
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Effects of spacetime topology and curvature on the
resonance interatomic energy
To cite this article: Wenting Zhou and Hongwei Yu 2018 J. Phys.: Conf. Ser. 1138 012015

 

View the article online for updates and enhancements.

You may also like
Cooperative simulation of lithography and
topography for three-dimensional high-
aspect-ratio etching
Takashi Ichikawa, Takashi Yagisawa,
Shinichi Furukawa et al.

-

Surface recombination velocities for n-type
4H-SiC treated by various processes
Yuto Mori, Masashi Kato and Masaya
Ichimura

-

A study on reactive ion etching lag of a
high aspect ratio contact hole in a
magnetized inductively coupled plasma
H W Cheong, W H Lee, J W Kim et al.

-

This content was downloaded from IP address 3.147.49.182 on 18/05/2024 at 03:57

https://doi.org/10.1088/1742-6596/1138/1/012015
https://iopscience.iop.org/article/10.7567/JJAP.57.06JC01
https://iopscience.iop.org/article/10.7567/JJAP.57.06JC01
https://iopscience.iop.org/article/10.7567/JJAP.57.06JC01
https://iopscience.iop.org/article/10.1088/0022-3727/47/33/335102
https://iopscience.iop.org/article/10.1088/0022-3727/47/33/335102
https://iopscience.iop.org/article/10.1088/0963-0252/23/6/065051
https://iopscience.iop.org/article/10.1088/0963-0252/23/6/065051
https://iopscience.iop.org/article/10.1088/0963-0252/23/6/065051
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuMXA-1XwEyekuNIGSxFig6GIAufCTGiqWtmL73ddejGLoduvjH1DpeNq2h4MoTX66KBPVr6xLLOLTdmhwqdo4et5Ct9yIkM4kNrg3c4XMVeizSgHOYnIQ35VPwpqV6Uoe9oMQi5Xaj8gCZmNNrdj9BSj279VvTzH4ZiuddUUADwtdEPxfMjeQxY14Eocv_ssUjJyOgYslEjBb_yVJkZOEla7xNotcDpabJPYrZrSGOAxjqJk3ZRQItcDGX83v1T2qhzVlQEyys9sDWRudBqeR-dZmA0xURycGd6jHO1_SxTxHvtlmEc-YO2TDTRJ-G2sl7eTvbWd9jaoS9dmKz54bbd29wO5WS&sig=Cg0ArKJSzPwgcU1HmNlC&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

10th International Conference on Precision Physics of Simple Atomic Systems

IOP Conf. Series: Journal of Physics: Conf. Series 1138 (2018) 012015

IOP Publishing

doi:10.1088/1742-6596/1138/1/012015

1

Effects of spacetime topology and curvature on the

resonance interatomic energy

Wenting Zhou1,2, Hongwei Yu2,3

1Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo,
Zhejiang 315211, China
2Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry
of Education, Hunan Normal University, Changsha, Hunan 410081, China
3Department of physics, Synergetic Innovation Center for Quantum Effects and Applications,
Hunan Normal University, Changsha, Hunan 410081, China

E-mail: hwyu@hunnu.edu.cn

Abstract. We study, using the formalism proposed by Dalibard, Dupont-Roc, and Cohen-
Tannoudji, the resonance interatomic energy (RIE) of two identical two-level static atoms in
a symmetric/antisymmetric entangled state, which are coupled to massless scalar fields, in
a number of different spacetimes. We first show that the presence of a boundary in a flat
Minkowski spacetime can dramatically modify the RIE of the two static atoms, resulting in
an enhanced or weakened and even nullified RIE, as compared with that in the unbounded
case; we then show that the RIE of the two atoms in the spacetime of a Schwarzschild black
hole can be sharply affected by the spacetime curvature on one hand, but on the other hand
it is surprisingly undisturbed by the Hawking radiation of the black hole; we finally show that
the RIE of the two static atoms in the spacetime with an infinite and straight cosmic string
(the so called cosmic string spacetime) is sensitive to the nontrivial topological structure of the
spacetime, making the RIE of the two static atoms behave in a manner very similar to that
near a perfectly reflecting boundary in a flat Minkowski spacetime.

