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Abstract. This paper contains an analysis of a simple neural network that
exhibits self-organized criticality. Such criticality follows from the combination
of a simple neural network with an excitatory feedback loop that generates
bistability, in combination with an anti-Hebbian synapse in its input pathway.
Using the methods of statistical field theory, we show how one can formulate the
stochastic dynamics of such a network as the action of a path integral, which we
then investigate using renormalization group methods. The results indicate that
the network exhibits hysteresis in switching back and forward between its two
stable states, each of which loses its stability at a saddle–node bifurcation. The
renormalization group analysis shows that the fluctuations in the neighborhood
of such bifurcations have the signature of directed percolation. Thus, the network
states undergo the neural analog of a phase transition in the universality class of
directed percolation. The network replicates the behavior of the original sand-pile
model of Bak, Tang and Wiesenfeld in that the fluctuations about the two states
show power-law statistics.
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1. Introduction

There is no question that the analysis of large-scale brain activity is a very hard problem.
There are approximately 50 billion neurons in the human cortex, of which 80% are
excitatory, and the remaining 20% are inhibitory. Each neuron has about four thousand
axon terminals from other neurons, but because of the redundancy of axon terminal arbors
it has effective connections from about 50 other neurons. In the simplest model, neurons
are binary switches, either quiescent or activated. Therefore, there are approximately
101.5×1010

configurations. Such a large configuration space suggests the need to use
statistical methods to analyze large-scale brain activity. The appearance of microscopic
randomness in cortical connectivity, and of intrinsic fluctuations in cortical activity, further
reinforces this conclusion. Such considerations led initially to the mean-field equations for a
spatially homogeneous population of coupled excitatory and inhibitory neurons [39], and
their extension to the spatially inhomogeneous case [40]. However, this analysis, being
mean-field, is unable to deal with the effects of microscopic randomness, or intrinsic
fluctuations and correlations. This led one of us (JDC) to formulate a fully stochastic
treatment of large-scale brain activity, during the late 1970s. This effort led ultimately to
the work reported in [9]. In this paper we used modern methods of statistical mechanics
and field theory, including renormalization group methods, to study the possibility of
phase transitions in large-scale brain activity, and the associated phenomena associated
with critical behavior.

1.1. Criticality in neural activity

There is now a considerable amount of literature on criticality in brain activity, much
of it speculative. However, there is one solid piece of data obtained by Beggs and Plenz
[7] in a study of spontaneous activity in an isolated slab of cortical tissue. Beggs and
Plenz followed up a much earlier series of experiments on isolated cortical slabs or slices
carried out by Burns [15]. His main result was that an isolated cortical slab remains
silent but excitable by brief current pulses. A strong enough pulse can trigger a sustained
all-or-none response that propagates radially from the stimulation site, at a velocity of
about 15 cm s−1. From this, Burns concluded that the slab had become epileptic, and
noted that behind the radially propagating front the activity consisted of random bursts
of spikes.

However, Burns did not study the effects of near-threshold stimuli, nor did he use an
array of electrodes, as Beggs and Plenz did 50 years later. They stimulated slabs with a
mixture of NMDA, a glutamate receptor agonist, and a dopamine D1 receptor agonist,
and found using an 8 × 8 electrode array that the slabs became spontaneously active,
generating random bursts of spike activity. An analysis of such bursts indicated that their
statistical properties were time-scale invariant, i.e. self-similar, and could be described as
avalanches. In addition, the distribution of such avalanches was the power-law P (n) ∝ nα,
where n is the avalanche size (equal to the number of activated electrodes in the array)
and α = −3/2. This power-law is a signature of mean-field critical branching [4], which
led Beggs and Plenz to posit that the statistical dynamics of the spontaneous slab activity
exhibits criticality.
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This raises two questions. The first question is what kind of neural population
dynamics can exhibit branching behavior, in particular critical branching behavior? The
second question is if a neural population does exhibit such behavior, does it need to
be tuned externally, or is it self-tuning? The first question was answered by Buice and
Cowan [9], who showed that a single population of spatially coupled excitatory neurons
could be tuned to exhibit spontaneous activity in the form of bursts of spikes, and that
the statistical dynamics of the network could be represented as the action of a Wiener
path integral. Remarkably, the renormalized form of this action is that of Reggeon field
theory [3] (see also [14]). We describe a slightly reformulated version of this work in what
follows. An answer to the second question constitutes the main part of this paper.

1.2. Self-organized criticality

We first restate the second question as that of the possible existence of self-organized
criticality (SOC) in large-scale brain activity. The idea of self-organized criticality (SOC)
was introduced by Bak et al [6]. Their paper immediately triggered an avalanche of papers
on the topic, including many on brain dynamics, in which it was claimed that the mere
presence of power-law scaling in neocortical dynamics is evidence of criticality, especially
SOC (see the review by Buice and Cowan [10]). Here, we present a very simple model of a
neural circuit with a modifiable synapse in which we can demonstrate the existence of SOC,
not only by simulation, but also by a detailed analysis of both the mean-field and stochastic
dynamics of the circuit, using statistical field theory, including the renormalization group
method.

1.3. The mechanism of SOC

Our starting point is the paper by Gil and Sornette [17], which contains a clear analysis
of the essential requirements for SOC: (1) an order-parameter equation for a dynamical
system with a time-constant τo, with stable equilibria separated by a threshold, (2) a
control-parameter equation with a time-constant τc, and (3) a steady driving force. In
Bak et al ’s classic example, the sand-pile model, the order parameter is the flux of sand
grains down a sand-pile, the control parameter is the sand-pile’s slope, and the driving
force is a steady flow of grains of sand onto the top of the pile. Gil and Sornette showed
that if τo� τc then the resulting avalanches of sand down the pile would have a scale-free
distribution, whereas if τo� τc then the distribution would also exhibit one or more large
avalanches.

In this paper we will analyze a neural network model in which neural network activity
is the order parameter, and the strength of a modifiable synapse in the input pathway to
the network is the control parameter. Such a setup is in one-to-one correspondence with
the Gil–Sornette SOC-model, and therefore should also exhibit SOC.

