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Abstract. The problems of modeling in the CAE-system of panels forming processes in the 

creep mode with the use of reconfigurable rod punch are considered.  The geometrical and 

contact nonlinearity are taken into account in the model of the problem.  For the formulation of 

rational deformation problems the damage parameter is taken as an optimization criterion.  A 

discrete optimal control problem is formulated, which is solved by the method of dynamic 

programming with improvement by the method of local variations 

1.  Introduction 

Technological problems of shaping large-sized products in the slow deformation mode are of great 

practical importance in modern domestic and foreign aircraft building [1-4]. Recently, the shaping of 

products from sheets and panels is considered using a reconfigurable rod punch (matrix). The shaping 
surface of the punch as well as the matrix formed by two coaxially arranged rods systems, each placed in 

an individual position by the numerical control, allows the adaptation of the tooling system to 

manufacturing parts of various configurations. In works [5-9] design features of rod systems are 

considered and the main approaches to definition of the loads acting on each rod element are proposed. 
Accuracy of the part shape obtained by pressure processing technologies of materials under 

specified process parameters depends on accuracy of calculated and manufactured tooling shape 

(reconfigurable rod punch) that determines the anticipatory shape of the panel. The anticipatory shape 
of the panel should provide the given residual curvature of the panel after unloading. Thus, we arrive 

at the formulation of the inverse problem. The inverse shaping problem determines external forces and 

kinematic effects under which a strain process occurring under creep conditions over a given time 
interval leads to a prescribed residual configuration after elastic unloading [10-13]. 

The experimental results allow us to identify the dissipated work with the damage parameter [4]. In 

this case, optimal control problems can be formulated in shaping processes [14, 15].  

The problem of finding the motion law of tooling rods, which provides minimal damage and a 
given residual shape of the panel after unloading, is considered in article. 

2. Formulation and method for solving optimal forming problems 

Let 3V R⊂  be a bounded domain with a sufficiently regular boundary S. The contact surface of rigid 

bodies (stamps) with deformable body is denoted through cS  ( cS S⊂ ). Denote by 
1 2 3

( , , )u u u u=  and 

1 2 3
( , , )u u u u=ɶ ɶ ɶ ɶ  the vectors of current and residual displacements of deformable body; 1 3

2, [ ( )]u u W Q∈ɶ , 

http://creativecommons.org/licenses/by/3.0


Conference of Young Scientists in Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1129 (2018) 012007

IOP Publishing

doi:10.1088/1742-6596/1129/1/012007

2

 
 

 

 

 
 

{0 }Q V t T= × ≤ ≤ . Denote by 1 2 3( , , )u u u u=  the vectors of displacements at the contact surface of 

rigid bodies; 
1 3

2[ ( )]cu W Q∈ , {0 }c cQ S t T= × ≤ ≤ . The norm is given by 

1 2
3

1 2 2

1

|| || ( , )S S i
iS

u u u u dS
=

= = ∑∫
 
 
 

. 

Consider the quasi-static shaping problem with allowance for small deformations and large 
displacements and rotations (general Lagrangian formulation), including creep strain and elastic 

unloading. The inverse problem of a kinematic shaping by contact rigid stamps can be represented in 

the form of a quasi-static variational principle with the functional [11]:  

 
* 2 * 2

1 2

1 1
( , , ) || || ( , ) ( , ) || ||

2 2cS c SJ u u u u u W a u u a u u u u
ε ε

= − + + + + −ɺ ɺ ɺ ɺ ɺɺ ɺ ɺɺ ɶ ɺ ɺ ɶ ɶ ɶ ɶ ,  (1)
 

1 0ε > , 1 0ε → , 2 0ε > , 2 0ε → , 

where *uɺɶ , *uɺ  is a given residual displacement rate and current contact displacement rate at the  

moment of time t; [0, ]t T∈  is time of deformation under load. cW  is the quasistatic contact potentials 

obtained by imposing the contact conditions on the equations of body motion by method of Lagrange 
multipliers or by method of penal functions [16] and differentiation on t; potential form are given by 

