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Abstract. It is known that Bose-Einstein Condansate is well described by the non-linear
Schrodinger equation known as the Gross Pitaevskii Equation (GPE) with the macroscopic
wave function which evaluates with time and space. Many studies have been performed on
nonlinear properties in Bose-Einstein Condansate. In this study, we present some numerical
results of the Gross-Pitaevskii Equation with the external potential under noise. The phase
portraits and Poincaré sections of the system are simulated numerically both with and without
noise.

1. Introduction
It is known that Bose– Einstein condensate (BEC) was predicted by Einstein and Bose in 1924
theoretically [1, 2]. But BEC was conceived for the first time experimentally by Cornell and
Wieman in 1995 [3]. After the discovery of BEC experimentally, it has become an attracted topic
for scientist. Physicists especially started to observe condensation using the relatively advanced
cooling techniques. The condensate is well described by a mean field theory and a macroscopic
wave function, solving the nonlinear Schrödinger equation so-called Gross– Pitaevskii equation
(GPE) [4, 5] that includes a nonlinear term representing particle-particle interactions [6, 7].
The GPE is not easy to solve analytically due to the external trap potential and nonlinearity of
interactions which makes the solutions rich so the numerical simulations are performed generally
[7, 8, 9, 10, 11, 12]. In this paper, we investigate the chaotic solutions of the BEC system in the
tilted Gaussian optical lattice potential under noise numerically.

2. Model
It is well known that BEC is well described by the Gross–Pitaevskii Equation (GPE) with the
macroscopic wave function Ψ = Ψ(x, t) which evaluates with time and space [4, 5]. The 1-D
Gross-Pitaevskii equation is given as

ih̄
∂

∂t
Ψ (x, t) = − h̄2

2m

∂2

∂x2
Ψ (x, t) +

[
Vext (x) + g1D |Ψ (x, t)|2

]
Ψ (x, t) , (1)
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where m is the mass of the atoms of the condensate, g1D describes the interaction between
atoms in the condensate and given by

g1D =
g3D

2πa2
r

= 2ash̄wr, (2)

g3D = 4πh̄2as
m where as is s-wave scattering length between atoms. It is positive for repulsive

interaction and negative for attractive interaction (in our case a < 0). Vext is the external
trapping potential. We choose the external trapping potential as below,

Vext (x) = V (x) + Fx. (3)

Where V (x) is the optical potential and F is the inertial force. This force, which generates a
tilted optical potential, accelerates the atoms in the x direction and leads to the atoms tunnelling
out of the traps [6, 13]. In this paper, we consider the optical potential as Gaussian optical lattice
potential. We construct a potential which involve Gaussian peaks along the x direction in spatial
phase by using Fourier transform procedure. Each Gaussian peaks described by Eq. 4. A is
amplitude of each Gaussian peaks and µ and σ are the system parameters.

f(x) = Ae−
(x−ε)2

2σ2 , (4)

in order to generate Gaussian pulse potential, we define a step length

xx =
xmax − xmin

n
, (5)

xmax and xmin are maximum and minimum border for numerical calculation. n defines the
step length. We create B matrix by evaluating f(x) from xmax to xmin as below,

B =


xmin Ae−

(xmin−µ)2

2σ2

...
...

xmax − xx Ae−
(xmax−xx−µ)2

2σ2

 (6)

The discreet Fourier Transform of B matrix is given in Eq. 7

C =


Ae−

(xmin−µ)2

2σ2 e
−2πixmink

n

...

Ae−
(xmax−xx−µ)2

2σ2 e
−2πi(xmax−xx)k

n

 (7)

From C matrix, we fnd EQ. 8 that generates one dimensional Gaussian Pulse potential.

Vext(x) =
C1√
n

+
2√
n

jmax∑
j=2

Abs(Cj)Cos

(
w
j − 1

xx
x−Arg(Cj

)
(8)

here jmax = 3xx
2πσ + 1.

In order to obtain a simple description and a better understanding of the BEC dynamics, we
consider Ψ as [12]

Ψ (x, t) = Φ (x) e
−iµt
h̄ , (9)

here µ is the chemical potential of the condensate and Φ(x) is a real function independent of
time. Φ(x) is normalized to the total number of particles in the system, i.e.,
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(a) (b)

Figure 1. Gaussian Pulse Potential (a) without tilt term, (b) with tilt term.