2. Neural network dynamics

Consider first the mathematical representation of the dynamics of a neocortical slab
comprising a single population of N excitatory neurons. Such neurons make transitions
from an inactivated or quiescent state q to an activated state a at the rate f , and back again
to the state q at the rate α, as shown in figure 1. The configuration space of the population

doi:10.1088/1742-5468/2013/04/P04030 4
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Figure 1. Neural state transitions. a is the activated state of a neuron, q is the
inactivated or quiescent state, α is a constant, but f depends on the number
of activated neurons connected to the ith neuron, and (possibly) an external
stimulus h.

is that of distinguishable patterns of neural activity defined by the states a and q. There
are 2N such patterns, and since N ≈ 5× 1010, the space is large. There are undoubtedly
many sources of noise in neural activity, so that a statistical description of this activity
is required. Consider therefore the probability distribution P (ν1, ν2, . . . , νN , t) = P (ν, t),
where νi = 1 if the ith neuron is activated at time t, and νi = 0 if it is quiescent at time
t. We need to derive a master equation for the evolution of P (ν, t).

We first consider all the state transitions that can occur in an asynchronous noisy
network of N excitatory neurons. Let A be the total number of activated neurons in the
network at time t, and Q = N − A be the total number of quiescent neurons at time
t. The possible transitions that can occur in the network comprise A→ A (no change),
A−1→ A (a quiescent neuron becomes active at the rate f), and A→ A−1 (an activated
neuron becomes quiescent at the rate α).

The rate function f = f [s(Ii)] represents the transition from a quiescent to an activated
neuron at the ith site, at the rate f [s(Ii)], where

s(Ii) = kiIi =
1

IRH,i

(∑
j

wijnj + hi

)
, ki =

1

IRH,i

(1)

is the current to the ith neuron, IRH,i is its threshold or rheobase current, wij is the weight
of the synapse between the jth and ith neurons, nj represents an activated neuron at the
jth site and hi represents an external spike stimulating the ith neuron.

The transition rate f [s(I)] is shown in figure 2. It is essentially the integral of∫ IRH

−∞
P (θ) dθ

where P (θ) is the probability distribution of threshold currents in the neural population.
We note that such a function has f (1) > 0, f (2) < 0 above its inflection point, and, therefore,

doi:10.1088/1742-5468/2013/04/P04030 5

http://dx.doi.org/10.1088/1742-5468/2013/04/P04030


J.S
tat.M

ech.(2013)
P

04030

Self-organized criticality in a network of interacting neurons

Figure 2. Graph of the firing rate function f [s(I)]. τm = 1/α = 3 is the membrane
time-constant (in ms). s(I) = I/ITH is the input current, where ITH ≡ IRH is the
threshold or rheobase current.

after appropriate translations of the axes [39], supports the possibility of bistability in the
neural dynamics.

Let N = 1 and P (1, t) be the probability that such a neuron is activated, and P (0, t)
that it is quiescent. The resulting master equation takes the simple form

dP (1, t)

dt
= −αP (1, t) + f [s]P (0, t). (2)

We need to extend such a master equation to deal with the full network of N neurons
generating 2N configurations, and therefore 2N simultaneous equations. We follow [14], [9],
and [10] and introduce an operator representation for the required master equation, in the
style of quantum field theory. However, we modify the derivation somewhat and introduce
a microscopic condition that limits the occupancy of the ith site to νi = 1 or else 0 as
required.

2.1. Annihilation and creation operators

We begin by defining an N = 0 network vector to be

|network with 0 neurons〉 = |0〉. (3)

We next introduce Fock space annihilation and creation operators satisfying boson
commutation rules

[ai, a
†
j] = [qi, q

†
j ] = δij

[ai, aj] = [a†ia
†
j] = 0

[qi, qj] = [q†i , q
†
j ] = 0.

(4)

Such operators act on a state vector |ni〉 representing ni activated neurons at the ith site,
and its dual, so that

a†i |ni〉 = |ni + 1〉, a|ni〉 = ni|ni − 1〉
〈ni|a†i = 〈ni − 1|ni, 〈ni|a = 〈ni + 1|.

(5)

doi:10.1088/1742-5468/2013/04/P04030 6
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These operate on the vacuum vector |0〉 to generate vectors comprising activated or
quiescent neurons. The configuration space vector |ν〉 is thus generated as

|ν〉 = Π2N

i=1Φ
†
νii
|0〉 (6)

where

Φ†νii
=

{
a†i if νi = 1

q†i if νi = 0
(7)

and the dual configuration space vector 〈ν| is generated as

〈ν| = Π2N

i=1〈0|Φνii (8)

where

Φνii =

{
ai if νi = 1

qi if νi = 0.
(9)

Inner products in the resulting vector space are generated by 〈0|0〉 = 1 and the
commutation relations in equation (4).

2.2. A neural state vector and expectation values

We now define a network state vector as the weighted sum over all configurations, where
the weight is the probability distribution given in the master equation,

|φ(t)〉 =
∑
ν

P (ν, t)|ν〉. (10)

Let

|p〉 = exp

(
N∑
i=1

a†i

)
|0〉. (11)

If we apply the dual vector 〈p| to the state |φ(t)〉 we obtain

〈p|φ(t)〉 =
∑
ν

P (ν) = 1, and 〈p|∂t|φ(t)〉 = −〈p|Ĥ|φ(t)〉 = 0

which is probability conservation.
We note that applying the operator a†iai to the configuration vector |ν〉 asks the

question is the ith neuron activated? If the answer is positive the operator leaves the ith
state untouched, if negative the answer is 0. Thus, the operator

∑
ia
†
iai counts the number

of activated neurons in |ν〉. Similarly, the operator
∑

iq
†
i qi counts the number of quiescent

neurons in |ν〉.
We can use the projection technique to calculate the expected number of activated

neurons at the ith site using the number operator a†iai. Let pi be the probability that the
ith neuron is activated. Then

〈p|a†iai|φ(t)〉 =
∑
ν

niP (ν) = 〈ni〉 = pi. (12)

doi:10.1088/1742-5468/2013/04/P04030 7
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In similar fashion

〈p|a†iaia
†
jaj|φ(t)〉 =

∑
ν

ninjP (ν) = 〈ninj〉 = pij. (13)

In the model considered here ni and nj are restricted to the values 0 and 1. This restriction
is achieved using the microscopic occupancy condition,

a†iai + q†i qi = 1. (14)

All configurations in the vector space |ν〉 are thus restricted, and are called physical states.
Finally, we note that we can use the commutation rules introduced in equation (4) to

commute exp(
∑

ia
†
i ) all the way to the right in expectation values, so that they take the

form of a vacuum expectation value 〈A〉 = 〈0|A|0〉. It can be shown that this is equivalent

to the shift a†i → a†i + 1, so that a†iai → a†iai + ai. We will employ this shift shortly.

