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Abstract. We review recent progress in understanding the notion of locality in 
integrable quantum lattice systems. The central concept concerns the so-called 
quasilocal conserved quantities, which go beyond the standard perception of 
locality. Two systematic procedures to rigorously construct families of quasilocal 
conserved operators based on quantum transfer matrices are outlined, specializing 
on anisotropic Heisenberg XXZ spin-1/2 chain. Quasilocal conserved operators 
stem from two distinct classes of representations of the auxiliary space algebra, 
comprised of unitary (compact) representations, which can be naturally linked 
to the fusion algebra and quasiparticle content of the model, and non-unitary 
(non-compact) representations giving rise to charges, manifestly orthogonal to 
the unitary ones. Various condensed matter applications in which quasilocal 
conservation laws play an essential role are presented, with special emphasis 
on their implications for anomalous transport properties (finite Drude weight) 
and relaxation to non-thermal steady states in the quantum quench scenario.
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1. Introduction

Local conservation laws are amongst the most important fundamental concepts in 
theoretical physics. In generic systems these usually comprise energy, momentum, par-
ticle number, etc, and correspond to Noether charges connected to rather obvious 
physical symmetries. On the other hand, in systems which are exactly solvable, or 
integrable, the number of conservation laws and the corresponding conserved charges 
can be much larger and the underlying symmetries sometimes quite hidden. According 
to a widespread belief, integrability should provide us with a 1-to-1 correspondence 
between conserved charges and physical degrees of freedom. However, such a definition 
is only really applicable—or unambiguous—in classical deterministic (Hamiltonian) 
systems with a finite number of degrees of freedom where it amounts to the historical, 
Liouville–Arnold integrability.

Interacting quantum systems, where local degrees of freedom (quantum spins, fer-
mions, or bosons) are arranged in a regular 1D lattice, are typically considered inte-
grable in one of the following cases: Firstly, there may exist a canonical (Bogoliubov) 
transformation which maps the local degrees of freedom to non-interacting quasipar-
ticles. Such is, for example, the situation with quantum transverse field Ising model, 
or XY spin-1/2 chain [1]. These systems, which are reducible to a single particle pic-
ture and are often referred to as quasi-free, shall not be of interest in this article, even 
though they allow for an illustration of some non-trivial many-body phenomena, such 
as area laws for entanglement [2]. Secondly, there exist systems exhibiting genuine 
interparticle interactions whose dynamics is representable in terms of quasi-particles 
which undergo non-diractive scattering without particle production. A central feature 
in such a case is factorizability of an arbitrary multi-particle scattering process in terms 
of subsequent 2-particle scattering events, mathematically phrased in the form of the 
celebrated Yang–Baxter (or star-triangle) equation. One of the most remarkable physi-
cal consequences of that mechanism is the emergence of a macroscopic number of local 
integrals of motion (conservation laws). One of these charges, usually the first one in the 
series, is considered as the Hamiltonian (with local interactions). Here locality means 
that the densities of these charges act non-trivially only on a finite number of adjacent 
lattice sites. Integrability in the sense of Yang and Baxter, which is universally under-
stood within the framework of algebraic structures known as quantum groups [3–6], is 
perhaps the most general widely acceptable definition of integrability known to date. 
Besides defining and describing integrability in closed quantum many-body systems in 
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1D [7], it also covers 2D equilibrium classical statistical systems [8], nonequilibrium 
classical driven diusive 1D systems [9], as well as classical Hamiltonian systems [10, 
11], and since more recently, also integrable nonequilibrium steady states of open 
quant um interacting systems [12].

In recent years, tremendous progress has been made in understanding a wide vari-
ety of nonequilibrium aspects of integrable systems, a considerable part being covered 
by a series of review articles appearing in the present volume [13–21]. However, inter-
acting integrable quantum systems have been for quite some time no longer only of 
pure mathematical or theoretical interest. In the last decade, a dramatic progress in 
experimental techniques for manipulation of ultracold atoms enabled a few successful 
experimental realizations [21–29], some of which can directly probe the nonequilibrium 
transport [30–33].

The fact that certain integrable many-body systems can already be routinely con-
trolled in a concrete experimental setup also underlies a remarkable degree of structural 
stability for some of their dynamical properties with respect to model imperfections 
(perturbations), in spite of the fact that strict integrability technically requires precise 
(or fine-tuned) cancellations of most generically allowed processes. This may hint at 
the existence of a yet undisclosed quantum analogy of the KAM (Kolmogorov–Arnold–
Moser) scenario [34]. In our opinion this is one of the potentially most exciting prob-
lems for future research [35, 36].

As discussed above, Yang–Baxter integrability for a lattice system with N sites 
guarantees a macroscopic number N∝  of local conservation laws and the corresp-
onding local currents. By a local conservation law one understands an operator-
valued continuity equation, involving a charge and a current density being operators 
supported on a finite number of, say, n N�  physical sites. The summation of the 
local charge density over the whole volume of N sites then defines an extensive 
local conserved charge of an integrable model. One might wonder whether such local 
conserved charges represent a complete set, meaning that any extensive conserved 
operator which scales linearly with N can be represented as a linear combination of 
these local charges. Some formal completeness results for specific models have been 
put forward a while ago [37], and one might have been tempted to conclude that 
local charges (derived from fundamental Yang–Baxter transfer matrix) are all the 
conserved operators needed to understand local physics. However, certain unconven-
tional phenomena discovered later in studies of paradigmatic examples of interacting 
integrable systems gave, in spite of a missing formal understanding, quite the oppo-
site indications. Firstly, it has been discovered [38, 39] that the spin Drude weight in 
the integrable anisotropic Heisenberg chains (XXZ model) is finite at finite temper-
ature, despite the fact that contributions of all hitherto known local charges to spin 
current were zero. In more recent works it has been found [40, 41] that a Generalized 
Gibbs Ensemble (GGE) formed of the same standard set of local conserved charges 
fails to describe thermalization after a quantum quench in the gapped XXZ model. 
These results hinted at the existence of additional eectively local conserved charges 
linearly independent from the strictly local ones. One should note that in studies of 
infinite quantum (and even classical) lattice systems, extensive observables form a 
vector space rather than the full algebra, so it is the linear independence and not 
functional independence that matters.
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The first progress along the above lines came, unexpectedly, with the solution of 
an open XXZ model [42] driven out of equilibrium with eective magnetic (particle) 
reservoirs at the boundary formulated in terms of the Lindblad master equation. The 
steady state solution in the perturbative (weak-coupling) regime turned out to be 
tightly related to a novel eectively local (or quasilocal) conservation law which in 
turn explained the controversial problem of the ballistic conductivity by providing a 
rigorous non-trivial lower bound on the spin Drude weight and thus confirmed previous 
results of several numerical studies [43–46] and bosonization techniques [47, 48]. In a 
subsequent study [49], a connection to certain non-standard solutions to the Yang–
Baxter equation has been uncovered, permitting a systematic construction of a large 
set of quasilocal conservation laws directly from commuting transfer matrices associ-
ated to complex-spin (non-unitary) representations and yielding a further improved 
Mazur bound on the Drude weight. Generalizations of the results to periodic boundary 
conditions were simultaneously obtained in [50, 51]. A distinguished property of these 
so-called ‘non-unitary’ quasilocal charges is that they do not exhibit the spin-reversal 
invariance of the XXZ Hamiltonian and hence may have a nonvanishing overlap with 
observables which are odd with respect to spin reversal, such as the spin current. Very 
recently, even more exotic non-unitary quasilocal charges have been discovered where 
even the particle conservation (U(1)-symmetry) is broken [52]. Similar constructions of 
quasilocal charges and consequent Drude weight bounds can be performed also in other 
gapless integrable quantum spin models, for example in spin-1 Fatteev–Zamolodchikov 
chain [53]. We should remark, however, that it is the compactness of q -deformation 
rather than masslessness of the elementary excitations which plays the essential role in 
the construction of current carrying quasilocal charges that break the parity symmetry 
of the model (e.g. spin reversal). This observation should make it possible to extend 
these concepts to massive integrable models like the sine-Gordon theory.

In spite of all the rather profound implications mentioned above, the family of 
non-unitary quasilocal conserved operators could not oer the answer to the puz-
zling findings of [40, 41, 54], which cast doubts on the applicability of the concept of 
a Generalized Gibbs Ensemble—which was vividly debated about at the same time. 
In particular, it became clear that in a generic case the GGE has to be appropriately 
extended by incorporating quasilocal conservation laws which are viable for the whole 
range of anisotropies, invariant under spin-reversal transformation (i.e. of even parity), 
but still distinct from the canonical ones obtained from expanding the fundamental 
transfer matrix. Such quasilocal charges have been constructed (for the isotropic case) 
in [55], invoking transfer matrices built from unitary but non-fundamental spin repre-
sentations of the auxiliary spin. Soon after, a study [56] confirmed that those charges 
exactly explain the GGE conundrum.

1.1. Outline

The present review article aims at a coherent and pedagogical (i.e. non-technical) intro-
duction to the notion of quasilocal conserved charges and various physical applications 
in which they take the center stage. As the focus is primarily to elucidate the main ideas 
and their interrelations, a reader seeking for a more detailed and rigorous exposition is 
referred to the cited literature. Section 2 consists of a minimal technical background for 
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getting familiar with the main concepts presented in this article. Section 3 is devoted to 
the construction of what we call ‘unitary’ quasilocal charges, namely conservation laws 
arising from the unitary representations of an underlying symmetry group. In section 4 
a more intricate case of ‘non-unitary’ quasilocal charges which break the spin reversal 
(or, in general, some other 2Z  parity) symmetry is presented. Section 5 is dedicated 
to the exposition of several physical applications: section 5.2 discusses rigorous Mazur 
bounds on the spin Drude weight. Section 5.3 makes a link to quantum quenches from 
spin-reversal symmetric initial states and highlights the duality between the spectra 
of quasilocal charges and Bethe root distributions which describe bound states in the 
formalism of the Thermodynamic Bethe Ansatz. Section 5.4 illustrates the connec-
tion to integrable nonequilibrium steady states of boundary-driven quantum master 
(Lindblad) equations. In this review, all the concepts are presented explicitly on a con-
crete example of the XXZ chain and the associated 2q( ( ))slU  quantum symmetry. We 
conclude in section 6, where certain possible generalizations to other integrable models 
and some questions which enter in the broader context are briefly discussed.

2. Prerequisites

In this section we introduce the framework and technical tools that shall be used in our 
paper. In the section 2.1 we introduce the concepts of quantum spin systems on the 
lattice and the corresponding operator (C*) algebra, and define the notions of locality, 
extensivity, pseudolocality and quasilocality. In section 2.2 we define the main concepts 
of Yang–Baxter integrability: R-matrices, Lax matrices, transfer matrices, and fusion 
hierarchies, which allow one to build unitary representations of these objects from the 
fundamental one. These concepts enable us to reformulate Bethe’s original ‘coordinate 
ansatz’ [57] in an entirely algebraic language, a technique which is nowadays typi-
cally referred to as the quantum inverse scattering method or the algebraic Bethe ansatz  
[7, 58, 59].

The point of our review is to show that one can develop a new perspective on non-
equilibrium quantum physics by combining concepts from Yang–Baxter integrability 
with the notions of pseudo- and quasilocality of extended quantum lattice systems.

2.1. Pseudolocal and quasilocal operators over quantum lattices

The main theme of this article concerns conserved charges of integrable lattice models 
that comply with a certain weaker version of locality. As such, they extend beyond the 
orthodox concept of local charges, derived from logarithmic derivatives of the funda-
mental transfer matrix [7, 58–60], and exhibit physical relevance for computing time-
averaged values of dynamical response functions.

Since we are only concerned with integrable systems, we can limit our discussion to 
a one-dimensional lattice Λ = Z, although the concepts of this subsection can be read-
ily extended to a D-dimensional lattice DΛ = Z . The total Hilbert space, formed by a 
tensor product of d-dimensional single-site Hilbert spaces, will be denoted by H. The 
Hilbert space of a lattice subinterval between sites x and x ′, x x⩽ ′, will be denoted by 
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x x,[ ] ⊂′H H and the corresponding operator subalgebra by x x,[ ]A ′ . The entire quasilocal  
C * operator algebra A is obtained as the limit of a sequence n; 1, 2, 3n n,{ }[ ]A = …− , 
closed in the operator norm topology [61]. We shall refer to an observable represented 
by an operator a A∈  as local, if it acts nontrivially only on a finite subinterval x x,[ ]′ ,

a a a, .x x x x x x x x, , , ,1[ ] \[ ] [ ] [ ]A= ⊗ ∈Λ′ ′ ′ ′ (2.1)

The smallest such interval is referred to as the support of a, and its length r x x 1= − +′ , 
as the order of locality. Denoting by Tr x x,[ ]′  the trace over x x,[ ]′H , one defines the tracial 
state 0ω  as

a
aTr

Tr
,

x x x x

x x x x
0

, ,

, ,1
( ) [ ] [ ]

[ ] [ ]
ω = ′ ′

′ ′
 (2.2)

and extends it over an entire A by continuity (of 0ω ). The tracial state can be inter-
preted as the infinite temperature Gibbs state, satisfying ab ba0 0( ) ( )ω ω=  and having 
the strongest clustering property, namely being separable: ab a b0 0 0( ) ( ) ( )ω ω ω=  for any 
pair of local observables a, b with disjoint supports.

We define the Hilbert–Schmidt (HS) inner product as

a b a b a b, ,0 0 0( ) ( ) ( ) ( )† †ω ω ω= − (2.3)

and denote the corresponding HS norm3 by a a a,HS∥ ∥ ( )≡ . The latter satisfies the 

standard Cauchy–Schwartz inequality and a mixed inequality in relation to the opera-
tor norm ∥ ∥• ,

a b a b ab a b, , .HS HS HS HS( ) ⩽ ∥ ∥ ∥ ∥ ∥ ∥ ⩽ ∥ ∥ ∥ ∥| | (2.4)

Equipped with these structures we can define an orthonormal basis of local observables. 

A choice of an on-site basis such that ,x x ,( )σ σ δ=α α
α α

′
′, induces the HS orthonormal basis 

of algebra x x,[ ]A ′  consisting of elements of the form

.x x x x x, 1
x x x1

[ ]σ σ σ σ= ⊗ ⊗ ⊗α α α α
+′ ′

′+ � (2.5)

For example, in the case of a 2-dimensional local Hilbert space, x
1⩾σα  are just the Pauli 

matrices, while for a 3-dimensional local space they are the Gell-Mann matrices, etc. In 

all cases we choose x x
0 1σ = .

