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Abstract. We present the current status for the direct measurement of the positronium
hyperfine structure using the 23S1 → 21S0 transition. This experiment, currently being
commissioned at the slow positron beam facility at ETH Zurich, will be the first measurement
of this transition and the first positronium hyperfine splitting experiment conducted in vacuum
altogether. This experiment will be free of systematic effects found in earlier experiments,
namely the inhomogeneity in static magnetic fields and the extrapolation from dense gases to
vacuum. The achievable precision is expected to be on the order of 10 ppm while the systematic
uncertainty is estimated to be within a few ppm. This would allow to check recent bound state
QED calculations and a 3σ discrepancy with earlier experiments.

1. Introduction
Positronium is a purely leptonic bound state comprising a positron and an electron. As such
it is mostly free from effects stemming from the strong and the weak interaction that protonic
atoms exhibit and is free from finite size effects (i.e. proton charge radius). The recoil effects
are strongly enhanced in positronium as well. For these reasons, it represents a unique atomic
system to test bound state QED to very high precision [1]. The hyperfine splitting between the
triplet and the singlet state is particularly sensitive to higher order QED corrections, which are
known to very good accuracy [2–12]. Numerous experiments determining this energy splitting
in the ground state have been conducted in the past – the most precise being the measurements
by Ritter et al. [13] and Mills [14]. While they were all largely compatible with each other, they
show a deviation of more than 3σ from recent bound state QED calculations.

These experiments share common experimental techniques, which were identified as possible
sources of systematic errors [15]. Due to the significant technical difficulties in producing the
HFS transition frequency ∆HFS ≈ 203 GHz, the transition was not measured directly. Instead,
it was extracted from the Zeeman splitting measured in a static magnetic field. Therefore, the
uncertainty in the uniformity of the magnetic field in the experimental region directly contributes
to the systematic error.

Recently, two experiments were conducted trying to minimize these systematic effects by
using a very precisely determined magnetic field [16,17] or by measuring the transition directly
using novel millimeter microwave techniques [18]. While the former experiment yielded a result

http://creativecommons.org/licenses/by/3.0


10th International Conference on Precision Physics of Simple Atomic Systems

IOP Conf. Series: Journal of Physics: Conf. Series 1138 (2018) 012007

IOP Publishing

doi:10.1088/1742-6596/1138/1/012007

2

favoring the bound state QED calculations over the previous experimental average, a more
precise measurement is needed to conclusively check the discrepancy with theoretical results.
The latter experiment, while being completely free of this systematic effect, has very limited
experimental sensitivity on the permill level due to the technical challenges involved and can
therefore only be considered as a proof of principle.

Futhermore, all experiments conducted so far used gas as a target to form positronium. This
influences the measured transition frequency ∆HFS due to the Stark effect induced by local
electric fields of the gas atoms. To obtain the HFS in vacuum, extrapolation to zero gas density
is needed – which in turn introduces another source of systematics.

Therefore, to conclusively resolve the 3σ discrepancy between previous experiments and QED
calculations, a sufficiently precise direct measurement of the transition frequency in vacuum is
needed. The status of our experiment, ongoing at ETH Zurich, which aims to measure the
hyperfine splitting in positronium to the ppm level, is reported here.

2. Experimental technique
Since the ground state HFS splitting is approximately 203 GHz, this leads to significant
technological challenges. The low THz range is one of the last remaining largely undeveloped
frequency regions, a fact which is referred to as the Terahertz gap [19]. As such, special devices
for the production, manipulation and measurement of such radiation have to be individually
developed, built and characterized, often resulting in large systematic uncertainties.

However, one can exploit that the transition frequency for different excited states n scales
approximately like

∆HFS(n) ≈ ∆HFS(n = 1)

n3
. (1)

If the ground state positronium atoms are excited to the first excited state using lasers,
this allows for the 23S1 → 21S0 hyperfine transition to be measured (see figure 1). Since the
frequency for this transition is around 25.4 GHz, the required microwave field can be generated,
manipulated and characterized by using mostly commercially available products.

Figure 1. Overview of energy levels, decay channels and lifetimes: The two-photon laser
excitation is shown with bold arrows, while the hyperfine splitting is shown with dotted arrows.
Next to the respective hyperfine states the decay channels and lifetimes can be found.