2.3. A neural master equation

We now construct a neural master equation using the operators introduced above, as

d

dt
|φ(t)〉 =

∑
i

[
α(1− a†i )ai + (a†i − 1)(1− a†iai)f [s(Ii)]

]
|φ(t)〉 (15)

or formally as

d

dt
|φ(t)〉 = −Ĥ|φ(t)〉 (16)

where

− Ĥ =
∑
i

[
α(1− a†i )ai + (a†i − 1)(1− a†iai)f [s(Ii)]

]
(17)

is the quasi-Hamiltonian operator.
This operator is constructed by noting that[

α(1− a†i )ai + (a†i − 1)(1− a†iai)f [a†iai]
]
|νi〉 (18)

only gives a non-zero contribution from the first term when νi = 1 and a contribution
from the second term when νi = 0. Thus it correctly represents the transitions between
quiescent and active in the neuron at the site i, and the factor 1− a†iai = q†i qi eliminates
the q-state variable from the expression, by using equation (14) to limit occupancy at the
site i to one state. (See [35] and [33].)

2.4. From bosons to coherent states

Equation (16) is a linear operator equation with formal solution

|φ(t)〉 = exp
[
−Ĥ(t− t0)

]
|φ(t0)〉.

We need to re-express this solution in terms of complex numbers rather than operators.
This can be achieved by introducing coherent states. These were introduced by Schrödinger
[31] and first used extensively in coherent optics by Glauber [19]. We therefore introduce

doi:10.1088/1742-5468/2013/04/P04030 8
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such states |ϕi〉 in the form

|ϕi〉 = exp[−1
2
ϕ?iϕi + ϕia

†
i ]|0i〉 (19)

where ϕi is the right eigenvalue of ai, i.e. ai|φi〉 = ϕi|φi〉. There is also a coherent
state representation of qi in the form |ϑi〉 such that the right eigenvalue of qi is ϑi,

i.e. qi|ϑi〉 = ϑi|ϑi〉. In similar fashion 〈ϕi|a†i = 〈ϕi|ϕ̃i, where ϕ̃i, the complex conjugate

of ϕ, is the left eigenvalue of a†i , and similarly 〈ϑi|q†i = 〈ϑi|ϑ̃i, i.e. ϑ̃i is the left eigenvalue

of q†i . It follows that

〈ϕi|a†iai|ϕi〉 = 〈ϕi|ϕ̃iϕi|ϕi〉 = ϕ̃iϕi. (20)

All this suggests that the operator quasi-Hamiltonian has a coherent state representation
in the form

−H =
∑
i

[α(1− ϕ̃i)ϕi + (ϕ̃i − 1)(1− ϕ̃iϕi)f [s(Ii)]] (21)

where

s(Ii) ∝
∑
j

wijϕ̃jϕj + h̃ihi. (22)

We note that in transforming to the coherent state representation we must again use
the commutation rules to ensure that all creation operators a†i precede the annihilation
operators ai, to produce the normal ordered form. Thus, the normal ordered form of
a†iaia

†
i is written as : a†iaia

†
i := (a†i )

2ai + a†i . It follows from this that we need to expand
the function f [s(a†, a)] in powers of s(a†, a) in order to produce the normal ordered form
of H. We do this in appendix, but will defer including the results in the main body of the
paper until later.

2.5. The continuum limit of H

The final preliminary step of this formulation is to take the continuum limit of the
expression for H in equation (21), so that

H =

∫
ddx [αϕ̃ϕ− ϕ̃(ρ− ϕ̃ϕ− ϕ)f [s(ϕ̃ϕ+ ϕ)]] (23)

in which ϕi→ ρϕ(x, t) ≡ ϕ etc, where ρ is the packing density of neurons in the neocortex,
and the conjugate coherent state ϕ̃ has been shifted to ϕ̃+ 1.

Note that in taking the continuum limit we make the assumption that the cortex is
translation symmetric on the relevant length scales of mm to cm. This requires that we
assume that wij → wi−j, so that in the continuum limit wij → w(x−x′) and

∑
jwij → w?,

where ? is the convolution operator
∫

ddx′w(x− x′).

2.6. Dimensions and the density representation

Before proceeding further we need to assign a dimension to each variable in equation (23).
To do so we use a modified version of the convention used in particle physics so that
[x] = L−1, [t] = L−2, where L is the length scale used, whence [x2/t] = L0. (This generates
a scaling found in Markov random walks and related processes such as stochastic neural

doi:10.1088/1742-5468/2013/04/P04030 9
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activity.) Then, [α] = L2, [ϕ] = Ld, [ϕ̃] = L0, [ϕ̃ϕ] = Ld, [f [s]] = [α] = L2. This last value
of [f [s]] implies that the input current function s(ϕ̃ϕ+ϕ) = s(I) = kI, where the constant
k has the dimensions of inverse current density, so that [s] = L0. The net effect of such a
choice leads to the required result that [H] = 2.

To emphasize this choice we further transform the coherent state quasi-Hamiltonian
by introducing the density representation,

ϕ̃+ 1→ eñ, ϕ→ ne−ñ (24)

where n(x, t) is the local density of activated neurons. Then, equation (23) transforms
into

H =

∫
ddx[α(1− exp(−ñ))n− (exp ñ− 1)(ρ− n)f [s(w ? n+ h)]]. (25)

2.7. From the quasi-Hamiltonian to a neural path integral

Using standard methods [16, 30], Buice and Cowan [9] incorporated the quasi-Hamiltonian
into the action of a Wiener path integral. This action takes the form

S(n) =

∫∫
ddx dt

[
ñ∂tn+ α(1− e−ñ)n− (eñ − 1)(ρ− n)f [s(w ? n+ h)]

]
. (26)

The significance of this action is that it can be used to construct a generating functional
for statistical moments of the probability density P [ν, t] such as the mean spike count at
the location x at the instant t, 〈n(x, t)〉, and the correlation function 〈n(x, t)ñ(x′, t′)〉, etc.

This generating functional is the path integral

Z
[
J̃(x, t), J(x, t)

]
=

∫∫
DnDñe−S(n,ñ)+J̃ ·n+J ·ñ ≡

〈
exp[J̃ · n+ J · ñ]

〉
(27)

where DnDñ is the Wiener measure, and J̃ · n =
∫

ddxJ̃(x, t)n(x, t), etc. Functional

differentiation of this and related expressions w.r.t. J and J̃ , subject to the conditions
J, J̃ = 0, generates the various moments and moment equations. In particular, we obtain
the first moment or mean-field Wilson–Cowan equations [40],

∂t〈n〉 = −α〈n〉+ (ρ− 〈n〉)f [s(w ? 〈n〉+ 〈h〉)]. (28)

Thus, the Wilson–Cowan equation is a nonlinear integro-differential equation. The
derivation given here presents one way to extend these equations to a stochastic
formulation that can be analyzed by the techniques of statistical field theory.