We furthermore define a lattice shift automorphism by a a
y

x x x y x y, ,
ˆ ( )[ ] [ ]= + +′ ′S  and 

associate to each element a A∈  a translationally invariant sum

A a ,
x

xˆ ( )∑= S
 (2.6)

which represents an extensive observable of a translationally invariant infinite quantum 
spin chain. Note that A is not an element of quasilocal algebra A, but the above sum 

3 Note that, strictly speaking, (a, b) and a HS become a proper HS product and HS vector norm, respectively, only 
after one takes the identity operator 1 out of the algebra A. Otherwise they yield the HS product and HS norm 
of the corresponding ‘nearest’ traceless observables. In other words, any operator of the form c1, ∈Cc , has ‘zero 
length’.

http://dx.doi.org/10.1088/1742-5468/2016/06/064008
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can still be attributed with a precise mathematical meaning as a sequence of operators 
{A(N )} acting on finite lattices of increasing lengths N. For example, the Hamiltonian 
of locally interacting translationally invariant models, as well as other strictly local 
charges, are precisely of such form. In this sense, a local operator a is called a density 
of an extensive local observable A.

The above sequences have the following properties: (i) volume scaling extensivity

N
A A0 lim

1
, ,

N

N N( )
→

( ) ( )< < ∞
∞

 (2.7)

and (ii) a finite overlap b Alim , 0N
N( )→

( ) ≠∞  with at least one local operator b (say b  =  a). 
In what follows, the upper index N will be left out, since an extensive operator A is 
always identified with the corresponding sequence.

By definition, any operator sequence A, satisfying extensivity (i) given by equa-
tion (2.7), and the finite overlap criterion (ii), shall be referred to as pseudolocal. This 
relaxes the constraint on the strict locality of the densities and generalizes the concept 
in a physically meaningful way. As we shall argue later, pseudolocality of conserved 
charges is the decisive property responsible for ballistic (or non-ergodic [62–64]) scaling 
of dynamical response functions. Note that if the density a can be written as a sum of 
mutually orthogonal terms a[1, r ],

a a ,
r

N

r

1

1,[ ]∑=
=

 (2.8)

for which a stronger condition, known as quasilocality [49],

a C e , 0,r
r

1, HS∥ ∥[ ] ξ< >ξ−
 (2.9)

holds, A is automatically pseudolocal.
Here we have considered lattices with open boundaries. For systems with periodic 

or twisted boundary conditions, the same concepts can be introduced by making the 
shift operator Ŝ periodic [50].

The definition of pseudolocality and quasilocality can be generalized (see [65]) to an 
arbitrary suciently strongly clustering state ω (say Gibbs, or generalized Gibbs state, 
etc) simply by replacing the HS inner product by

a b a b a b, ,( ) ( ) ( ) ( )† †ω ω ω= − (2.10)

with the main conclusion that the set of all pseudolocal observables forms a Hilbert 
space.

2.2. Yang–Baxter relation, quantum transfer matrices, and fusion hierarchies

A distinguished feature of integrable models is the existence of a macroscopic number 
of conservation laws. They arise as a consequence of an exceptional amount of sym-
metry governed by algebraic structures known as quantum groups [3–6]. The central 
element in the story is the so-called quantum R-matrix, an operator acting on a tensor 
product of a pair of vector spaces,

R : ,1 2 1 2( ) →λ ⊗ ⊗V V V V (2.11)

http://dx.doi.org/10.1088/1742-5468/2016/06/064008
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that can be considered as representations 1V  and 2V  of an underlying symmetry algebra, 
which we here for simplicity assume to be 2( )su  or its quantum deformation. In addition, 
R( )λ  depends analytically on a spectral parameter λ∈C. The cornerstone equation of 
quantum integrability is obtained by embedding R-matrices into a three-fold tensor 
product space 1 2 3⊗ ⊗V V V , by making use of a suggestive notation R R12 1( ) ( )λ λ= ⊗ , 
and imposing the requirement

R R R R R R , , ,12 13 23 23 13 12( ) ( ) ( ) ( ) ( ) ( )λ µ λ µ µ λ λ µ λ µ− = − ∀ ∈C (2.12)

where we have omitted the indices of vector spaces on which the operators act trivially. 
This condition is the celebrated Yang–Baxter equation [8, 66, 67] (YBE). Physically 
speaking, YBE expresses equivalence of two distinct sequences of two-particle collisions 
which, as a consequence, give the factorization property of the whole many-particle 
scattering process [66, 68]. What is perhaps even more remarkable is that such an 
equivalence automatically generates an infinite number of conserved quantities. The 
procedure is outlined below.

The simplest solution to YBE (2.12) is obtained when the R-matrix acts in two 
fundamental spin representations 1 2

2
/ ≅V C ,

R R P: , i ,2 2 2 2( ) ( )λ λ λ⊗ → ⊗ = +C C C C (2.13)

where P is a permutation operator, P 1 2 2 1〉 〉 〉 〉ψ ψ ψ ψ| ⊗ | = | ⊗ | . Furthermore, we intro-
duce the Lax operator L( )λ  by interpreting one fundamental space of the R-matrix as 
a local physical spin while the second fundamental space is referred to as an auxiliary 

space, ( )( )λ λ λ≡ − = − + ⋅→ →L R s s2i12 12
i

2

i

2 1 2, or

( ) ⎜ ⎟
⎛
⎝

⎞
⎠λ λ

λ
= +

−

−

+L
s s

s s

i i

i i
.

z

z (2.14)

The spin generators fulfil the 2( )su  algebraic relations, s s s, 2 z[ ] =+ −  and [ ] = ±± ±s s s,z , 

and in terms of the Pauli matrices read sz 1

2
zσ=  and s i

1

2
x y( )σ σ σ= = ±± ± . For clarity 

of notation, we shall here and below use bold-roman fonts to denote all operators which 
act nontrivially in auxiliary (non-physical) spaces. From YBE (2.12) it follows that the 
Lax operator equation (2.14) by construction obeys the local fundamental commuta-
tion relation (also known as the RLL relation [4, 58]) over the auxiliary vector space 

a a⊗H H , a
2≅H C ,

R L L L L R ,12 1 2 2 1 12( ) ( ) ( ) ( ) ( ) ( )λ µ λ µ µ λ λ µ− = − (2.15)

which can be extended to the entire physical Hilbert space N
p

2( )≅ ⊗H C  of the N-spin 
lattice

R M M M M R ,12 1 2 2 1 12( ) ( ) ( ) ( ) ( ) ( )λ µ λ µ µ λ λ µ− = − (2.16)

by introducing the monodromy matrix M( )λ  acting over a p⊗H H ,

M L .N( ) ( )λ λ= ⊗ (2.17)
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Here and subsequently we use a compact notation of N⊗  to denote a ‘partial’ tensor 
product, i.e. an operation where the tensor product only aects the physical comp-
onents, whereas for the auxiliary components ordinary matrix multiplication applies. 
Finally, by tracing over the auxiliary space of equation (2.17) we produce the funda-
mental transfer matrix

T MTr ,a( ) ( )λ λ= (2.18)
acting over the spin chain Hilbert space pH .

An infinite set of conservation laws is a consequence of commutativity property

T T, 0, , ,[ ( ) ( )]λ µ λ µ= ∀ ∈C (2.19)
which follows directly from the definition (2.17) in combination with the YBE (2.12). 
In fact, by considering higher-dimensional irreducible unitary representations of aux-
iliary spaces (s  >  1/2), one sees that the entire construction also holds for higher-spin 
transfer operators. These are constructed from Lax operators Ls( )λ  associated with 
(2s  +  1)-dimensional auxiliary spaces s

s
a

2 1= ≅ +H V C  and satisfy

T T s s, 0, ,
1

2
and , .s s[ ( ) ( )]λ µ λ µ= ∀ ∈ ∈′ +′ Z C (2.20)

2.2.1. Lax operator for the anisotropic Heisenberg model In this work we discuss the 
properties of quasilocal conservation laws in the anisotropic Heisenberg spin-1/2 chain 
(XXZ model),

H 2 2 ,
x

N

x x x x x x
0

1

1 1
z

1
z∑ σ σ σ σ σ σ= + + ∆

=

−
+

+
− −

+
+

+ (2.21)

where, unless otherwise stated, periodic boundary conditions are assumed. Including 
the anisotropy requires employing a one-parametric deformation of the 2( )su  symmetry 
algebra, which formally gives rise to a quantum-deformed (quantized) enveloping alge-
bra 2q( ( ))slU . The suitable deformation is achieved through the deformation parameter 
q exp( )η= , yielding the Lax operator of the following form (see e.g. [58])

( )
( )

( ) ( )
( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟λ

η
λ η η
η λ η

=
+

−

−

+L
s s

s s

1

sinh

sin i i sinh

i sinh sin i
.s

z

z (2.22)

Three regimes are to be distinguished with respect to the anisotropy parameter ∆:

 • gapped regime, corresponding to anisotropy cosh 1( )η∆ = >  with 0η> ,

 •	 gapless regime, corresponding to 1|∆| < , which we shall write as cos( )η∆ =  with 
q -parameter lying on the unit circle q exp i( )η=  for 0,( )η π∈ . In this regime, 
replacement i→η η−  and i→λ λ−  is needed in (2.22) to restore the notation that 
is most often used (equivalent to exchanging sin and sinh in equation (2.22)), and 
that is used below.

 •	 isotropic point, 1∆ = , is obtained from either of the regimes by taking the scaling 
limit, that is by writing the spectral parameter as →λ λη and then taking 0→η .
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The Lax operator (2.22) is invariant under the q-deformed quantum algebra 2q( ( ))slU . 

By introducing q-deformation as x q q q qq
x x 1[ ] ( )/( )= − −− − , the q-deformed commuta-

tion relations read

[ ] [ ]= =+ − ± ± ±q q qs s s s s, 2 , .z
q

s s2 2 2z z

 (2.23)

A family of irreducible unitary representations sV , s
1

2
∈ +Z , are spanned by basis vectors 

n⟩| , n s0, 1, 2= … , writing nlsps { ⟩}|�V , on which q -deformed spin generators act as

s n n n

s n n n n

s n n n n

s

s

s

,

2 1 1 ,

2 1 1 .

n

s

n

s

q q

n

s

q q

z

0

2

0

2 1

0

2 1

( ) ⟩⟨

[ ] [ ] ⟩⟨

[ ] [ ] ⟩⟨

∑

∑

∑

= − | |

= − + | + |

= − + | + |

=

+

=

−

−

=

−

 

(2.24)

In addition to finite-dimensional unitary representations of 2q( ( ))slU  algebra, 
YBE (2.12) in fact admits a much larger class of solutions which pertain to generic 

complex-spin highest-weight representation s
+V , s ∈C (see e.g. [69–71]). These are of 

infinite dimension for a generic value of s. For values of deformations corresponding 
to l m/η π= , with l, m, l  <  m, being co-prime positive integers—or equivalently, for q 
being a primitive root of unity—we shall be interested in irreducible finite-dimensional 

sub-representations s
m( )V ,

s n n n

n n n

s n n n

s

s

s

,

1 1 ,

2 1 .

s
n

m

s
n

m

q

s
n

m

q

z

0

1

0

2

0

2

( ) ⟩⟨

[ ] ⟩⟨

[ ] ⟩⟨

∑

∑

∑

= − | |

= + | + |

= − | + |

=

−

+

=

−

−

=

−

 

(2.25)

Here the state 0⟩|  designates the highest-weight vector, alias the ‘vacuum’, s 0 0s ⟩| =+ . 

Highest-weight transfer operators Ts
hw with s ∈C are defined according to the same 

prescription as in equation (2.18). Non-unitarity of irreducible representations (2.25) is 
reflected in the fact that s ss s( )†≠+ − . Existence of an R-matrix acting in a product of two 
dierent highest-weight spaces s s⊗ ′V V  implies mutual commutation

T T T T, , 0,s s s s
hw hw hw[ ( ) ( )] [ ( ) ( )]λ µ λ µ= =′ ′ (2.26)

for all distinct spin labels and pairs of spectral parameters ,λ µ∈C.

The standard set of local charges is generated by an expansion of Tlog 1
2
( )λ  around 

the so-called shift point,

( ) ⎜ ⎟
⎛
⎝

⎞
⎠λ
η

= − ∂ + |λ λ
−

=H Ti log
i

2
,k k 1

1
2

0 (2.27)
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where H H2( ) ∼  is the Hamiltonian (2.21). The locality of conserved operators H (k) is 
manifested in the fact that each H (k) admits an expansion in terms of homogeneous 
sums of local densities h(k) of order k, i.e.

H h h ,k

x

N
x k

x

N

x
k

0

1

0

1
ˆ ( )( ) ( ) ( )∑ ∑= ≡

=

−

=

−

S (2.28)

for any finite length N.
Let us now switch the focus to the properties of higher-spin transfer matrices Ts and 

their spectra, which play a vital role in the construction of unitary quasilocal conserved 
charges. These properties will only be used later in the ‘fusion approach’ (section 3.2) 
and for obtaining closed-form results in the quantum quench problem (section 5.3.4).

2.2.2. Quantum Hirota equation The quantum Hirota equation [72–77], also known as 
the T-system [78, 79], is a bilinear dierence equation which takes the form

( ) ( )⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠λ

η
λ

η
φ λ

η
φ λ

η
λ λ+ − = + − + =− + +ZT T s s T T s

i

2

i

2

i

2

i

2
,

1

2
,s s s s1

2
1
2

 
(2.29)

with bar denoting complex conjugation. This relation can be formally understood as 
the quantized version of Weyl’s formula for characters of classical representations [73, 
80], while physically it represents fusion rules on an underlying algebra in a covariant 
way. Higher-spin transfer operators Ts represent the canonical solution to the Hirota 

equation. In this case, the scalar potentials have to be identified as T0
i

2
( ) ( )φ λ λ= + η

 

and T0
i

2
( ) ( )φ λ λ= − η

, where T sin sinh N
0( ) ( ( )/ ( ))λ λ η= .

There exists some (gauge) freedom in choosing the operators Ts, which is the reason 
for defining their gauge-invariant combinations known as the Y-operators. They are 
defined through the non-linear transformation

Y
T T

T T

T T

T T
s,

1

2
,s

s s

s s
s s

s s2

0
2 1

0
2 1

0
2 1

0
2 1

1
2

1
2 1[ ] [ ] [ ] [ ]= = − =

− +

+ − −

+ −

+ − − +Z (2.30)

where the following compact notation is introduced: ( )( )[ ] λ λ≡ ± η± +∓f f k i0k i

2  for 0η≠ , 

and ( )( )[ ] λ λ≡ ±± +∓f f k i0k i

2
 in the isotropic case (after applying a scaling limit →λ λη 

and sending 0→η ). We shall write ( ) ( )[ ]λ λ≡± ±f f 1 . The Y-operators obey the Y-system 
functional relations

Y Y Y Y j, 1, 2,j j j j1 11 1( )( )= + + = …+ −
− + (2.31)

where the boundary condition Y0  =  0 is assumed.
In this article, the Hirota equation appears in two dierent (but related) contexts:

 (i) as the fusion relation among higher-spin transfer operators Ts which is automati-
cally inherited by their eigenvalues, and

 (ii) as an analytic closed-form description of certain solutions of equilibrium states 
which typically arise in the scope of quantum quench applications (see section 5.3).
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The Hirota equation (2.29) can be understood as a discrete integrable classical sys-
tem of its own. A central relation in this regard is the Baxter’s TQ-equation [81–84]

T Q T Q T Q ,1
2

0
2

0
2[ ] [ ]= ++ − − +

 (2.32)

which represents a discrete second-order dierence equation for the fundamental trans-
fer matrix T1/2. The operator Q stands for Baxter’s Q-operator. We do not derive it 
here explicitly (see e.g. [82]), but make use of its spectral representation—which will 
provide the connection to Bethe eigenstates (see equation (3.34)).

