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Abstract. Multioutput least square SVR has ability to remove serial correlation of process by 

mapping multivariate input space to multivariate output space. The aim of this research is to 

propose multioutput least squares SVR based multivariate EWMA control chart to monitor 

small change of multivariate autocorrelated process. VARMA model with additive and 

innovative outliers are generated to investigate the performance of proposed control chart. 

Simulation studies empirically show that multioutput least squares SVR based multivariate 

EWMA control chart detect either single or consecutive additive outlier takes place at different 

time in each variable accurately. On the contrary, single innovative outlier in each variable that 

occurs either at different time or at the same time is detected by multioutput least squares SVR 

based multivariate EWMA control chart as double out-of control signals. 

1. Introduction 
Multivariate control chart is one of the most expanding topic in statistical process control [1]. 

However, many assumptions have to be satisfied to construct multivariate control chart. In most cases, 

classical control charts assume that variables are independently distributed. Many researchers had 

investigated the effect of independence assumption violation on control chart performances such as 

Harris and Ross [2], Johnson and Bagshaw [3], and Noorossana and Vaghefi [4]. Even for small level 

of autocorrelation, conventional control chart applied to autocorrelated data could increase the average 

false alarm rate and would decrease the ability to detect changes on a process [5]. Thus, many 

researchers had proposed multivariate control chart based residual of conventional time series model 

to monitor multivariate autocorrelated data such as Chan and Li [6], Kalgonda and Kulkarni [7], 

Theodossiou [8], Kramer and Schmid [9], and Sliwa and Schmid [10].  

In practice, conventional time series model usually does not satisfy the underlying assumption. 

Moreover, it requires predefined structure of the process so that a lot of expertise is needed to apply 

the model. To overcome this limitation, several researchers suggested the use of Support Vector 

Regression (SVR) [11,12] as an alternative method. This method can handle both linear and nonlinear 

time series data. On the other hand, SVR provide global optimal solution that makes it reproducible. 

Least Square SVR (LS-SVR) is least square version of SVR which replaces quadratic programming 

problem with linear programming problem [13,14]. Xu et al. [15] combined Multioutput SVR (M-

SVR) [16] and multioutput regression [17] as a basic idea to introduce Multioutput LS-SVR (MLS-

SVR). Each output variable in MLS-SVR algorithm is permitted to have different slope function. 

http://creativecommons.org/licenses/by/3.0
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Hwang [18] developed MLS-SVR based Multivariate Cumulative Sum (MCUSUM) control chart and 

pointed out that MLS-SVR based MCUSUM chart outperformed LS-SVR based MCUSUM chart. 

Thus, the aim of this research is to propose MLS-SVR based Multivariate Exponentially Weighted 

Moving Average (MEWMA) control chart as a solution to monitor multivariate autocorrelated 

process. Modelling with MLS-SVR is expected to yield global optimum solution, effective 

computational time, and minimum Mean Square Error (MSE). The performance of proposed control 

chart is verified using additive and innovative outliers. 

2. MLS-SVR Based MEWMA Control Chart 

Let [ ] n
tky R  Y  is an observable output variable, where 1,2, ,t n  define sample size and 

1,2, ,k   explain number of output variable. Given specific independent and identically distributed 

samples
1 2

1 2{( , ),( , ), ,( , )}n

nx y x y x y ,
d

t Rx , where d explains the dimension of input variable and 

t Ry . Given mapping function : d hR R  , assuming all MLS-SVR parameters associated with 

( ) x  so that ( )h

t R t N w  can be written as 0t t w w v , where 0

hRw , and ( )h

t R t N v . 

Solving parameters 0w ,  1 2, , ,V v v v  and  1 2, , ,b b bb  simultaneously is analogue to 

minimize the following objective function [15]. 

     0 0 0

1 '' '
min ( , , ) ,

2 2 2

s.t ( , , ) ,

T T T

T T

J trace trace

repmat n

 
  

  

w V Ξ w w V V Ξ Ξ

Y Z W b 1 Ξ

  

where slack variable matrix  1 2, , , nR 

 Ξ ξ ξ ξ ,  0 1 0 2 0, , , hR     W w v w v w v  

illustrate MLS-SVR parameter, kernel function matrix       1 2, , , h n

n R    Z x x x , and 

regularized parameter ', '' R   . 

