneity of the electric field
is is taken into account in the free energy alongside with the traditionally considered terms,
describing the orientation elasticity and the anchoring at the boundaries. The phase diagrams
are plotted and the orientation structures above the threshold are analyzed basing on the free
energy minimization. A comparison between the phase diagrams for liquid crystals with positive
and negative anisotropy of dielectric permittivity is made. It was found, that for sufficiently
high flexoelectric coefficients the orientational structure can be described by simple functions.
In this case, as a result of the Frèedericksz transition, the orientation structure of the liquid
crystal changes from planar helicoidal to a hybrid one. This gives rise to new opportunities for
the design of switching devices.

1. Introduction
The Frèedericksz effect was discovered in the twenties of the 20th century and has been especially
intensively investigated in recent decades. This is due to the rapid development of liquid crystal
display, switching, and other devices based on the Frèedericksz effect. The essence of the effect
lies in the possibility of reorientation of a liquid crystal molecules by small external electric and
magnetic fields. Here we study the electric field driven Frèedericksz transition in a plane parallel
cholesteric liquid crystal (CLC) cell.

2. CLC Model
We assume that the liquid crystal is enclosed in the region 0 ≤ z ≤ L between two plane
electrodes with applied voltage U . The averaged orientation of the molecules is described by a
unit vector director n. In the presence of flexoelectricity the electric displacement has the form

D = ε̂E + 4πPflex, (1)

http://creativecommons.org/licenses/by/3.0
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where εαβ = ε⊥δαβ + εanαnβ, Pflex = e1ndivn + e3 curln × n, εa = ε‖ − ε⊥, ε‖ and ε⊥
are the dielectric permittivities parallel and perpendicular to n, e1 and e3 are the flexoelectric
coefficients [1]. The system is assumed to be homogeneous in x, y directions, so n = n(z). We
parametrize the vector director n as

nx = sin θ cosϕ, ny = sin θ sinϕ, nz = cos θ, (2)

with polar and azimuthal angles θ and ϕ respectively.
The free energy of CLC cell in terms of θ and ϕ can be expressed as

F =
S⊥
2

(
K22q

2
0L+

∫ L

0

[
A(θ)(θ′)2 +B(θ)(ϕ′)2 − 2C(θ)ϕ′

]
dz

+
∑
α=1,2

[
W

(α)
θ sin2

(
θ − θ(α)

0

)
+ W (α)

ϕ sin2
(
ϕ− ϕ(α)

0

)]
− 1

4π
(U − 4πēJ1)2 J

)
, (3)

where the prime denotes the derivative with respect to z, S⊥ is the area of the boundary plates,

A(θ) = K11 sin2 θ +K33 cos2 θ + 4πē2sin2 2θ/E(θ), E(θ) = ε⊥ + εa cos2 θ,

B(θ) = sin2 θ
(
K22 sin2 θ +K33 cos2 θ

)
, C(θ) = q0K22 sin2 θ,

Kii are the elastic Frank moduli, ē = (e1 + e3)/2 is the mean flexoelectric coefficient, π/q0 is

the helix period, W
(α)
θ,ϕ > 0 are the surface anchoring energy moduli (α = 1, 2 correspond to the

boundaries z = 0, L, respectively), the angles θ
(α)
0 and ϕ

(α)
0 describe the easy directions at the

boundaries;

J−1 =

∫ L

0

dz

E(θ)
, J1 = ε−1

a ln
E(θ(0))

E(θ(L))
. (4)

In the absence of flexoelectricity, ē = 0, the free energy expression (3) is the same as one in [2].
In the case of zero external voltage, U = 0, the equilibrium structure has the form θ(z) ≡ π/2

and ϕ(z) = ϕ
(1)
0 + q0z.

The equilibrium CLC structure obeys functional integro-differential Euler-Lagrange
equations,

A(θ)θ′2 +B(θ)ϕ′2− (U − 4πēJ1)2 J2/(4πE(θ)) = c1, (5)

B(θ)ϕ′ − C(θ) = c2, (6)

and four boundary conditions (α = 1, 2)

2(−1)α[A(θ)θ′ + ē (U − 4πēJ1) J sin 2θ/E(θ)] +W
(α)
θ sin 2(θ − θ(α)

0 )
∣∣∣
z=lα

= 0, (7)

2(−1)α(Bϕ′ − C) +W (α)
ϕ sin 2(ϕ− ϕ(α)

0 )
∣∣∣
z=lα

= 0. (8)

In the Eqs. (5), (6) we carry out the order reduction procedure for the Euler-Lagrange equations,
that gives rise to the arbitrary constants c1,2.