The Q-operator allows us to linearize equation (2.29), i.e. enable us to express Ts( )λ  
explicitly as a combination of Q-operators

T

T
Q Q

Q Q
,s

s
s s

k

s
s k

N

k s k s
0
2 1

2 2 2

0

2
2 ,

2 2 1[ ]
[ ] [ ]

[ ( )] [ ( )]∑
ζ

=
+

+
+ −

=
− − + (2.33)

where the scalars are provided by

T

T
.s k

k s

s2 ,
0
2 1

0
2 1

( )
( )

( )

[ ( ) ]

[ ]ζ λ
λ
λ

=
− +

+ (2.34)

Since the TQ-equation (2.32) is of second order, it admits two (linearly) indepen-

dent solutions, Q and Q
∼
, whose independence requires the Wronksian determinant to 

be non-degenerate,

T Q Q Q Q .0 = −
∼ ∼+ − − +

 (2.35)

By virtue of commutativity of Ts( )λ  and Q( )µ , for all s , ,
1

2
λ µ∈ ∈+Z C, all previously 

stated identities can be taken at the level of their eigenvalues. To distinguish com-
muting operators from their eigenvalues, we write the latter with the calligraphic font. 
Bethe roots jλ  are by definition zeros of eigenvalues of Q, i.e. solutions of 0( )λ =Q . 

Bethe ansatz equations can be obtained algebraically by eliminating Q
∼
 through the 

combination of equation (2.32) and the Wronskian condition (2.35), yielding an equa-
tion for the eigenvalues

T

T
1.

j j

j j

0
2

0
2

( ) ( )
( ) ( )

[ ]

[ ]
λ λ
λ λ

= −
− +

+ −

Q

Q
 (2.36)

Similarly, equation (2.33) turns out to be useful in studying the large-N limit spec-
tra of the transfer operators Ts. We shall exploit this trick later on in section 5.3.

3. Quasilocal charges from unitary representations

In this section we construct quasilocal charges from half-integer representations of the 
auxiliary algebra (2.24), extending the standard family of local charges. In the first part 
we formulate the pseudolocality condition in terms of auxiliary transfer matrices and 
subsequently demonstrate its equivalence to the inversion identity. Furthermore, the 
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construction allows us to obtain a representation of conserved charges, which is useful 
for computation of their norms and subsequently performing orthogonalization proce-
dure. Subsequently we present an alternative approach to obtain the inversion identity 
by resorting to previously discussed Hirota equation. The latter enables us to identify 
quasilocal charges pertaining to the gapless regime.

3.1. Auxilliary transfer matrix approach

Initially, we consider the 1⩾|∆|  regime of the XXZ model and show that an infinite 
tower of conserved operators

X
T

T
si log , ,

1

2
, 1,

3

2
,s

s
s

0
2 1

( ) ( )
( )[ ]λ
λ
λ

λ= − ∂ ∈ = …λ

+

+ R (3.1)

generated from the higher-spin transfer operators Ts are indeed quasilocal conserved 
charges. The sketch of the proof given below is based on establishing the inversion 
form ula derived in [55],

1
( ) ( )
( ) ( )

⟶[ ] [ ]
→λ λ

λ λ

+ −

− − +
∞T T

T T
,s s

s s

N

0
2 1

0
2 1 (3.2)

which allows for an alternative representation (or definition) of the charges (3.1) in a 
more convenient product form

X
T

T

T

T
i , .s

s
s

s
s

0
2 1

0
2 1

( ) ( )
( )

( )
( )[ ] [ ]λ

λ
λ

µ
µ

λ= − ∂ ∈µ

µ λ

−

− −

+

+
=

R (3.3)

Subsequently we will adopt equation (3.3) as a working definition when proving the 
quasilocality property of operators Xs( )λ . Initially, we shall not rely on the apparatus 
of integrability but rather employ a direct technique using auxiliary transfer matrices.

By doubling the auxiliary space the operator product on the left hand-side of equa-
tion (3.2) can be represented as

( )
( )

( )
( )

{ ( ) }[ ] [ ] Lλ
λ

µ
µ

λ µ= ⊗
±

± ±
±

∓

∓ ∓

T

T

T

T
Tr , ,s

s
s
s s

N

0
2 1

0
2 1 a (3.4)

where the trace takes place in s s⊗V V  and ,s ( )λ µ±L  are composite Lax operators acting 
over s s

2⊗ ⊗V V C  given by

1 1( ) ( )( ( ) )( ( )) ( )∑λ µ λ µ λ µ λ µ σ= ⊗ ⊗ =
α

α α± ± ±

∈

±∓N
J

L LL L, , , ,s s s s s s s (3.5)

with the index set x, y, z, 0{ }=J . For later convenience, we have introduced the nor-
malization factor

( ) ( ( ) ( ))[ ( )] [ ( )]λ µ λ µ=± + ± + −∓N L L, ,s
s s

0
2 1

0
2 1 1

 (3.6)

where L sin sinh0( ) ( )/ ( )λ λ η=  is the scalar Lax operator. For a schematic illustration of 
the construction of quasilocal charges Xs(λ) see figure 1.

The central object to establish pseudolocality of the family Xs( )λ  to be considered is 
the normalized Hilbert–Schmidt kernel (HSK)
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K
N

X X, lim
1

, .s s
N

s s, ( ) ( ( ) ( ))
→

λ µ λ µ=
∞

′ ′ (3.7)

Evaluation of expression (3.7) requires the introduction of an auxiliary transfer opera-
tor over s s s s⊗ ⊗ ⊗′ ′V V V V , reading

1 1( ) (( ( ) )( ( )))T L LCλ λ µ µ λ λ µ µ= ⊗ ⊗′ ′ ′ ′⊗ ⊗ ±
′ ′ ′

∓, , ,
1

2
Tr , , .s s s s s s,

2 2
2 (3.8)

Equipped with this result, the quasilocality condition for Xs( )λ  is equivalent to demand-
ing that

K
N

, lim
1

Tr , , ,

Tr , Tr , ,

s s
N

s s
N

s
N

s
N

, , ,

0 0

( ) { ( )

[ ( ) ] [ ( ) ] }
→

λ µ λ λ µ µ

λ λ µ µ

= ∂ ∂ |

− ∂ ∂

′ ′

′ ′

λ µ λ λ µ µ

λ λ λ µ µ µ

∞
= =

+
=

−
=

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′

T

L L
 

(3.9)

is finite and non-zero. The goal is to obtain K ,s s, ( )λ µ′  by calculating the dominating (i.e. 
the largest in modulus) eigenvalues of auxiliary transfer matrices s s, ′T  and s

0±L .

Let ,s
j( )τ λ µ  denote the eigenvalues of , ,s s

0 0( ) ( )λ µ λ µ=+ −L L , while for coinciding para-

meters we put ,s
j

s
j( ) ( )τ λ τ λ λ≡  (and similarly ,s s( ) ( )λ λ λ≡± ±L L , and ( ) ( )λ λ λ≡± ±N N ,s s ). 

In the normalization we use, the dominating eigenvalues s
0( )τ λ  of s ( )λ±L  are equal to 1, 

while the rest of the spectrum is sub-unitary, 1s
j( )τ λ| | <  for j 0≠ . Moreover, by analyzing 

the spectra of matrices ±Ls  one can learn that the left/right eigenvector 0
0 0〉 〉ψ ψ| = |±L , 

ψ ψ〈 | = 〈 |±L0
0

0  (corresponding to the leading eigenvalue), is the spin-singlet state

Figure 1. Schematic depiction of a quasilocal charge ( )λXs  for a spin chain composed 
of N sites: Each vertex represents a copy of an irreducible spin-s Lax operator Ls. 
Each row represents one copy of an auxiliary space Vs, carrying their own rapidity 
variables (λ and μ). Horizontal stacking pertains to tensor multiplication with 

respect to physical spaces ≅V C1
2

2, while vertical stacking should be understood as 

tensor multiplication with respect to auxiliary spin spaces (for physical components 
ordinary multiplication applies). The dashed lines denote partial tracing with 
respect to auxiliary spaces Vs. The upper row is acted upon by the derivative 
operation ∂µ (magenta), where Leibniz chain rule should be assumed. In addition, 
a reducible two-component Lax matrix ( )λ µL ,s  sits on every vertical rung (shown 
in blue only for the 3rd site). Notice that to generate a quasilocal charge ( )λXs  one 
has to finally set µ λ= .
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s k s k2 1 1 2 .
k

s
k

0
1 2

0

2

⟩ ( ) ( ) ⟩ ⟩/ ∑ψ| = + − | ⊗ | −−

=
 (3.10)

The singlet vector 0⟩ψ|  obeys S S 01 2 0( ) ⟩
→ →

ψ+ | =  where (following [55]) auxiliary spins 

are given by S s s1 1= ⊗
→ →  and S ss2 1

→ →= ⊗  and act over s s⊗V V . For the remaining Pauli 

components s ( )λα±L , x, y, z{ }α∈ , we have

0, 0.s s0 0( ) ⟩ ⟨ ( )
→ →
λ ψ ψ λ| = | =

− +L L (3.11)

These relations imply that the product state 〉 〉 〉ψ ψ|Ψ = | ⊗ | ∈ ⊗⊗ ⊗
′V Vs s0 0 0

2 2 is an eigen-

vector of , , ,s s, ( )λ λ µ µ′T  with a unit eigenvalue

, , , 1.s s s s,
0 0( ) ( ) ( )τ λ λ µ µ τ λ τ µ= =′ ′ (3.12)

The last step to perform in order to show that the kernel from equation (3.9) is finite, is 
to rigorously show that , , , 1s s, ( )τ λ λ µ µ =′  is indeed the leading eigenvalue. This state-
ment can be conveniently phrased by defining the operator

, , , , ,s s s s, ,1( ) ( )λ µ λ λ µ µ= −′ ′F T (3.13)

and showing that it is a positive-definite operator on the orthogonal complement of the 
singlet state 0⟩|Ψ .

The SU(2) symmetry of the isotropic point 1∆ =  makes the task of demonstrating 
that the matrix (3.13) represents a contracting map much easier. In this case, the scalar 

comp onent of double Lax operator ,s
0( )λ µ+L  can be readily expressed in terms of the 

Casimir operator C S S1 2
2( )

→ →
= + ,

1( ) ( ) ( )
→ →

⎜⎜ ⎟⎜ ⎟ ⎟
⎛
⎝
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎞
⎠λ µ λ µ λ µ= − + − − −+ +NL C S S, ,

i

2

i

2

1

2
,s s

0
1

2

2

2

 (3.14)

from where we conclude that the eigenvalues are

j j j s1
1

2
1 , 0, 1, 2 ,s

j
s( ) ( ) ( )τ λ λ= − + = …N (3.15)

while the dominating vector is clearly the spin singlet state 0⟩|Ψ . A complete proof 
and further details on this part are presented in [55] and the Supplementary material 
attached to it.

Note that factorizability of the leading eigenvalue, equation (3.12), in fact implies 
the inversion identity (3.2). Similar inversion formulae have been discussed earlier in 
the literature [8, 85, 86]. Quasilocality then follows essentially as a corollary of equa-
tion (3.12). To finalize the proof it remains to be shown that the kernels K ,s s, ( )λ µ′  
given by equation (3.9) are well-defined and can be evaluated directly by accounting 
only for the contributions from the leading eigenvalues of auxiliary transfer matrices 

, , ,s s, ( )λ λ µ µ′ ′′T  and ( )λ µ±L ,s
0 . Using arguments based on the first order perturbation 

theory in combination with factorizability of the leading eigenvalue results in
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K , , , ,

, , .

s s s s

s s

, , ,

0 0

( ) [ ( )]

[ ( )] [ ( )]

λ µ τ λ λ µ µ

τ λ λ τ µ µ

= ∂ ∂

− ∂ ∂

′ ′

′ ′

λ µ µ µ λ λ

λ λ λ µ µ µ

= =

−
=

+
=

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′
 

(3.16)

3.1.1. Local operator expansion An important practical advantage of the present 
form ulation is that Xs( )λ  can be readily expanded in terms of local operators. This step 
is of main interest in applications where evaluation of local correlation functions plays 
the primary role. To see how this works, we consider the resolution of operators Xs( )λ  
with respect to local clusters of r adjacent spins (2.5), by summing over all projections 
onto the finite sublattices of length Λ,

X Xlim lim , .s
N r x

N

r s x x r

d

1 0

1

1, , 1

x
r

( ) ( ( ))
→ →

[ ] [ ]

ˆ ( ( ))

∑ ∑ ∑λ σ λ σ=
α

α α

λ

Λ ∞ ∞ =

Λ

=

−

+ −

� ������������ ������������
S

 
(3.17)

Of course the ‘limits’ have to be understood in the sense as discussed in section 2.1. 
Here operators dr( )λ  represent projections of Xs( )λ  onto local densities with support size 
(order) r, where by virtue of equation (2.9) the HS norms dr HS∥ ( )∥λ  decay exponentially 
with r. We note that strictly local charges H(k) are, ignoring irrelevant constant prefac-
tors, just the Taylor series coecients generated by expanding X1 2( )/ λ  around 0λ = .

Thanks to the factorizability of the leading eigenvalue and the corresponding eigen-

vector, all k-point amplitudes X,k j1,( ( ))[ ]σ λα  can be eciently computed by introducing 
a set of auxiliary vertex operators,

,s s( ) ( )λ λ=α α+X L (3.18)

one for each α∈J . This allows us to write a matrix product representation

X, .k s1,
L Rk

k1

2 1( ( )) ⟨ ( ) ( ) ( ) ( )⟩[ ]σ λ ψ λ λ λ ψ λ= | |α
α

α α
α

−�X X (3.19)

This formula is exact in the thermodynamic limit (N → ∞, see equation (3.17)) while 
in finite lattices there are corrections which vanish exponentially in N and can be 
estimated in terms of subleading eigenvalues of s s,T . The boundary vectors in equa-
tion (3.19) are set as

, i , .s s
R

0
L

0( )〉 ( ) 〉 ( ) [ ( )]ψ λ λ ψ ψ λ ψ λ µ| = | 〈 | = 〈 | − ∂α
α

α µ
α

µ λ
+ +

=L L (3.20)

Here we wish to note that, in order to produce a non-vanishing amplitude, the  
μ-derivative which is included in the definition of Xs( )λ  (see equation (3.3)) must nec-
essarily act on the first site in the matrix product representation of operators Xj( )λ   
(see equation (3.4)) due to equation (3.11).

