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1. Introduction

In recent years it has been realized that the ground state of the transfer matrix of the
critical O(n = 1) loop model on the square lattice can be explicitly described for finite
system sizes [1, 2]. Such feasibility is rather unusual for critical models3, and is commonly
reserved for free fermion models only. Exact knowledge of the finite size ground state
provides access to the precise size dependence of the most probable configurations of the
O(n = 1) model, and hence to finite size correlation functions. Examples of conjectural

3 Valence bond states (VBS) or dimerized states are common examples for gapped systems. Another well known
example is the matrix product stationary state for the asymmetric exclusion process.
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results for such correlations, based on numerical studies for homogeneous systems, can be
found in [3].

Applications of the O(n = 1) model are abundant, the most well known ones being
critical bond percolation on the square lattice and the quantum XXZ spin chain at
Δ = −1/2; see e.g. [4]. Other closely related models are the stochastic raise and peel
model [5] and lattice realizations of models with supersymmetry [6]–[8] or an underlying
logarithmic conformal field theory [9]. A further interesting connection has been made
with the quantum Hall effect [10].

Following initial conjectural results in [1, 2] and [3, 5, 11, 12], a method was initiated
and developed in [13]–[17] for proving a variety of results regarding the O(n = 1)
ground state by generalizing to inhomogeneous models. This approach was extended
in [18, 19], introducing the use of expressions with multiple contour integrals for certain
linear transformations of the ground state, which has been successful for establishing
several conjectures. An alternative approach describing each component of the ground
state in terms of factorizations of non-commuting operators was developed in [20]; see
also [21].

Although a wide variety of periodic and open boundary conditions have been studied,
the case of two open boundaries has so far resisted progress. Here we deal with this case,
and will generalize the results for reflecting [14] and mixed [17] boundary conditions.
As a corollary we obtain the normalization, or sum rule, for the case of two open
boundaries. The normalization is important as the O(n = 1) ground state can be
interpreted as a probability distribution function. In contrast to the case for other
boundary conditions, there is as yet no combinatorial interpretation of the normalization
for two open boundaries.

2. Two-boundary Temperley–Lieb algebra

Sklyanin’s double-row transfer matrix [22] of the O(n) model, and consequently the
Hamiltonian, can be expressed in terms of algebraic generators satisfying a Temperley–
Lieb algebra; see e.g. [14, 23]. The particular version of the Temperley–Lieb algebra which
is needed depends on the imposed boundary conditions. In this paper we will consider
the O(n) model on a strip with open boundaries on both sides, which can be described
in terms of the two-boundary Temperley–Lieb algebra [24]. Models with two reflecting or
diagonal boundaries, as well as with mixed boundaries, were studied in [14, 17, 20].

Definition 1. The two-boundary Temperley–Lieb (2BTL) algebra, or Temperley–Lieb
algebra of type BCL, is the algebra over Z defined in terms of generators ei, i = 0, . . . , L,
satisfying the relations

e2
i = ei,

eiei±1ei = ei,

}
for i = 1, . . . , L − 1,

e2
0 = e0, e2

L = eL,

(2.1)

and commuting otherwise.
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The 2BTL can be generalized to include parameters in the quadratic relations [24].
In particular, the quadratic relations in (2.1) can be generalized to

e2
i = −(q + q−1)ei, (2.2)

for some parameter q.4 Unless stated otherwise, throughout this paper we will fix q to be
the third root of unity,

q = e2πi/3. (2.3)

The Hamiltonian of the dense O(n = 1) loop model with open boundaries can now be
expressed as the following operator:

H = c1(1 − e0) + c2(1 − eL) +

L−1∑
j=1

(1 − ej), (2.4)

where c1, c2 ∈ R.
The 2BTL is infinite dimensional, and it was shown in [24] that all finite dimensional

irreducible representations satisfy two additional relations, which we will describe now.
First we define two (unnormalized) idempotents I1 and I2 as follows:

• L even:

I1 = e1e3 · · · eL−1, I2 = e0e2e4 · · · eL−2eL. (2.5)

• L odd:

I1 = e1e3 · · · eL−2eL, I2 = e0e2 · · · eL−1. (2.6)

The double quotient of the 2BTL algebra has the additional relations

I1I2I1 = bI1, I2I1I2 = bI2, (2.7)

where b is an additional parameter.
In the rest of this paper we will restrict to the case b = 1 so that the 2BTL has a

one-dimensional representation ρ defined by

ρ: ei �→ 1, i = 0, 1, . . . , L. (2.8)

In particular we have that ρ(H) = 0; hence 0 is an eigenvalue of H in any faithful
representation. In fact, because the eigenvalues of ei are 0 and 1, for c1, c2 ≥ 0 the lowest
eigenvalue of H is 0 and corresponds to the ground state of the O(n = 1) loop model.
Moreover, by the Perron–Frobenius theorem, the ground state is unique as I − H is a
stochastic matrix.

