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Abstract. The viscous-heating-induced solidification of a Lennard-Jones fluid near wall in
high-speed shear flows is discovered by the molecular-dynamics simulation. The solidification
is characterized by a non-dimensional parameter defined by the ratio of the viscous heating to
the thermal conductivity of the fluid and is observed only when the channel width is sufficiently
large, where the macroscopic transport becomes significant. Thus, the solidification is thought
to be due to the macroscopic heat and mass transport induced by the viscous heating generated
in the fluid regime by the high-speed shear flow. Unexpectedly, shear bands also appear near
wall when the solidification occurs.

1. Introduction

Lubrication is a fundamental and classical problem in the fluid dynamics. However, the behaviors
become very complicated in complex mechanical systems and extreme environments, where the
complex rheology of structured fluid, the chemical reaction at complex interface, and the phase
transition in high-speed lubrication are mainly concerned.[1, 2, 3] Computer simulations for
those complicated lubrication systems are still challenging and important both from academic
and practical points of views.

The computational fluid dynamics (CFD) approaches based on the macroscopic models are
useful unless the constitutive relations between macroscopic quantities are prescribed. However,
the constitutive relations are unknown for the complex fluids in general.

The molecular-dynamics (MD) simulation is useful even for the complex fluids which cannot
be addressed by the CFD approach because any complicated phenomena are autonomously
reproduced once their molecular models are appropriately specified in principle.[4, 5, 6]

In this paper, we carry out the large-scale MD simulation of the high-speed lubrication of a
Lennard-Jones fluid, which may involve the phase transition. Apart from the conventional MD
approaches utilizing the thermostat algorithms to artificially control the fluid temperature, our
MD simulation concerns the viscous heating generated by the high-speed shear flows as they are
naturally observed in real lubrication systems.

The MD simulations for the thermal lubrication in nano channel have been studied by various
researchers.[7, 8, 9, 10] However, in this study, we consider the channels which widen much larger
than the molecular scale, where the macroscopic transport becomes important. Thus, our study
is concerned with the thermal lubrication which is practically important in micro-mechanical
systems.
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Figure 1. The schematic of the problem. The LJ fluid is sandwiched by atomistic walls kept
at a constant temperature Tw. The boundary-driven shear flows are considered in this paper.
The x-axis is set in the flow direction and the y-axis is set in the direction perpendicular to the
parallel walls. In the x-direction, the periodic boundary condition is considered. The linear flow
velocity profile for the iso-thermal fluid is also drawn in the figure.

Incidentally, the drawback of MD simulation comparing to the CFD approach is the huge
computational cost. To overcome this difficulty, the development of the multiscale method
is currently very active research field.[11, 12, 13, 14, 15] We have also recently developed a
multiscale method called Synchronized Molecular-Dynamics (SMD) method and applied it to
the thermal lubrication of polymeric fluid with a uniform density, where the mass transports
are neglected.[16, 17, 18, 19, 20, 21, 22] Although the multiscale approaches are powerful and
promising for complex fluids, in order to further develop the multiscale methods, we need more
first-principle results obtained by the full MD simulation. Thus, in this paper, we concern the full
MD simulation which can reproduce the full macroscopic transport, i.e., the mass, momentum,
and heat transfers, autonomously.

2. Problem and model

We consider a Lennard-Jones (LJ) fluid between parallel plates, which is shown in Fig. 1. The
fluid domain is ranged over y ∈ (0, H) and the wall domains are ranged over y ∈ [−W, 0] (the
lower wall) and y ∈ [H,H +W ] (the upper wall). Both of the fluid and walls are composed of
LJ particles which interact each other via the LJ potential

U(r) =

{

4ε
[

(

σ
r

)12
−

(

σ
r

)6
]

, (0 < r < rc),

0, (rc ≤ r).
(1)

Here, rc is the cut-off parameter and ε and σ are the units of energy and length of the LJ
particles, respectively. The wall and fluid particles are considered to be the same in the size and
mass.

The wall particles are also connected to the face-centered cubic (FCC) lattice structure {rwi }
by a spring potential, and the temperature of wall particles is kept at a constant Tw by the
Langevin thermostat algorithm.

Thus, the dynamics of LJ particles are described as

mr̈i(t) = −
∑

j

∂U(|rij |)

∂rij
, (2)

for the fluid particles (i.e., ryi ∈ (0, H)), and

mr̈i(t) = −
∑

j

∂U(|rij |)

∂rij
− ks(ri − r

w
i )− γṙi +R(t), (3)
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Boundary-driven
Case H V w

A 56 3.0
B 168 1.0
C 252 3.0
D 756 1.0
E 67 2.5
F 84 2.0
G 302 2.0
H 378 2.0
I 112 1.5
J 168 3.0

Table 1. Parameter values used in the boundary-driven shear flows. In this proceedings, only
the results of Case C are mainly presented.

