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Abstract. Computer simulations are widely used to study molecular systems, especially in 
biology. As simulations have greatly increased in scale reaching cellular levels there are now 
significant challenges in managing, analyzing, and interpreting such data in comparison with 
experiments that are being discussed. Management challenges revolve around storing and 
sharing terabyte to petabyte scale data sets whereas the analysis of simulations of highly 
complex systems will increasingly require automated machine learning and artificial 
intelligence approaches. The comparison between simulations and experiments is furthermore 
complicated not just by the complexity of the data but also by difficulties in interpreting 
experiments for highly heterogeneous systems. As an example, the interpretation of NMR 
relaxation measurements and comparison with simulations for highly crowded systems is 
discussed. 

1. Introduction 
Computer simulations have become a central element in modern science as a bridge between 
experiments and theory [1]. Simulations are commonly applied to describe the evolution of complex 
systems in time and space based on theoretical models but in regimes where direct analytical or even 
numerical solutions are not feasible. The level of realism that is achieved by such simulations depends 
on the nature of the underlying models and may range from idealized conceptual views to physically 
highly 1accurate descriptions of the systems that are being studied. The most sophisticated simulations 
can, at least in principle, rival experiments and provide complete spatio-temporal information although 
the availability of computer resources limits the scales that can be accessed.  

A key advantage of simulations is that essentially any question can be interrogated 
irrespective of practical limitations that may hinder experiments, including hypothetical scenarios that 
could not even be realized experimentally under any circumstances; however, computer simulations 
remain a fundamentally theoretical approach that is most valuable when new hypotheses or predictions 
are generated that can subsequently be subjected to experimental validation. A common strategy is 
thus an iterative approach where simulations and experiments rely on each other in the development of 
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new mechanistic insights. While computer simulations are widely used today in all fields of science, 
they are especially valuable in biology where a high degree of system complexity challenges both 
experiments and theory [2, 3]. In fact, molecular dynamics simulations of biological macromolecules 
such as proteins and nucleic acids have become a staple in modern biological science having 
contributed much to our detailed mechanistic understanding of biomolecular processes [4]. Very 
recently, such simulations have been extended to cellular scales and simulations of entire cells in 
molecular detail will soon become reality [5].  

The main results of computer simulations are three-dimensional coordinate trajectories over 
time for a given system. Molecular systems are often described at an atomistic level of detail although 
higher (quantum-mechanical) or lower (coarse-grained) resolutions are possible. In addition to the 
system of immediate interest, the environment often also needs to be considered. For many molecular 
systems, especially in biology, this involves aqueous solvent so that water, ions, and co-solvents are 
part of the system, typically also in atomistic detail; therefore, system sizes between 50,000 and 1 M 
atoms are common nowadays for simulations of single macromolecules or macromolecular complexes 
[6], but much larger systems with as many as 100 M atoms have been reported for studies of many 
interacting molecules for the cytoplasm of a bacterial cell [7] (see figure 1). The time scales covered 
by such simulations are now routinely reaching 1 μs and in exceptional cases as much as 1 ms [8]. 
Depending on how often coordinates are saved, this means that a single simulation may generate data 
on terabyte to petabyte scales. The large amounts of data coupled with the high degree of complexity 
in many systems presents formidable data management and analysis challenges and it is also becoming 
increasingly difficult to compare with experiments. A further discussion of these challenges is the 
topic of this article.  
 

 
Figure 1. Model of bacterial cytoplasm in atomistic detail.  
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2. Data size challenges 
The large amount of data generated by computer simulations intrinsically presents big data challenges. 
At the logistical level, the storage, management, and dissemination of terabyte-scale trajectory data is 
still not trivial even as the performance and capacity of storage resources continues to increase [9]. 
While it has become common at least in most areas of biological science that primary data is made 
publicly available when research findings are published, this is generally not the case for simulation 
studies [10]; furthermore, while there are public databases for essentially every kind of biological data 
generated by experiments or from computational analysis, there is no widely used resource for 
molecular dynamics simulations [11] despite many efforts to develop such databases [10, 12-16]. The 
main reason is that a database where the original trajectories are collected and simply made available 
for download is not practical because of network bandwidth limitations. This is especially true for the 
large cellular-scale simulations that are beginning to emerge, as it will likely remain impossible in the 
foreseeable future to efficiently transfer petabyte-scale data sets over the Internet.  

One way to overcome such limitations is to reduce the data. This can be done by using only 
snapshots at infrequent time points and/or by removing less important parts of the system such as 
solvent. It is also possible to store the system of interest at a coarse-grained level even though the 
original simulations were carried out in atomistic detail with the idea that an atomistic level of 
resolution could be reconstructed on the fly if needed [17]. A different strategy is to maintain the full 
data sets but develop tools that allow remote analysis so that only the results of such analysis have to 
be transmitted instead of the actual data [10, 12]; however, this requires significant software and 
hardware infrastructure and may limit the flexibility in terms of what analysis can be carried out. The 
same challenges also apply even within a computational laboratory when there is not enough storage 
space to maintain all of the generated simulations available for direct access so that re-analysis and 
comparative studies of large sets of simulations become difficult tasks although it would be prudent to 
do so given the high computational costs to generate the data in the first place.  