We further note that if the population activity is sparse, then ρ−n→ ρ in equation (26)

and 1− a†iai → 1 in equation (17). These equations then become, respectively, the action
and master equations for the spiking model described in [9] and [10], except that ni is
now interpreted as the number of spikes emitted by the ith neuron.

3. The dynamics of synaptic plasticity

We now turn to the mathematical representation of synaptic plasticity and consider first
a single excitatory neuron ei embedded in a network E of excitatory neurons. Such a
neuron receives input currents from neurons in the network, and also from a population
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H of other neurons outside the network. Equation (1) now reads

s(Ii) = ki

(∑
j

wE
ijni +

∑
k

wH
iknk

)
. (29)

We now consider a single input n′k from H, acting on ei through the synapse wH
ik′ . We can

implement this by letting wH
ik → wH

ikδkk′ , so that
∑

kw
H
iknk → wik′n′k. The continuum limit

of the expression for the current from H therefore takes the form:∫
ddx′wH(x,x′)nH(x′)→

∫
ddx′bH(x,x′)δd(x− x′)nH(x′) = bH(x)nH(x). (30)

The synaptic weight bH(x) is modifiable, Its mean-field equation takes the form

d〈bH(x)〉
dt

= −βgE(x)

(
〈nE(x)〉
ρS

− 〈nE,0(x)〉
ρS

− κE,S〈bH(x)〉
)
〈nH(x)〉
ρS

(31)

where β is the rate constant for weight changes, ρS is the density of synapses at x, and
gE is the state-dependent function,

gE(x) ≈ k(x)F ′

1/ρ− k(x)F ′w0

(32)

where F = f/(α + f), 〈nE,0(x)〉 is a constant neural activity, w0 is the total synaptic
weight per neuron (see appendix), and κE,S = L(0) < 0 is a constant derived from the
window function L(∆t) of spike-time dependent plasticity (STDP) used in [36]. The ratios
〈nE(x)〉/ρS, 〈nE,0(x)〉/ρS, 〈nH(x)〉/ρS have dimension L0, and represent mean numbers of
spikes. The expression for gE(x) is approximate in the sense that for values of the rate
constant α� β it requires corrections that are hard to calculate. However, most of our
simulations are not in such a range.

In equation (31) the synaptic weight bH(x) is depressed by an anti-Hebbian mechanism,
and potentiated by the input activity nH. Such an equation was first introduced in [36]
for a purely feedforward circuit with no loops, and a linear firing rate function f , in
which the synapse was inhibitory rather than excitatory, and Hebbian rather than anti-
Hebbian. The Vogels formulation has an important property: the equation can be shown
to implement gradient descent to find the minimum of an energy function, the effect of
which is to balance incoming excitatory and inhibitory currents to the output neuron.
Equation (31) is an extension of the Vogels equation to the case of circuits with feedback
loops, and a nonlinear firing rate function f , and incorporates modifiable synapses that
are excitatory and anti-Hebbian. In fact there is experimental evidence to support both
kinds of synapses [23, 37]. It remains to formulate an action for the master equation that
generates this mean-field equation.

3.1. Developing an action for synaptic plasticity

To derive an action for synaptic plasticity we follow the same procedure as before. We
first formulate the changes in bH as a Markov process with discrete states in continuous
time. We therefore assume that bH is quantized in units of synaptic weight, and similarly
for bE. (Note: we could formulate the changes in bH as a Markov process with continuous
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states and use duality to obtain a bosonic action for a discrete state Markov process [29].
Here we proceed in the opposite direction.)

We first introduce bosonic annihilation and creation operators for bHik. Let such

operators be denoted by b†ik and bik respectively, and let |bHik〉 be a column vector
representing the synaptic weight bHik such that

b†ik|b
H
ik〉 = |bHik + 1〉, bik|bHik〉 = bHik|bHik − 1〉. (33)

Such operators act on a configuration space built from a null synapse, i.e. a synapse with
weight bHik = 0. Let this be represented, again, by the vacuum vector |0〉. The configuration
space vector |ζ〉 then ranges from bHik = 0 to bHik = (bHik)MAX = Mi, where Mi is the maximum
synaptic weight per neuron, which is a limit imposed by the finite surface area of any
individual neuron’s membrane. Let S be the number of (effective) synapses per neuron.
Then

|ζ〉 = ΠN
i=1Π

S
k=1(b

H)†ik|0〉. (34)

The dual vector 〈ζ| can be defined in similar fashion, and a synaptic state vector

|θ(t)〉 =
∑
ζ

P (ζ, t)|ζ〉 (35)

can be introduced. The rest of the development (almost) completely parallels that for
neural activity introduced earlier.

We next look at the steps necessary to construct a quasi-Hamiltonian for synaptic
plasticity. The first thing to do is to model the synaptic state transitions bHik + 1 → bHik
and bHik → bHik + 1 as a Markov process. Following the formulation of the neural quasi-
Hamiltonian in equation (18) we construct a provisional synaptic quasi-Hamiltonian in
the form

− Ĥb =
∑
i

[
λ(1− b†ik′ )bik′ + µ(b†ik′ − 1)

]
(36)

where λ and µ are state-dependent rate functions. Comparison with equation (31)
indicates that we require

λ = βgE,i|κE,S|
nH,k′

ρS

, µ = βgE,i
(nE,0,i − nE,i)

ρS

nH,k′

ρS

(37)

to correctly generate the mean-field equation.
Thus, we can write the quasi-Hamiltonian in the form

− Ĥb =
∑
i

[
βgE,i|κE,S|

nH,k′

ρS

(1− b†ik′ )bik′ + βgE,i
(nE,0,i − nE,i)

ρS

nH,k′

ρS

(b†ik′ − 1)

]
. (38)

We note an important difference between this Ĥb and the neural quasi-Hamiltonian Ĥ,
apart from the fact that they work on different configuration spaces. There is no restricted
occupancy condition in Ĥb, and it is now a simple matter to introduce a coherent state
representation of Ĥb, shift to the density representation and construct the action for
synaptic plasticity S(bH), and take the continuum limit. The result is

S(bH) =

∫∫
ddx dt

[
b̃H∂tbH + βgE|κE,S|

nH

ρS

(1− e−b̃H)bH − βgE(nE,0 − nE)
nH

ρS

(eb̃H − 1)

]
(39)
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where bH→ ρSbH = bH(x), a weight density, gE,i→ gE(x), etc. Using variational techniques
we can derive equation (31) from S(bH).