3.1.2. Computation of Hilbert–Schmidt kernel Quasilocal charges Xs( )λ  are linearly 
independent, but not manifestly orthogonal with respect to HS inner product. Below 
we show how to obtain explicit expressions for kernels Ks s, ′, and subsequently use them 
to carry out the ‘Gram–Schmidt orthogonalization’. For simplicity we restrict our dis-
cussion to the isotropic point 1∆ = , where we find

http://dx.doi.org/10.1088/1742-5468/2016/06/064008


Quasilocal charges in integrable lattice systems

18doi:10.1088/1742-5468/2016/06/064008

J. S
tat. M

ech. (2016)  

S S2 , 2 ,s s s s0 0 1 0 1 0⟨ ( ) ( )⟨ ( ) ⟩ ( ) ⟩
→ → → →

ψ λ λ ψ λ ψ λ ψ| = | | = − |
− +

N NL L (3.21)

while boundary vectors given in equation (3.20) can now be chosen symmetrically and 
take the form

S2 .s 1 0⟩ ⟩ψ ψ| = |α
αN (3.22)

A direct route to evaluate HSK K ,s s, ( )λ µ′  as defined in equation (3.16) is to rewrite the 
initial representation (3.9) in terms of the resolvent of the auxiliary transfer matrix (see 
[55] for details) which can be rewritten in terms of a geometric series

K , , , ,s s s s

k

s s
k

, ,
1

0

,1( ) ⟨ ( ( )) ⟩ ⟨ [ ( )] ⟩∑λ µ λ µ λ µ= Ψ| − |Ψ = Ψ| |Ψ−

=

∞

′ ′ ′T T (3.23)

where x,y,z⟩ ⟩ ⟩{ } ψ ψ|Ψ = ∑ | ⊗ |α α α∈ . In the above sum, each term ,s s
k

,⟨ [ ( )] ⟩λ µΨ| |Ψ′T  actu-
ally corresponds to a contribution of an order-k density dk( )λ , which is finite since 
it obeys the quasilocality condition. A key point in this calculation is to recognize 

that the leading eigenvalues reside in an invariant singlet subspace s s0
2 2⊂ ⊗⊗ ⊗

′V V V  

spanned by a convenient basis j j slsp ; 0, 1, 2, , 20 { ⟩ }= | = …V , where 0 0⟩ ⟩| ≡ |Ψ , 1⟩ ⟩| ≡ |Ψ . 
Noticing that s s, ′F  does not couple 0⟩|Ψ  to the remaining states from 0V  allows casting 
equation (3.16), expressed as equation (3.23), in terms of a solution to a linear system 
of 2s equations,

( ) 〉 〉 ( ) 〉( ) λ µ λ µ|Ξ = |Ψ = 〈Ψ|Ξ′ ′F K, , , ,s s s s,
0

, (3.24)

introducing the restriction of s s, ′F  to subspace 0V  denoted by s s,
0( )

′F . The solution to equa-

tion (3.24) is given in a closed form [55]

K , ,s s s s s s, ,( ) ( ) ( ) ( )λ µ λ µ κ λ µ= −′ ′ ′N N (3.25)

k k s s
s s k s s k

s s
a2

2 1 2 1 2

2 1 2 1
,s s

k

s s k,

1

dim 1 2

2 2

0

( ) ( )
( )( )

( )( )
( )∑κ λ λ= + | − |

+ + − | − |−
+ +

′
′ ′

′=

−

| − |+′ ′

V

 

(3.26)

where a s ss2
2 2( ) /( )λ λ= +  are Cauchy–Lorentz kernels. Kernels a2s play the central role 

as quasi-particle scattering phase shifts of the underlying scattering theory, as briefly 
explained in section 5.3.2.

3.1.3. Orthogonalization procedure The aim here is to construct mutually orthogonal 

families of quasilocal operators Xs( )λ∼
. By considering a generic charge with s

1

2
>  we set

X X f Xd , ,s s

s

s s

s s s,( ) ( ) ( ) ( )∫∑λ λ µ λ µ µ= −
∼ <

−∞

∞

′

′

′ ′ (3.27)

and minimize the inner product by solving the following variational problem:

f
X X

,
, 0.

s s

s s

, ( )
( ( ) ( ))δ

δ λ µ
λ λ =

∼ ∼

′
 (3.28)
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This yields a linear system of 2s  −  1 coupled Fredholm integral equations,

( ) ( ) ( )∫∑ ν µ ν λ ν µ λ= ∀ <′
″

″

″ ″

<

−∞

∞

′ ′K f K s sd , , , , ,
s

s s

s s s s s s, , , (3.29)

which can be reduced to a linear convolution system, using the explicit representation 
for the HSK (3.25),

f ,
s

s s

s s s s s s, , ,∑ κ κ=
″

″

″ ″

<

′ ′�� (3.30)

after rescaling the functions f f ,s s s s s s, ,( ) ( ( )/ ( )) ( )µ λ µ λ λ µ− =′ ′ ′
� N N . The convolution oper-

ation is defined as f g f gd( )( ) ( ) ( )∫λ µ λ µ µ= −
−∞

∞
� . Explicit results for the solutions of 

equation (3.30) can be found in [55].

3.2. Fusion hierarchy approach

We have previously highlighted the meaning of the inversion identity equation (3.2) 
and learned about its importance for identifying quasilocal conserved quantities. In this 
section, we explore a dierent route and show how to consistently retrieve the inversion 
formula from equation (3.2) by resorting to an algebraic diagonalization of higher-spin 
operators Ts( )λ .

In section 2.2.2 we explained how the entire set of canonical T-operators can be 
simultaneously diagonalized by means of Baxter’s Q-operator. Assuming that the large-

N behaviour of equation (2.33) can be read from the N-dependent scalars s k2 ,ζ , the sum 
is dominated by the highest term at index k  =  2s,

T

T

Q

Q
.s

s

N
s

s
0
2 1

2

2

( )
( )

⟶ ( )
( )[ ]

→
[ ]

[ ]
λ
λ

λ
λ

+

+
∞

−

 (3.31)

This manifestly produces the inversion formula (3.2) on the level of operators. We 
therefore expect that the formula (3.31) also makes sense on the level of typical eigen-
values and can therefore be used to obtain the action of Xj( )λ  on (Bethe) eigenstates.

In view of equation (3.31) we, in addition, conclude that the ‘quasilocality domain’ 
can be analytically continued from the real axis to the whole ‘physical strip’ in the 
complex plane,

; Im
i

2
.{ }( )λ λ

η
= ∈ | | <ηP C

 (3.32)
We note that the charges Xs( )λ  are Hermitian for λ∈R, but they become non-Hermi-
tian for Im 0( )λ ≠ .

As a consequence of equation (3.31), the general version (for arbitrary anisotropy ∆) 
of the unitary quasilocal charges from equation (3.1) admits a useful compact represen-
tation in terms of the Q-operator

X
Q

Q
i log , .s

s

s

2

2
( ) ( )

( )

[ ]

[ ]λ
λ
λ

λ= − ∂ ∈λ η

−
P (3.33)
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The charges Xs( )λ  can now be eectively diagonalized using the fact that eigenvalues 
of the Baxter’s Q-operator (denoted by ( )λQ ) are q -deformed polynomials with zeros 
coinciding with the set of Bethe roots j{ }λ 4,

c sin ,
j

M

j

1

( ) ( )∏λ λ λ= −
=

Q (3.34)

where c is an inessential scalar prefactor. At this point the identification with the spec-
trum of the model has been made, which shall play a central role in the subsequent 
discussion of applications in the area of ‘quantum quenches’. Further details are pre-
sented in section 5.3.

3.3. Gapless regime

In this section we generalize the results for the isotropic and gapped cases derived 
in the previous section to the gapless regime. Without loss of generality we restrict 
our considerations to the positive side of the critical interval 0, 1( )∆ ∈ . For technical 
reasons we exclude the non-interacting point at 0∆ = , which due to the exceptional 
degeneracy requires a special treatment.

In the gapless regime we introduce a three-parametric family of conserved operators

X
T

T
si log ,

1

2
, 1,s u

s u

u
j,
,

0,
1

( )
( )
( )

( )
( )

( )
[ ]λ
λ

λ
= − ∂ = …λ

+

+ (3.35)

An important dierence with respect to the family of charges used in the gapped 
regime is that T-operators now acquire another quantum label, the so-called (string) 
parity number { }∈ ±u 1 . The latter merely represents a 2/π  displacement of the spectral 
parameter in the imaginary direction, namely

( ) ( )( )
[ ] ⎜ ⎟

⎛
⎝

⎞
⎠λ λ

η π
λ= ± + − ∈ η

± +∓ PT T k u
i

2
1

i

4
i0 for .s u

k
s, (3.36)

It is important to stress that operators from equation (3.35) do not automatically 
inherit quasilocality from the gapped counterparts. Even though in the present case 
the structural form of the solution equation (2.33) to the Hirota equation remains 
unaected, the scalar functions undergo the following modification

k s u

s u
k s

sinh 2 1 1

sinh 2 1 1
, 0, 1, 2 .s u k, ,

i

2

i

4
i

2

i

4

( )
( ( ( ) ) ( ) )

( ( ) ( ) )
( )ζ λ

λ

λ
=

+ − + + −

+ + + −
= …

η π

η π

 

(3.37)

For the inversion identity to hold, the following condition should be satisfied

k s1 for 0, 1, 2 1.s u k, , ( )( )ζ λ| | < = … − (3.38)

In stark contrast to the gapped (and isotropic) case, given a root of unity defor-
mation q l mexp i( / )π= , only a finite number of (linearly) independent charges with 

4 Here we ignore a subtle fact that Baxter’s Q-operator becomes singular in the presence of periodic boundary con-
dition and requires to be regularized in some way [82]. In our formulae, Q-s always appear in certain ratios, which 
are always well-behaved. Apart from this, we do not rely on an operatorial construction of Q-operator but merely 
use its spectrum, which pertains to Bethe string configurations.
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quant um labels (s, u) can satisfy this condition. For instance, for the simple roots of the 

form m1/ /η π = , there are precisely m  −  1 charges with labels (s, +) for s , 1,
m1

2

1

2
= … −

. 

On the other hand, at generic roots of unity identifying the complete set of charges 
becomes more involved [87]. To give a flavour, at 3 7/ /η π = , we have four independent 
families of charges corresponding to the set

X X X X, , , .1
2
, 1, 2, 3,{ }( ) ( ) ( ) ( )+ + − + (3.39)

While the total number of quasilocal charges at a given value of η and their associated 
quantum labels might seem a bit arbitrary at a first glance, it is explained below in 
section 5.3 that the labels can be matched to the known and well-established quasi-
particle thermodynamic content of the model.

4. Quasilocal charges from non-unitary representations

Here we turn our attention to the construction of quasilocal conserved charges, using 
non-unitary representations of 2q( ( ))slU . In the first part we consider the highest-weight 
representations as elaborated on in [50] (see also [51]), building on previous results  
[42, 49]. This construction yields conserved operators which break the spin reversal 
symmetry of the model and which are used for establishing the ballistic transport prop-
erty of the high-temperature anisotropic Heisenberg model. The second part discusses 
an analogous construction, this time with semi-cyclic representations which, interest-
ingly, break even the U(1) symmetry of the model, following [52].

4.1. Charges from highest-weight representations

Let us remain in the gapless regime and keep the root of unity parametrization of 

the anisotropy given as cos( )η∆ = , or q ei= η, with l m/η π= , and l m, ∈ +Z  co-prime. 
In what follows, the basic building block of our construction is a reparametrized Lax 
operator equation (2.22), where for our convenience (and to comply with [49, 50]) we 
perform a rescaling by a factor sinh sin( )/ ( )η λ  and subsequently make a substitution 

i→η η−  (but refraining from substituting i→λ λ−  as in section 2.2.1). This results in a 
trigonometric form of the Lax operator:

( )
( )

( ) ( )
( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟λ

λ
λ η η
η λ η

=
+

−

−

+L
s s

s s

1

sin

sin sin

sin sin
.s

s s

s s

z

z (4.1)

Considering the m -dimensional highest-weight auxiliary space representation (2.25), the 
commuting transfer operators are given in accordance with the standard prescription

T LTr .s s
Nhw

a( ) { ( ) }λ λ= ⊗ (4.2)

Without further ado, we define the following family of commuting operators by 

dierentiating Ts
hw( )λ  with respect to continuous spin s,

Z T M
sin

2 sin

sin cos

2 sin
.s s s

2
hw

0( ) ( )
( )

( ) ( ) ( )
( )

λ
λ

η η
λ

λ λ
η

= ∂ | −= (4.3)
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Note that in this way the contribution of the magnetization M x x
zσ= ∑ ∈Λ  cancels from 

Z ( )λ , and hence, by construction, only the operator terms acting non-trivially on two 
or more sites remain. With the aid of Lax operator components

( ) ( ) ( ) ( ) ( )∑λ λ λ σ λ λ≡ = ≡ ∂ |
α

α α

∈
=

�
J

L L L L L, ,s s s0 0 (4.4)

we can, following the logic presented in section 3.1, expand the family of conserved 
operators Z ( )λ  in the large-N limit in terms of r-spin clusters,

Z Zlim lim , .
N r x

N

r x x r

d

1 0

1

1, , 1

x
r

( ) ( ( ))
→ →

[ ] [ ]

ˆ ( ( ))

∑ ∑ ∑λ σ λ σ=
α

α α

λ

Λ ∞ ∞ =

Λ

=

−

+ −

� ����������� �����������
S

 (4.5)

The amplitudes are now encoded as matrix product expressions

Z L L, L R ,r2, 1
, , r r2 1 2 1( ( )) ⟨ ( ) ( ) ⟩[ ]σ σ σ λ λ λ⊗ ⊗ = | |α α α α−

−
… +− −� (4.6)

while the boundary vectors are given as 〈 〈| ≡ |λ
η

−
LL 0

sin

sin
, LR 0

sin

2
⟩ ⟩| ≡ |λ

η
+�  (in addition to 

that, Z, 1( ( ))σ σ λ⊗ =− + ). By inspecting the Lax components (see equation (4.8) below) 
we learn that all amplitudes which violate the selection rule 1α = − and rα = + vanish. 
Another remark that we would like to make is that in any finite -N lattice the expres-
sion for the conserved operators Z ( )λ , as given by equation (4.5) without taking the 
limits and setting NΛ = , in fact acquires a finite-size correction of the form

c n nL L ,
x

N
x

n

m
N

0

1

1

1
1( ) ˆ ⟨ ( ) ( ) ⟩( )

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ⊗λ λ λ= | ⊗ |

=

−

=

−
− �S (4.7)

which gets exponentially suppressed with N with respect to HS norm (see [50]).
Let us briefly comment on the technical part of what steps have been made to arrive 

at equation (4.5). Due to translational invariance, each term in the operator expansion 
of equation (4.3) has been rearranged so that the right-most position in the product 

of Lax operators always belongs to the dierentiated Lax operator, L( )λ� . The trace in 

Ts s( )λ∂  is then split into two parts, a sum over states n 0⟩| ≠ , producing the correction 
(4.7), and the projection onto the ‘vacuum’ 0⟩|  part which results in equation (4.5). 
Explicit form of the amplitudes given by equation (4.6) can be deduced from the Lax 
components, equation (4.4), reading
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( ) ( ) ( ) 〉〈 ( ) ( ) ( ) 〉〈
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(4.8)
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For a diagrammatic illustration of explicit construction of the highest-weight Z-charges 
(4.5), see figure 2 (panel (a)).