To efficiently produce positronium in vacuum and achieve sufficient overlap between the laser
beam and the produced Ps atoms, one needs to employ a positron beam. Instead of using a
gas target as in earlier experiments, a solid target is used, i.e. a porous silica thin film [20, 21].
This serves to efficiently convert positrons into positronium by the impinging positron capturing
an electron in the bulk of the porous structure, where the penetration depth is dependent on



10th International Conference on Precision Physics of Simple Atomic Systems

IOP Conf. Series: Journal of Physics: Conf. Series 1138 (2018) 012007

IOP Publishing

doi:10.1088/1742-6596/1138/1/012007

3

the kinetic energy of the positron, e.g. around 150 nm at 3 keV. The positronium atom then
diffuses within the interconnected pore network and is ejected into vacuum. These positronium
atoms can then be laser excited to the n = 2 state and subsequently the 23S1 → 21S0 hyperfine
transition can be induced by using microwave radiation amplified by a resonator.

Since the singlet 21S0 state decays with a lifetime of approximately 1 ns, positronium traverses
only around 100 μm and decays within the resonator after the hyperfine transition is induced
(see figure 2). The line shape can therefore be measured by distinguishing two-photon decays
from three-photon decays with high efficiency and measuring the ratio of the two rates. Finally,
fitting the simulated lineshape to the data one can extract ∆HFS and compare it to bound state
QED theory results.

Figure 2. Simplified measurement scheme of the Ps hyperfine transition: Positrons from
the bunched positron beam are focused onto the porous silica thin film target. The ejected
positronium is then laser excited to the 2S state, spatially filtered and undergoes the hyperfine
transition in the microwave field of the resonator. Subsequently, the back-to-back decay photons
are picked up by two segmented scintillation detector modules.

3. Experimental setup, recent results and current status
The current effort to precisely measure the 13S1 → 23S1 transition in positronium [22,23] at the
slow positron beam facility at ETH Zurich offers the opportunity to reuse most of the existing
technology for this excited state hyperfine splitting measurement. The pulsed slow positron
beam is capable of delivering on the order of 105 positrons per second (1 ns bunches at a rate
of typically 1 Hz), to a porous silica thin film target [24]. The conversion efficiency of positrons
to positronium is around 30% with the atoms emitted according to a cosθ-distribution. The
thermal energies of positronium emitted from porous silica targets are limited by the quantum
mechanical ground state energy of the atom in a pore of the target structure. For commonly
used pore sizes, this results in a kinetic energy of approximately 40 - 60 meV [20,21].

3.1. Laser excitation
A schematic overview of the laser system can be found in figure 3. It consists of a Toptica
frequency stabilized CW laser operating at 486 nm, which corresponds to half the frequency of
the transition. The CW laser alone would not result in sufficient intensity to excite efficiently
to the n = 2 state. For this reason an additional Radiant Dyes pulsed dye amplifier is used,



10th International Conference on Precision Physics of Simple Atomic Systems

IOP Conf. Series: Journal of Physics: Conf. Series 1138 (2018) 012007

IOP Publishing

doi:10.1088/1742-6596/1138/1/012007

4

which is pumped by a Spectra Physics pulsed Nd:YAG operating in the UV. The laser frequency
can be scanned over the required range of a few hundreds of MHz to account for possible shifts
by using a PC interface coupled to a wavelength meter. A Pockels cell and a corresponding
polarizing beam splitter is placed at the output of the pulsed dye amplifier. This serves both
to safely dump the returning laser pulse and to stabilize the long term drift in pulse energy,
e.g. due to the degradation of the dye mixture, to below 1%. This laser setup is capable of
delivering pulse energies up to 20 mJ with pulse lengths of approximately 7 ns (full width at half
maximum).

Figure 3. Schematic setup of the laser system: The three used laser wavelengths are produced
by an Nd:YAG and two subsequent dye lasers. The dye laser responsible for the 1S-2S transition
is further seeded by a Toptica diode laser and stabilized in frequency and energy.

Monte-Carlo simulation predicts that with careful tuning of the laser parameters, the
maximum achievable 2S laser excitation probability is on the 1% level [25]. This is mostly
limited by direct photo-ionization in the exciting laser and restricted geometrical overlap.