In order to analyse the CLC equilibrium structure we use the direct method of variational
calculus based on the fact that this structure affords a minimum to F. The minimization
procedure is organized as follows. We use the trial function for the angle θ in the form

θ(z) = π/2 + δ1
sinh ξ(L− z)

sinh ξL
+ δ2

sinh ξz

sinh ξL
+

N∑
n=1

cn sin(πnz/L), (9)
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where ξ =
√(

K33q2
0 − εaU2/(4πL2)

)
K−1

11 is the characteristic length; δ1, δ2, and the coefficients

cn, n = 1, . . . , N are adjustable parameters. Equations (6), (8) permit one to eliminate variable
ϕ(z) from the minimization procedure while the Eq. (7) decrements by two the number of the
adjustable parameters. In the last step the Eq. (5) is used to control the quality of the final
equilibrium structure. The planar helicoidal structure corresponds to δ1,2 = 0 and cn = 0.
A distorted “phase” aries when some of the parameters δ1,2, cn are nonzero. In what follows
we present the results for systems with εa < 0 and for more widely investigated systems with
εa > 0. Note that some issues regarding the Frèedericksz transition in nematic LC cells with
flexoelectricity and with positive dielectric anisotropy were investigated in [3, 4]. In what follows
we fix the signs ē ≥ 0 and U ≥ 0. Obtained areas of the stability of the planar helicoidal and of
the distorted structures in (ē, U)-plane are shown in Fig. 1. The material constants were taken
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Figure 1. Phase diagram for the cases of εa < 0 and εa > 0. Line types: —— and – – – are
the interphase boundaries for continuous and discontinuous transitions respectively; · · · · · · is the
asymptote of interphase boundary in the case εa < 0, and ◦ is the tricritical point.

the same as in Ref. [2]: K11 = 0.42× 10−6 dyn, K22 = 0.23× 10−6 dyn, K33 = 0.53× 10−6 dyn,

q0 = 500 cm−1, L = 60 µm, W
(1,2)
θ = 1.5 × 10−3 erg/cm2, W

(1,2)
ϕ = 1.5 × 10−4 erg/cm2,

ε⊥ = 16.2, ε‖ = 7.2 for εa < 0 and ε⊥ = 7.2, ε‖ = 16.2 for εa > 0. The parameters q0 and L
correspond to the super-twisted LC cell with q0L = 3. In Fig. 1 one can see quite a surprising
result for εa < 0. It turns out that there exists a value of ē (the vertical asymptote) above which
the distorted structure can exist. Below this limit value the distorted phase does not exist for
arbitrary U . The profiles of polar angle θ(z) calculated for fixed voltage U = 1.2 V and different
ē are shown in Fig. 2. When ē is rather small the CLC structures are sufficiently different for
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Figure 2. The profiles θ(z) for U = 1.2 V . The lines in the case of εa < 0: 1 – ē = 10−3, 2 –
ē = 1.5× 10−3, 3 – ē = 1.8× 10−3, 4 – ē = 2× 10−3, 5 – ē = 3× 10−3, 6 – ē = 10−2 in statC/cm
units; lines in the case of εa > 0: 1 – ē = 0, 2 – ē = 10−4, 3 – ē = 10−3, 4 – ē = 3 × 10−3, 5 –
ē = 10−2 in statC/cm units. The dashed lines correspond to the dependence cos2 θ(z) ' z/L.
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εa < 0 and εa > 0. However, with the increase of ē the orientational structures tend to be the
same. This interesting feature can be explained as follows. The free energy (3) for high ē and/or

large U (when Kii- and W
(α)
θ,ϕ -terms in the free energy can be neglected) can be reduced to

F ' −S⊥
8π
U2J + S⊥ēUJJ1 + 2πS⊥ē

2

∫ L

0

(sin 2θ θ′ − JJ1)2

E(θ)
dz. (10)

Note that when the terms containing ē are much greater than the first term in (10), the minimum
of this functional is given by cos2 θ(z) ' z/L for the both cases, εa < 0 and εa > 0. Thus for
rather high ē the hybrid structure will occur. In such structure in the neighborhood of one
boundary, the molecules are on the average parallel to the boundary plane, and near the other
– perpendicular. The transition between the planar helicoidal and the hybrid structures may
give rise to the development of new flexoelectricity-based switching devices.

The orientational transition of a new type was found in CLC with sufficiently high value of
ē. This transition is illustrated in Fig. 3, where we present θ(z)-profiles for the fixed ē and
different voltages. With the increase of the external voltage from the zero value a continuous
Frèedericksz transition occurs. With the further increase in voltage, another transition takes
place. It is a discontinuous transition between two essentially different orientational structures.
Jumps between lines 2 and 3 in Fig. 3 correspond to this new transition. Note, that for very
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Figure 3. The equilibrium structure of θ(z) for ē = 0.01 statC/cm. The lines in the case of
εa < 0: 1 – U = 0.15 V , 2 – U = 0.17 V , 3 – U = 0.18 V , 4 – U = 1 V , 5 – U = 2 V , 6 –
U = 5 V and 7 – U = 10 V ; lines in the case of εa > 0: 1 – U = 0.15 V , 2 – U = 0.17 V , 3 –
U = 0.18 V , 4 – U = 1 V , 5 – U = 5 V and 6 – 10 V .

high voltage U the first term in Eq. (10) becomes dominating. Hence the system tends to the
saturation structure inside the cell, which is θ(z) = π/2 for εa < 0 and θ(z) = 0 for εa > 0.
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