4.1.1. Quasilocality of Z-charges Considering the HS inner product of an arbitrary 
pair of non-unitary quasilocal charges from equation (4.5), one again defines the HSK as

K
N

Z Z, lim
1

,
1

4
1 , 1 .

N

11( ) ( ( ) ( )) ⟨ ( ( )) ⟩
→

λ µ λ µ λ µ= = | − |
∞

−T (4.9)

The associated auxiliary transfer matrix T is an operator on the reduced auxiliary space 
n n n n mlsp ; 1, ..., 1{ ⟩ ⟩ ⟩ }| | ⊗ | = −�  of the form5

( ) ( ( ) ( ) ( ) ( ) ) 〉

( ) (( ) )
( ) ( )

( 〉 〉 )

∑

∑

λ µ η λ µ η

η η
λ µ

= + | 〈 |

+
| + |

| 〈 + | + | + 〈 |

=

−

=

−

T n n n n

n n
n n n n

, cos cot cot sin

sin sin 1

2 sin sin
1 1 .

n

m

n

m

1

1
2 2

1

2 

(4.10)

This matrix is contracting when parameters λ and μ lie inside the strip

5 The exact bijective correspondence, used to produce this symmetrized matrix form is 〉 〉 ↔ ( ) 〉η| ⊗ | | ||n n n nsin , 

↔ ( )η〈 | ⊗ 〈 | | | 〈 |−n n n nsin 1 .

Figure 2. Schematic depiction of the construction of a non-unitary quasilocal 
charge ( )λZ , for the highest-weight (a) and the semi-cyclic (b) case. Each term in 
the local operator expansion equation (4.5) corresponds to a distinct N-step walk 
in the directed graph, starting in the red node and ending in the blue node. The 
vertical level n of the node corresponds to a state in auxiliary space ⟩|n , while 

coloured arrows indicate physical space operator (black σ0, green σz, red σ+, blue σ−)  
picked at the x  −  th step of the walk, corresponding to the lattice site at position 

= …x N1, 2 . The amplitude of the overall term is given by the product of matrix 
elements of the corresponding Lax operators between appropriate auxiliary states 
(vertical levels of the nodes, indicated on the left).
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m
; Re

2 2
.m ( )

⎧
⎨
⎩

⎫
⎬
⎭λ λ

π π
= ∈ − <D C (4.11)

Quasilocality of conserved operators from equation (4.5) is then an immediate conse-
quence of this statement [50]. The reader is reminded that we have disregarded the 
correction term (4.7). Using an equivalent procedure to the one described above, it 
can be shown that the contribution of this term to HSK is exponentially suppressed 
in the system size [50]. In order to see that, one must examine the action of T on 

invariant subspaces of s
m

s
m( ) ( )⊗V V  which are spanned by elements n n k⟩ ⟩| ⊗ | + , for 

dierent fixed k. Such a decomposition reduces the auxiliary transfer matrix into the 
block diagonal form. One then proceeds by proving that each block itself is a con-
tracting matrix.

Evaluating equation (4.9) amounts to solving the linear equation

, 1 ,1( ( )) 〉 〉λ µ ψ− | = |T (4.12)

for the components jj ⟨ ⟩ψ ψ= |  of ⟩ψ| . The final result is

K
m

m
,

1

4

sin sin sin 1

2 sin sin
.1 2

( ) ( ) ( ) (( )( ))
( ) ( ( ))

λ µ ψ
λ µ λ µ

η λ µ
= = −

− +
+ (4.13)

The construction from above can also be applied to the case of twisted boundary 
conditions. The Hamiltonian then consists of an open boundary part and a two-site 
term, acting on the first and the last site of the chain

2e 2e ,z zi
2

i
2 2N N N2 2 21 1 1σ σ σ σ σ σ⊗ ⊗ + ⊗ ⊗ + ∆ ⊗ ⊗φ φ− + − − +

− − − (4.14)

introducing a flux parameter φ, such that the 0φ =  case corresponds to the Hamiltonian 
with periodic boundary conditions. The transfer operator in case of twisted boundary 
conditions takes the following form,

T L; Tr e ,s s
Ns

a
i s

z( ) { ( ) }λ φ λ= ⊗φ− (4.15)

while the conserved charges are generated similarly as in equation (4.5), with the pre-
scription (4.3), but using a modified s-derivative, is s→ φ∂ ∂ + . In this case the HS kernel 
from equation (4.9) remains independent of φ and hence quasilocality is preserved. This 
concludes the review of highest-weight conserved charges.

4.2. Charges from semi-cyclic representations

After having discussed how to obtain quasilocal charges from the highest-weight 
auxiliary modules, we now turn our attention to another family of representa-
tions of 2q( ( ))slU  at roots of unity—the semi-cyclic representations. To this end 

we retain the m-dimensional auxiliary spaces, n n mlsp ; 0, ..., 1s
m { 〉 }( ) = | = −V , but 

modify the algebra generators as defined in equation (2.25) by an addition of an 

extra coupling:
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(4.16)

Here we have introduced the ‘coupling’ parameter α, linking the first and the last basis 
states6. Since the action of ladder operators is periodic only in one direction, such a rep-
resentation is referred to as semi-cyclic. The algebraic relations (2.23) are still satisfied.

There are other possible alterations of the representation of the algebra generators, 
all of them resulting in a certain kind of periodicity [5]. In the following we will, for 
the sake of simplicity, only consider the above example. Since all other semi-cyclic rep-
resentations generate the same quasilocal charges, up to trivial transformations, this 
means no loss of generality [52].

As we will see, the coupling of the lowest and highest-weight vectors in s
m( )V  results 

in a family of conserved charges which do not conserve the total magnetization M (i.e. 
they break the U(1) symmetry). Apart from this, the charges considered here only 
exist for odd dimensions m. While non-conservation of magnetization is obvious from 
the explicit expressions, non-existence of these charges for even m stems from the mis-
match between the canonical 2q( ( ))slU  relations (2.23) and slightly modified relations 
which directly imply commutativity of the transfer operators with the Hamiltonian, see  
[52, 88]. The allowed values of anisotropy parameter are:

l

k

l

k
k l l k

2

2 1
or

2

2 1
, for , , .η π η π π=

−
= −

−
∈ <N (4.17)

4.2.1. Constructing the semi-cyclic charges The same transfer matrix as in the case 
of highest-weight representations can be used, but this time we dierentiate it with 
respect to the coupling parameter α, at 0α =  and s  =  0. We now put

L L L L, ,0
0

0
0

( ) ( ) ( ) ( )λ λ λ λ= = ∂
α α α= =

� (4.18)

with the only non-trivial component of L� being

mL
sin

sin
1 0 .( ) ( )

( )
⟩⟨λ

η
λ

= | − |−�

The conserved charges are this time defined as

Z T
sin

sin
,s

s

2

2
sc

0, 0

( ) ( )
( )

( )λ
λ
η

λ= ∂α
α= =

 (4.19)

6 In our notation, the dependence on additional parameter α will not be explicitly written. One should neverthe-
less bear this dependence in mind.
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where Ts
sc( )λ  is the semi-cyclic transfer matrix defined with auxiliary space generators 

(4.16). Once again the formula (4.5) applies, thereby the amplitudes can be expressed 
in a canonical way

Z L L, L R ,r2, 1
, , r r2 1 2 1( ( )) ⟨ ( ) ( ) ⟩[ ]σ σ σ λ λ λ⊗ ⊗ = | |α α α α−

−
… −− −� (4.20)

with LL 0
sin

sin
⟨ ⟨| ≡ |λ

η
−, LR 0

sin

sin
⟩ ⟩| ≡ |λ

η
−� . The remaining string of Lax components in the 

LHS of equation (4.20) must connect 1⟨ | to m 1⟩| −  so the second sum in the expansion 
(4.5) actually starts at r  =  m. Because each term of Z ( )λ  consists of a surplus of exactly 
m operators σ− over operators σ+, these charges do not conserve magnetization M. A 
diagrammatic presentation of semi-cyclic Z-charges is shown in figure 2 (panel (b)).

4.2.2. Quasilocality What remains to be done is to derive the quasilocality property. 
The latter follows from a slightly modified calculation with respect to the situation 
which we had previously with the highest-weight charges. A careful inspection shows 
that the same auxiliary transfer matrix as given by equation (4.10) for a highest-weight 
representation can be used to express the semi-cyclic HSK as

K
N

Z Z m, lim
1

,
1

4
1 , 1 .

N

11( ) ( ( ) ( )) ⟨ ( ( )) ⟩
→

λ µ λ µ λ µ= = | − | −
∞

−T (4.21)

Again, a solution of a simple tridiagonal system (4.12) of equations yields an explicit 
expression

K
m

,
1

4

sin sin sin

2 sin sin
.m 1 2

( ) ( ) ( ) ( )
( ) ( ( ))

λ µ ψ
λ µ λ µ
η λ µ

= =
+

+
− (4.22)

To produce m 1ψ −  as defined previously in section 4.1, the states 1⟩|  and m 1⟩| −  have 
to be exchanged. To this end we conjugate equation (4.21) and recall that ,( )λ µT  is 
symmetric.

5. Applications

Let us finally focus on various physical applications of quasilocal conserved charges in 
the domain of non-equilibrium quantum physics. Here both classes considered above, 
i.e. unitary and non-unitary charges, will be examined. We shall begin with non-unitary 
Z-charges and show how they directly relate to non-equilibrium states with currents. 
On the flip side, unitary X-charges will play an instrumental role for understanding 
equilibration in quantum quenches. But before heading on, we need to clarify an impor-
tant role of the spin reversal parity symmetry and its breaking.

5.1. Spin reversal and CPT symmetry of generic transfer matrices

We wish to elaborate on an important 2Z  symmetry of all finite-dimensional uni-
tary representations of the quantum group 2q( ( ))slU , and consequently of the XXZ 
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Hamiltonian itself, which is manifestly broken for non-unitary representations. This 
symmetry breaking has some remarkable physical implications, which shall be pre-
sented in the following.

The 2Z  symmetry under scrutiny is a parity generated by the spin-reversal canonical 
transformation

→ →− ± ∓s s s s .z z (5.1)
In fundamental representation the latter amounts to applying the product of xσ ,

A PAP P P: ,
x

N

x
1

1

x 1→ ∏ σ= =−

=

−
 (5.2)

where A can be any observable on the entire Hilbert space H. It is easy to show that 
all transfer matrices belonging to finite-dimensional irreducible unitary representations 
are manifestly P-invariant,

PT P T s,
1

2
,s s

1( ) ( )λ λ= ∈−
+Z (5.3)

implying the same property also for the corresponding local and quasilocal charges,

H P X P, 0, , 0.k
s[ ] [ ( ) ]( ) λ= = (5.4)

For the root of unity deformations q l mexp i( / )π=  there exists another class of 
irreducible representations. These are non-unitary m-dimensional highest-weight repre-
sentations of 2q( ( ))slU  discussed previously in section 4. They are distinguished by the 
property, which can be readily verified, that no similarity transformation x GxG 1→ −  
of the auxiliary space representation of the algebra exists which would generate the 
spin-reversal canonical transformation (5.1). These non-unitary representations (2.25) 
are labelled by a complex-spin parameter s ∈C and are henceforth not P-invariant. We 
note that existence of an invertible G, such that Gs G sz 1 z= −− , Gs G s1 =± − ∓, is equiv-
alent to a spin-reversal symmetry of the Lax operator (4.1) P PL GL Gs s

1 1( ) ( )λ λ=− − , 
where P acts nontrivially only on the physical space and G only on the auxiliary space, 
and consequently implies equation (5.3).

The highest-weight transfer matrices for complex spins and the quasilocal charges 
they generate instead exhibit a weaker symmetry,

PT P T PZ P Z s, , .s s
T Thw 1 hw 1( ) ( ( )) ( ) ( ( ))λ π λ λ π λ= − = − ∈− − C (5.5)

As the transposition can be associated with time-reversal operation, while reflection of 
the spectral parameter →λ π λ−  can be thought of as the ‘charge conjugation’ (after 
a suitable rotation and a shift of the spectral parameter it would correspond to → ¯λ λ), 
the relation (5.5) can in fact be interpreted as a CPT symmetry of a generic highest-

weight transfer matrix. The fact that complex-spin transfer matrices Ts
hw( )λ  break spin-

reversal symmetry can be fruitfully explored for the analysis of ballistic spin transport 
in anisotropic Heisenberg chains as will be demonstrated in section 5.2.

An equivalent CPT symmetry (5.5) holds also for the semi-cyclic transfer matrices 
and the corresponding quasilocal charges as discussed in section 4.2.
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5.2. Mazur bounds on Drude weights

5.2.1. Ballistic linear response The main motivation for constructing pseudolocal con-
servation laws originated from the idea of using such objects to estimate the ballistic 
contribution to transport coecients, such as Drude weights or, more generally, zero 
frequency dynamical susceptibilities [63, 64]. It is perhaps worth noting that related 
indicators of ballistic transport are nowadays directly experimentally accessible [30–33].

