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Abstract. Single impurity Anderson model describes a system consisting of non-interacting
conduction electrons coupled with a localized orbital having strongly interacting electrons at
a particular site. This model has been proven successful to explain the phenomenon of metal-
insulator transition through Anderson localization. Despite the well-understood behaviors
of the model, little has been explored theoretically on how the model properties gradually
evolve as functions of hybridization parameter, interaction energy, impurity concentration, and
temperature. Here, we propose to do a theoretical study on those aspects of a single impurity
Anderson model using the distributional exact diagonalization method. We solve the model
Hamiltonian by randomly generating sampling distribution of some conducting electron energy
levels with various number of occupying electrons. The resulting eigenvalues and eigenstates
are then used to define the local single-particle Green function for each sampled electron energy
distribution using Lehmann representation. Later, we extract the corresponding self-energy of
each distribution, then average over all the distributions and construct the local Green function
of the system to calculate the density of states. We repeat this procedure for various values
of those controllable parameters, and discuss our results in connection with the criteria of the
occurrence of metal-insulator transition in this system.

1. Introduction
Systems of non-interacting electrons have been pretty well understood in how the electronic,
magnetic, and optical properties arise. Further, systems with weak electron-electron interactions
are usually still understandable as they may still behave qualitatively similar to the non-
interacting ones. However, the theories established for non- or weakly-interacting electrons fail
to describe the properties of the electron systems in which the strength of the electron-electron
interactions is comparable to or larger than the kinetic energy. These systems are now referred
to as strongly-correlated electron systems. Discoveries on these systems include, for instance,
heavy-fermion compounds[1], superconductors[2], and Mott-Hubbard metal-insulator transition
(MIT)[3]. Nowadays many new concepts have been constructed to explain these phenomena,
but the understanding of these systems are not complete until now. A Mott insulator, as an
example, can undergo phase change from metal to insulator and vice versa at certain condition.
Its physical properties change dramatically with variation of control parameters such as carrier
concentration, temperature, the interaction energy, or external magnetic field[4].
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One of basic models that can theoretically describe strongly correlated electron systems is
Anderson impurity model, or more specifically, the single impurity Anderson model (SIAM). This
model describes the influence of the presence of transition element impurity in non-interacting
host metal. Rigorous theoretical solutions (both analytic and numeric) for such an impurity
problem are still quite complicated or demanding high computational cost. Hence, alternative
methods which are simple, effective, and computationally inexpensive are still needed to be
developed. Despite the existance of many impurity-problem solvers that have been tested,
the distributional exact diagonalization (DED) method proposed by Granath et al [5] seems
promising for the possibility of its application in small computer cluster. In this research, we
develop computational algorithm of the DED method for solving our SIAM problem with various
values of impurity concentration. The behavior of each impurity system is observed by varying
temperature, interaction energy and hybridization parameters.

2. Model
SIAM which is proposed by P. W. Anderson[6] is a simple model to describe the interplay of
charge and spin fluctuations of a localized interacting impurity in a metallic host environment.
This magnetic impurity could be for example the d- or f -level of a transition metal atom or
rare-earth atom embedded in a non-magnetic metal. In such systems one observes an anomalous
minimum in the electrical resistivity at very low temperatures, which is caused by the interaction
of the conduction bath electrons with the electron of impurities.

The Hamiltonian of the SIAM consists of three parts

ĤSIAM = Ĥbath + Ĥhyb +Himp. (1)

Ĥbath serves as the unperturbed Hamiltonian term describing the non-interacting conduction

electrons. It is given by Ĥbath =
∑

k,σ εdkd̂
†
kσd̂kσ; where εdk is the kinetic energy of the bath

state d with momentum k. The expression d̂†kσd̂kσ acts as the number operator describing the
occupation number of electrons with spin σ in the band state with wave vector k.

The coupling of the impurity site and the bath levels due to hybridization is described

by the Hamiltonian term Ĥhyb =
∑

k,σ Vk

(
f̂ †σd̂kσ + d̂†kσf̂σ

)
. This type of d-f coupling is

characterized by the hybridization parameter Vk. The bath electron with with momentum
k and spin σ is annihilated by operator d̂kσ and then created in the impurity site with spin σ

by operator f̂ †σ. Meanwhile, electron which formerly occupies the impurity site is annihilated

by operator f̂σ and then created in the bath with momentum k by operator d̂†kσ. In this
model, for simplicity, we assume that the hybridization strength is constant in momentum
space, giving us Vk = V = const. Hence, the hybridization Hamiltonian term can be simplified

to be Ĥhyb = V
∑

k,σ

(
f̂ †σd̂kσ + d̂†kσf̂σ

)
.