 
3. Information wealth challenges 

A different challenge is how to fully capitalize on the wealth of information that is provided 
by simulations where every molecule is represented in atomistic detail. Early molecular dynamics 
simulations of biological macromolecules, where a single small protein or piece of DNA was studied 
over pico- to nanosecond time scales, could often be understood qualitatively by inspecting molecular 
movies generated from the trajectories but nowadays this is rarely a productive approach for analyzing 
simulation trajectories. In fact, in the largest cellular-scale simulations published recently that contain 
thousands of proteins [7, 18] it would take days just to look at every molecule for a minute each. 
Simulations are often carried out with a specific scientific question in mind and one way to navigate 
the large amount of information is to only focus on that question during the analysis in a strictly 
hypothesis-driven fashion; however, large-scale simulations of complex biological systems allow 
scientific discovery beyond the motivating question(s) that led to the simulations to be carried out 
initially. 

One approach to attempt such discovery in a system where one cannot simply ‘look’ at what is 
happening is to carry out a battery of standard analyses to characterize structural and dynamic features 
followed by automated feature analysis to identify, for example, if the secondary structure in a given 
protein is lost compared to an experimental reference structure. It is more difficult, however, to 
recognize causal relationships whereby the loss of secondary structure in this example may be related 
to interactions with other molecules or locally altered solvent properties. Not knowing what to focus 
on a priori and being faced with too many possibilities when considering first correlations and then 
causal connections between different components in a system with as many as 100 M atoms presents a 
classical data science challenge. There is an ideal opportunity for the application of machine learning 
and artificial intelligence techniques to interpret the increasingly rich information that is being 
generated nowadays via simulation. While machine learning has seen some applications in the analysis 
of molecular dynamics data [19, 20], the unsupervised analysis of complex biomolecular simulations 
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remains a key challenge that needs to be addressed. Molecular dynamics simulations of entire cells 
with billions of atoms and tens of thousands of macromolecules are on the horizon and the traditional 
manual analyses will become entirely inadequate for such data sets. 

 
4. Connections between simulation and experiment 

As computer simulations are based on theoretical models, the connection with experiments is 
crucial. At the onset, experiments are needed to define the composition of a given system and resolve 
molecular structures to provide initial coordinates from which simulations can be started. 
Experimental findings also usually generate the initial motivation to carry out simulations with the 
goal of developing a deeper understanding based on details extracted from the simulations that are not 
accessible experimentally. Once simulations have been carried out, comparisons with experiment are 
needed for validation and to follow up on predictions to further advance knowledge. As important as 
the connection between simulations and experiments is, there are many challenges: experimental 
conditions and scales are often quite different from what is being simulated and experiments cannot 
typically provide full atomistic resolution and picosecond time resolution at the same time as in the 
simulations.  

Atomistic resolution in experiments is often obtained via extensive time- and ensemble 
averaging, as in X-ray crystallography, nuclear magnetic resonance spectroscopy, or cryo-electron 
microscopy. Simulations often rely on the ergodic hypothesis that states that the long-time average of 
a single system is equivalent to the ensemble average of the same system [21]; however, since the 
accessible time scales in the simulations are still relatively short, a single simulation of a single system 
rarely provides fully-converged conformational space averages. The situation can be improved by 
running multiple replicates of a given system, or by employing enhanced sampling strategies to 
accelerate the exploration of the conformational energy landscape with given computational resources 
[22-24]. Simulations of multiple components such as in simulations of cellular environments, on the 
other hand, do allow ensemble averaging if there are multiple copies of the same molecule present [7]. 
Because different copies in such systems experience different local environments and sample different 
regions of phase space, extensive conformational averaging may be achieved with such simulations 
even if the overall simulation lengths for such large systems are much more limited than for smaller, 
single-molecule systems.  

Different copies of the same molecule experiencing different environments may also increase 
the complexity of the conformational energy landscape when interactions with the environment 
modulate biomolecular structure. There is increasing evidence that non-specific protein-protein 
interactions modulate biomolecular structure [25], but simulations suggest that such effects may be 
limited to only a small subset of molecules [7, 26]; for example, in a simulation of a bacterial 
cytoplasm, a few copies of the molecule pyruvate dehydrogenase, subunit A, were seen to unfold due 
to protein-protein interactions, whereas the majority of copies remained stably folded in their native 
state [7]. While such rare events can be easily discerned in simulations, experiments that rely on 
averages often cannot detect events that occur for only a small percentage of molecules making it 
difficult to compare simulations and experiments in such cases. 