∫
|Φ (x)|2 dx = N (10)

where N is the particle number. Substitution of Eqs.(8) and (9) into Eq.(1)

µΦ(x) = − h̄

2m

∂2

∂x2
Φ(x) +

[
Vext + Fx+ g1DΦ|x|2

]
Φ(x) (11)

which can also be written in the following form where (υext = 2mVext
h̄2 ,υ2 = 2mV2

h̄2 ,γ = 2mµ
h̄2 ,ζ =

2mF
h̄2 ,η = 2mg0

h̄2 ). Setting the solution of Eq. (11) of form

Φ(x) = φ(x)eiθ(x) (12)

Inserting Eq. (12) into Eq. (11),

d2φ

dx2
+ φ

(
dθ

dx

)2

=
[
υext + ζx− γ + η |φ|2

]
φ, (13a)

d

dx

(
2φ2 dθ

dx

)
= 0. (13b)

Eq. (13b) denotes the existence of a flow density,

J = 2φ2 dθ

dx
(14)

If we put J into Eq. (13a), we have a nonlinear equation as below.

d2φ

dx2
+

J2

4φ3
=
[
υext + ζx− γ + η |φ|2

]
φ. (15)

It is difficult to obtain the exact solution of Eq. (15) due to its complexity therefore numerical
solutions were performed. For numerical solution we can reduce Eq. 15 in to first order coupled
equations by adding an external white noise term

φ̇1 = φ2 (16a)

φ̇2 =
J2

4φ3
1

+
[
υext + ζx− γ + η |φ1|2

]
φ1 +Dδ (x) . (16b)

Here D is the amplitude of white noise and δ produce the noise.
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3. Numerical Results
We present some numerical results of the Gross-Pitaevskii Equation with the external potential
under noise. In this section, we present the chaotic solutions of the BEC system with the
Gaussian optical potential first without noise after under white noise. Fig.2 shows that the
Poincaré sections with φ1[0] = 0.1,φ2[0] = 0.8 initial conditions. Fig.2 (a) display the signature
of regular structure of system for the parameterssets are ζ = 10−6, J = 0.8, w = 10π, γ = 0.5,
η = −1, σ = 210.52, A = 0.2 and (b) display chaotic structure of system for the parameterset
ζ = 0.01, J = 0.8, w = 10π, γ = 0.5, η = −1, σ = 210.52, A = 0.2

(a) (b)

(c) (d)

Figure 2. (a) Regular Poincaré sections (b) regular spatial evulotion of BEC for ζ = 10−6

(c) chaotic Poincaré sections (d) chaotic spatial evulotion of BEC for ζ = 0.01. for the
parametersets: J = 0.8, w = 10π, γ = 0.5, η = −1, σ = 210.52, A = 0.2, and the intial
condition: φ1[0] = 0.1,φ2[0] = 0.8 without noise.

For chaotic cases we add white noise to the system. In Fig.3 we show Poincare display of
BEC for (a) D = 0.01, (b) D = 0.05, (c)=D = 0.1, (d) D = 0.2 respectively for parameter
sets: ζ = 0.01, J = 0.8, w = 10π, γ = 0.5, η = −1, σ = 210.52, A = 0.2 and with same initial
condition in Fig. 2.
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(a) (b)

(c) (d)

Figure 3. (a) Regular Poincaré sections (b) regular spatial evulotion of BEC for ζ = 10−6

(c) chaotic Poincaré sections (d) chaotic spatial evulotion of BEC for ζ = 0.01. for the
parametersets: J = 0.8, w = 10π, γ = 0.5, η = −1, σ = 210.52, A = 0.2, and the intial
condition: φ1[0] = 0.1,φ2[0] = 0.8 without noise.

4. Conculusion
In summary, we have studied the BEC with the tilted Gaussian optical lattice potential under
white noise. The chaotic numerical solutions of system are investigated by constructing the
Poincaré sections depending on the system parameters. Numerical solutions indicate that the
system continues to exhibit chaotic behaviors with different noise variances. The behaviors of
system under noise show small changes in phase space for not large values of noise. These
instabilities of the system refer to negative interatomic interactions.
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