The 2BTL algebra has two distinguished representations, both of dimension 2L [24].
One representation is in the tensor product space (C2)⊗L, giving rise to the quantum XXZ
spin chain with non-diagonal boundary conditions on both sides. In this representation
the Temperley–Lieb generators can be expressed in terms of the Pauli matrices σx, σy and

4 An even further generalization is possible but will not concern us here.
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σz, and take the form

ei �→ 1
2
(σx

i σx
i+1 + σy

i σ
y
i+1 + cos γ(σz

i σ
z
i+1 − 1) + i sin γ(σz

i − σz
i+1)),

e0 �→
1

2 sin γ
(− sin βσx

1 + cos βσy
1 + i cos 2γσz

1 − sin 2γ) ,

eL �→ 1

2 sin γ
(sin(β + γ)σx

L − cos(β + γ)σy
L − i cos 2γσz

1 − sin 2γ) ,

(2.9)

where we have used the notation q = eiγ. If we specialize to b = −(q + q−1), this
representation is valid for generic values of q. The expressions above furthermore contain
an additional angle β, which, due to the rotational symmetry in the spin x–y plane, is a
free gauge parameter on which the spectrum of H does not depend. The choice (2.3) of
q as the third root of unity corresponds to anisotropy Δ := cos γ = −1/2 in the XXZ
chain.

Another representation of the 2BTL algebra is in a space of link patterns, which we
will describe in section 2.1. This representation is relevant for the O(n) model with open
boundaries [3, 25]. The particular choice (2.3) of q in this setting corresponds to n = 1.

2.1. Action on link patterns

The 2BTL algebra has a graphical loop representation in a space spanned by link patterns
(sometimes called connectivities) or, equivalently, the space spanned by (a variant of)
anchored cross paths [26].

Definition 2. A link pattern is a non-crossing matching of the integers 0, 1, . . . , L+1. The
matching between the integers 1, . . . , L is pairwise, whereas 0 and L + 1 may be matched
with, or connected to, an arbitrary number of other integers. The integers 0 and L+1 are
respectively referred to as the left and right boundary.

Definition 3. An anchored cross path is a sequence of integers (h0, h1, . . . , hL) such that
hi+1 = hi ± 1 and min(hi) ∈ {0, 1}.

Before describing these representations more precisely, we present an intuitive picture
in figure 1 using the well known graphical depiction of ei as a tilted square decorated
with small loop segments. Multiplication in the 2BTL algebra corresponds to vertical
concatenation of pictures.

We now give a more precise description of the link pattern representation. Link
patterns can be conveniently described by a sequence of opening ‘(’ and closing ‘)’
parentheses. If site i is matched with, or connected to, site j we put an opening parenthesis
‘(’ at i and a closing parenthesis ‘)’ at j. If site i is connected to the left boundary we
place a closing parenthesis at i. Likewise, if a site i is connected to the right boundary
we place an opening parenthesis at i. The link patterns for L = 2 are thus given by

)), )(, (), (( (2.10)

which respectively mean that (i) the two sites are connected to the left boundary, (ii) the
first is connected to the left boundary while the second is connected to the right boundary,
(iii) the two sites are connected to each other, and (iv) both are connected to the right
boundary. Because we can independently place an opening or closing parenthesis on each
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2 3 4 5 6 7 810

Figure 1. Graphical depiction of action of e5 on the anchored cross-path
(2, 1, 2, 3, 2, , 2, 3, 4) or, equivalently, the link pattern )(() ((. The result
will be the path (2, 1, 2, 3, 2, , 2, 3, 4), or link pattern )(() ((.

site, the dimension of the space LPL of link patterns of size L for the two-boundary
Temperley–Lieb algebra is

dim LPL = 2L. (2.11)