By considering an extensive current J jx

xˆ ( )= ∑ S  with a local density j, say the spin/

particle/energy/etc. current, the Kubo linear response formula for the non-dissipative 
(real) part of the respective conductivity is of the form

N
t J t Jlim lim d e , 0 ,

t N

t
t

0

i( ) ( ( ) ( ))
→ → ∫σ ω

β
=′ ′ ′ω

β
∞ ∞

′
 (5.6)

Here the time-evolution reads J t Je eHt Hti i( ) = − , and

A B Z A B, d Tr e e ,H H1 1

0
( ) ( )† ( )∫β λ=β β

β
λ β λ− − − − − (5.7)

is the Kubo–Mori bracket with Z Tr e H( )=β β−  denoting the partition function. Note the 
proper order of limits in equation (5.6), i.e. firstly the thermodynamic limit N → ∞ and 
then t → ∞, which is in general important. When either A or B is a conserved operator, 

equation (5.7) simplifies to a thermal state A B A B,( ) ( )†ω=β β , whereas at high temper-
atures 0→β , the overlap A B A B, ,( ) ( )≡β  reduces to HS inner product (2.3). The real 
part of the spin conductivity is normally split as

D2 ,J J J
reg( ) ( ) ( )σ ω π δ ω σ ω= +′ (5.8)

where J
regσ  is the regular part and DJ is the singular contribution called the Drude 

weight. The latter can be expressed by means of the linear response formula (5.6),

D
tN

t J t Jlim lim
2

d , 0 .J
t N

t

0
( ( ) ( ))

→ → ∫
β

= ′ ′ β
∞ ∞

 (5.9)

Under certain mild assumptions on analyticity of local correlation functions, which 
are discussed in [89], the order of the limits for DJ can in fact be reversed and using 
time-invariance of the thermal state ωβ the Drude weight gets expressed in terms of 
time-averaged current as

D
N

Jlim
2

,J
N

2( ¯ )
→

β
ω= β

∞
 (5.10)

J
t

t J tlim
1

d .
t

t

0

¯ ( )
→ ∫= ′ ′

∞
 (5.11)

A nontrivial value of the Drude weight DJ  >  0 signals the ballistic (ideal) DC trans-
port and is equivalent (see equation (2.7)) to the statement that the time-averaged 
current is a pseudolocal operator with respect to the Gibbs state ωβ (see also [65]). 
We have thus related pseudolocality of time-averaged observables to ballistic linear 
response.
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5.2.2. Mazur bound Computing time-averages of current operators seems a highly 
nontrivial task in interacting models. One can instead estimate the Drude weight from 
below using a bound due to Mazur [90] and Suzuki [91] in terms of some conserved 
Hermitian operator I I †= , [H, I ]  =  0. We start by writing out the expectation value of 
a nonnegative operator J I 2( ¯ )α− , where α∈R is a free parameter,

J JI I2 0.2 2 2( ¯ ) ( ) ( ) ⩾ω αω α ω− +β β β (5.12)

We used the fact that JI JI( ¯ ) ( )ω ω=β β , which is due to the time-invariance of ωβ and 
conservation of I. After optimizing equation (5.12) with respect to α, we obtain

J
JI

I
.2

2

2
( ¯ ) ⩾

( ( ))
( )

ω
ω
ω

β
β

β
 (5.13)

Dividing by 2N and taking the limit N → ∞, we produce the Mazur bound on the Drude 
weight, which has first been pointed out in [38],

D
jI

N I
lim

2
.J

N

2

2
⩾

( ( ))
( )→

ω
ω
β

β∞
 (5.14)

In summary, a conserved pseudolocal operator I which satisfies jI 0( )ω ≠β  implies ballistic 
transport and consequently allows putting a strict lower bound on the Drude weight. For 

example, by taking a translationally invariant extensive conserved operator ˆ ( )= ∑ SI qx

x
, 

with density q satisfying q2( )ω < ∞β , one finds DJ  >  0 if j q 0x

x( ˆ ( ))ω∑ ≠β S , where the last 

sum always converges due to exponential clustering of Gibbs states in one dimension [92].
In addition, as a consequence of an eective causality on the locally interacting 

lattice (i.e. Lieb–Robinson bounds [61]) it can be shown that the above Mazur bound 
holds even when I is not exactly conserved on any finite lattice with open boundaries 
but the commutator [H, I ] contains terms localized near the boundary sites [89].

When dealing with a larger set of pseudolocal conserved operators, say a count-
able set I k, 1, 2k{ }= … , the Mazur bound can be further improved. To see how this 

works, we study the operator J Ik k k
2( ¯ )α− ∑ , which after repeating the above reasoning  

results in

D jI K jI
2

,J

k l

k k l l

,

1
,⩾ ( )( ) ( )∑

β
ω ωβ β β

−
 (5.15)

where Kβ is a positive-definite overlap matrix K I Ilimk l N N k l,
1( ) ( )→ ω=β β∞ . In this sense, 

if the above bound gets saturated for all local currents j, it would be meaningful to 
regard the set of pseudolocal charges {Ik} as being complete. It is presently not known if 
such complete sets of pseudolocal conserved operators can be systematically identified 
in interacting models.

In previous sections we have defined and discussed certain continuous families (rather 
than discrete sequences) of pseudolocal charges which were referred to as quasilocal (see 
equation (2.9)). They comprise the charges Xs( )λ  and Z ( )λ  which are analytic in λ∈C 
and become quasilocal when restricted to suitable domains ⊂D C. Since all Xs( )λ  are 
even under spin-reversal transformation, while the spin current is odd,
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PjP j,1 = −−
 (5.16)

we immediately conclude that all the charges coming from unitary representations are 
irrelevant to the Drude weight, namely jX 0s( ( ))ω λ ≡β . For this reason we subsequently 
consider only the set Z ;{ ( ) }λ λ∈D . Similarly as in the previously considered discrete 
case, we start by studying the following operator

B J f Zd ,2¯ ( ) ( )∫ λ λ λ= −
D

 (5.17)

where the integration is over the quasilocality domain D. It is worth stressing that in 
general Z ( )λ  are not Hermitian. Nevertheless, the expectation value of B B†  is always 
nonnegative

⩽ ( ) ( ) ( ( )) ( ) ( ( ) )

( ) ( ) ( ( ) ( ))

† †

†

∫ ∫

∫ ∫

ω
β

λ λ ω λ λ λ ω λ

λ λ λ λ ω λ λ

= − −

+ ′ ′ ′

β β β

β

D D

D D

N
B B D

N
f JZ

N
f Z J

N
f f Z Z

0
1

2

1 1

2
d

1

2
d

1

2
d d .

J
2 2

2 2

 

(5.18)

We proceed by defining the overlap coecients of an extensive observable J along the 
conserved operators in terms of the holomorphic function

Z
N

JZ jZlim
1

lim ,J
N N

( ) ( ( )) ( ( ))
→ →

λ ω λ ω λ= =β β
∞ ∞

 (5.19)

assuming the limit N → ∞ exists. For infinite temperature 0→β  the existence of the 
limit and consequently holomorphicity of Z ( )λ  simply follow from the explicit matrix 
product operator expression (4.6). The limit in the last term of equation (5.18) exists 
as well, due to pseudolocality of Z ( )λ , and can be written in terms of a Hermitian 
kernel

N
Z Z, lim

1
, , , .

N
( ) ( ( ) ( )) ( )

→
†κ λ λ ω λ λ κ λ λ λ λ= = ∈′ ′ ′ ′β

∞
D (5.20)

Therefore DJ should satisfy the inequality

D F f Z f f f
1

d Re
1

2
d d , ,J J

2 2 2⩾ [ ] ( ( ) ( )) ( ) ( ) ( )∫ ∫ ∫β
λ λ λ λ λ κ λ λ λ λ= − ′ ′ ′

D D D
 (5.21)

for any f. Optimization of the right-hand side with respect to f

F f f Z fRe d d , 0,J
2 2{ }[ ] ( ) ( ) ( ) ( )∫ ∫δ λ δ λ λ λ κ λ λ λ= − =′ ′ ′ (5.22)

results in the complex Fredholm equation of the first kind for the unknown function f,

f Zd , .J
2 ( ) ( ) ( )∫ λ κ λ λ λ λ=′ ′ ′

D
 (5.23)

The solution of the above equation can be plugged back to the estimate (5.21), yielding 
the final Mazur–Suzuki lower bound
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D f Z
2

d .J J
2⩾ ( ) ( )∫

β
λ λ λ

D
 (5.24)

The bound is manifestly real due to the hermiticity of the kernel.

5.2.3. Spin Drude weight in gapless XXZ chain The recipe explained above can 
be readily demonstrated on a paradigmatic example of the high-temperature spin 
Drude weight for the spin current j i( )σ σ σ σ= ⊗ − ⊗+ − − +  in the gapless regime of 
XXZ model at roots of unity anisotropies. There the expression for the kernel reads 

K, ,0( ) ( ¯ )κ λ λ λ λ=′ ′ , with the HS kernel given by equation (4.13). The expression for the 
spin current and matrix product formula for the densities of Z ( )λ  equations (4.5) and 
(4.6) yield a constant overlap function Z i 4J( ) /λ =  and the integral equation (5.23) can 
be solved, remarkably, by a simple function

f m m
i

sin
1

sin
.2

4
( ) ( / )λ

π
π

λ
= −

| | (5.25)

Another elementary integral then yields the lower bound [49] D D 4J K⩾ /  with (see figure 3)

D
l m

m

m

m4

sin

sin
1

2
sin

2
.K

2

2

( / )
( / )

⎜ ⎟
⎛
⎝
⎜ ⎛

⎝
⎞
⎠
⎞
⎠
⎟β π

π π
π

= − (5.26)

It is noteworthy that the lower bound (5.26) agrees exactly with the Thermodynamic 
Bethe Ansatz (TBA) calculation [39, 93] at the special (isolated) points of anisotropy 
at m/η π= , corresponding to q-deformation at simple roots of unity (l  =  1). Since TBA 
calculation for other values of l seems to be highly nontrivial and has not yet been 
performed, we can only conjecture that the bound (5.26) is in fact saturating the exact 
value of high-temperature spin Drude weight for a dense set of commensurate anisot-
ropies l mcos( / )π∆ = . Such a conclusion can also be based on the comparison with 
numerical results of the state-of-the-art density matrix renormalization group (DMRG) 

Figure 3. Lower bound on the spin Drude weight DK (black, see equation (5.26) as 
computed in [49]. In comparison we show (in red) the bound optimized for a single 
charge obtained initially in [42]. In either case the bound exhibits a pronounced 
fractal-like (nowhere continuous) dependence on parameter ∆.
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methods [45, 46], which indicate no significant deviations from the lower bound DK 
[94]. One obtains similarly good agreement by comparing to exact real-time dynamical 
simulations with random initial wave-function sampling on smaller systems and per-
forming appropriate finite size scaling analysis [95].

5.2.4. Operator time averaging Saturation of the spin Drude weight bound suggests 
even a stronger conjecture, namely that the set of quasilocal conserved charges Z{ ( )}λ  
is complete for a class of local observables that are odd under spin reversal for an 
arbitrary root of unity anisotropy. This would imply that an exact equality should be 
reached in equation (5.18) for the optimal weight function f ( )λ  which solves the Fred-

holm equation (5.23), namely N B Blim 1 0N ( / ) ( )→
†ω =β∞ . In a weak sense (with respect 

to a thermal state ωβ) this statement is equivalent to

J f Zd .2¯ ( ) ( )∫ λ λ λ=
D

 (5.27)

Note that one can use the concept of operator time averaging to formally describe 
the steady state of XXZ model pierced with a flux φ and undergoing a small flux quench 

→φ φ δ+ φ, namely starting from a thermal density matrix β� , one may show [96] that 
after-quench current carrying steady state is given by the density operator

J .21¯ ( ¯) ( )δ β δ= − +β φ φ� � O (5.28)

Furthermore, the concept of time-averaged extensive local operators has been used 
to implement a useful numerical algorithm to search for unknown quasilocal charges of 
an arbitrary locally-interacting lattice model [97]. One should simply recall that for any 
operator O, which is an extensive translational invariant sum of traceless local opera-
tors, Ō is by construction a pseudolocal conserved operator, or it vanishes in a suitable 
norm if O is ergodic. Taking a maximal linearly independent set of such local exten-
sive operators {On} up to some maximal order of locality M N� , enumerated with 

n 1= …M, d M2( )∼M , one can define a nonnegative definite HS kernel as the matrix 

K O O O O, ,n n n n n n, ( ¯ ¯ ) ( ¯ )= =′ ′ ′ . The number of independent pseudolocal conserved opera-
tors On

¯ , with eective support not larger than M, can thus be determined as an eective 
rank of the matrix K with eigenvectors yielding the quasilocal charges expanded in 
{On}. Implementation of this method in the case of isotropic XXX model [97] gave the 
first constructive empirical evidence on existence of unitary quasilocal charges Xs [55].

5.3. Quantum quenches

Motivated by recent experimental progress in optical lattices [21, 23–29] and a plethora 
of numerical simulations of strongly correlated matter in low dimensions, a very popu-
lar setup studied over the last decade is the problem of a ‘quantum quench’ [98–107]: 
at initial time, an ideally isolated (closed) system is prepared in an initial state ⟩|Ψ , and 
subsequently, by a sudden change of interactions, let to evolve according to a unitary 
evolution generated by a post-quench Hamiltonian H. The situation which is part-
icularly appealing from the theoretical viewpoint is when H is integrable. Many aspects 
regarding quantum quenches, ranging from classical field theories [17], conformal field 
theories [13, 14], disordered systems [19], Luttinger model [16], to integrable lattice 
systems [15, 18, 20] are discussed in the reviews of the present volume.
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5.3.1. Complete generalized Gibbs ensembles One of the pivotal questions is to under-
stand the process of equilibration from the microscopic perspective [108, 109]. In homo-
geneous quantum systems with generic interactions the relaxation towards canonical 
Gibbs ensemble is typically explained in the framework of the eigenstate thermalization 
hypothesis [108, 110, 111], which states that eigenstates that are close in energy give 
approximately the same values of local correlation functions. The situation with inte-
grable interactions is however dierent as time-evolution is severely constrained due to 
the existence of a macroscopic number of local (and quasilocal) conserved quantities.

It has been conjectured in [112, 113] that statistical properties of local quantities 
in many-particle quantum systems possessing an ‘extensive number’ of conserved local 
charges In should comply with predictions of a generalized Gibbs ensemble [20, 103, 
105, 107], [114–116] , given by a formal expansion

Iexp .
n

n nGGE

⎛

⎝
⎜

⎞

⎠
⎟∑ρ β∼ − (5.29)

The ‘GGE conjecture’ asserts that the ergodic average of an operator A with a finite 
support

A
T

t A t tlim
1

d ,
T

T

0
⟨ ⟩ ⟨ ( ) ( )⟩

→ ∫ ψ ψ= | |ψ
∞

 (5.30)

can be reproduced by tracing with respect to an appropriate GGE of the form (5.29), 
with the ‘chemical potentials’ mβ  being determined from expectation values of the 
charges with respect to the initial state.

A great body of work has already been devoted to applicability of the GGE in 
non-interacting models [103, 105, 106, 117, 118], and a closely related phenomenon of 
prethermalization [26, 115, 119–121].

Explicit verification of the GGE paradigm in a truly interacting quantum inte-
grable model required a bit more eort though. Initial studies focused on Heisenberg 
XXZ chain and compared predictions of truncated GGEs made of hitherto known local 
charges against numerical results for the time-evolved local observables [122–124]. 
First exact results have been obtained for the case of the Lieb–Liniger model in [125] 
by resorting to the so-called quench action method, developed previously in [126] (see 
[15] for a review). In this approach, a generalized free energy functional is constructed 
which incorporates the restrictions imposed by the initial condition in the form of an 
exact overlap coecient. By employing TBA framework [127–130], the saddle-point of 
such a functional yields the sought for steady-state ensemble via coupled non-linear 
integral equations for a set of variational variables. These thermodynamic variables 
are, as we shall shortly discuss, a set of analytic functions representing distributions of 
Bethe strings.

Sometimes, e.g. for certain simple product states, the overlap formulas which enter 
as an input to quench action method can be evaluated explicitly [131]. Two indepen-
dent studies [40, 41] unambiguously demonstrated that GGEs composed from only 
the hitherto known local charges fail to recover the exact results (see also [132, 133]). 
This failure has been related to the fact that strictly local charges equation (2.27) do 
not provide enough information to determine the distributions of the bound states 
present in an initial state [54]. The results of these studies hinted at the presence of 
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additional (suciently local) conservation laws in the unitary (or spin-reversal sym-
metric) sector.