1. Introduction
Dispersion energy between atoms occurs for two polarizable neutral atoms in a vacuum, as a
result of the interaction between the atoms and fluctuating quantum fields. When two atoms are
prepared in different eigenstates, the exchange of real photons can be involved and the dispersion
energy is called the resonance interatomic energy.

Ever since the pioneering work of Casimir and Polder on the retarded interatomic energy
between two neutral ground-state atoms [1], there has been considerable progress on the
resonance interatomic interaction. On one hand, the resonance interaction energy between two
uncorrelated atoms which are respectively coupled to vacuum electromagnetic fields with one
atom in the ground state and the other in the excited state has been extensively studied over
the past decades [2–13]. For this type of interaction, both oscillatory and monotonic behaviors
of the resonance interatomic energy with respect to the interatomic separation in the retarded
region are predicted, depending on whether there is an irreversible excitation transfer between
the two atoms during the interaction process [11]. On the other hand, the resonance interatomic
energy between two atoms in an unfactorizable state has also attracted much attention in
recent years. For two identical atoms prepared in a symmetric/antisymmetric entangled state

http://creativecommons.org/licenses/by/3.0
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and in interaction with the vacuum electromagnetic field, the resonance interatomic energy
decays as R−1 (R denoting the interatomic separation) at large interatomic separations. This
behavior is of a much longer range as compared with the resonance interatomic energy of two
atoms in a factorizable state and the nonresonance interatomic energy between two ground-
state atoms. Recently, it has been shown that noninertial motion of atoms induces some
peculiar modifications for the resonance interatomic energy of two identical atoms prepared
in a symmetric/antisymmetric entangled state with a constant separation [14, 15], and the
possibility of modulating the resonance interatomic energy of such two static atoms in nano-
structured materials such as a photonic crystal [16, 17] or by using a perfectly reflecting
plane boundary [18–20] has also been discussed. In addition, the resonance interaction
between atoms has also been widely investigated in relation to the resonance energy transfer
between molecules [21–23]. Nowadays, not only it plays an important role in many physical
processes [24–27], but also even goes to the core of some biological phenomena [9, 21,28].

The aforementioned research works are about the resonance interatomic energy of atoms in
the Minkowski spacetime. In recent years, there is growing interest in the radiative properties
of atoms in interaction with quantum fields in curved spacetimes. Since the propagation of
quantum fields is now modified as compared to the Minkowski spacetime, interesting features
show up in quantum effects associated with it. The energy shifts and excitation rates of static
atoms coupled to quantum fields in the Schwarzschild spacetime have been found to be modified
by the spacetime curvature and the Hawking radiation of a black hole [29–34]; the response
rate of particle detectors and the variation rate of energy of static or noninertial atoms in the
cosmic string spacetime have been shown to be crucially dependent on the relative position
of the detectors’ or atomic trajectories with respect to the cosmic string, revealing that the
nontrivial topology of the cosmic string spacetime has important effects on the atomic radiative
properties [35–40]; and the occurrence of spontaneous excitation of static or freely falling atoms
in the de Sitter spacetime is demonstrated to be possible due to the peculiar thermal nature of
the de Sitter spacetime [41], which also has a profound influence on the Lamb shift of a single
atom [42].