for the wall particles (i.e., ryi ∈ [−W, 0] ∪ [H,H +W ]), where Rα(t) (α = x, y, z) is the white
Gaussian noise, which satisfies,

< Rα(t)Rβ(t− s) >= 2mkBT
wγδαβδ(s). (4)

Here, ri represents the position of the ith particle, rij is defined as rij = ri − rj , m is the mass
of LJ particle, ks is the spring constant, γ is the damping coefficient, and kB is the Boltzmann
constant. Note that the summation

∑

j counts for both of fluid- and wall-particles.
The cut-off length rc = 2.8, spring constant ks = 10 and damping coefficient γ = 0.1 are

fixed. Hereafter, we measure the quantities by the units of mass m, energy ε, length σ, and time
τ =

√

mσ2/ε.
We remark that the temperature of the fluid is not artificially controlled by any thermostat

algorithms but varies spatially and temporally due to the macroscopic transport of mass,
momentum, and heat between the parallel plates walls with a constant temperature Tw. We also
note that the temperature of the moving wall (the upper wall) is controlled only by the y and
z components of thermal velocity while the x velocity is given by a constant velocity vx = V w.

The LJ fluid is initially in a uniform liquid state whose density ρ0 = 0.844 and temperature
T0 = 0.722 are fixed near the triple point of the LJ potential. This initial state of LJ fluid is
produced by a long-time quiescent MD simulation of the system shown in Fig. 1.

The width of channel H, which is shown in Table 1, is much larger than the molecular size.
Thus, the inhomogeneous distributions of macroscopic quantities, e.g., density, velocity, and
temperature, may be created due to the macroscopic transport of mass, momentum, and heat
between the parallel plates.

3. Results

The lengths of simulation box in x- and z-directions, Lx = Lz = 16.8 are fixed while the width
of channel H varies as shown in Table 1. The thickness of slab wall W ≃ 4.1 is fixed. Thus,
for example, the number of particles is about 6.2×104 for Case C. The MD simulations are
performed by using the LAMMPS software package [23, 24], in which Eq.(2) is time-integrated
by the velocity-verlet method with the time-step size ∆t = 0.005.

The channel width H is uniformly divided into 20 bins and, in each bin, the local macroscopic
quantities, i.e., density ρ, flow velocity ux, temperature T , and stress pαβ are calculated in the
stationary state after a long time τ0 has passed (i.e., τ0 = 1.53 × 108∆t is taken for Case D in
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Table 1 and τ0 = 6 × 107 for the other cases). The local macroscopic quantities are also time-
averaged in each 100,000 time-steps interval, in which instantaneous macroscopic quantities are
sampled at every 10 time steps (i.e., 10,000 samples are averaged for each local macroscopic
quantity). The standard deviations of the instantaneous local macroscopic quantities are at
most 0.0044 for the density, 0.023 for the velocity, 0.018 for the temperature, and 0.15 for the
normal stress. See also Fig. 2.

Boundary-driven (H=252, V�=3.0)
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Figure 2. The spatial distributions of velocity (a), temperature (b), density (c), and shear and
normal stresses (d) for Case C in Table 1. The standard deviations of the instantaneous local
macroscopic quantities are at most 0.023 for ux, 0.018 for T , 0.0044 for ρ, and 0.15 for pyy.
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Figure 3. The spatial distribution of local viscosity µ, which is calculated as the ratio of local
shear stress pxy to the local share rate γ̇ (=∂ux/∂y), i.e., µ = pxy/γ̇, for Case C in Table 1.
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Figure 4. The radial distribution functions (RDF) in the upper, middle, and lower regions at
time t = τ0. The small second peaks of RDF in the upper and bottom regions correspond to the
characteristic of the RDF in FCC lattice structure. The local density in the upper and lower
regions (solid phase) is ρ = 0.96 while that in the middle region is ρ = 0.79. See also Fig. 2(c)
for the local density profile.
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Figure 5. The snapshots of molecules contained in the lower (a), middle (b), and upper (b)
regions at two different time steps. The movements of colored molecules in upper figures after
10,000 time steps are shown in the lower figures. The shear banding layer near walls broadens
out about 15σ’s thickness in Figs. (a) and (c).
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Figure 6. The spatial distributions of the rate of change of local viscosity defined by Eq. 5 for
case C, F, and B in Table 1.

Figures 2 and 3 show the spatial distributions of local macroscopic quantities (i.e., velocity,
temperature, density, and stress) and local viscosity for Case C in Table 1, respectively.

In Fig. 2, it is seen that both of the normal and shear stresses, pyy and pxy are uniformly
distributed between the upper and bottom walls. This confirms that the local stresses are
balanced so that the flow velocity is in the stationary state. On the other hand, the other
macroscopic quantities vary largely between the walls. The temperature increases in the middle
region due to the viscous heating while the temperatures near walls are kept at constant T ≃ Tw.
Thus, the local density remarkably increases in the vicinity of walls.