, , ,( , ) [ ( ) ]i j i j i j

V

a u v E u u v dV= ∂ ∂∫ɺ ɺ ɺ ɺ ɺ , , , ,( , ) [ ( ) ]i j i j i j

V

a u v E u u v dV= ∂ ∂∫ɺ ɺ ɶ ɺ ɺ ɺɶ ɶ ɶ ɶ ɶ , 

, , ,( ) (1 2) (1 2)
c

i j ijpl ij kl ijpl ij pl ij p i p jE u c c u uε ε ε ε σ= − +ɺ ɺ ɺ ɺɺ ɺ ɺ , , , ,( ) (1 2) (1 2)
c

i j ijpl ij pl ijpl ij pl ij p i p jE u c c u uε ε ε ε ρ= − +ɺ ɺ ɺɶ ɺ ɺ ɺɶ ɶ ɶ ɺɶ ɶ ɶ  

[17], ijplc
 
are the components of symmetric tensor of elastic constants; 

c

plεɺ  are the creep strain rates; 

, , , 1,2,3i j p l = ; , , , , , ,(1 2)( )ij i j j i p i p j p i p ju u u u u uε = + + +ɺ ɺ ɺ ɺ ɺ , , , , , , ,(1 2)( )ij i j j i p i p j p i p ju u u u u uε = + + +ɺ ɺ ɺ ɺ ɺɶ ɶ ɶ ɶ ɶ ɶ ɶ . 

The law of steady creep (Norton's law) [17]: 
c

ij ijsε γ=ɺ , 1(3 2) nAγ σ −= , where ijs  are the 

components of the deviator of the stress tensor, 
1 2

(3 2 )ij ijs sσ =  is the effective stress (stress 

intensity), where A, n are the constants of the material. 

The following iterative method for solving the inverse shaping problem in displacement of a 

contact surface is used: 

 1 *( ) ( )k k k k k k k

i i i i i iu u u u u uα β+ = + − + −ɶ ɶ ɶ , (2) 

where 0 2kα< < , 0kβ →  at k →∞ , 1, 2,3i = . The proof of the convergence of this method and the 

approximate values of the coefficients are given in [12]. 

Thus, the method (2) is used to determine the final position of the tooling rods, which provides a 
given residual shape of the panel after unloading. 

The problem of optimal deformation is formulated as follows [14]: it is required to find a way to 

deform an element of the medium for a given time T, so that at the time t=T, the specified creep strains 
*c

ijεɺ  are obtained and the damage parameter Ω is minimal. Minimizing the dissipation power for each 

time point will give the minimum value of the dissipated work 
0

T

c

ij ijA dtσ ε= ∫ ɺ  and accordingly the 

damage parameter [4].  

Thus, the mathematical formulation of optimal control problem includes equations of mechanics of 

a deformable solid, obtained from the stationary conditions of the functional (1), and the optimization 

criterion  

 

0

max inf

T

c
ij ij

x V
J dtσ ε

∈
= →∫ ɺ . (3) 
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In the case of small deflections of plate, the optimal deformation is linear: *

3 3( )u t T u= ; in the case 

of large deflections, the optimal deformation is given by the nonlinear law 1 2 *

3 3( )u t T u=  [14,15].  

Applying the finite-element method for solving variational problems [16, 17,18] constructed using 

the functional (1), we obtain a system of algebraic equations for the problem of deformation of the 
body during loading and a system of algebraic equations for the problem of deformation of the body 

during unloading: 

 ( 1) ( ) ( 1)t t i i t t i+∆ − +∆ −∆ =K U R , ( 1) ( ) ( 1)ˆ ˆ ˆt t i i t t i+∆ − +∆ −∆ =K U R , (4) 

where 
( 1)t t i+∆ −

K , 
( 1)ˆt t i+∆ −

K  are the tangent stiffness matrices (in matrices 
( 1)t t i+∆ −

K  the additional 

elements which are formed from contact restrictions are already included), ( 1)t t i+∆ −R , ( 1)ˆt t i+∆ −R  are the 

vectors of internal  and external forces. The superscript t t+ ∆  of a quantity indicate time for which it 

is calculated. The superscript ( 1)i −  indicate number of iteration at correction of the solution by 

Newton-Rafson's method. The solution at the next step is found through a formula  t t t+∆ = + ∆U U U . 

Once contact is detected, the degrees of freedom are transformed to a local system and a constraint is 

imposed such that normal∆ = ⋅U v n , where v is the prescribed velocity of the rigid surface [19]. After 

that it is possible to find residual nodal movements ˆ= +U U Uɶ . 

For an approximate solution of the optimization problem, the interval [0, ]T  is divided into N parts: 

1 20 Nt t t T< < < < =… . Taking into account the time-discrete equations of the step-by-step integration 

procedure (4) and the minimized functional (3) on time intervals, a discrete optimal control problem is 
formulated. In such a formulation, the problem can be solved by the method of dynamic programming [20,21]. 