5.3.2. String-charge duality Here we explain, following [87], the connection between 
the spectra of quasilocal charges Xs and distributions of Bethe strings. The latter 
should be interpreted as thermodynamic particle content of an integrable lattice the-
ory. Hence, the main task shall be to extract the large-N behaviour of eigenvalues of 
T-operators. A convenient tool to achieve this is to employ the Baxter Q-operator  
[8, 81, 82] and exploit the fact that its eigenvalues are given by a (deformed) polyno-
mial with zeros coinciding with Bethe roots. Below we present the main steps by spe-
cializing to the gapped regime.

Bethe equations and string hypothesis To set the stage we need to briefly describe how 
to characterize the spectra of integrable lattice models in the thermodynamic regime. 
The elementary building block of an integrable model is the single-particle S-matrix S1, 
which for the XXZ model reads

S S,
sin

sin
.1 1

i

2
i

2

( ) ( )
( )

( )
λ µ λ µ

λ µ

λ µ
≡ − =

− −

− +

η

η (5.31)

From a scattering theory point of view, the spectral parameters λ and μ pertain to 
rapidities of the two quasi-particles involved in a scattering event. For composite 
objects which consist of j excitations—commonly referred to as the j -strings—a set of 
fused scattering matrices Sj are introduced

S
j

j
j

sin

sin
, 1, 2,j

i

2
i

2

( )
( )

( )
λ

λ

λ
=

−

+
= …

η

η (5.32)

Scattering among two dierent types of strings is governed by string-to-string scatter-
ing matrices

S S S S .j k j k j k

i

j k

j k i,

1

min , 1

2
2( ) ( ) ( ) ( )

( )

∏λ λ λ λ= | − | +
=

−

| − |+ (5.33)

With the aid of scattering matrices, the Bethe ansatz equations, representing a quanti-
zation condition for quasi-particle rapidities jλ  in a periodic system, are cast in the form

S j Me 1, 1, 2, .p N

k

M

j k
i

1

1,1
j ( )( ) ∏ λ λ− = − = …λ

=
 (5.34)

Here M is the number of Bethe roots (related to the magnetization of the eigenstate) 
and p( )λ  encodes the momentum of an elementary excitation on top of a ferromagnetic 
vacuum state,

( )
( )

( )
λ

λ
=

+

−
λ

η

η
e

sin

sin
.pi

i

2

i

2

 (5.35)
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The string hypothesis [128–130, 134] states that in the large-N limit the Bethe roots 
(i.e. solutions jλ  to equation (5.34)) for a typical eigenstate become equidistantly dis-
placed in the imaginary direction in the rapidity complex plane,

k j j k1 2
i

2
1, 2, .k j k,{ } { ( ) }λ λ

η
≡ + + − | = …α α (5.36)

Such string formations physically correspond to bound states of magnons. By parti-
tioning the Bethe roots in terms of strings, Bethe equations (5.34) can be rewritten in 

terms of string centres kλ ∈α R. Thus, taking their logarithmic form and considering the 
thermodynamic limit when string centres get smoothly distributed along the real axis, 
we arrive at the following non-linear coupled integral equations [128, 130, 134]

a a
d

2
,j j j

k

j k k
2

2

,( ) ( ) ( ) ( ) ( )
/

/

∫∑ρ λ ρ λ λ
µ
π

λ µ ρ µ+ = − −
π

π

−
 (5.37)

known as the Bethe–Yang equations for the strings. The integral kernels in equa-
tion (5.37) are given by the derivatives of scattering phase shifts and the corresponding 
string-to-string phase shifts

a S a Si log , i log ,j j j k j k, ,( ) ( ) ( ) ( )λ λ λ λ= − ∂ = − ∂λ λ (5.38)
in the respective order. One of the advantages of equation (5.37) in comparison to the 
finite-volume counterpart is that we no longer have to deal with a complicated set of 
quantized quasi-momenta (encoded by Bethe roots jλ ). Instead, now quasi-momenta 
take values in the continuum, which allows us to cast the description in terms of 

analytic distributions j( )ρ λ , which count the number of Bethe strings whose centres 
occupy an interval , d[ ]λ λ λ+ . Similarly, j( )ρ λ  denote the complementary variables, 

parametrizing distributions of Bethe holes (the positions of string centres which are in 
principle available, but remain unoccupied).

Thermodynamic spectra To obtain the spectra of charges Xs we make use of  
representation (3.33). By neglecting the contributions which are subleading in N  
we have

X i log ,j s j

s

s

2

2
⟨{ } ( ) { }⟩ ( )

( )

[ ]

[ ]λ λ λ
λ
λ

| | = − ∂λ
−Q

Q
 (5.39)

where j{ }⟩λ|  denote a Bethe eigenstate parametrized by a set of roots j{ }λ . Working 
under the ‘string hypothesis’ (see section 5.3.2), the spectra of quasilocal charges sX ,

N
Xlim

1
,s

N
j s j( ) ⟨{ } ( ) { }⟩

→
λ λ λ λ= | |

∞
X (5.40)

can be readily expressed in terms of densities of string centres j( )ρ λ . Specifically, by plug-
ging the expression for the spectrum (see equations (3.34) and (5.39)), we arrive at [87]

G
d

2
.s

k

s k k
2

2

2 ,( ) ( ) ( )
/

/

∫∑λ
µ
π

λ µ ρ µ= −
π

π

−
X (5.41)

The set of kernels G2s,k can be expressed using scattering matrices among the strings
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( ) ( ) ( )
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⎜ ⎟
⎛
⎝

⎞
⎠∑ ∑λ λ
η

λ= − ∂ + + − =λ
= =

| − |− +G S k j ai log 1 2
i

2
.s k

j

k

s

j

s k

s k j2 ,

1

2

1

min 2 ,

2 1 2 (5.42)

Let us introduce a discrete d’Alembert operator ◻, whose action on any set of objects 

f fs s( )λ≡  (with s
1

2
= +Z ) which are analytic inside the physical strip ηP  is prescribed by

f f f f f .s s s s s1
2

1
2

◻ = + − −+ −
− + (5.43)

By acting with the d’Alembertian on the kernel functions from equation (5.42) we con-
clude that

G j s, 2 .j k j k, ,◻ ( ) ( )λ δ δ λ= = ∈N (5.44)

This result allows us to interpret Gj, k as a discrete 2D Green’s function of the ‘wave 

operator’ ◻. The relation equation (5.41) can be readily inverted, enabling expression of 

the entire set of density functions j( )ρ λ  in terms of eigenvalues of the charges Xs( )λ  as [87]

.s s2 ( ) ◻ ( )ρ λ λ= X (5.45)

The distributions of holes s2 ( )ρ λ  can be obtained in a similar fashion [56, 87],

a .s s s s2 2ρ = − −+ −X X (5.46)

In the scope of quantum quench applications, a set of densities s2ρ  provides a complete 
description of local correlation functions (see [133, 135]).

Finally, let us make a brief account on the gapless regime as well. Although the 
string hypothesis in the 1|∆| <  regime can still be formulated, taking the deforma-

tion parameter q ei= η from the unit circle makes the analysis rather cumbersome and 
technically involved. The string content in the gapless regime for an arbitrary value of 
anisotropy has been derived in [129]. Due to limited space we do not attempt to review 
it here. We nevertheless wish to point out the three principal dierences in compariso n 
with the situation in the gapped case: (i) string configurations acquire (beside the string 
length) an additional parity label u 1{ }∈ ±  (see section 3.3), (ii) the allowed string 
lengths depend strongly (and discontinuously) on η, and (iii) at root of unity value of q 
the number of allowed distinct string types is always finite. Moreover, in the spirit of 
string–charge duality, the number of (dynamical) strings should still be in a bijective 
correspondence with the number of quasilocal charges, as discussed in section 3.3. To 
complete our example for 3 7/η π= , where the charge content is given by a set (3.39), 
we provide the corresponding string content:

1, , 1, , 3, , 5, .( ) ( ) ( ) ( )+ − + −

Below we explain a computational scheme to determine the densities of Bethe roots 
from the eigenvalues of Xs( )λ . This can be done, in contrast to a more common practice, 
without ever resorting to the variational approach based on a generalized free energy 
functional. The manifest locality of quasilocal charges Xs( )λ  in the spin basis (see equa-
tion (3.3)) greatly simplifies this task and allows us to resort to rather standard techniques.
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5.3.3. Evaluation of charges In this section we address the problem of computing 
expectation values of the quasilocal charges Xs with respect to a generic7 pure state ⟩|Ψ . 
While performing this task in full generality remains out of reach at the moment, we 
make a restriction to a class of matrix product states where an ecient implementation 
is possible. In what follows we essentially recast the results of [122, 124] in the present 
language.

In order to keep the level of technicality at a minimum, we shall in addition restrict 
ourselves only to periodic product states

,N Np〉 〉 /ψ|Ψ = | ⊗ (5.47)

where ⟩ψ|  is a state on the block of Np spins and Np ∈N is the periodicity of the state. 
Our aim is to compute

N
Xlim

1
.s

N
s( ) ⟨ ( ) ⟩

→
λ λ= Ψ| |ΨΨ

∞
X (5.48)

Due to the product structure of ⟩|Ψ  we can make use of standard transfer matrix tech-
niques. The first step is to introduce a boundary partition function

N
, lim

1
Tr , ,s

N
s

N N
a

p( ) { ( ) }
→

/λ µ λ µ=Ψ

∞

ΨZ U (5.49)

which is given by iterating a one-step auxiliary propagator,

( ) 〈 ( ) 〉λ µ ψ λ µ ψ= | |⊗ΨU L, , .s s
Np (5.50)

Subsequently we evaluate

i , .s s( ) ( )λ λ µ= − ∂ |µ µ λ
Ψ Ψ

=X Z (5.51)

We note that partition functions given by equation (5.49) are in essence merely the con-
tracted quantum transfer operators X ,s( )λ µ  from equation (3.4) (depicted in figure 1), 
where in the vertical direction we project onto components determined by the ref-
erence state ⟩ψ| . Such a contraction over one period Np yields the propagator from 
equation (5.50).

The construction sketched above can be adapted for general translational invariant 
matrix product states (see [87, 122, 124]).

5.3.4. Closed-form results In section 2.2.2 we already mentioned that higher-spin 
T-operators constitute the canonical solution to Hirota dierence equations (alias the 
T-system). However, Hirota dierence equations admit dierent solutions as well. 
Remarkably, there exists a class of initial conditions which relax to equilibrium steady 

states (specified by a collection of density functions jρ
Ψ) which can be cast as distinct 

7 Strictly speaking, we are implicitly assuming that our reference state is ‘local’, i.e. is compatible with cluster 
decomposition principle [136, 137]. In this case we are able to express 〉|Ψ  in the thermodynamic limit as a single 
macrostate (a state given by prescribing distributions of Bethe strings).
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solutions of the Hirota equations. Below we mention two particular examples, which 
have been previously studied in the literature, when equilibrium states admit simple rep-

resentative product states: (i) a spin-singlet dimerized state 〉 ( 〉 〉) /| = |↑↓ − |↓↑ ⊗D N1

2
2 

and (ii) Néel state N N 2⟩ ⟩ /| =|↑↓ ⊗ . In other words, these two states can be understood as 
members of a basin of attraction for equilibrium states which assume parametrizations 
in terms of non-canonical solutions to the functional relation of the T-system.

In the following, we use a small font to explicitly distinguish non-canonical t- functions 
and q-functions, t q,s( ) ( )λ λ , from the canonical objects, i.e. fused transfer matrices Ts( )λ  
and Baxter Q-operator Q( )λ  defined in section 2.2.2. By relaxing the constraint t0 ϕ= −, 
the linear auxiliary problem associated to the Hirota equation takes the form

t q t q q ,
s

s
s

s s s
1
2

2 2 2 2 2 2[ ] [ ] [ ] [ ]ϕ− =+
− + − −

 (5.52)

and can be explicitly solved as

t t
q

q
q q

q q
.s

s
s

s
s s

k

s k s

k s k s0
2

2 1

2 1
2 1 2 1

1

2 2 1

2 1 2 1
[ ]

[ ]

[ ]
[ ] [ ]

[ ( ) ]

[ ( ) ] [ ( ) ]∑
ϕ

= +−
+

− +
+ − −

=

− −

− − − + (5.53)

In the present case, q-functions can be considered as auxiliary complex-valued func-
tions which contain the information about the equilibrium state at hand, closely related 
to auxiliary functions which enter in non-linear integral equations in the scope of the 
quantum transfer matrix (QTM) method [138–140].

To keep things simple, we specialize below only to the isotropic point 1∆ = . For 

the dimerized state D⟩|  the solution is remarkably simple and reads qD 2( )λ λ= . These 
results generate the entire tower of t-functions

t s s2 1 ,
1

2
,s

D( ) ( )λ λ= + ∈ +Z (5.54)

which can, in turn, be mapped to y -functions y j j j/ρ ρ=Ψ Ψ Ψ,

y
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j j
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1 1

1 1
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2 2
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2
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2
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λ
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λ λ
=

+ −

+ + − +
∈ +Z (5.55)

As we have already explained (see equations (5.45) and (5.46)), the y-functions can be 
related to expectation values of the charges on the state D⟩| ,
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2 2 1
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2

2 2 3
2

D
2

2 2 (5.56)

We remark that in practice one should work in the opposite direction: by computing a 
few initial values of the charges and employing the string-charge relationship one can 
explicitly check whether the y -functions fulfil the Y-system hierarchy. It is not clear if a 
general systematic procedure exists to directly determine which states admit a descrip-
tion in the Y-system format. The analogous expressions for the Néel state (including 
the expressions for the gapped case) are provided in [87].

To conclude this section, let us stress that the unitary charges Xs from the com-
pact sector cannot be sucient for characterizing non-equilibrium steady states, i.e. 
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states which exhibit particle currents. In this situation, the quasilocal charges Z ( )λ  
which break the spin-reversal invariance have to be included [96, 141]. To the best 
of our knowledge, it remains presently unknown how the Z-charges act on Bethe 
eigenstates.

5.4. Steady states of boundary-driven chains

Quantum transport is typically studied in the framework of the linear response theory. 
An alternative way is to adopt an open system perspective. A simple eective setup 
for that is to use the approach of non-unitary evolution equations which are commonly 
referred to as quantum master equations. A central concept here is a Markovian (time-
local) evolution

t e 0 ,t( ) ( )ˆ=� �L (5.57)

which preserves the trace and positivity of density operators � at any time. The genera-
tor L̂ is of Lindblad form and acts linearly on density matrices as

H A A A Ai , 2 , ,
k

k k k k
ˆ [ ] ( { })† †∑= − + −L� � � �
 (5.58)

where H encompasses all interactions attributed to the unitary part of the process, and 
the set {Ak} contains the Lindblad ‘jump operators’ which are used to model dissipa-
tive processes. For a comprehensive introduction on the Lindblad equation formalism 
we refer the reader to [142, 143].

In [42, 144–149] the Lindblad equation has been used to ‘drive’ a quantum many-
body system far from equilibrium. Two common scenarios describe the situations where 
the Lindblad bath operators simulate (a) dephasing noise due to uncontrolled degrees of 
freedom in the bulk, or (b) particle/magnetic reservoirs with dierent chemical poten-
tials/magnetizations attached at the system’s boundaries.