4. Combining the actions

It follows from this formulation that the full action for the coupled system of equations
for the evolution of nE and bH can be obtained simply by adding the actions S(nE) and
S(bH) together. The combined action therefore takes the form

S(nE, bH) =

∫∫
ddx dt

[
ñE∂tnE + α(1− e−ñE)nE − (eñE − 1)(ρ− n)f [s(nE)]

+ b̃H∂tbH + βgE|κE,S|
nH

ρS

(1− e−b̃H)bH − βgE(nE,0 − nE)
nH

ρS

(eb̃H − 1)

]
(40)

where the current s(nE) = k(w ? nE + bHδ
d ? nH). Note that the time scale of the growth

and decay of neural activity is set by the constant α, whereas that of the growth and
decay of synaptic plasticity is set by βgE, which is both state and position dependent.
Thus the ratio α/βgE is an important parameter.

4.1. A simulation of the behavior of the combined mean-field equations

The first variation of equation (40) generates the mean-field equations for nE and bH in
the form

∂t〈n〉
∂t

= −α〈n〉+ (ρ− 〈n〉)f [s(〈IE〉)]

∂〈bH(x)〉
∂t

= −βgE (〈nE(x)〉 − 〈nE,0(x)〉 − κE,S〈bH(x)〉) 〈nH(x)〉
ρS

(41)

where

sE(〈IE〉) = k (wE ? 〈nE〉+ 〈bH〉〈nH〉) . (42)

These equations can be simulated. The results are shown in figure 3. It will be seen that in
the ‘ground-state’ of low values of N? = n?E the synaptic weight bH increases until it reaches
a critical point (a saddle–node bifurcation), at which point N? becomes unstable and the
system switches to the ‘excited-state’. But then the anti-Hebbian term in the synaptic
plasticity dynamics kicks in, and bH declines until the excited-state fixed-point becomes
unstable at the upper critical point, (also a saddle–node bifurcation), and switches back
to the ground-state fixed point, following which the hysteresis cycle starts over. This is an
exact representation of the sand-pile model’s behavior. The reader should compare this
with the synaptic mechanisms described in [25] and in [26].

4.2. Renormalizing the combined action

The mean-field behavior we have described fits the Bak et al setup for achieving SOC very
well. However, such an analysis does not account for the effects of fluctuations. We need
the stochastic formulation for such a project. There are two situations to consider: (a)
when the fixed point values N? of the neural activity are stable, and (b) when N? becomes
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Figure 3. Neural state transitions between a ground state and an excited state.
Parameter values: mE = 3, nH = 3;α = 0.2. N? is the fixed-point value of nE, and
WH is the magnitude of the anti-Hebbian synapse in the input path.

marginally stable. In case (a) we can use the van Kampen system-size expansion [34] to
develop a linear Fokker–Planck equation, and its associated linear Langevin equation to
describe the fluctuations about N?. The reader is referred to [8] for an example of such a
treatment in a network comprising coupled excitatory and inhibitory neurons.

4.2.1. Renormalizing the neural action. However, case (b) requires a renormalization
group treatment. All the details of such a treatment are described in appendix. We first
renormalize the neural action given in equation (40) in the case where the external stimulus
nH = 0, so that the resulting spontaneous activity is driven only by internal fluctuations.

The result is

S(sE) =

∫∫
ddx dt

[
s̃E(∂t + µE −DE∇2)sE + uEs̃E(sE − s̃E)sE

]
. (43)

This action is well-known: it is called Reggeon field theory, and is found in directed
percolation (DP) in random graphs, in contact processes, in high-energy nuclear physics,
and in bacterial colonies, all of which exhibit the characteristic properties of what is called
a universality class, i.e., it is a phase transition with a universal scaling of important
statistical exponents. It also shows up in branching and annihilating random walks,
catalytic reactions, and interacting particles. Thus, we have mapped the mathematics
of large-scale neural activity in a single homogeneous neural population into a percolation
problem in random graphs, or equivalently into a branching and annihilating random
walk. A first version of this work was presented in [9]. A more extensive paper with many
applications to neuroscience was presented in [10].
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Note that s̃E and sE are scaled versions of ñE and nE, where the latter is no longer
interpreted to be the density of activated neurons at a given location, but the fluctuation
in nE about the mean value 〈nE〉 = nE,cl, as detailed in section A.2.

It is also important to note that in DP there are essentially two stable states
separated by a marginally stable critical point. One of these states is an absorbing state,
corresponding to a neural population state in which all neurons are quiescent, 〈n〉 = 0
(e.g. they are all subject to an inhibitory or hyperpolarizing current), or a sub-threshold
excitatory current. The other state is one in which many of the neurons are activated, so
that 〈n〉 6= 0, i.e. the order parameter is zero in the lower stable state, and is non-zero in
the upper stable state. At a critical point (corresponding to a saddle–node bifurcation in
the mean-field analysis), the lower state with 〈n〉 = 0 becomes marginally stable, and so
is driven by fluctuations into the upper stable state.

Here, we note that there is an upper critical dimension at which directed percolation
crosses over to mean-field behavior. This upper critical dimension is d = 4. What is the
dimension of the neocortex? To answer this question we note that the neocortex can be
unfolded and flattened into a slab with the dimensions 1 m× 1 m× 3 mm = 3× 106 mm3.
Since there are an estimated 5 × 1010 neurons in the neocortex, their packing density is
ρ = 1.67×104 mm−3. It has been estimated that there are about 4×103 synaptic contacts
per neuron [32]. Since about 50–100 such contacts belong to a single axon, the number
of neighbors per neuron is about 40–100. Nevertheless, the essential physical property
of the neocortex is that it is effectively two-dimensional. Thus the critical exponents
characterizing the neural phase transition are the d = 2 exponents of directed percolation.
These have been calculated in [1, 2], and [5], and appear in the linear response of the
neocortical model to an impulsive stimulus, known to mathematicians as the Green’s
function and to physicists as the propagator. This takes the general form

G(x, t) ∼
x2,t→∞
µ→ 0 |µ|(

1
2

dz−η)Φ(|µ|νt, |µ|νzx2) (44)

where x = x2 − x1, t = t2 − t1, µ = µE, and ν, η, and z are critical exponents that depend
only on the dimension d. Φ is a universal scaling function which takes on different forms
depending on whether µ is greater than or less than the critical value µ = 0. Thus, in the
subcritical case µ > 0

G(x, t) ∼ g2t−d/2 exp
(
−x2/4α′t−∆t

)
(45)

where ∆ ∼ |µ|ν , α′ ∼ |µ|−ν(z−1), and g2 ∼ |µ|ν[(1/2)d(z−1)−η]. In addition, the susceptibility
is defined as

χ =

∫∫
ddx dtG(x, t) ∼ |µ|γ (46)

where γ = ν(1 + η).
In the supercritical case µ < 0

G(x, t) ∼M2θ(υt− |x|) (47)

where υ ∼ |µ|ν(1−(1/2)z),M ∼ |µ|β, and β ∼ 1/2ν((1/2)dz − η). θ(x) is the Heaviside step
function.