The comparison of kinetic and diffusive properties between simulation and experiments 
requires that both approaches cover the same time scales. Simulations are so far limited to millisecond 
time scales for single molecules and to the microsecond range for the largest cellular systems. 
Experiments may describe dynamics from femtoseconds to hours or longer depending on the method 
that is being used. NMR experiments are especially suitable to cover a wide range of time scales [27, 
28]. NMR data is often compared with molecular dynamics simulations because processes occurring 
on different time scales can be isolated and matched to the simulation time scales [29-32]; however, 
the standard interpretation of NMR data usually depends on certain assumptions that can become 
problematic in highly crowded cellular systems. Using dynamic relaxation of protein backbone amide 
N-H vectors as an example (see figure 2), the resulting dynamics is a result of combining internal 
dynamics with rotational and translational diffusion. All three processes can be easily separated in the 
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analysis of simulation data. NMR on the other hand measures the overall relaxation rates that combine 
fluctuations due to internal motions with rotational tumbling. In interpreting the experimental data, the 
usual assumption is that both the solvent environment and the rotational tumbling are isotropic; 
furthermore, a separation of time scales between internal and rotational motions is assumed. It is then 
possible to determine the extent of internal motions on short and long time scales as well as rotational 
diffusion times via so-called model-free analysis [33]; however, none of these assumptions may be 
true in highly crowded heterogeneous cellular systems because of anisotropy and coupling of internal 
and diffusional motions. Although one can formally carry through with the standard analysis of the 
experimental data, the results are likely going to become problematic in such a scenario. A better 
strategy would be the direct calculation of relaxation times from the simulation as it avoids the 
assumptions made in the experimental analysis [34]; however, this is also not without challenges, the 
simulations would then be required to not just reach sufficiently long time scales for convergence but 
also they also have to accurately capture the entire dynamic spectrum as a result of different processes, 
each with their respective time scales estimated correctly. Because of methodological limitations this 
is often not the case; for example, while the time scale of internal protein motions are perhaps accurate 
with current force fields, the diffusional motions that depend on the water model used in the 
simulations would be accelerated if the popular TIP3P model is used [35]. While a separate analysis of 
diffusion and internal dynamics could correct such artifacts, this is not easily done when calculating 
spectra for the overall dynamics. While this example focuses on NMR data, similar arguments can be 
made for comparisons with single-molecule fluorescence data, electron paramagnetic (EPR) 
spectroscopy, or other types of spectroscopic measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beyond structural and dynamic information, simulations also allow the estimation of various 

energetic terms; for example, it is possible to calculate free energies of crowding, the free energy for 

 
Figure 2. Dynamics of N-H 

vectors: internal motion (blue), 
rotational diffusion (green), 

translational diffusion (purple)  
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transferring a given molecule from dilute solvent to a crowded environment, or interaction free 
energies within cellular environments [26, 36]. There are so far no good examples for experimental 
measurements of such quantities although this may not be impossible with innovative experimental 
setups. 

Finally, it goes almost without saying that meaningful comparisons between experiments and 
simulations require that the same systems are being studied in silico and in vitro or in vivo. For 
traditional studies of a single molecule under dilute conditions that is relatively easy to accomplish 
because the goal of both experiments and simulations would be to study pure systems with a minimum 
of contaminants; however, cellular-scale biological systems are highly complex and while the 
simulated systems are well-defined, corresponding experimental systems are less controlled which 
makes it difficult to follow up on predictions made in simulation studies for such systems. For 
example, it would be next to impossible to carry out experiments on the same exact model cytoplasm 
that is shown in figure 1. Even although it may be possible to match the same exact initial molecular 
composition, active metabolism, protein and nucleic acid synthesis and degradation, and molecular 
diffusion and osmotic effects would likely lead to significant fluctuations in concentrations and 
molecular composition. On the other hand, simulations of complete cells with all of the biological 
function intact are not going to be feasible in the foreseeable future, therefore, matching simulated and 
experimentally studied cellular systems is a major challenge that will remain difficult to overcome 
even as the scale and complexity further increase. 

   
5. Conclusions 

The extension of computer simulations to cellular-scale system is exciting but also presents 
significant challenges for fully taking advantage of the vast data generated in such efforts. Efficient 
management and mechanisms of public sharing of the resulting large data sets is the first issue that 
needs to be addressed but the bigger issues are how to analyze and interpret such data sets effectively. 
As traditional approaches to the analysis of simulations do not scale well to systems with thousands of 
macromolecules, a greater emphasis on machine learning and artificial intelligence will be required in 
the future. The comparison with experimental data, a vital component in any simulation study, is 
furthermore complicated by a variety of factors, even though time and spatial scales are increasingly 
overlapping between simulations and experiments. A major issue is the complexity of cellular-scale 
systems where the interpretation of experimental data becomes more difficult and the increasing 
importance of rare events that can be observed in simulations but are difficult to see experimentally. 
There are also challenges with exactly matching systems between simulations and experiments, which 
will make it increasingly difficult to follow-up experimentally on predictions made by simulations of 
cellular environments. Understanding and addressing these challenges will be essential in maintaining 
the synergy between simulations and experiments in studying biological systems at increasingly larger 
scales.     
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