The last term of SIAM Hamiltonian, Ĥimp, describes the impurity site that is defined as

Ĥimp =
∑

σ εf f̂
†
σf̂σ + Uf̂ †↑ f̂↑f̂

†
↓ f̂↓. It consists of two parts: the first part describes the on-site

energy of the localized f -state on the impurity atom, while the second term describes the local
electron-electron Coulomb interaction for two electrons occupying the impurity state.

3. Computational method
We aim to address problem of impurity systems with various impurity concentrations. For this,
we choose to use the symmetric SIAM and solve it using a stochastic ED method on several small
systems containing one f -state and Nd d -states, where Nd is to be varied. To mimic different
impurity concentrations, we define the impurity concentration x, such that x = 1/Nd is the ratio
of the number of impurity sites to the total number of sites in the entire crystal sample. For
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every system with a fixed x or Nd, the energies of d -states (εd) are generated randomly with
a constraint that they are distributed symmetrically with respect to zero, while the f -on-site
energy (εf ) is set fixed at εf = −U/2. The symmetry of our model implies that the chemical
potential (µ) is 0 for all temperatures. Accordingly, we sample the corresponding representative
k points of εdk with only Nd base states denoted by an index α running from 1 to Nd. Thus,
the simplified model Hamiltonian for each υth- sampling reads as

H =
∑

σ

∑Nd
α=1 εdα d̂

†
ασd̂ασ +

∑
σ εf f̂

†
σf̂σ + V

∑
σ

∑Nd
α=1

(
d̂†ασf̂σ + f̂ †σd̂ασ

)
+ Uf̂ †↑ f̂↑f̂

†
↓ f̂↓. (2)

Our particular goal is to compute the retarded Green’s function (GF) of SIAM from ED
results for zero and finite temperatures. For this purpose, we need to obtain the eigenstates of
H for N , N + 1, and N − 1 particle systems, respectively. Here, for the symmetric SIAM, N is
always set to be half of the total number of orbitals considered in the system, i.e. N = Nd + 1.
The calculated eigenvalues and eigenstates are then used to compute the retarded GF, Gff ,
for the f -state, through Lehmann representation[7]. The need for obtaining Gff is particularly
for the purpose of extracting the self-energy of system[8]. In Lehmann representation, the
corresponding retarded GF for the f electrons can be defined as:
For zero temperature (T = 0)

GRffσυ(ω + i0+) =
1

Z

Nmax∑
N=1

{ #N+1∑
l=1

|〈l|f̂ †σ|GS(N)〉|2

ω + i0+ − (E
(N+1)
l − E(N)

GS − µ)

+

#N−1∑
n=1

|〈n|f̂σ|GS(N)〉|2

ω + i0+ + (E
(N−1)
n − E(N)

GS + µ)

}
.

(3)

For finite temperature (T > 0)

GRffσυ(ω + i0+) =
1

Z

Nmax∑
N=1

{ #N+1∑
l=1

#N∑
m=1

(
e−β(E

(N+1)
l −µ(N+1)) + e−β(E

(N)
m −µ(N))

)
|〈l|f̂ †σ|m〉|2

ω + i0+ − (E
(N+1)
l − E(N)

m − µ)

+

#N−1∑
n=1

#N∑
m=1

(
e−β(E

(N−1)
n −µ(N−1)) + e−β(E

(N)
m −µ(N))

)
|〈n|f̂σ|m〉|2

ω + i0+ + (E
(N−1)
n − E(N)

m + µ)

} (4)

In SIAM, we believe that under no external magnetic field spontaneous magnetization would
not occur. Hence, we would always have G↑ = G↓. Thus, after obtaining GF of the system
at both zero and finite temperature from Eq. (3) and (4), we can then drop the spin index
using either σ =↑ or σ =↓. The self-energy of the SIAM problem for every υth sampling can

be extracted through Συ(ω) =
(
G0
ffυ

(ω + i0+)
)−1
− (Gffυ(ω + i0+))

−1
; where G0

υff (ω + i0+)

is bare GF for the f -state which is defined as G0
ffυ

(ω + i0+) = 1

ω+i0+−εf− 1
x

∑
α ρ(εdα ) V 2

ω+i0+−εdα

.