In the critical case µ = 0 equation (44) reduces to

G(x, t) ∼ t−((1/2)dz−η)[Φc(x
2/t2) + O(t−λ)] (48)
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where λ is another critical exponent describing the approach to scaling, and Φc can be
calculated. (For more details see [3, 12, 27, 20].)

4.2.2. Renormalizing the driven neural action. We now assume that nH(x, t) 6= 0, so that
the function sE now takes the form

s(nE, nH) = k

(
LnE + bH

nH

ρS

)
. (49)

The extra term in the current s(nE, nH) adds extra terms to the neural action. However,
we show in appendix that all but one of the additional terms do not survive the
renormalization group process, so that the renormalized action for this case takes the
form

S(sE, sH) =

∫∫
ddx dt[s̃E(∂t + µE −DE∇2)sE + uEs̃E(sE − s̃E)sE + vEs̃EsHmH] (50)

where mH is a scaled version of nH.
We see that the additional term acts as a source to drive the dynamics away from the

absorbing state nE = 0. However, we assume that nH is small, so that the lowest value
reached by nE ≈ 0, i.e., the character of the neural activity remains close to DP.

4.2.3. Renormalizing the synaptic plasticity action. In similar fashion the action for
neural plasticity given in equation (39) can be renormalized. The result derived in
appendix is

S(sH) =

∫∫
ddx dt [s̃H∂tsH + uHs̃HsHmH + vHs̃H(sE − sE,0)mH] . (51)

The result indicates that the renormalized synaptic weight fluctuation sH is driven
by mH and depresses or potentiates, depending on the sign of the renormalized neural
activity term sE−sE,0. By itself this behavior suggests that the fixed points of sH oscillate
between an upper and a lower state.

4.2.4. Renormalizing the combined action. Renormalization of the combined action is
now simple. We simply add together the renormalized actions for the driven neural action
and the synaptic plasticity. The result is

S(sE, sH) =

∫∫
ddx dt[s̃E(∂t + µE −DE∇2)sE + uEs̃E(sE − s̃E)sE + vEs̃EsHmH

+uHs̃H∂tsH + uHs̃HsHmH + vHs̃H(sE − sE,0)mH]. (52)

We note that the last term acts as a source or sink term for sH, depending on the sign of
sE − sE,0. It is not clear how this term affects the nature of the fluctuations in sE.

5. Simulating the effects of fluctuations

In order to gain some insight into the behavior of the network dynamics beyond the
mean-field regime we simulated the full system of coupled stochastic equations for a
two-dimensional network comprising 60 × 60 excitatory neurons with nearest neighbor
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Figure 4. Neural state transitions between a ground state and an excited
state in a two-dimensional network of 60 × 60 excitatory neurons with nearest
neighbor connections. (A) Population activity and mean synaptic weight versus
time. Activity levels display cyclic behavior with ‘UP’ and ‘DOWN’ states.
(B) Avalanche distribution of DOWN states (black dots) and UP states (blue
dots). Parameter values: κE,S = 0.001, nE,0 = 0.2, wE = 4, α = 0.2, β = 0.002,
gE = 1, and IRH = 1. f(x) is the function introduced in figure 2.

connections and toroidal boundary conditions, with each neuron receiving current pulses
from all four neighbors, and also from an external cell through a modifiable synapse with
weight function wH(x,x′) = bHδ

d(x− x′) such that
∫

ddx′wH ∝ bH.
The simulations were run using the Gillespie algorithm for Markov processes (see [8]).

The results are shown in figure 4. It will be seen that the population behavior shown in
panel (A) replicates qualitatively that shown in the phase-plane of figure 3, and that the
mean synaptic weight shows the oscillation-like character of the activity. Panel (B) shows
the burst or avalanche-size distributions of the underlying spiking activity. Note that the
fluctuations in spiking activity about the lower nullcline, or DOWN state, show a power-
law distribution with a slope of about −1.51, whereas those about the higher nullcline or
UP state also show a power-law distribution with a slope of about −1.31. This property is
not seen in studies of the behavior of stochastic Wilson–Cowan equations for coupled E–I
networks with fixed synapses, reported in [8], in which the DOWN state shows power-law
statistics, and the UP state shows Poisson statistics. This is just the opposite of the results
reported in [26] and [25], in which UP states show power-law behavior, and DOWN states
show Poisson behavior. (We will return to this point in section section 6.)

However, we note that the results of this simulation differ in certain respects from
those obtained by Gil and Sornette [17]. In their paper they introduced simulations
performed with a choice of time constants corresponding to the ratios α/β = 0.01 and
100. Both simulations produced similar power laws for small avalanche sizes, but the
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latter also produced an isolated large system-size avalanche, 1.25 orders of magnitude
greater than the smaller avalanches. In the simulation considered here the ratio used is
α/βgE = 0.2/0.002×1 = 100. The result we find is that there are two branches of power-law
distributed avalanches, corresponding to the UP and DOWN mean-field states. The UP
avalanches are approximately three orders of magnitude greater than the DOWN ones.

6. Discussion

We have demonstrated that critical behavior in the form of power-law avalanche
distributions can be obtained in a network of coupled excitatory stochastic Wilson–Cowan
equations with a modifiable excitatory synapse in the input pathway. Such a system
exhibits SOC. We have also shown that the slope of the power-law found in the UP states
of the dynamics is consistent with that found in two-dimensional directed percolation
(τ = 1.268), within the experimental errors generated by the rather small size of our
network simulation. Our results differ from those in [25] as well as those in [26]. However,
these models differ in many respects from the model presented in this paper. Thus, Levina
et al formulated a synaptic dynamics quite different from ours, but, interestingly, found
that critical behavior required strong enough synapses, otherwise subcritical behavior
occurred. In our simulations in which there was an excitatory anti-Hebbian synapse,
we found that critical behavior occurred over a wide range of synaptic strengths. This
property also differs from the results reported by Millman et al in which criticality also
occurs over a wide range of synaptic strengths, but only for higher firing rates. These
results might be related to the result reported above in which we found much larger
avalanches in UP states than those found in DOWN states.