In this paper, we are interested in the resonance interatomic energy of two identical atoms
prepared in an unfactorizable state (the symmetric/antisymmetric entangled state) and coupled
to the massless scalar fields in vacuum in a number of spacetimes. We use the formalism
proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji [43,44](DDC) to calculate separately
the contributions of field fluctuations and atomic radiation reaction to the resonance interatomic
energy of the two atoms in the Minkowski, Schwarzschild and the cosmic string spacetimes.
By comparing the results in the three different backgrounds, we show how the Schwarzschild
spacetime curvature and the nontrivial topology of the cosmic string spacetime affect the
resonance interatomic energy, and reveal the intrinsic relation between characters of the curved
spacetimes and the resonance interatomic energy.

The paper is organized as follows. In section 2, we consider the resonance interatomic energy
of two identical atoms in a symmetric/antisymmetric entangled state and coupled to massless
scalar fields near a perfectly reflecting plane boundary, and discuss the effect of the presence
of the boundary in the flat spacetime on the resonance interatomic energy. In section 3, we
study the resonance interatomic energy of two static atoms aligned radially outside a spherical
black hole, and show that the resonance interatomic energy of the two atoms can be greatly
weakened because of spacetime curvature, but is oblivious to the Hawking radiation of the black
hole. In section 4, we show that the resonance interatomic energy of two atoms near an infinite
and straight cosmic string is crucially dependent on the relative positions of the two atoms with
respect to the string, and it behaves very much like its counterpart in the case of two atoms
located near a perfectly reflecting boundary in a Minkowski spacetime. We finally give the
conclusions in section 5. Throughout the paper, we adopt the natural units, i.e., h̄ = c = 1.
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2. Resonance interatomic energy in the Minkowski spacetime
We first consider the resonance interatomic energy of two identical two-level atoms which
are coupled to the massless scalar field in the Minkowski spacetime. We designate “g/e”
representing the atomic ground/excited state, and assume that the two atoms are prepared in a
symmetric/antisymmetric entangled state: |ψ±〉 = 1√

2
(|gAeB〉± |eAgB〉). Then the Hamiltonian

of the system composed by the two atoms and the field can be described by

H = ω0σ
A
3 (τ) + ω0σ

B
3 (τ) +

∑
~k

ω~ka
†
~k
a~k
dt

dτ
+ λ(σA2 (τ)φ(xA(τ)) + σB2 (τ)φ(xB(τ))) , (1)

in which τ denotes the atomic proper time which coincides with the coordinate time t for the

present case, a†~k
and a~k are the creation and annihilation operators of the scalar field, λ is the

coupling constant, and σξ2(τ)(ξ = A,B) and σξ3(τ) are two pseudospin operators in the Hilbert
space of the internal degrees of freedom of atom ξ.

Using the above Hamiltonian, we can derive the Heisenberg equations of motion for the
dynamical variables of the atoms and the field, whose solutions are then divided into the free
parts and the source parts. The field operator is then decomposed into a free field and a source
field accordingly, in terms of which we can calculate the variation rate of the Hamiltonian of
both atoms. Following the idea proposed by Dalibard, Dupont and Cohen-Tannoudji [43, 44],
we first derive for both atoms the effective Hamiltonian of the contribution of the free field (the
contribution of field fluctuations) and the contribution of the source field (the contribution
of atomic radiation reaction), then we calculate the average values of them over the state
of the two atoms, |ψ±〉, and the vacuum state of the field. Such a treatment gives rise to
the energy shift for both atoms, and the part of these energy shifts which is interatomic-
separation-dependent is what we call the resonance interatomic energy. In the very recent
years, this formalism has been extensively exploited to study the resonance interaction between
two atoms in a symmetric/antisymmetric entangled state and the quantum fields in various
situations [14,15,18–20,33,45–47].