The generator ei (i = 1, . . . , L−1) acts between positions i and i+1 on a link pattern
α ∈ LPL in the following way: if site i is connected to k and site i + 1 to l, ei connects
i with i + 1 and k with l. Here, k, l ∈ {0, . . . , L + 1}, but if they both correspond to a
boundary (0 or L + 1), then the connection from k to l is disregarded in the final picture.
We now describe the action of the generator e0. It connects 1 to the left boundary, and
if 1 was previously connected to i �= 0, L + 1, then e0 would also connect i to the left
boundary. If 1 was connected to the left boundary, then e0 would act as the identity. The
action of the generator eL is similar to that of e0. It connects L to the right boundary, and
if L was previously connected to i �= 0, L + 1, then eL would also connect i to the right
boundary. If L was connected to the right boundary, then eL would act as the identity.

The representation on anchored cross paths is completely equivalent to that on link
patterns. The loop decorations on the tiles define a link pattern in the obvious way, as
in figure 1. The action of a generator follows then from sticking the corresponding tile
to a path, connecting all the loop decorations, resulting in a new link pattern, and then
replacing the picture with the minimal path with the same such link pattern.

As stated below (2.8), the Hamiltonian (2.4) has a positive spectrum and a unique
ground state energy E0 = 0 in LPL. We will be interested in the corresponding right
eigenvector |Ψ〉 as a function of the parameters c1 and c2,

H|Ψ(c1, c2)〉 = 0. (2.12)

As shown by Di Francesco and Zinn-Justin for other kinds of boundary conditions, it is
possible to derive exact closed form expressions for certain properties of |Ψ〉 for finite
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system sizes. For example, we will show that the normalization Z = 〈Ψ|Ψ〉, which in
the link pattern representation is equal to the sum over all components of |Ψ〉, can be
expressed as a product of four determinants. To achieve this one needs to generalize the
eigenvalue problem (2.12) by considering an inhomogeneous model. This is done via the
transfer matrix formalism which will be described in section 3.

3. Transfer matrix

In order to define the transfer matrix we will first introduce the operators Ř and Ǩ, as
well as their unchecked versions. We furthermore list some useful properties which we will
need in later sections. Throughout the following we will use the notation [z] for

[z] = z − z−1. (3.1)

3.1. Baxterization

The Baxterized elements Ři(z), and the boundary Baxterized elements Ǩ0(z, ζ) and
ǨL(z, ζ) of the Temperley–Lieb algebras are defined as

Ři(z) =
[q/z] − [z] ei

[qz]
,

Ǩi(z, ζ) =
k(z, ζ) − [q][z2]ei

k(1/z, ζ)
, i = 0, L,

(3.2)

where k(z, ζ) is given by

k(z, ζ) = [z/qζ ][zζ/q]. (3.3)

The parameter z is called the spectral parameter. In addition, each boundary element can
be equipped with an additional free parameter ζ . We thus will have two such parameters
available, and they will be related to the coefficients c1 and c2 in (2.4) by

ci =
(q − 1/q)2

(q2 − ζ2
i )(1 − q−2ζ−2

i )
=

3

1 + ζ2
i + ζ−2

i

. (3.4)

The Baxterized elements obey the usual Yang–Baxter and reflection equations with
spectral parameters:

Ři(z)Ři+1(zw)Ři(w) = Ři+1(w)Ři(zw)Ři+1(z),

Ǩ0(z, ζ)Ř1(zw)Ǩ0(w, ζ)Ř1(w/z) = Ř1(w/z)Ǩ0(w, ζ)Ř1(zw)Ǩ0(z, ζ),

ǨL(z, ζ)ŘL−1(zw)ǨL(w, ζ)ŘL−1(w/z) = ŘL−1(w/z)ǨL(w, ζ)ŘL−1(zw)ǨL(z, ζ).

(3.5)

They furthermore satisfy the unitarity relations

Ři(z)Ři(1/z) = 1,

Ǩi(z, ζ)Ǩi(1/z, ζ) = 1, i = 0, L.
(3.6)

The relations above can be easily checked using the algebraic rules (2.1), or using a
graphical notation like the one in figure 1. We now introduce a graphical definition of the
Baxterized elements, using the planar Temperley–Lieb–Jones algebra [28], which we will

doi:10.1088/1742-5468/2009/04/P04010 7
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be able to use in a more general context than in figure 1. We thus define the R-operator
R(z, w) to be the following linear combination of pictures:

R(z, w) =
[qw/z]

[qz/w]
− [z/w]