On the other hand, our results are not consistent with those we obtained earlier
in Benayoun et al with a network of coupled excitatory and inhibitory cells with fixed
synaptic weights. The key property in that study is that the balance between excitatory
and inhibitory currents, equivalent to the net difference between the excitatory and
inhibitory weights wE − wI (equivalent to w0 in the current formulation), is small, so
that the net excitation of each cell is low, leading to critical DOWN but not UP states.
This property did not seem to depend upon the overall connectivity of the network.

One other observation we can make concerns an application of the Ginzburg
criterion [18]. One can derive this for stochastic Wilson–Cowan equations [41] in the
form of the inequality(

w2

w0

)2

� ζ
|f (2)|w0A

f (1)
L4−d

D , where LD =

√
f (1)w2

2(α− f (1)w0)

where ζ and A are constants, and LD is the effective ‘diffusion’ length of the process. What
is interesting about this formulation is that only the bulk parameters of the network,
α, f (1), |f (2)|, w0 and w2, are required to reach a conclusion. If this inequality is violated
then critical behavior occurs, otherwise mean-field behavior occurs. Thus, if d < 4, and
if f (1)w0 → α, then critical behavior is likely. This shows that for a fixed value of α, the
value of f (1)w0 controls the process. If w0, the total synaptic weight from neighboring
neurons is small, then f (1) must be large. However, examination of figure 2 indicates that
neural activity must then be low, so that criticality is to be expected in the DOWN
state. Conversely, if w0 is large then f (1) must be small. Again figure 2 indicates that the
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resulting neural activity must then be high, so that criticality is now expected in the UP
state. We conclude that the weight w0 might be the key to whether or not UP and DOWN
states are critical. It remains to incorporate the effects (if any) of the external stimulus
nH acting through the modifiable weight wH into the Ginzburg criterion.

There are some experimental data to support the hypothesis that spontaneous or
weakly stimulated brain activity exhibits near-critical behavior, and that strong external
stimuli drive the activity into the mean-field regime. In fact there are a great many data
supporting the hypothesis that the mean-field propagator correctly describes the essential
features of large-scale strongly driven neocortical activity on many spatio-temporal scales.
(See [15, 24, 28].) In addition, data on the statistical structure of large-scale spontaneous
activity recorded in cortical slices by Beggs and Plenz [7], in particular the avalanche-size
distribution of spontaneous activity in cortical slices, appear to fit the hypothesis of mean-
field critical branching, which is consistent with the DP exponent of 1.5, for d = 4. But
if the neocortex is two-dimensional our analysis suggests a smaller exponent. However,
the neocortex is finite, so it is plausible that boundary effects change the exponent of the
avalanche-size distribution near the surface from the smaller bulk exponent to one closer
to 1.5 [21].

There are also many other differences in the formulation. In our study we do not have
sparse randomly connected connectivity, or noisy input currents. It remains to be seen
whether incorporation of these properties will make a difference in our results. We do
know that such effects can trigger spontaneous symmetry breaking and collective effects
in neural networks. (See, for example, [13, 22, 38], and [11].)

If these conclusions are correct, it is indicated that the approach we have outlined in
this paper may prove to be of some value in the analysis of stochastic effects in neural
networks.
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Appendix

A.1. Expanding the weighting function

We can approximate the convolution operator as the truncation of an expansion in the
moments

µk =

∫
ddxxkw(x) (A.1)
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so

w? =

∫
ddx′w(x− x′) ≈ w0 +

1

2!
w2∇2 + · · · ≡ L (A.2)

where

w(x)→ w(r) =
b

σd
e−r/σ, σ = r0 (A.3)

and

w0 =

∫
ddxw(x) = b

dΓ(d)

Γ(d/2 + 1)
πd/2,

w2 =

∫
ddx2w(x) = bσ2 dΓ(d+ 2)

Γ(d/2 + 1)
πd/2.

(A.4)

A.2. Renormalizing the neural action

We expand nE about its mean value 〈nE〉 = nE,cl, which satisfies equation (28) in the form

∂tnE,cl = −αnE,cl + (ρ− nE,cl)f [s(nE,cl)] (A.5)

where

s(nE,cl) = k(w ? nE,cl + bH ? nH,cl). (A.6)

Thus, nE → nE + nE,cl, ñE → ñE, since ñE,cl = 0. Therefore, s(nE) → s(nE + nE,cl) and
f [s(nE)]→ f [s(nE + nE,cl)]. If follows that s(nE + nE,cl) = k(w ? (nE + nE,cl) + bH ? (nH +
nH,cl)) = k(w ? nE,cl + bH ? nH,cl) + k(w ? n + bH ? nH) = s(nE,cl) + s(nE), and therefore
f [s(nE)] = f [s(nE,cl) + s(nE)]. We next expand f [s(nE)] in a Taylor expansion about the
mean-field value nE,cl, noting that from equation (A.2) s(nE) = k(w ? nE + bH ? nH) =
k(LnE + bH ? nH).

In what immediately follows we assume that the external stimulus nH(x, t) = 0. It
follows that

f [s(nE)] = f [kL(nE,cl + nE)] = f [kLnE,cl] + f (1)[kLnE,cl]kLnE

+ 1
2
f (2)[kLnE,cl](kLnE)2 + · · · . (A.7)

However, because of normal ordering, equation (A.7) leads to the expression

f [s(nE)] =
∑
m

gm(kLnE)m, where gm =
∑
l=m

f (l)

l!
sl,m. (A.8)

Since the leading terms of gm are proportional to f (m), and given the assumed form for
f [s(n)] to be such that f (1) > 0 and f (2) < 0, then gm > 0 for m odd, and gm < 0 for m
even.