The resonance interatomic energy of such two identical atoms is found to be thoroughly
contributed by the atomic radiation reaction, but irrelevant of the contribution of vacuum
fluctuations:

δE = −iλ2
∫ τ

τ0
dτ ′CAB(τ, τ ′)χF (xA(τ), xB(τ ′)) +A ⇀↽ B term (2)

in which χF (xA(τ), xB(τ ′)) and CAB(τ, τ ′) are respectively the linear susceptibility function of
the scalar field and the symmetric correlation function of the two atoms defined as

χF (xA(τ), xB(τ ′)) =
1

2
〈0|[φf (xA(τ)), φf (xB(τ ′))]|0〉 , (3)

CAB(τ, τ ′) =
1

2
〈ψ±|{σAf2 (τ), σBf2 (τ ′)}|ψ±〉 . (4)

We now consider the resonance interatomic energy of two identical atoms prepared in
the symmetric/antisymmetric entangled state near a perfectly reflecting plane boundary with
interatomic separation R. By use of the above formulas, the resonance interatomic energy can
be finally simplified to be [19]

δE = ∓ λ2

16π

(
cos(ω0R)

R
− cos(ω0R̄)

R̄

)
(5)

with R̄ denoting the distance between one atom and the image of the other atom, and “∓” on the
right corresponding to |ψ±〉. The above reveals that the resonance interatomic energy and thus
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the interatomic force of two identical atoms in a symmetric entangled state is equal in magnitude
but opposite in sign as compared with those of two identical atoms in an antisymmetric entangled
state. Equation (5) shows that the resonance interatomic energy near the boundary is composed
of two parts. The first part is completely the same as the counterpart in an unbounded space
and the second part depends crucially on the atomic positions relative to the boundary and thus
represents the effect of the presence of the boundary.

The following figures help to exhibit the effect of the presence of the boundary on the
resonance interatomic energy. As shown in figure 1, the resonance interatomic energy of two
atoms near a perfectly reflecting boundary, δE, can be greater or smaller, and even be nullified, as
compared with its counterpart in an unbounded space, δE0, depending on the relative positions
of the two atoms with respect to the boundary (the ratio between R̄ and R). With the increase
of the atoms-boundary separation, the resonance interatomic energy oscillates around the value
of its counterpart in a free space, and the oscillation amplitude decreases with the increase of
atoms-boundary separation (the resonance interatomic energy shown in figure 2 for example).

δE0

1 2 3 4 5 6

R

R

-0.10

-0.05

0.05

0.10

0.15

δE

Figure 1. The comparison of the resonance
interatomic energy of two atoms with transi-
tion frequency ω0 = 1.549×1016s−1 and with
a fixed interatomic separation R = 9.674 ×
10−8m near a perfectly reflecting boundary.

The ordinate is of unit ∓λ2ω0
16π .

δ E⊥ δ E0
δ E∥ δ E0

2 4 6 8 10

z

R

0.6

0.8

1.0

1.2

1.4

1.6

δEδE0

Figure 2. The atoms-boundary-separation
dependence of the relative resonance inter-

atomic energy, δE‖/⊥

δE0 , of two atoms aligned
with their separation parallel/perpendicular
to the boundary. z is the boundary-atom(the
one closer to the boundary) separation, and
ω0R = 1.

3. Resonance interatomic energy in the Schwarzschild spacetime
In this section, we study the resonance interatomic energy of two identical atoms prepared
in a symmetric/antisymmetric entangled state and coupled to the massless scalar field in the
Schwarzschild spacetime. In the spherical coordinates, the metric in this spacetime can be
described by

ds2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2(dθ2 + sin2 θdϕ2) . (6)

For this spacetime, there are usually three vacuum states of physically interest: the Boulware,
Unruh and Hartle-Hawking vacua. The Boulware vacuum corresponds to our familiar concept of
an empty state for large radii; the Unruh vacuum corresponds to an outgoing flux of blackbody
radiation at the black-hole temperature; and the Hartle-Hawking vacuum corresponds to the
state of black hole radiation in equilibrium with an infinite sea of blackbody radiation. We are
concerned with the resonance interatomic energy of two atoms in these different vacua. For
simplicity, we consider the case of two atoms located with their separation along the radial
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direction in the exterior region of the spherical black hole. Then the trajectories of the atoms
with a constant separation L can be written as