[qz/w]
, (3.7)

and will graphically abbreviate R(z, w) as

R(z, w) = . (3.8)

Note that we can use this picture in any orientation, as the arrows uniquely determine how
the spectral parameters z and w enter in R. Likewise, we define the boundary K-operators
by

K0(w, ζ) =
k(qw, ζ)

k(1/qw, ζ)
− [q][q2w2]

k(1/qw, ζ)

= (3.9)

KL(w, ζ) =
k(w, ζ)

k(1/w, ζ)
− [q][w2]

k(1/w, ζ)

= . (3.10)

For simplicity we will sometimes only draw the lines carrying the arrows and spectral
parameters. The Baxterized elements R, K0 and KL will be used to define the transfer
matrix of the system.

The unitarity relations (3.6) for R and K can be graphically depicted as

, (3.11)

and

, . (3.12)

doi:10.1088/1742-5468/2009/04/P04010 8
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In addition, the Yang–Baxter and reflection equations (3.5) can be written as

, (3.13)

and

, . (3.14)

We furthermore note the crossing relation satisfied by R, i.e. R(z, w) = R(qw, z) (recall
that q = e2πi/3), which graphically reads

. (3.15)

The crossing relation (3.15) can be made to hold for generic values of q if R is normalized
appropriately [27].

3.2. Transfer matrix

Using the definitions in section 2 we define Sklyanin’s double-row transfer matrix TL(w) =
TL(w; z1, . . . , zL; ζ1, ζ2) pictorially in the following way (see [14, 22, 23]):

TL(w) = . (3.16)

As is well known, the Yang–Baxter and reflection equations (3.5) imply that T (w) forms
a commuting family of transfer matrices, i.e.

[TL(v), TL(w)] = 0, (3.17)

and hence define an integrable lattice model. Following [13, 14], we note that the Yang–
Baxter and reflection equations (3.5) also immediately imply the following interlacing

doi:10.1088/1742-5468/2009/04/P04010 9
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conditions of the transfer matrix with Ři, Ǩ0 and ǨL:

Ři(zi/zi+1)TL(w; z1, . . . , zL) = TL(w; z1, . . . , zi+1, zi, . . . , zL)Ři(zi/zi+1),

Ǩ0(z
−1
1 , ζ1)TL(w; z1, . . . , zL) = TL(w; z−1

1 , z2, . . . , zL)Ǩ0(z
−1
1 , ζ1),

ǨL(zL, ζ2)TL(w; z1, . . . , zL) = TL(w; z1, . . . , zL−1, z
−1
L )ǨL(zL, ζ2).

(3.18)

Due to the existence of the one-dimensional representation (2.8), the transfer matrix
has an eigenvalue equal to 1, and a corresponding eigenvector |Ψ〉L defined by

TL(w; z1, . . . , zL)|Ψ(z1, . . . , zL)〉L = |Ψ(z1, . . . , zL)〉L, (3.19)

where |Ψ〉L depends on zi but not on w. In the homogeneous limit zi → 1, the transfer
matrix TL becomes the probability transition matrix of the stochastic raise and peel
model [5, 26], for which the steady state eigenvector (3.19) is unique by the Perron–
Frobenius theorem. We will assume that the eigenvector remains unique for generic values
for z1, . . . , zL. The vector |Ψ〉L is the ground state eigenvector for the O(n = 1) loop
model with open boundaries. In section 4 we will use the interlacing conditions (3.18)
to rewrite (3.19) in a form which is known as the q-deformed Knizhnik–Zamolodchikov
equation. This will allow us to obtain an explicit characterization of |Ψ〉L for finite L.
We will in particular be able to derive a closed form expression for the normalization
ZL = 〈Ψ|Ψ〉L. In order to do so we need a recursion relation for |Ψ〉L, which we will
discuss first.

3.3. Recursion

Let ϕi denote the map that sends site j to j + 2 for j ≥ i in a link pattern, and then
inserts a link from site i to i + 1, thus creating a link pattern of size two greater. For
example,

ϕ3: )(()(( �→ )( ()((. (3.20)

In appendix A we prove that the transfer matrix satisfies the following identity:

TL(w; z1, . . . , zi+1 = qzi, . . . , zL) ◦ ϕi =
[q/ziw][q2zi/w]

[q2ziw][qw/zi]
ϕi ◦ TL−2(w; . . . , zi−1, zi+2, . . .).