Let the vector-function of the displacement of the contact bodies points on the boundary cS  be given in the 

form ( ) ( ) kt f t=U U , where kU  is the solution of the inverse problem by the method (2) with an arbitrary 

function ( )f t . 

On the set ( )k kG G t≡  we take some discrete grid of points kp ku G∈ ;  the set of all points of the chosen grid 

will be denoted by kH  ( 0,1,...,k N= ) [20]. On two adjacent scales kH  and 1kH +  take the points ka H∈  and 

1kb H +∈ . Here, kp ku G∈ ; the possible positions of the contact bodies in time are taken as displacement of the 

plate.  

On the interval time 1[ , ]k kt t +  displacement, deformation and stress are determined from the first 

equation (4), when solving the plate deforming problem by moving contact bodies from position 

ka H∈  to 1kb H +∈  according to defined function ( )f t . It is necessary to find such a function ( )f t  for 

which it will be executed (3) on the interval 1[ , ]k kt t + . Thus, it is necessary to find a minimum of (3) 

over all possible sets of points 
0 10 1

( , ,...., )
Np p Np

u u u , 
kkp k

u H∈ , 0,..., 1k N= − . 

This method reduces the amount of computation in comparisons with a simple search of all 

possible deformation ways, since in the calculation process the non-optimal trajectories are excluded. 

To obtain a more accurate solution, it is necessary to take a fine mesh ( N →∞ ), in which case, of 

course, the calculation time increases significantly. Therefore, it is more efficient to use the method of 
local variations for improvement. 

The method of local variations [20, 21] assumes that some path 1l  connecting scales 0H  and NH  

is known. To determine the shorter path, the scales 0H , 1H ,…, NH  are scanned successively. On the 

scale kH , several points of the lines 1l  closest to the point are selected and the paths passing through 

these points are compared, and on the other sections the path remains unchanged. If there is a path 

with a shorter length, then this path is taken as the path 1l . Next, the points of the next scale are 

scanned 1kH + . The grid of the scale kH  before search by this algorithm should be reduced. 
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3. Numerical solutions 

The solution of the optimal control problem by the method of dynamic programming is considered on 

the example of the forming of a square plate in a rod tool (figure 1). 

 

Figure 1. Model of the plate. 

The material is isotropic and has the Young’s modulus E = 7000 kg/mm2 and Poisson’s ratio v = 
0.4. Steady state creep in the experiments is described by Norton’s law with different coefficients B 

for each types of strain: compression B1 = 0.25 • 10-14(kg/mm2) -n1 (h)-1, n1 = 8; tension B2 = 0.5 • 10-

14(kg/mm2)-n2(h)-1, n2 = 8. The deformation time T = 260 h. 

The motion of the contact rods is given by the formula: 
*

, ,( ) ( )z l z lu t f t u= , l=1,…,8.  Here l is the 

number of contact body. For the given curvature of the plate, the displacements values of the contact 

bodies 
*

,z lu  are determined by the method (2). 

 

Figure 2. Functions of movement bodies contact. 

We consider the case for N = 3 and the function ( )f t  is the same for all rods.  Possible options for 

the functions ( )f t  connecting points O and B are shown in figure 2. Solving the problem using 

dynamic programming method will give a linear function (line 2, figure 2). 

The solution is refined by the method of local variations [20,21]. To do this, points are added at the 

top and bottom of the found line at a distance of 1/6. Check for each kt  variant received by the broken 

line. As a result, the optimal broken line will be line 3. As can be seen from Figure 2, this line 

approaches the line 1 representing the function 1/ 2( ) ( / )f t t T= .  Thus, as the grid is reduced, the 

optimal broken line calculated by this method will approximate the optimal curve obtained 
analytically. 

Thus, the developed numerical method allows us to find rational shaping processes not only for an 

ideal plate, but also for such details as wing panels.  The algorithm, in comparison with the one 
presented in [13], does not depend on the model geometry and material properties. 



Conference of Young Scientists in Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1129 (2018) 012007

IOP Publishing

doi:10.1088/1742-6596/1129/1/012007

5

 
 

 

 

 
 

The developed algorithms can be used in industrial applications, allow to model and effectively 

evaluate the parameters of technological processes for manufacturing parts.  
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