tA = t , rA = r + L/2 , θA = θ , ϕA = ϕ , (7)

tB = t , rB = r − L/2 , θB = θ , ϕB = ϕ (8)

with 2(r − 2M) > L.
The resonance interatomic energy of the two atoms can be studied by using the DDC

formalism as in the preceding section. However, as the differential equation of the radial function
of the scalar field in the Schwarzschild spacetime is often difficult to solve, here we are mainly
concerned with the resonance interatomic energy in two asymptotic regions, i.e., at spatial
infinity and near the horizon. When 2(r− 2M)� L near the horizon or L� 2r2/M at infinity,
we find that the proper time of the two atoms can be approximated by τA ≈ τB ≈ t(1−2M/r)1/2

to the leading order of L, and we can use formula (2) to calculate the resonance interatomic
energy. However, it is worth pointing out here that for this case the linear susceptibility function
of the field operator, χF (xA(τ), xB(τ ′)) in equation (2), should be replaced by its counterpart
in the Schwarzschild spacetime. After lengthy simplifications, we find the resonance interatomic
energy in these two regions of all the three vacua [45]

δE = ∓ µ2

128π2

∫ ∞
0

dω

ω

(
1

ω√
g00

+ ω0
+

1
ω√
g00
− ω0

)

×
(∑

l

(2l + 1)
−→
Rωl(rA)

−→
R
∗
ωl(rB) +

∑
l

(2l + 1)
←−
Rωl(rA)

←−
R
∗
ωl(rB)

+
∑
l

(2l + 1)
−→
Rωl(rB)

−→
R
∗
ωl(rA) +

∑
l

(2l + 1)
←−
Rωl(rB)

←−
R
∗
ωl(rA)

)
(9)

in which g00 = (1 − 2M
r ), and

−→
Rωl(r) and

←−
Rωl(r) are the radial functions of the outgoing and

ingoing modes originating from the horizon and infinity respectively.
By use of the approximation of the summation concerned with the radial functions of the

outgoing and ingoing modes at two different spatial regions [45], the above resonance interatomic
energy can be further simplified. We find that at infinity, it can be approximated by the sum
of two parts. One part is resulted from the backscattering effect of the outgoing modes of the
field off the spacetime curvature, and it is much smaller than the other part, which is almost
the same as the counterpart of the resonance interatomic energy in an unbounded Minkowski
spacetime. Thus at infinity, the resonance interatomic energy of the two atoms approaches its
counterpart in a free Minkowski spacetime. When the two atoms are fixed near the horizon with
2(r−2M)� L, similarly, the resonance interatomic energy can also be simplified to be the sum
of two parts, and one of them is resulted from the backscattering effect of the ingoing modes
off the spacetime curvature, and its value is much smaller than the other part which is much
smaller than the counterpart of the resonance interatomic energy in an unbounded Minkowski
spacetime. Thus near the horizon, the resonance interatomic energy is much smaller than its
counterpart in a free Minkowski spacetime.