(3.21)

A similar relation was proved in [14] and for the case of periodic boundary conditions
in [13]. Property (3.21) will be used later, in particular in conjunction with q = e2πi/3

when the proportionality factor equals 1.
Likewise one can prove that at the boundaries, and for q = e2πi/3, the transfer matrix

satisfies

TL(w; z1 = qζ1, . . . , zL; ζ1, ζ2) ◦ ϕ0 = ϕ0 ◦ TL−1(w; z2, . . . , zL; qζ1, ζ2), (3.22)

where ϕ0 is the map that sends site j to site j + 1, and inserts a ) on the first site; and

TL(w; z1, . . . , zL = ζ2/q; ζ1, ζ2) ◦ ϕL = ϕL ◦ TL−1(w; z1, . . . , zL−1; ζ1, ζ2/q), (3.23)

where ϕL is the map that inserts a ( on the last site.
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4. The q-Knizhnik–Zamolodchikov equation

The ground state eigenvalue equation (3.19) for the inhomogeneous transfer matrix of
the O(n = 1) model is equivalent to a particular instance of the qKZ equation with
q = e2πi/3. This connection will provide a handle for an explicit analysis of the ground
state eigenvector of the O(n = 1) Hamiltonian for finite system size L. We will first
describe the qKZ equation for open boundaries (corresponding to type BC in the Dynkin
diagram classification), and then prove the equivalence with the transfer matrix eigenvalue
equation (3.19).

We consider a linear combination |Ξ〉 of states |α〉 labeled by link patterns:

|Ξ(z1, . . . , zL)〉 =
∑

α

ξα(z1, . . . , zL)|α〉. (4.1)

Here |α〉 runs over the set of anchored cross paths (or link patterns) of size L, and the
coefficient functions ξα are polynomials in L variables with coefficients which are functions
of q and a new parameter s, which we regard as complex parameters,

ξα ∈ C[z2
1 , . . . , z

2
L]. (4.2)

The q-Knizhnik–Zamolodchikov equation [29]–[31] is a system of finite difference equations
on the vector |Ξ〉. For open boundary conditions they can be written as [14, 17]5

Ři(zi/zi+1)|Ξ〉 = πi|Ξ〉, ∀ i ∈ {1, . . . , L − 1},
Ǩ0(1/z1, ζ1)|Ξ〉 = π0|Ξ〉,
ǨL(szL, sζ2)|Ξ〉 = πL|Ξ〉.

(4.3)

The operators Ři(z) are the Baxterized elements of the Temperley–Lieb algebra, and Ǩ0

and ǨL are the boundary Baxterized elements from (3.2). The operators Ři(zi/zi+1),
Ǩ0(1/z1, ζ1) and ǨL(szL, sζ2) act on paths (link patterns) |α〉, whereas the operators πi

(i = 0, . . . , L) act on the coefficient functions ξα only;

πiξ(. . . , zi, zi+1, . . .) = ξ(. . . , zi+1, zi, . . .),

π0ξ(z1, . . .) = ξ(1/z1, . . .),

πLξ(. . . , zL) = ξ(. . . , 1/s2zL).

(4.4)

For later convenience, we note that the qKZ equations can be rewritten in the following
way:

ei|Ξ〉 = −ai|Ξ〉 (i = 0, . . . , L), (4.5)

where

ai = (πi + 1)
[zi/qzi+1]

[zi/zi+1]
, a0 = (π0 + 1)

k(1/z1, ζ1)

[q][z2
1 ]

, aL = −(πL + 1)
k(szL, sζ2)

[q][s2z2
L]

,

(4.6)

where k was defined in (3.3). The operators ai (i = 0, . . . , L) satisfy the relations of the
affine Hecke algebra of type C [20], as well as those of the Hecke algebra of type BC.