Figure 4 shows a schematic overview of the technique to detect the production of positronium
and the subsequent excitation to the 2S state. A monolithic PbWO4 scintillator is placed on top
of the experimental chamber to monitor the conversion efficiency of positronium via a technique
known as SSPALS [26]. Additionally, the rate of back-scattered positrons is monitored by a
micro-channel plate (MCP) placed at approximately 4 cm distance, which is directly proportional
to the number of incident positrons on the target.

The laser excitation is measured with three independent techniques. When positronium
traverses the laser beam, a significant fraction will undergo direct photo-ionization if the
frequency is close to resonance. Subsequently, the unbound positrons can either be detected
by the MCP or by an excess in the SSPALS spectrum due to the pulsed nature of the exciting
laser. However, while this shows that some positronium is excited to the 2S state, it does not
constitute a direct measurement of the 2S positronium fraction. This is realized by employing
additional pulsed lasers, which are spatially and temporally separated from the 2S exciting laser.

The first method uses a 532 nm Nd:YAG laser pulse with approximately 30 mJ in 7 ns
(FWHM) to ionize the surviving 2S atoms with a probability close to unity. Again, the positron
from photo-ionization can be picked up by either the MCP or its annihilation photons in the
scintillator.
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Figure 4. Sketch of positronium excitation and detection scheme: Positrons from the bunched
positron beam are focused onto the silica thin film target. The created positronium is then laser
excited to the 2S state by the 486 nm laser and can subsequently be ioinzed by a 532 nm laser
or excited to Rydberg states using a 736 nm laser. The positrons from photo-ionization or from
field-ionization of the Rydberg atoms can either be detected on the MCP or via annihilation
photons in a PbWO4 scintillator.

Alternatively, we employ a 736 nm dye laser pulse with approximately 2 mJ in 7 ns (FWHM)
to induce the transition from 2S to 20P. When this Rydberg state encounters the high electric
field (≈ 4 kV/cm) between a grounded grid and the front plate of the MCP it is field ionized and
the positron is picked up by the MCP. Due to the time of flight of the Rydberg positronium, this
signal is delayed by around 400 ns and can be used to measure the atoms velocity. This method
was developed and will be used for the correction of the second order Doppler shift – the main
systematic effect – in the 1S-2S measurement [22, 23]. Figure 5 shows a typical frequency scan
of the 486 nm laser exciting positronium to the 2S state, employing these detection techniques.

The fraction of surviving positronium atoms in the 2S state was optimized by scanning the
available laser parameters, e.g. the temporal and spatial overlap and the pulse energy (see figure
6). A peak ratio of approximately 2% of delayed photo-ionized to back-scattered positrons was
measured. Multiplying the normalization factor

N =
PBS

εc (1− PBS)
≈ 0.26 , (2)

where εc ≈ 0.25 is the conversion efficiency of positrons to positronium on the target and
PBS ≈ 0.06 is the probability of a positron to back-scatter into the detector predicted by
simulation [27], we estimate the fraction of excited and surviving positronium atoms to be

P2S & 0.5% . (3)

3.2. Microwave transition
The hyperfine transition is achieved by using a time-varying magnetic field close to the resonance
frequency, which is on the order of 25.4 GHz. A custom confocal resonator is used to form a
sufficiently strong standing microwave field. The attainable transition rate is limited by the
input power Pin, the coupling losses, and the quality factor Q of the cavity.

The resonator parameters were chosen such that the only excited mode is the fundamental
with design values of a loaded Q factor of approximately 33500 at critical coupling or equivalently
a FWHM≈ 0.8 MHz of the spectral response [25]. This is significantly smaller than the transition
line shape, which is broadened due to the short lifetime of positronium to about 160 MHz FWHM.
Therefore, a piezo actuator is used to lock and stabilize the cavity to the input frequency, by
controlling the distance between the two spherical mirrors. The stabilization and monitoring
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Figure 5. Positronium 2S excitation probability as a function of laser frequency: The measured
data is shown as dots with error bars, while the lines are simple Lorentzian fits. Data in
blue corresponds to direct photo-ionization in the exciting laser, while green represents photo-
ionization in the 532 nm laser. The red data points are signal due to field-ionization of Rydberg
positronium on the MCP grid.
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Figure 6. Fraction of 2S excited Ps atoms (normalized to the back-scattered peak) as a function
of the laser pulse energy.

system is based on a simple custom scalar network analyzer (see figure 7) with a feedback loop
to the piezo actuator, which allows for the cavity to be stabilized to the percent level over several
days.