Comparing the resonance interatomic energy of the two atoms with other atomic radiative
properties in the same Schwarzschild spacetime, we find some sharp contrasts: the resonance
interatomic energy of the two atoms in a symmetrcial/antisymmetric entangled state near the
horizon is much smaller than its counterpart in a free Minkowski spacetime, while for other
atomic radiative properties, such as the Lamb shift and the spontaneous excitation rate of a
single static atom near the horizon, they are almost the same as their counterparts in a free
Minkowski spacetime [29–32]; Besides, the resonance interatomic energy of two atoms in a
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symmetrcial/antisymmetric entangled state in the Schwarzschild spacetime is the same in the
Boulware, Unruh and Hartle-Hawking vacua, and it is irrelevant of the Hawking radiation of
a black hole, while the Lamb shift and the spontaneous excitation rate of a single static atom
in the three vacua are distinct, as they are significantly influenced by the radiation in the
spacetime(such as the Hawking radiation of a black hole) [29–32]. The origin of this distinction
can be traced back to the fact that the resonance interatomic energy of two identical atoms
correlated by a symmetric/antisymmetric entangled state is fully contributed by the radiation
reaction of the two atoms, which is insusceptible to the thermal state of the field; while for other
atomic radiative properties, such as the lamb shift and the excitation rate of a single atom, both
field fluctuations and atomic radiation reaction contribute. Though the contribution of atomic
radiation reaction is insusceptible to the thermal state of the field, the contribution of field
fluctuations is crucially dependent on the state(thermal or nonthermal) of the field. This is also
the very reason why the resonance interatomic energy of two uniformly accelerated atoms with
constant interatomic separation and in a symmetric/antisymmetric entangled state is usually
completely the same in the instantaneous inertial frame and in the coaccelerated frame [15].

4. Resonance interatomic energy in the Cosmic string spacetime
We now consider the resonance interatomic energy of two identical two-level atoms prepared in a
symmetric/antisymmetric entangled state and fixed near an infinite straight cosmic string [19].
Using the cylindrical coordinates (t, r, θ, z) and assuming that the string is extended along the
z axis, the spacetime metric follows

ds2 = dt2 − dr2 − r2dθ2 − dz2 , (10)

in which 0 ≤ θ < 2π/ν, ν = (1 − 4Gµ)−1 with G and µ being the Newton constant and the
mass per unit length of the string. The positions of the two static atoms can be represented by
(tξ, rξ, θξ, zξ) with ξ = A,B.

The resonance interatomic energy of the two atoms can be calculated by formula (2) but with
the linear susceptibility function of the field replaced by the counterpart in the cosmic string
spacetime. The resonance interatomic energy can be finally expressed to [19]

δE = ∓ λ2ν

32π2

∞∑
m=−∞

∫ ∞
−∞

dκ

∫ ∞
0

dk⊥
k⊥
ω
eiκzeiνm∆θ

×Jν|m|(k⊥rA)Jν|m|(k⊥rB)

(
1

ω + ω0
+

1

ω − ω0

)
, (11)

in which ∆θ = θA−θB, z = zA−zB, and Jν|m|(k⊥r) denotes the first kind Bessel function. This
expression of the resonance interatomic energy of two atoms near an infinite straight cosmic
string is very general, and it is usually difficult to simplify. However, for some special cases,
analytical results are obtainable.

When ν = 1, the above resonance interatomic energy reduces to the counterpart in an
unbounded Minkowski spacetime. This consistency comes out naturally as the cosmic string
spacetime reduces to the Minkowski spacetime when ν = 1. For a general value of the
parameter ν, if at least one of the atoms is located on the string, the resonance interatomic
energy of the two atoms is accurately ν times of its counterpart in an unbounded Minkowski
spacetime. As the value of ν predicted in typical GUT-models is slightly larger than unity,
the resonance interatomic energy of the two atoms is slightly stronger than its counterpart in
an unbounded Minkowski spacetime. For the case of ν being an integer larger than unity, the
case of which analytical results are often obtainable and thus very useful for understanding the



10th International Conference on Precision Physics of Simple Atomic Systems

IOP Conf. Series: Journal of Physics: Conf. Series 1138 (2018) 012015

IOP Publishing

doi:10.1088/1742-6596/1138/1/012015

7

intrinsic relation between the nature of the cosmic string spacetime and the atomic resonance
interatomic energy, the resonance interatomic energy, equation (11), can be further simplified:

δE = ∓ λ2

16π

ν−1∑
n=0

cos(ω0Rn,ν)