5 We write the equations in a form used by Smirnov [29]; these imply the more commonly used form of Frenkel
and Reshetikhin [30].
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4.1. Equivalence with the transfer matrix eigenvalue equation

The qKZ equation has polynomial solutions for special values of s and q.6 At special values
(namely q = e2πi/3, s4 = 1), the ground state eigenvector |Ψ〉L of the transfer matrix also
satisfies the qKZ equation. We prove this by acting on both sides of the eigenvector
equation (3.19) with the elements Ř(zi/zi+1), Ǩ0(1/z1, ζ1) and ǨL(szL, sζ2):

Ři(zi/zi+1)|Ψ〉L = Ři(zi/zi+1)TL(w; z1, . . . , zL)|Ψ〉L
= TL(w; z1, . . . , zi+1, zi, . . . , zL)Ři(zi/zi+1)|Ψ〉L. (4.7)

Acting on both sides with πi, we obtain

TL(w; z1, . . . , zL)(πiŘi(zi/zi+1)|Ψ(z1, . . . , zL)〉L = πiŘi(zi/zi+1)|Ψ(z1, . . . , zL)〉L, (4.8)

and since the eigenvector in (3.19) is unique, this implies that

πiŘi(zi/zi+1)|Ψ(z1, . . . , zL)〉L = βi(z1, . . . , zL)|Ψ(z1, . . . , zL)〉L, (4.9)

where βi is some rational function. Multiplying both sides of (4.9) with πiŘi(zi/zi+1), and
using the identity in (3.6), it follows that

|Ψ(z1, . . . , zL)〉L = βi(. . . , zi+1, zi, . . .)πiŘi(zi/zi+1)|Ψ(z1, . . . , zL)〉L, (4.10)

and so

β(. . . , zi, zi+1, . . .)β(. . . , zi+1, zi, . . .) = 1. (4.11)

Because we may assume that the components of |Ψ〉L do not have a common factor,
equation (4.10) implies that the numerator of βi must be a constant, or that 1/βi is a
polynomial. But then (4.11) implies that βi is in fact a constant such that β2

i = 1. The
sign is fixed to +1 by setting zi+1 = zi, so we finally obtain

Ři(zi/zi+1)|Ψ(z1, . . . , zL)〉L = πi|Ψ(z1, . . . , zL)〉L. (4.12)

Similarly, we find that

Ǩ0(1/z1, ζ1)|Ψ(z1, . . . , zL)〉L = π0|Ψ(z1, . . . , zL)〉L,

ǨL(szL, sζ2)|Ψ(z1, . . . , zL)〉L = πL|Ψ(z1, . . . , zL)〉L,
(4.13)

where proof of the last equation makes use of the fact that when s4 = 1, ǨL(sa, sb) =
ǨL(a, b) and R(s2z, w) = R(z, w).

6 Interesting recent developments [32] relate polynomial solutions of the qKZ equation associated with Uq(sln)
to the polynomial representation of the double-affine Hecke algebra [33, 34]. These solutions can be expressed in
terms of Macdonald polynomials with specialized parameters [35].
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4.2. Example L = 2

In this section we work out an example of a solution of the qKZ equation for L = 2 which
also solves the eigenvalue equation (3.19). We work in the link pattern basis {)), )(, (), ((},
which is equivalent to (2, 1, 0), (2, 1, 2), (0, 1, 0) and (0, 1, 2) in the path representation.
In this case, there are twelve equations resulting from the qKZ equations. Defining

si = q + q−1 − ai, (4.14)

these equations can be written as

0 = a0ψ() = a0ψ((, ψ() = s0ψ)), ψ(( = s0ψ)( , (4.15)

0 = a2ψ() = a2ψ)), ψ() = s2ψ((, ψ)) = s2ψ)(, (4.16)

0 = a1ψ)) = a1ψ)( = a1ψ((, s1ψ() = ψ)) + ψ(( + ψ)(. (4.17)

It is an easy consequence of the equation a0ψ() = 0 that if ψ() �= 0, it should contain a
factor k(z1, ζ1). Similar conditions hold for the vanishing of ψ when acted upon by a1 and
a2:

(i) ψ() and ψ(( vanish or contain a factor k(z1, ζ1), the remainder being invariant under
z1 ↔ 1/z1.

(ii) ψ() and ψ)) vanish or contain a factor k(1/sz2, sζ2), the remainder being invariant
under sz2 ↔ 1/sz2.

(iii) ψ)), ψ)( and ψ(( vanish or contain a factor [qz1/z2], the remainder being a symmetric
function in z1 and z2.

4.2.1. Solution. With the known factors from items (i), (ii) and (iii) above, we thus look
for a solution of the form

ψ)) =
2∏

i=1

k(1/szi, sζ2) × [qz1/z2][qs
2z1z2] × S(sz1, sz2),

ψ(( =
2∏

i=1

k(zi, ζ1) × [qz1/z2][q/z1z2] × S̃(z1, z2).