The parameters of MLS-SVR model are estimated with form Lagrange function from the 

optimization problem, calculate the partial differentiation, and form positive definite linear equation 

system as follows: 

 
1

1
,

T

n n









    
    

    

bG 0 N M y

M Nb α0 M y
 (1) 

where,  , , ,
n

n n nblockdiag R


 N 1 1 1  1( ')
''

n n
n R


    M Ω I Q , kernel function matrix 

T n nR  K Z Z ,  , , ,n nrepmat R  Ω K   , , , ,n nblockdiag R  Q K K K  positive definite 

matrix 
1T R  G N M N , Lagrange multiplier matrix ' ' '

1 2(( ) , ( ) , , ( ) )T T T T nR   α , and output 

variable 1 2( , , , )T T T T nR y y y y . Thus, the solution of linear equation system (1) can be calculated as 

follows: 

1. Solve   and   from  M N  and  M y . 

2. Calculate TG N . 

3. Find solution from 
1 Tb G y  and   α b . 

Supposed that ' ' '
1 2(( ) , ( ) , , ( ) )T T T T  α  and b  are the solution of linear equation system (1) so 

the decision function of MLS-SVR can be written as: 
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Grid search method [19] is used to identify the proper hyper parameter so that minimum MSE is 

resulted. An evolutionary algorithm [20] can also be employed to optimize SVR parameters. 

Supposed that each output variable 1 2, , ,y y y  has significant partial autocorrelation function 

until lag 
1 2, , ,p p p  so that input variables of MLS-SVR are selected based on equation 

11,( 1) 1,( ) ,( 1) ,( )( , , , , , , ).tk t t p t t p   x y y y y  Furthermore, the optimal residuals of MLS-SVR 

model ˆ( ),  1,2, , ,  1,2, ,tk tk tke y f t n k   x  are selected using minimum MSE and multivariate 

normal distribution criteria. These residuals saved in matrix te  so that residual based MEWMA [21] 

statistic is formulated as 1(1 ) ,t t t    Z e Z where   explains smoothing parameter with 

0 1   and initial value 0 .Z 0  Hence, the statistic of MLS-SVR based MEWMA control chart is 

calculated as follows: 

 2 1 ,T
t t z tT Z Σ Z  (2) 

where 
 

 
2

1 1
2t

t

Z





   
 

Σ Σ

. A process is said to be in-control if 
2

tT  statistics does not exceed 

the upper control limit H, where the value of H is calculated based on predefined value of ARL0.  

3. Result and Discussion 

This section is aimed to investigate the performance of MLS-SVR based MEWMA control chart using 

simulation study. For this purpose, simulation study is designed to generate in-control VARMA 

model, VARMA model with both additive and innovative outliers. In-control VARMA model with 

200 samples are generated using this mathematical expression: 

1( 1) 1( 1)1 1

2 22( 1) 2( 1)

55 0.8 0 0.4 0
,

10 0 0.9 10 0 0.6

t tt t

t tt t

y ay a

y ay a

 

 

           
              

              

 

where  1 2

T

t t ta aa  satisfy white noise residual and bivariate normal distribution with zero mean 

vector and covariance matrix 
1 0.5

0.5 1

 
  
 

Σ . These in-control VARMA data, named dataset 1, are 

shown at Figure 1. 

 
Figure 1. Time series plot of dataset 1: VARMA model without outlier (a) Y1, (b) Y2. 
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Figure 2. MLS-SVR based MEWMA control chart for dataset 1. 

 

 
Figure 3. Time series plot of dataset 2: VARMA with additive outlier at (a) T1 = 132, (b) T2 = 

132. 

 
Figure 4. MLS-SVR based MEWMA control chart for (a) dataset 2, (b) dataset 3. 

 
Figure 5. MLS-SVR based MEWMA control chart for (a) dataset 4, (b) dataset 5. 

 
Figure 6. Time series plot of dataset 6: VARMA with innovative outlier at (a) T1 = 132,  

(b) T2 = 132. 
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Figure 7. MLS-SVR based MEWMA control chart for (a) dataset 6, (b) dataset 7. 

Second simulation is conducted by adding additive outlier at dataset 1 using following 

mathematical equation: 
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Figure 3 displays VARMA model with one additive outlier in each variable at the same time, 1 2,T T 

132, named dataset 2. This outlier only gives effect to the specific time where the outlier actually takes 

place.  

Table 1. Summary of monitoring result 

Data Outlier Type Monitoring Result 

Dataset 1 No outlier In control 

Dataset 2 Additive, T1 = T2 = 132 OOC at t = 132,133 

Dataset 3 Additive, T1 = T2 = 93,94,95 OOC at t = 93,…,97 

Dataset 4 Additive, T1 = 95, T2 = 132 OOC at t = 95,132 

Dataset 5 Additive, T1 = 93,94,95, T2 = 132,133,134 OOC at t = 93,94,95 and t = 132,133,134 

Dataset 6 Innovative, T1 = T2 = 132 OOC at t = 132,133 

Dataset 7 Innovative, T1 = 95, T2 = 132 OOC at t = 95,96 and t = 132,133 

In addition, Table 1 summarizes all datasets resulted in this simulation study. 

Dataset 6 are generated by adding innovative outlier at dataset 1. VARMA model with one 

innovative outlier at each variable, 1 2,T T  132, can be generated with following equation: 

1( 1) 1( 1)1, 1, 11 1
1, 2,

2, 2, 12 22( 1) 2( 1)

55 0.8 0 0.4 0 1,  132
6 6 ; , .

