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Abstract. In the present work, the acoustic band structure of a two-dimensional (2D) phononic 

crystal (PnC) containing composite material were investigated by the finite element method.  

Two-dimensional PC with triangular and honeycomb lattices composed of composite 

cylindrical rods are in the air and liquid matrix. The existence of stop bands are investigated for 

the waves of certain frequency ranges. This phononic band gap - forbidden frequency range - 

allows sound to be controlled in many useful ways in structures. These structures can be used 

as sonic filters, waveguides or resonant cavities. Phononic band diagrams ω=ω(k) for a 2D PnC 

were plotted versus the wavevector k along the Г-X-M- Г path in the first Brillouin zone. The 

calculated phonon dispersion results indicate the existence of full acoustic modes in the 

proposed structure along the high symmetry points.   

 

1. Introduction 
The PnC’s have been classified according to their physical structure of inclusion and matrix materials. 

The solid/solid, fluid/fluid, and the mixed solid/fluid composite systems have been studied 

theoretically and experimentally. These composite media have stop bands in their transmission 

spectra. In that case, the propagation of the acoustic or elastic waves is strictly forbidden [1, 8, 21]. As 

in photonic crystal, highly confined waveguides can also be created for elastic and acoustic waves by 

adding a line defect in PnC [9-14]. 

The unusual properties of the dispersion relation in the propagation band results in negative refraction. 

A flat slab with a negative refraction index behaves as a lens [23]. PnC can be designed as new 

component in acoustic and ultrasonic range to control sound.  

It has been shown that, the width of the complete band gap can be increased by reducing the lattice 

symmetry [3, 9, 15]. In this work, we consider two dimensional PnC consist of composite cylinders in 

air. We compare the band structure and transmission spectra of triangular and honeycomb lattice both 

numerically and experimentally for sonic frequency and numerically for ultrasonic frequency. For 

ultrasonic frequency, we choice tungsten cylinder inclusion in water. Since, tungsten has high contrast 

of density and speed of sound [2, 16-19]. We investigate whether band gaps could be identified and 

obtained by using periodic-boundary finite element method (FEM) for the unit cell of infinite 

structure. This is investigated by comparing transmission magnitudes with the conventional finite 

structure [9, 17-18, 20-22]. 

mailto:zaferozer@hotmail.com
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2. The model and calculation method 

The destructive interferences lead to forbidden bands in the periodic structures via wave scattering. If 

the frequency of incident wave is within the band gap region, total reflection is observed. PnCs are 

generally divided into two main categories; acoustic and mechanic PnCs. In this study, solid-fluid 

PnCs are investigated by applying acoustic waves. We assumed that cylindrical rod inclusions are 

infinitely long along z direction. The periodicity is assigned throughout xy directions and acoustic 

properties of the PnC are also periodic along xy direction. We consider that a longitudinal wave 

propagates in xy direction.   

Finite element implemented calculation is used for         -directions to obtain eigenvalues 

and eigenvectors of PnC. 

 

  
a) b) 

Figure1. Brillouin zone of (a) the triangular lattice and (b) the honeycomb lattice. 

 

PnC with triangular and hexagonal lattices are considered. These lattices consist of composite circular 

cylinders. They are placed in air to form two-dimensional lattices with a lattice spacing of a. Figures 

1(a) and 1(b) are the Brillouin regions of the triangular and the hexagonal lattice, respectively. The 

irreducible part of the Brillouin zone of a triangular lattice is shown in Fig. 1(a) which is a triangle 

with vertices of Γ, X, M. The irreducible part of the Brillouin zone of a honeycomb lattice is shown in 

Fig. 1(b), which is also a triangle with vertices of Γ, X, M. The utilized materials properties are given 

in Table 1. 

 

Table 1. Material parameters used in the analysis 

 Composite materials Air Tungsten Water 

Speed of sound (m/s) 1420 343 5090 1490 

Density (kg/m
3
) 690 1.25 19300 1000 

 

For numerical analysis, we used 2D PnC which is most commonly used in the literature [1]. Plane 

wave signal source with a pressure level of p0=1 [Pa] is applied to PnC with triangular and 

honeycomb lattices. For normal component of the air particles equal to zero, the absorber boundary 

condition is applied to the edge of the periodic structure and sound hard boundary conditions is 

applied to the edge of cylindrical inclusions. To observe the propagation of the acoustic wave in the 

PnC, we first set the lattice parameter is defined with a value of a=30 mm and the radius of the 

scatterers is increased from r=7 mm to r=12 mm by a step of 1 mm for both triangular and honeycomb 

lattice. 

We obtained experimentally the acoustic pressure level (dB) of the PnC composed of composite 

cylinders with radius of 10 mm (r), length of 300 mm (L) and lattice parameter of 30 mm (a) in air. 

We placed the speaker 1 m away from PnC. The microphone is placed just behind of the PnC for the 

experimental measurement. 