(4.18)

where S(z1, z2) and S̃(z1, z2) are symmetric functions invariant under zi ↔ 1/zi. The
other two components may be determined from

ψ() = s0ψ)), ψ)( = s1ψ() − ψ)) − ψ((. (4.19)

When s4 = 1, q = e2πi/3 we find that the solution to equations (4.15)–(4.17) can be given
explicitly by

S(z1, z2) = A2 χ(1,0,0)(s
2ζ2

1 , z
2
1 , z

2
2),

S̃(z1, z2) = A2 χ(1,0,0)(z
2
1 , z

2
2 , ζ

2
2),

(4.20)

where, with an eye to generalization to arbitrary L, we have used the symplectic character
χλ of degree λ defined by

χλ(z1, . . . , zL) =

∣∣∣zλj+L−j+1
i − z

−λj−L+j−1
i

∣∣∣
1≤i,j≤L∣∣∣zL−j+1

i − z−L+j−1
i

∣∣∣
1≤i,j≤L

, (4.21)

and A2 is an arbitrary overall constant.
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5. Solution for general system size

As in items (i), (ii) and (iii) of section 4.2, for general L we may derive factors for certain
components. For each i, every link pattern in the LHS of the qKZ equation (4.5) will have
a small link from i to i + 1 once ei has acted. The qKZ equation then says that aiψα = 0
iff α does not have a small link from i to i + 1. This leads to the following conditions on
ψα:

(i) If α does not have a small link from the left boundary to 1, ψα vanishes or contains
a factor k(z1, ζ1), the remainder being invariant under z1 ↔ 1/z1.

(ii) If α does not have a small link from L to the right boundary, ψα vanishes or contains
a factor k(1/szL, sζ2), the remainder being invariant under szL ↔ 1/szL.

(iii) If α does not have a small link from i to i + 1, ψα vanishes or contains a factor
[qzi/zi+1], the remainder being a symmetric function in zi and zi+1.

Using the above conditions, for general L the component ψ(···( is given by

ψ(···( =

L∏
i=1

k(zi, ζ1)
∏

1≤i<j≤L

[qzi/zj ][q/zizj ]fL(z1, . . . , zL), (5.1)

where fL is symmetric and invariant under zi → 1/zi. The majority of the factors in this
expression are imposed by the symmetry conditions. Note that with k as defined in (3.3)
we could write this as

ψ(···( =
∏

0≤i<j≤L

k(zj, zi)fL(z1, . . . , zL), (5.2)

by using the notation z0 = ζ1.

Likewise, we have

ψ)···) =
L∏

i=1

k(1/szi, sζ2)
∏

1≤i<j≤L

[qzi/zj][qs
2zizj ]f̃L(sz1, . . . , szL),

=
∏

1≤i<j≤L+1

k(1/szi, szj)f̃L(sz1, . . . , szL), (5.3)

if we identify zL+1 = ζ2. Here, f̃L is symmetric and invariant under szi → 1/szi. Other
components may be derived from the extremal components by acting with products of
Baxterized versions of the operators si, as described in [20]. However, in the case under
consideration it is not possible to derive every component of |Ψ〉 in this way. In appendix B
we explain the reasons for this in detail for the case L = 3.

By using recursion and degree properties of the general solution, we can find an
expression for f̃L and fL. We emphasize again that throughout this section we will use
s4 = 1 and q = e2πi/3.
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5.1. Recursion

5.1.1. Recursion of the eigenstate. In order to find a recursive definition for all components
of |Ψ〉L, we must refer to the recursive property of the transfer matrix described in (3.21).
For the remainder of this section, we will suppress the arguments z1, . . . , zL of T and |Ψ〉L
except where detail is needed. The notation ẑj will mean that zj is missing from the list
z1, . . . , zL. When we specify q to be a third root of unity, the factors in (3.21) cancel, so
we have

TL(w; zi+1 = qzi) ◦ ϕi = ϕi ◦ TL−2(w; ẑi, ẑi+1). (5.4)

Now, acting with both sides on the vector |Ψ(ẑi, ẑi+1)〉L−2, we get

TL(w; zi+1 = qzi)
(
ϕi|Ψ(ẑi, ẑi+1)〉L−2

)
= ϕi|Ψ(ẑi, ẑi+1)〉L−2 (5.5)

which, by uniqueness of the eigenvector |Ψ〉L, implies

|Ψ(zi+1 = qzi)〉L ∝ ϕi|Ψ(ẑi, ẑi+1)〉L−2. (5.6)

This is consistent with the properties listed in section 4.2, which imply that any coefficient
of a link pattern without a small link connecting i and i + 1 vanishes when zi+1 = qzi.
Relation (5.6) was already proved for subcases of the most general open boundary
conditions in [14, 17], and for periodic boundary conditions in [13]. It can be shown
that the proportionality factor in (5.6) takes the same form for each i; see appendix C.
We denote this factor by p(zi; z1, . . . , ẑi, ẑi+1, . . . , zL).