General instances can be studied by adapting a time-dependent DMRG technique 
to the Liouville dynamics [150]. On the flip side, certain interesting situations permit 
an exact analytic description—the most notable example being non-interacting par-
ticles experiencing Gaussian noise, which can be treated in a unified manner within 
the formalism of ‘third quantization’ [151, 152]. While deriving exact solutions for the 
full Liouvillian dynamics of an interacting system remains an open challenge to date, 
certain steady state density operators, i.e. fixed points of Liouvillian dynamics, which 
allow for an ecient matrix product form have been found and investigated (the first 
non-trivial example being perhaps the situation of noninteracting particles with bulk 
dephasing noise [153, 154]). In some sense, one can understand these as quantum 
counter parts of their more popular classical cousins known as asymmetric simple exclu-
sion processes [155, 156].

For the Heisenberg spin-1/2 chain, a model under scrutiny in this review, driven by 

incoherent in/out boundary processes: A1 1σ= Γ +, A2 2σ= Γ −, the steady state in the 
weak-coupling limit has been constructed first in [42], and later on extended to the non-
perturbative regime in [146]. What is remarkable, and perhaps somewhat surprising as 
well, is that the density operator of the current carrying steady state found in [42] is a 
fully mixed state perturbed with an operator of the non-unitary quasilocal family, namely
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t Z Z
i

2
2 2 .vac vac 21( → ) ( ( / ) ( / ) ) ( )†π π= ∞ ∼ +

Γ
− + Γ∞� � O (5.59)

The only distinction from the conserved operators given by equation (4.3) is that 
instead of taking the trace over the auxiliary space the adequate transfer matrix is now 
defined as an expectation value in the highest-weight state (vacuum)

T
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λ η

λ=
+

| |⊗ (5.60)

where the Lax operator is taken from equation (4.1). Consequently, the local operator 
expansion of the open boundary charge Z vac is given with the same formula as before, 

equation (4.5), where the shift 
x
Ŝ  no longer acts periodically (meaning that the sum over 

x runs only up to N  −  r). While the vacuum transfer matrices and the derived quasilo-

cal charges still mutually commute, T T, 0s s
vac vac[ ( ) ( )]λ λ =′′ , and Z Z, 0vac vac[ ( ) ( )]λ λ =′ , 

the manifest absence of translational invariance breaks the conservation property,
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(5.61)

where the Hamiltonian of the anisotropic Heisenberg chain is now taken with open 

boundary conditions and b s ssin sin cos cosz 0( ) ( ) ( ) ( )σ λ η σ λ η= −  is a boundary opera-
tor. The first identity follows straightforwardly from the RLL relation (2.15), while the 

second one follows from the first one after taking the derivative s s 0, 2/∂ | λ π= = . Note that 

the second line of equation (5.61) has a form of a conservation law, i.e. time-derivative 
of Z vac in a finite volume equals net surface currents, where the spin density x

zσ  plays 
the role of the formal ‘current’. In spite of ‘almost-conservation’ in a finite volume, it 
has been rigorously shown in [89], resorting to quasilocality and Lieb–Robinson cau-
sality bounds, that equation (5.61) yields a conserved quantity in the thermodynamic 
limit and in eect provides an equivalent set of quasilocal conservation laws as those 
introduced in section 4.1.

Moreover, it can be shown (see [49, 146, 147], and [12, 157] for a review) that 
the vacuum transfer matrix generates an exact, non-perturbative steady state density 
operator via the purification ansatz

T
Tr

, ,s
Tvac

( )
( ) ( ( ))

†

† λ λ=
Ω Ω

Ω Ω
Ω =∞� (5.62)

if one sets the spectral parameter and identifies the noise strength Γ with a complex 
auxiliary spin s, in either one of the following two ways

s s
2

, tan
i

2 sin
or 0, cot

i

2 sin
.( )

( )
( )

( )
λ

π
η

η
λ η

η
= =

Γ
= =

Γ
 (5.63)

These two assignments yield an identical steady-state density operator (5.62). In light 
of the fact that in the canonical x

zσ –basis the amplitude operator Ω becomes a strictly 
upper-triangular matrix [146], the ansatz (5.62) can also be understood as a many-body 
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Cholesky factorization. The ansatz (5.62) in fact exactly solves a much larger set of 
boundary-driven Lindblad equations, namely taking an arbitrary pair of asymmet-
ric (left/right) noise strengths L,RΓ  and adding arbitrary boundary magnetic fields in 
z  −  direction hL,R uniquely parametrizing two complex variables s,λ (see [12]). We note 
that the notation of this section was adapted for the regime 1|∆| <  where quasilo-
cal Z -charges have an eect and the corresponding transport is ballistic. To find the 
gapped counterparts one has to make a substitution i→η η, or replace trigonometric 
functions with the corresponding hyperbolic functions.

It is also perhaps instructive to stress that the vacuum charges Z vac( )λ  are mani-
festly nondiagonalizable objects with a nontrivial Jordan structure. For example, the 
spectrum of Z 2vac( / )π  only consists of {0}, hence the operator is nilpotent for any finite 
volume, but nevertheless generates a highly nontrivial steady state. The approach of 
generating quasilocal almost-conserved charges as perturbative solutions to boundary-
driven Lindblad equations may be useful also in other integrable models (see [12] for a 
review) and should perhaps be further explored in future.

6. Discussion

6.1. Future prospectives

6.1.1. Spin chains Even though the applications of quasilocal conservation laws which 
we covered in this review have been fully concentrated on the paradigmatic case of 
the Heisenberg XXZ model, it is natural to expect that analogous quantities exist for 
a much broader class of integrable models (see e.g. [53] for a recent application to 
gapless spin-1 chains). The simplest extensions should involve quantum lattice models 
associated with the so-called fundamental solutions to the Yang–Baxter equation, with 
underlying symmetry algebras based on Lie algebras of higher rank and their quanti-
zations (deformations). Additionally, supersymmetric cousins (e.g. t  −  J model, EKS 
model) shall be of interest in paving the way towards the celebrated Hubbard model 
[158–160]. Note that a novel family of transfer matrices which violate particle-hole 
symmetry and correspond to non-unitary auxiliary representations has recently been 
proposed for the Hubbard model [161], based on preserving the integrability of the 
associated boundary-driven master equation [162]. A possibility of generating quasilo-
cal conserved quantities remains to be explored.

For all models mentioned above it is well-known that thermodynamic spectra can 
be partitioned into Bethe root compositions (strings) which pertain to bound states 
of elementary excitations. In order to ensure that macrostates (e.g. thermal states 
and their generalizations) are mutually distinguishable, the number of distinct particle 
types (see [75–77, 79], [163, 164]) has to be matched with the number of independent 
families of (quasi)local charges.

Another example of an integrable theory which has recently drawn a great deal 
of attention due to its experimental significance is a Bose gas with δ-like repulsive 
interactions, known better as the Lieb–Liniger model [165] (Nonlinear Schrödinger 
equation in the language of second quantization). Yet, in spite of its wide popular-
ity, the second-quantized form of the entire tower of local charges have not been 
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obtained explicitly so far [166, 167]. Besides, there also exist certain obstructions 
which are intimately related to pathological UV divergences as discussed in [125, 168]. 
In [169] the authors attempted to overcome the diculties by ‘mildly’ relaxing the 
conventional form of locality. Alternatively, there is an option to employ a suitable 
integrable regularization (e.g. by introducing a UV cuto) allowing treatment of the 
lattice counterparts in the thermodynamic limit first, then construction/computation 
of the observables, and taking the continuum limit only at the end (see e.g. [170]). 
The eectively local, or quasilocal conserved charges could then be derived using the 
methods presented in this review.

6.1.2. Integrability in AdS/CFT correspondence One of the hallmarks of theor etical 
physics of the last two decades is the discovery of the gauge–gravity duality [171, 
172]. The most prominent example of this is the celebrated 4=N  superconformal 
Yang–Mills theory which is conjectured to be dual to a certain type of the superstring 
theory [173]. One of its surprising features is that the Heisenberg spin Hamiltonian 
arises in the scalar sector as the one-loop approximation of the dilatation operator. 
The scattering matrix behind the scenes has an exceptional structure and turns out to 
be tightly related to the famous Fermi–Hubbard model and some other related models 
of strongly-correlated electrons dubbed as the Hubbard–Shastry model [174]. Con-
structions and physical applications of quasilocal charges have not yet been explored 
in this context.

6.1.3. Correlation functions In this work we have not devoted any attention to the 
problem of calculating static and dynamic correlation functions of local observables, 
a task which typically represents an ultimate goal of any successful computational 
framework. A systematic procedure to encompass a wide range of interacting integrable 
theories in a universal and robust language still awaits to be developed. In this review, 
we have only addressed the problem of determining Bethe root distributions which 
parametrize a (non-thermal) equilibrium state. A mapping between the string densities 
and local correlators for the gapped regime of the XXZ model has been conjectured in  
[133, 135, 175]. An alternative route is to follow the Quantum Transfer Matrix approach 
[139, 176, 177] which was pursued in [124].

6.2. Beyond quasilocality

We have discussed at length the implication of pseudolocality of conserved quantities 
on several observable physical properties, such as ballistic (ideal) high-temperature 
transport and equilibration to non-thermal states. However, in some other rudimentary 
integrable models, a normal, diusive spin or particle transport has been observed by 
numerical simulations, e.g. in the gapped Heisenberg model [144, 145, 150, 178, 179], 
or half-filled Fermi–Hubbard model [180–182].

Diusive high-temperature transport in an integrable model can be considered as 
an indication of the absence of relevant pseudolocal charges, i.e. linearly extensive 
charges with non-vanishing overlap with a current operator. In the opposite case, the 
Mazur bound is strictly positive, implying ballistic conductivity. Even then, however, 
one may obtain other interesting bounds employing conserved operators with dierent 
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volume-scaling properties. For example, if there exists a conservation law Q with qua-

dratic volume scaling of the Hilbert–Schmidt norm Q qN NHS
2 2∥ ∥ ( )= +O , then a rigor-

ous derivation [183], in spirit very similar to the proof of Mazur bound for quantum 
spin lattice systems [89] but with appropriately balanced limits N t,→ →∞ ∞, yields a 
rigorous lower bound on the diusion constant

D
j Q

vq

,

8
.diff

2

⩾
( )| |

 (6.1)

Here j is a local current operator and v is the Lieb–Robinson velocity [61, 184]. Simple 
examples of such bounds have been elaborated in [183] for the XXX and Fermi–
Hubbard models, where Q in fact corresponds to a level-1 generator of Yangian sym-
metry [185]. Systematic exploration of quadratically extensive conserved charges in 
integrable systems and their applications to diusive transport and quantum relaxation 
has not yet been undertaken.

6.3. Conclusions

This review is devoted to certain types of eective localities in the context of quant um 
integrable lattice models termed pseudolocality and quasilocality. The notion of local-
ity indisputably plays a monumental role in the foundations of statistical mechan-
ics, both on the classical and quantum level. We have presented and exemplified the 
meaning of quasilocal conserved quantities by discussing various applications of non-
ergodic phenomena in a paradigmatic interacting system, the anisotropic Heisenberg 
model. Specifically, we have elaborated on the importance of quasilocal charges in the 
description of generalized (non-thermal) equilibria on one hand, and their vital role 
in understanding certain anomalous transport characteristics such as divergent high-
temperature spin conductivity on the other hand.

A key observation is that statistical ensembles, given by reduced density matrices 
which emerge in the steady-state limit after a relaxation process starting from any 
‘physical’ initial state, are, due to eective dephasing, only capable of retaining a part 
of information about the initial condition which is encoded in local and pseudolocal 
conservation laws. Identification of a complete set of such charges provides us with a 
complete description of local correlation functions in generalized equilibria.

This naturally brings us to the elusive question posed at the beginning, namely 
the controversial issue of the proper counting of degrees of freedom in an integrable 
lattice model. As we have explained, spectra of integrable lattice models in the ther-
modynamic limit organize in an astounding way and permit casting our description 
in terms of stable quasi-particles [68, 127, 128, 134]. This picture is in principle valid 
for any equilibrium state and even for elementary quasi-particle excitations on top 
of them [186]. Quasi-particles are labelled by a representation label (auxiliary spin in 
our example) and a continuous rapidity variable (corresponding to quasi-momentum). 
Having this in mind it should not be dicult to understand why higher-spin trans-
fer operators, despite fulfilling a system of functional identities, are nonetheless lin-
early independent variables. Therefore, the naive proposal of matching the number of 
degrees of freedom with the number of local Hilbert spaces of the lattice system cannot 
be correct.
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We have furthermore discussed an interesting (although somewhat atypical) situ-
ation when the above picture is incomplete and needs to be appropriately extended. 
This happens when the underlying symmetry algebra becomes enlarged, which implies 
extra degeneracies in the spectrum. Perhaps the simplest example of that occurs in the 
gapless regime of the XXZ model, governed by 2q( ( ))slU  quantum symmetry at root of 
unity deformations where an enriched symmetry led to the discovery of an extra family 
of quasilocal charges pertaining to non-unitary representations of the quantum group in 
the auxiliary space. In this review we exposed some of their implications on non-decay-
ing currents and associated anomalous transport properties and presented a rigorous 
non-trivial bound on the singular contribution to the spin conductivity (Drude weight).

The last type of applications which we presented briefly were integrable spin chains 
subjected to Markovian dissipative boundaries. The time evolution in such cases is 
governed by a non-unitary process described by Lindblad master equation and gener-
ally leads to a unique steady state which is far from canonical thermal equilibrium. We 
ought to stress, however, that such ‘integrable instances’, which emerge as a conse-
quence of an eective evolution describing an open system, can be profoundly dierent 
from the conventional non-equilibrium settings in the scope of isolated systems which 
evolve according to the unitary evolution law and consequently the relevant class of 
symmetries which become important might be quite dierent. In addition, we notice 
that dissipation processes are strictly only well-defined in a finite volume, while studies 
of equilibration in isolated systems typically deal with extended systems.

Aside of several novel theoretical insights which have been outlined in this review, 
it is worth mentioning that our formulation can also prove advantageous from a prac-
tical computational standpoint. An obvious example of this is explicit matrix product 
representations of quasilocal charges Xs( )λ  and Z ( )λ , which not only admit a unified 
abstract representation but also enable a direct and ecient computation using meth-
ods from the standard statistical mechanics toolbox. In essence, this lifts the Bethe 
ansatz concepts to operator level right away in the thermodynamic regime, circumvent-
ing a long-standing challenge of achieving this by pursuing the programme of algebraic 
Bethe ansatz, see e.g. [187, 188].

In conclusion, apart from a few successful physical applications in the realm of 
quantum quenches and quantum transport, much of the formal origin and group-the-
oretic interpretation is still missing at the moment. A notable example is the question 
of completeness of the Z-charges and their reconciliation with the spectrum and the 
quasi-particle content. We hope that this review can provide a source of inspiration for 
the ongoing investigation of open directions.
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