Interestingly, the velocity gradient becomes much smaller in the vicinity of walls, where the
local viscosities are remarkably increased. See Fig. 3. Thus, the thickening of local viscosity
occurs in the vicinity of walls. In order to investigate the local material state, we also calculate
the radial distribution function (RDF) of LJ particles included in the upper, lower, and center
bins in Fig. 4.

Surprisingly, we can find the solidification of LJ fluid in the vicinity of walls in Fig. 4.
The RDF in the upper and lower regions exhibit the second peak around r ≃ 1.7, which is the
characteristic of the FCC lattice structure, while that in the center bin does not show the second
peak but is similar to that of the liquid structure.

The solidification in the vicinity of wall is also confirmed by the movements of tracer particles
in Fig. 5. Remarkably, the tracer particles in the lower region do not diffuse in the lateral
direction (y direction) but are confined in the vicinity of wall while those in the middle region
diffuse in the lateral direction as liquid molecules.

Furthermore, unexpectedly, we can observe shear bands in the vicinities of walls. The shear
banding layers broaden out about 15σ’s thickness over the walls, where the particles are closely
packed because they are strongly pushed toward the wall by the dilation of fluid in the middle
region due to the viscous heating.

4. Discussion

In this section, we discuss the non-dimensional parameter which is relevant to the solidification
mechanism. We classify the state of LJ fluid near wall by using the rate of change of local
viscosity defined by

µRC =
∂ logµ

∂y
. (5)
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Figure 7. The diagram of the local state near wall in terms of two non-dimensional parameters
defined by Eqs. (6) and (7). The results for the parameter sets in Table 1 are shown. The
symbols ©, △, and � represent the solid, semi-solid, and liquid state, respectively.

Figure 6 shows the distributions of µRC for case C, F, and B in Table 1. The rate of change of
viscosity is quite small, |µRC | ≪ 1 in the region except for the vicinity of walls. Remarkably, it
exhibits jumps only in the vicinity of walls for Case C, where the solidification occurs.

We qualitatively distinguish the states of LJ fluid near wall for all cases shown in Table 1
by using the maximum values of |µRC |; say, the solid state for |µRC | ≥ 0.4, semi-solid state for
0.1 < |µRC | < 0.4, and liquid state for |µRC | ≤ 0.1 in this study.

Figure 7 is the diagram of state near wall in terms of two non-dimensional parameters defined
as,

Re =
H

µ0/ρ0VM

ρ0VMH

µ0

∝ VMH, (6)

Gn =
µ0V

2

M/H2

λ0∆T/H2
=

µ0V
2

M

λ0∆T
∝ V 2

M . (7)

Here VM is the maximum flow velocity, ∆T is the characteristic temperature difference, and
µ0 and λ0 are the viscosity and thermal conductivity of LJ fluid in the initial state, which is
calculated as µ0 = 3.2 and λ0 = 6.5, respectively, by the equilibrium MD simulation. We also
remark that the choice of ∆T is arbitrary and ∆T = 1 is fixed in this paper.

The first non-dimensional parameter Re, the Reynolds number measures the relative width of
channel H to viscous length µ0/(ρ0VM ) and the second non-dimensional parameter Gn measures
the relative effect of viscous heating to thermal conductivity.

It is seen that Gn is more relevant to characterize the transition from liquid to solid states
than Re. However, the solid states do not appear at small Reynolds numbers even if Gn is
large. The solidification only occurs when the channel width is sufficiently large. This fact may
indicate that the large system size is required for the LJ fluid to be segregated in two different
phases.

5. Concluding remarks and perspective

We discovered a novel solidification and shear banding phenomenon near wall occurring in
the high-speed shear flow between the parallel plates by the molecular-dynamics simulation.
The solidification and shear banding near wall is only observed when the channel width
is sufficiently large, where the highly-inhomogeneous distributions of macroscopic quantities
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are created between the walls. The phase transition near wall is characterized by the non-
dimensional parameter Gn, which measures the relative effect of the viscous heating to the
thermal conductivity of LJ fluid between walls. Thus, the solidification near wall is thought to
be due to the heat and mass transport induced by the viscous heating in the fluid regime.

In order to elucidate the solidification mechanism more clearly, the effect of the lattice
structure of wall atoms will be important in the future work.

The solidification near wall related to the viscous heating has also been discussed in Ref. [25],
where the solid-like layering near wall was discovered in a two-dimensional nanochannel.
Actually, in the paper, the solid-like layering is much thinner than that in Fig. 5 and the effect of
the macroscopic transport is not clearly distinguishable from the effect of the wall atoms because
the channel width is only 48σ. However, the solidification mechanism seems to be similar to
that observed in the present paper.

The MD simulation can autonomously reproduce the heat-generating shear flows coupling
with phase transition as they may occur in real high-speed lubrication systems. Importantly,
this study demonstrates that the application of MD simulation to fluid dynamics problem can
unveil a hidden physical phenomenon, which cannot be ever addressed by any conventional CFD
approaches, even in the fundamental flow problems.
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