Rn,ν
(12)

with Rn,ν =
√
z2 + r2

A + r2
B − 2rArB cos(∆θ + 2πn/ν). The term on the right of the above

resonance interatomic energy corresponding to n = 0 is exactly the same as the counterpart
of the resonance interatomic energy in an unbounded Minkowski spacetime, and other terms
with n 6= 0 are crucially dependent on the relative positions of the two atoms with respect to
the string. This property of the resonance interatomic energy is reminiscent of the resonance
interatomic energy of two identical atoms fixed near a perfectly reflecting boundary in the
Minkowski spacetime (see equation (5)). Actually the resonance interatomic energy in these two
cases is very similar. As shown in the following figure, the resonance interatomic energy of the
two atoms near the string oscillates with the separation between the atoms and the string, and
the oscillation amplitude decreases with increasing atoms-string separation. As compared with
its counterpart in an unbounded Minkowski spacetime, δE0, it can be greater or smaller and even
be nullified. These similarities of the resonance interatomic energy in the two cases can be traced
back to the nontrivial topology of the cosmic string spacetime. The cosmic string spacetime is
locally flat but globally nontrivial, thus field modes propagating inside are “restricted” by the
special structure of the spacetime, and the radiative properties of atoms in interaction with
quantum fields in this spacetime exhibit some boundary-like behaviors.

Despite the similarities, the resonance interatomic energy in the cosmic string spacetime
is also characterized by its peculiar properties. As shown in figure 3, when the two atoms
are located very close to the string, the resonance interatomic energy is almost ν times of
its counterpart in an unbounded Minkowski spacetime; and the oscillation amplitude of the
resonance interatomic energy with the atoms-string separation is closely dependent on the value
of the parameter ν: the larger the value of ν, and the severe the oscillation. Thus in principle, it
is possible to distinguish different cosmic string spacetimes via the resonance interatomic energy
of two identical atoms in a symmetric/antisymmetric entangled state.

ν=2ν=3ν=4

δE0 1 2 3 4 5

r

R

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2
δEcs

∥

Figure 3. The resonance interatomic energy of two atoms fixed with constant separation R
parallel to an infinite and straight cosmic string. The atom-string separation for both atoms is

denoted by r, and ω0R = 2. The ordinate is of unit ∓λ2ω0
16π .

5. Conclusions
We studied the resonance interatomic energy of two identical two-level atoms prepared in
a symmetric/antisymmetric entangled state and in interaction with quantum massless scalar
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fields in three circumstances: near a perfectly reflecting boundary in a Minkowski spacetime,
in a Schwarzschild spacetime and near an infinite and straight cosmic string respectively. We
found that the resonance interatomic energy in the Schwarzschild spacetime is modified by
the spacetime curvature, while it is never disturbed by the Hawking radiation of a black
hole, which results in the same resonance interatomic energy in the Boulware, Unruh and
Hartle-Hawking vacua. This property of the resonance interatomic energy of two identical
atoms in the Schwarzschild spacetime is in sharp contrast to other radiative properties of
atoms (such as the Lamb shift and the spontaneous excitation rate of a single atom), and
the reason can be traced back to the fact that the resonance interatomic energy of two atoms
in a symmetric/antisymmetric entangled state is wholly contributed by the atomic radiation
reaction which is irrelevant of the thermal state of the field and independent of the field
fluctuations which are susceptible to thermal radiation. For the cases of two atoms located
near a perfectly reflecting boundary and near an infinite and straight cosmic string, we found
that the properties of the resonance interatomic energy are very similar, as in both cases the
resonance interatomic energy oscillates with the atoms-boundnary/atoms-string separation with
the oscillation amplitude decreasing with increasing atoms-boundary/atoms-string separation.
Such a boundary-like behavior of the resonance interatomic energy in the cosmic string spacetime
results from the nontrivial topology of the cosmic string spacetime. Besides the similarities, the
resonance interatomic energy of the atoms in the cosmic string spacetime is also characterized
by its peculiar properties, making it in principle possible to discern different cosmic string
spacetimes via the resonance interatomic energy.
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