The spectral response of our confocal resonator setup was measured to have a FWHM of
about Γ ≈ 1 MHz and Q ≈ 26300, which are close to the design value. However, as shown in
figure 8, only about 70% of the incident power is coupled into the cavity. This is likely due to
a small mismatch of the coupling hole size at room temperature, since the ideal coupling hole
size depends on the unloaded Q and therefore on the resistive losses in the cavity. In the final
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Figure 7. Schematic overview of the cavity monitoring and control system: The microwave
radiation is directionally coupled via a circulator into the resonator, while the reflected power
is directed into a powermeter. A feedback loop controls the piezo actuator used to stabilize the
cavity.

vacuum setup, the cavity is cooled and stabilized with thermoelectric elements. Furthermore, a
second set of mirrors with a smaller coupling hole diameter was produced and is available to be
optimized for ideal coupling, e.g. by iteratively widening the coupling hole size via wire erosion.
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Figure 8. Measured spectral response of confocal resonator including Lorentzian simple fit.
The data was calibrated offline to the spectral response of the system without the cavity.

From simulation we expect a transition probability (including geometrical considerations) of
around 0.5% using the analog signal generator alone (Pin ≈ 200 mW) and up to approximately
15% using an additional microwave amplifier (Pin ≈ 10 W) [25].

3.3. Detection and analysis
To detect the two back-to-back 511 keV photons of the annihilation of the 21S0 state and to
discriminate against the overwhelming background of three-photon decays of the 23S1 and
13S1 states, excellent spatial, temporal, and energy resolution is required of a detector. These
requirements are very similar for Positron Emission Tomography (PET), a medical imaging
technique measuring positron annihilations in biological material. Such a detector has recently
been developed, amongst others, by the Group of Prof. Dissertori at ETH Zurich within the AX-
PET collaboration as a demonstrator device [28] and is available to be used for this experiment.
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However, the DAQ needed to be refurbished due to differing requirements and more electrical
noise in our experimental environment, which is an ongoing effort.

Figure 9. Schematic view of a detector module (source: [28]). The detector consists of 6 layers
of LYSO crystals interspersed with perpendicular layers of wavelength shifting strips.

Each module consists of two identical modules (see figure 9) built up by six layers of eight
10 cm long scintillating LYSO crystals each, read out by Geiger-mode Avalanche Photo Diodes.
The cross-section of the LYSO crystals of 3× 3 mm2, together with the distance of 3.5 mm and
7 mm between the crystals, defines the resolution of the detector in the X,Y-plane. Each layer
is additionally read out by 26 wavelength shifting strips (WLS) perpendicular to the crystals,
connected to G-APDs as well. While the distance between the WLS is 3.2 mm, the precision in
the Z-coordinate is on the order of 1 mm, since the signal can usually be seen on multiple WLS
and one can use a weighted average to get a better spatial determination [28].

Background suppression of three-photon decays is implemented via vertex reconstruction and
cuts on the deposited energy and timing. Monte-Carlo simulation predicts detection efficiencies
for two-photon decays (including solid angle and background suppression considerations) of a
few percent, while the signal-to-noise ratio is on the order of 10 [25]. Further improvements
seem feasible, especially if a neural network analysis approach would be employed.

4. Summary and conclusion
In this contribution we illustrated the progress towards the direct measurement of the 23S1 →
21S0 positronium hyperfine transition. The laser excitation and the microwave system were
shown to perform close to design specifications. Furthermore, the detector and DAQ were
tested and are currently being commissioned.

Simulations and estimations regarding systematic errors predict the sensitivity of the
measurement to be on the level of [25]:

∆ν2S-HFS ≈ ± 10 ppm (statistical) ± 4 ppm (systematic).

This would constitute the first measurement of a hyperfine transition of positronium in
vacuum, which would be free of systematic effects found in earlier experiments. Furthermore, it
could shed some light on a 3σ discrepancy of bound state QED theory with earlier measurements.
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