A tone generator software has been used by setting the output frequency100 Hz - 20000 Hz. The 

sound recorded on the computer by using the M-Audio external sound card and audio-technica pro 44 
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microphones. The recorded sound data is converted to frequency domain by using standard Fast 

Fourier Transform (FFT) algorithm as shown in Fig. 3 and Fig5.  Due to the circular shape of the 

equifrequency contour, the group velocity and the wave vector inside the crystal are antiparallel for all 

directions of propagation inside the crystal [24].  

Negative refraction is also investigated for 2D PnC consist of tungsten rods immersed in water with 

FEM. The group velocity is the gradient of the angular frequency as a function of k point (   
  

  
). 

The group velocity and the incident waves are parallel to wavevector during the incident waves 

propagating in liquid base. 

 

3. Results and Discussions  

 

3.1. Triangular lattice 

We first investigate the case with composite rods placed in the air in triangular lattice with circular 

cross session. 2D Triangular and honeycomb lattices are considered here and the numerical results are 

given as follows. For the triangular lattice, the largest absolute PBG is produced for the filling fraction 

of f = 0.58. The maximum band gap (between the 2nd and 3th bands) has the width (gap–mid gap 

ratio) of Δω/ωg = 0.1355 as can be shown in fig. 2.  

 

 
 

Figure 2. FEM computed band structure for the triangular 

 lattice phononic crystal. The blue shading indicates  

the presence of resonance band gap. 

 

The upper and lower edges are 0.384 and 0.236 in terms of ωa/2πc, where c is the wave velocity in the 

air (Δω = 0.148). 

Figure 3. a) and b shows band gap and experimental measurement results of PnC with the lattice 

parameter of a=30 mm and the radius of the rods of r=10 mm. It can be seen that that the PnC with 

triangular lattice have band gap along X-M direction.  
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a)                                                      b) 

Figure 3. a) Band structure b) experimental measurement 

 

3.2. Honeycomb lattice 

For the honeycomb lattice, the largest absolute PBG is observed for the filling fraction of f = 0.38.  

The gap between the 1st and 2nd bands has the largest width (gap–mid gap ratio) of Δω/ωg = 0.47 as 

can be seen in Fig. 4.  

 
Figure 4. FEM computed band structure for the honeycomb  

lattice phononic crystal. The blue shading indicates  

the presence of resonance band gap. 

 

The upper and lower edges are 0.384 and 0.236 (Δω = 0.147) in terms of a ωa/2πc, where c is the 

wave velocity in the air. Band gap and experimental measurement results for the lattice parameter 

a=30 mm and radius of the rods r=10 mm are shown in Figure 5. It is seen that the PnC with 

honeycomb lattice have complete band gap.  

 
Figure 5. a) Band structure b) experimental measurement 
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3.3. Acoustic lens effect and negative refraction properties of phononic crystal 

The negative refraction can be observed when the waves penetrate to the crystal surface with negative 

refractive index. If the band structure of the PnC has convex peak at the X point in Fig 2, it could 

result in negative refraction [2]. The negative refraction properties of PnC may lead to focus acoustic 

waves by flat lenses.  

We investigate the acoustic lens effect and negative refraction properties of the PnC by FEM. PnC 

consists of tungsten cylindrical inclusion in water. As seen in Fig.6, the PnC with negative refraction 

properties has acoustic lens effect. 

 

 
 

a) b) 

Figure 6. Acoustic lens effect of PnC a) Normalised Total Pressure Field (Pa) b) Sound  

Pressure Level (dB) 

 

The PnC crystal slab is placed in water and a point source is placed at the left side of the slab. 

Acoustic waves are emitted from the point source and propagate into the PnC slab with negative 

refractive index. As seen in Fig.6, the transmitted waves are then refocused at the right side of the slab. 

4. Conclusion 

It’s reported that except at very high filling fraction, the triangular lattice is not suitable to realize a 

complete band gap. When we compare the triangular and the honeycomb PnC, we found that the 

complete band gaps in the honeycomb case appear at lower frequencies with respect to the triangular 

case. We have examined the band gap properties of triangular and honeycomb two-dimensional PnC 

made up of composite cylinders placed in air for sonic frequency. We have also numerically simulated 

the band gap properties of triangular and honeycomb two-dimensional PnC made up of tungsten 

cylinders immersed in water for ultrasonic frequency. The same geometric parameters have been used 

for an accurate comparison of the two lattices.  

The honeycomb lattice demonstrates complete band gap at the lower frequency between the first and 

the second bands. Since, the increasing filling factor of honeycomb lattice is lower than triangular 

lattice and symmetry. The calculated transmission spectra and band gap are in a good agreement with 

the experimental results. As a practical engineering design, the proposed structure could be used to 

fabricate filter devices or noise isolation materials at the low-frequency sonic region. The negative 

refraction properties of the PnC could lead to design new types of acoustic metamaterials for example 

acoustic and ultrasonic cloaking [21]. 
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