In similar fashion we expand the function nEf [s(nE)] as

nEf [s(nE)] = g[s(nE)] =
∑
m

hm(kLnE)m, where hm =
∑
l=m

g(l)

l!
sl,m. (A.9)
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However, we note that since g(l) = d(l)g/ds(l), g(l) = lf (l−1) + f (l), so that hm = gm + g′m,
where

g′m =
∑
l=m

f (l−1)

(l − 1)!
sl,m (A.10)

so we have

(ρ− nE)f [s(nE)] = (ρ− k̄)
∑
m

gm(kLnE)m − k̄
∑
m

g′m(kLnE)m = ρ̄f [s(nE)]− k̄g[s(nE)]

(A.11)

where k̄ = (kL)−1, ρ̄ = ρ− k̄, and

g[s(nE)] =
∑
m

g′m(kLnE)m. (A.12)

We also expand the functions exp(±ñE). The resulting action S(nE) takes the form

S(nE) =

∫∫
ddx dt

[
ñE(∂t + α− ḡ1kL)nE − 1

2
ñ2

E(α + ḡ1kL)nE + ñE|ḡ2|(kL)2n2
E

+ 1
2
ñ2

E|ḡ2|(kL)2n2
E + · · ·

]
(A.13)

where ḡm = ρ̄gm − k̄g′m.
It follows that for functions nE(x, t) that vary slowly in space 1

2
w2∇2nE is small

compared to w0nE, so that in most expressions the terms proportional to ∇2mnmE can be
neglected. However, this is not always the case for m = 1. Thus, the first term can be
written approximately as ñE(∂t + α − ḡ1kw0 + 1

2
ḡ1kw2∇2)nE = ñE(∂t + µE − DE∇2)nE,

where µE = α− ḡ1kw0 and DE = 1
2
ḡ1kw2.

Therefore, the expression for the action is now reduced to the form

S(nE) =

∫∫
ddx dt

[
ñE(∂t + µE −DE∇2)nE − ñ2

EG1nE + ñEG2n
2
E + 1

2
ñ2

EG2n
2
E + · · ·

]
(A.14)

where G1 = 1/2(α + ḡ1kw0), G2 = |ḡ2|k2w2
0. We need to demonstrate that the last term

in S(nE), i.e., 1
2
ñ2

EG2n
2
E, and all higher-order terms, are irrelevant in the sense of the

renormalization group.
The renormalization group (RG) analysis is carried out via dimensional analysis. It

can be shown that all the terms in S(nE) are zero-dimensional when integrated over d-
dimensional space and over time, i.e., [ddx dt] = L−(d+2) and (any term in the integrand) =
Ld+2. However, as it stands, [nE] = Ld, but [ñE] = L0, so that [ñEnE] = L0+d = Ld. This
is not suitable for the scaling analysis implemented in the RG process. We therefore
introduce a new scaling,

s̃E =

√
G1

G2

ñE, sE =

√
G2

G1

nE (A.15)

such that s̃EsE = ñEnE, where [G2/G1] = L−d. The effect of this scaling is that both s̃E

and sE have dimension Ld/2. Let√
G1G2 = uE. (A.16)
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The net effect of this scaling transformation is that

S(sE) =

∫∫
ddx dt

[
s̃E(∂t + µE −DE∇2)sE + uEs̃E(sE − s̃E)sE + · · ·

]
. (A.17)

The constants of all higher-order terms have dimensions such that the dimension of their
ratio to the coupling constant u scales as L−βd, where β > 0, so they become irrelevant
as L→∞. It follows that

S(sE) =

∫∫
ddx dt

[
s̃E(∂t + µE −DE∇2)s+ uEs̃E(sE − s̃E)sE

]
(A.18)

is the renormalized action of the large-scale neural activity of a single neural population.

A.3. Renormalizing the synaptic plasticity action

We now proceed to renormalize the action S(bH) just as we renormalized S(nE). We
therefore expand the exponential term in equation (40) and rewrite S(bH) in the form

S(bH) =

∫∫
ddx dt

[
b̃H∂tbH +H1b̃HbHnH − 1

2
H1b̃

2
HbHnH

+ H2(nE − nE,0)b̃H
nH

ρS

+H2(nE − nE,0)b̃
2
H

nH

ρS

]
(A.19)

where H1 = βgE|κE,S|/ρS and H2 = βgE.
We now introduce the scaling

s̃H =

√
H2

H1

b̃H, sH =

√
H1

H2

bH (A.20)

such that s̃HsH = b̃HbH and [H1/H2] = L−d. This scaling is analogous to the scaling of n
and ñ which we carried out earlier for neural activities. As before, the effect of this scaling
is that both s̃H and sH have dimension Ld/2.

Let √
H1H2 = uH, H1 = 2τH (A.21)

and recall that equation (A.15) scales nE to
√
G1/G2sE.

Following the procedure outlined earlier we can calculate which terms in the
transformed action S(sH) become irrelevant under scaling transformations. The resulting
renormalized synaptic plasticity action takes the form

S(sH) =

∫∫
ddx dt [s̃H∂tsH + uHs̃HsHmH + vH(sE − sE,0)s̃HmH] (A.22)

where

vH =

√
G1

G2

H2

ρS

and mH =

√
H1

H2

nH (A.23)

so that vH has the same scaling dimension as uH.

doi:10.1088/1742-5468/2013/04/P04030 22

http://dx.doi.org/10.1088/1742-5468/2013/04/P04030


J.S
tat.M

ech.(2013)
P

04030

Self-organized criticality in a network of interacting neurons

A.4. Renormalizing the driven neural action

We now assume that nH(x, t) 6= 0, so that the function sE now takes the form

s(nE, nH) = k

(
LnE + bH

nH

ρS

)
. (A.24)

It follows that the function (ρ−n)f [s(nE, nH)] can now be expanded in the normal ordered
form

(ρ− n)f [s(nE, nH)] =
∑
m

ḡm

(
(kLnE)m +

(
kbH

nH

ρS

)m)
+ h̄2kLnEbH

nH

ρS

+ · · · (A.25)

where h̄2 = ρ̄f (2). The effect of this is to generate additional terms in the neural action.
We therefore expand equation (A.25) and retain only the first few terms because all the
terms which give rise to 4-vertices or higher will not survive the renormalization group
procedure (see [33]). The extra terms we include in the action are(
ñE +

1

2
ñ2

E

)(
ḡ1

(
kbH

nH

ρS

)
− |ḡ2|

(
kbH

nH

ρS

)2

− |h̄2|
(
kLnEkbH

nH

ρS

))
. (A.26)

However, only the term ñEḡ1kbHnH/ρS survives the RG process as vEs̃EsHmH, where vE

is a constant with the same scaling dimension as vH and uH.

A.5. Renormalizing the combined action

Renormalization of the combined action is now simple We simply add together the
renormalized actions for the driven neural action and the synaptic plasticity. The result
is

S(sE, sH) =

∫∫
ddxdt[s̃E(∂t + µE −DE∇2)sE + uEs̃E(sE − s̃E)sE

+ vEs̃EsHmH + s̃H∂tsH + uHs̃HsHmH + vH(sE − sE,0)s̃HmH] (A.27)

where uE, vE and uH, vH are renormalized constants, all with the scaling dimension L2−d/2.
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