This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Characterization of SnO2 Film with Al-Zn Doping Using Sol-Gel Dip Coating Techniques

, , and

Published under licence by IOP Publishing Ltd
, , Citation A Doyan et al 2018 J. Phys.: Conf. Ser. 1011 012015 DOI 10.1088/1742-6596/1011/1/012015

1742-6596/1011/1/012015

Abstract

Sn1-2x AlxZnxO2 film has been developed using sol-gel dip coating technique. The materials SnCl2.2H2O, AlCl3 and ZnCl2 dissolved in water and ethanol with 5:95 volume ratio. Variations dopant concentration x = 0.000, 0.005, 0.0025, and 0.050. The film was grown with sol concentration 0.4 M, the withdrawal speed of 12 cm/min and sintering at 600 °C for 30 minutes. The characteristics Sn1-2x AlxZnxO2 films with various doping concentration phase were characterized by XRD. The morphological characteristics and the composition of the constituent elements of the film were characterized by SEM-EDX. The characteristics of the shape, structure, and size of the particles were characterized by TEM. The XRD results show that all films have a tetragonal SnO2 rutile phase without any secondary phase with an average particle size in the range 5.14 – 2.09 nm. The SEM results show that the film grown has a smooth morphology with a striped texture (x = 0.00), and there is a crack (x = 0.050). The EDX results show that the composition and distribution of the constituent elements of the film are uniformly distributed. TEM results show that the particle films has tetragonal rutile structure, orthorhombic and amorphous with a spherical shape.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1011/1/012015