10 0 0.9 10 0 0.6 0,  132

t tt tt t
t t

t tt tt t

y aI Iy a t
I I

I Iy ay a t

 

 

                   
                                               

VARMA model with one innovative outlier occurs at the same time in each variable, 
1 2, 132T T  , can 

be shown at Figure 6. This outlier gives effect not only at specific time where the outlier actually takes 

place but also at some period after the outlier actually takes place, depend on the magnitude of moving 

average parameter. 

Dataset 1 is modelled using MLS-SVR as training data, where 1 1( 1)t tX Y 
 and 2 2( 1)t tX Y 

 are 

selected as input variable. MLS-SVR modelling using Radial Basis Function (RBF) kernel function 

for training data yields the best value of hyper parameter combination '  27, ''  2-10, and   2-

15 which resulted minimum value of MSE 1.0932. Residuals of MLS-SVR for training data satisfy 

multivariate normal distribution and white noise condition. Furthermore, these residuals are monitored 

using MEWMA control chart with significance level   0.00273 and smoothing parameter   0.3 as 

displayed at Figure 2. It can be shown that MLS-SVR based MEWMA control chart is correctly 

concluded in-control VARMA (1,1) data as an in-control process. 
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Dataset 2 that displayed at Figure 3 then modelled using MLS-SVR as testing data, while dataset 1 

are used as training data. Using the same way as the previous step, the residuals of testing data are 

monitored using MEWMA control chart. Figure 4.a shows out-of control signal at samples 132 and 

133 for an actual additive outlier occurs at the same time in each variable, at 1 2,T T  132. Furthermore, 

simulation study using dataset 3 aims to test the performance of MLS-SVR based MEWMA control 

chart on the presence of additive outliers that occur consecutively in each variable at the same time. 

Residuals of MLS-SVR for dataset 3 are monitored using MEWMA control chart with the same 

procedure as previous step as described at Figure 4.b. It can be known that MLS-SVR based MEWMA 

control chart for dataset 3 points out the out-of control signals at samples 93 until 97 for actual 

additive outlier that happened in chronological order for each variable at the same time, at 1 2,T T 

93,94,95. 

The performance of MLS-SVR based MEWMA control chart in the existence of additive outlier 

takes place at different time in each variable is tested using dataset 4. Figure 5.a presents MLS-SVR 

based MEWMA control chart for dataset 4. It can be inferred that MLS-SVR based MEWMA control 

chart correctly detect single additive outlier takes place at different time in each variable as an out-of 

control signal. Moreover, dataset 5 performs additive outliers that occur sequentially at different time 

in each variable, at 1T 
93,94,95 and 2T 132,133,134. Figure 5.b concludes that MLS-SVR based 

MEWMA control chart can find precisely the additive outliers that occur consecutively at different 

time in each variable. 

Dataset 6 are generated to investigate the performance of MLS-SVR based MEWMA control chart 

in the existence of innovative outlier takes place at the same time in each variable. MLS-SVR based 

MEWMA control chart for dataset 6 is presented at Figure 7.a. It could be noted that MLS-SVR based 

MEWMA control chart concluded double out-of control signals at samples 132 and 133 for actual 

single innovative outlier occurs at the same time in each variable, at 1 2,T T  132. In addition, the 

performance of MLS-SVR based MEWMA control chart in the presence of innovative outlier takes 

place at different time in each variable is verified by dataset 7. As provided at Figure 7.b, single 

innovative outlier occurs at different time in each variable, at 1T  95 and 2T 132, are resumed by 

MLS-SVR based MEWMA control chart as double out-of control signals at samples 95 until 96 and at 

samples 132 until 133. 

Table 1 also summarizes the monitoring result using MLS-SVR based MEWMA control chart. It 

can be concluded that MLS-SVR based MEWMA control chart yields valid conclusion while 

monitoring in-control VARMA process and VARMA process with additive outlier, either single 

outlier or consecutive outlier, takes place at different time in each variable. However, monitoring 

additive outlier happened at the same time in each variable using MLS-SVR based MEWMA control 

chart will produce invalid out-of control signal. Single innovative outlier in each variable, either 

happens at different time or at the same time, also summed up by MLS-SVR based MEWMA control 

chart as double out-of control signals. 

4. Conclusion and Future Research 

The simulation study uses VARMA data that involve both additive and innovative outliers. MLS-SVR 

based MEWMA control chart captures actual additive outlier, either single outlier or consecutive 

outlier, takes place at different time in each variable as out-of control signal. Meanwhile, additive 

outlier occurs at the same time in each variable can yield invalid out-of control signal. Moreover, 

MLS-SVR based MEWMA control chart points out an innovative outlier happens in each variable, 

either at different time or at the same time, as double out-of control signals. Finally, investigate the 

effect of autocorrelation in the performance of MLS-SVR based MEWMA control chart using ARL 

criteria might also be useful for future research. 
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