Here, as mentioned before, x = 1/Nd is the concentration of impurity in the system. Finally,
after a sufficient number of samplings (Nsampling), the complete self-energy is the average over

all self-energy samples, that is Σ(ω) = 1
Nsampling

∑Nsampling
υ=1 Συ(ω). After obtaining the averaged

self-energy, we can construct the full GF of d- electrons (Gdd(ω + i0+)) and the corresponding
DOS as follows

Gdd(ω + i0+) =

∫
dε

ρ(ε)

ω + i0+ − ε− V 2

ω+i0+−εf−Σ(ω)

and DOSd(ω) = − 1

π
ImGdd(ω + i0+). (5)

In this calculation, we simplify the bare density of states of the metallic host (i.e. the d electron

density of states) to be semicircular, that is ρ(ε) = 2
π

√
(1− ε2).
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4. Results and discussion
As our specific research goal is to understand the influence of the parameter values in the SIAM
problem, we vary temperature (T ), hybridization parameter (V ), interaction energy (U), and
impurity concentration (x). We start with the most concentrated impurity system by taking
x = 1

2 . For this x value, we search for the right combination of critical U and V values that
lead to metal-insulator phase transition. Then, subsequently we do the same for more dilute
systems with x = 1

3 ,
1
4 and 1

5 . However, for brevity, we only show the results of variation of U,

V, and T for the most concentrated system (x = 1
2) and the most dilute system (x = 1

5) that
we have modeled.

When the d − f hybridization parameter is set to 0 (V = 0, the electrons in d-orbitals do
not feel any effect of the presence of impurity. Therefore, the d -orbital band shows bare density
of states that represents half-filled metallic band with Fermi energy lying at the middle of the
band. If we turn on the hybridization parameter (V > 0), the existence of impurity will influence
the movement of the bath electrons. As we increase the hybridization parameter, the charge
fluctuations become larger, electrons can hop from bath to the impurity sites. This causes thed -
band to redistribute into wider range of energy. Instead of gathering around the Fermi level, the
electrons spread out and occupy the lower energy states. At some critical values of hybridization
parameter Vc and interaction strength Uc, the coupling between d and f orbitals becomes large
enough to allow the electrons to more easily go back and forth from d to f states, however the
strong interaction at the f site tends to prevent the electrons to do. As a result, this situation
leads the d band to split into two parts separated by an energy gap, while the Fermi energy
falls inside the energy gap. Hence the metallic band undergoes a transition to become insulating
band. Note that the formation of energy gap depends on all the parameters x, V , U , and T .
The smaller x, the larger V and U , and the lower T we need, in order for the gap to form.
The transitions of the d electron density of states from having no gap until the gap forms upon
variation of the parameters x, V , U , and T are illustrated in Figures 1, 2, 3.

To vary the impurity concentration, we change the number of bath (d) states while keeping
one impurity (f) state for every system. Therefore, the effect of impurity scattering will be
different although we do not change the number of impurity state for our models. As we keep
our systems to be always at half filling, the larger number of bath states implies the larger
number of non-interacting electrons. It means that the possibility of impurity to scatter the
conduction electron becomes more diminished since the entire electrons experience less disorder
potential. From Figure 4, we can see that at those specific values of U and V, the MIT occurs
for system x = 1

2 .
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When we apply those values of U and V to more dilute systems (x = 1
3 and 1

4), the gap starts
to dissapear and insulating-like band will become ’bad’ metallic band that has poor conducting
ability. Then, for the last system, (x = 1

5), the metallic properties get more obvious since the
dip of band around Fermi energy become shallow. Thus, the higher impurity concentration, the
more probable MIT to occur. In real materials pure Anderson transition often appeas to be
temperature-independent. That is because such disorder-induced insulating phase usually has
robust gap that remains existing upto very high temperatures[9]. In our model, however, we also
vary the interaction energy, so that our systems can undergo Mott-Anderson transition which
is temperature-dependent. This hypothesis is verified by our model and calculation, which is
shown in the Figure 5 and 6 respectively for system with x = 1

2 and x = 1
5 .

5. Conclusions
We have developed detailed computational algorithm to implement the DED method on SIAM
for various parameter values. Our calculation has proven that DED is a reliable method to
solve SIAM problem. From the results, our modeled systems capture the occurrence of Mott-
Anderson metal to insulator transition (MIT) at some critical values of impurity concentration
(x ), temperature (T ), interaction energy (U ), and hybridization parameter (V ). Overall, our
study has demonstrated that doping a metallic system with a strongly-correlated element can
transform the system into an insulator, depending on the values of controllable parameters,
which is consistent with the picture of Anderson localization.
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