Likewise, from the boundary recursions (3.22) and (3.23) of the transfer matrix we
find that

|Ψ(z1 = qζ1; ζ1)〉L = r0(z2, . . . , zL; ζ1)ϕ0|Ψ(ẑ1; qζ1)〉L−1,

|Ψ(zL = ζ2/q; ζ2)〉L = rL(z1, . . . , zL−1; ζ2)ϕL|Ψ(ẑL; ζ2/q)〉L−1,
(5.7)

where r0 and rL are proportionality factors analogous to p.

5.1.2. Small size examples. In section 4.2 we presented a minimal degree solution for
L = 2:

ψ(( = A2

∏
0≤i<j≤2

k(zj , zi)χ(1,0,0)(z
2
1 , z

2
2, ζ

2
2 ),

ψ)) = A2

∏
1≤i<j≤3

k(1/szi, szj)χ(1,0,0)(s
2ζ2

1 , s
2z2

1 , s
2z2

2).
(5.8)

When we set z2 = qz1, all components except for ψ() vanish. At this point, we have
from (4.19)

ψ()|z2=qz1 = (−1 − a0)ψ))|z2=qz1

= −A2π0
k(1/z1, ζ1)

[q][z2
1 ]

k(1/sz1, sζ2)k(1/sz2, sζ2)k(1/sz1, sz2)

× χ(1,0,0)(s
2z2

1 , s
2z2

2 , s
2ζ2

1)
∣∣
z2=qz1

= − A2 k(z1, ζ1)
2k(z1, ζ2)

2, (5.9)
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where we have used the properties k(s2a, b) = s2k(sa, sb) = k(a, 1/b) = k(1/qa, b) =
k(a, b), the definition of χ given in (4.21), and the fact that ψ)) vanishes when z2 = qz1.
Since the solution for L = 0 is simply a constant scalar (denoted A0), we can easily see
that the proportionality factor in (5.6) for L = 2 is equal to

p(z1) = −A2

A0

k(z1, ζ1)
2k(z1, ζ2)

2. (5.10)

For L = 1, a minimal degree solution is given by

ψ( = A1 k(z1, ζ1) ψ) = A1 s2k(1/sz1, sζ2). (5.11)

It is computationally very intensive to compute explicitly the full solution for L = 3.
However, if we restrict to the subset of equations so that ψ)(( and ψ))( are not individually
determined, but only their sum is, we find

ψ((( = A3

∏
0≤i<j≤3

k(zj , zi) χ(1,1,0,0)(z
2
1 , z

2
2 , z

2
3, ζ

2
2 )g3(z

2
1 , z

2
2 , z

2
3),

ψ))) = A3 s2
∏

1≤i<j≤4

k(1/szi, szj) χ(1,1,0,0)(s
2z2

1 , s
2z2

2 , s
2z2

3 , s
2ζ2

1 )g3(s
2z2

1 , s
2z2

2 , s
2z2

3),
(5.12)

with χ as before, and where g3 is symmetric and invariant under zi ↔ 1/zi. Imposing the
boundary recursions (5.7) requires that

g3(z
2
1 , z

2
2 , z

2
3) = χ(1,0,0)(z

2
1 , z

2
2 , z

2
3). (5.13)

We have verified that this indeed comprises the full solution for L = 3. Computing
ψ(() = s3ψ(((, and setting z3 = qz2, we find the recursion between size L = 3 and 1:

ψ(()|z3=qz2 = −A3

A1
k(z2, ζ1)

2k(z2, ζ2)
2k(z2, z1)

4ψ(. (5.14)

Assuming that p(zi; z1, . . . , ẑi, ẑi+1, . . . , zL) takes similar forms for each L, and noting
that p must be symmetric in all zj �= zi, we find the general form to be

L = 2, p(zi) = −A2

A0
k(zi, ζ1)

2k(zi, ζ2)
2,

L = 3, p(zi; zj) = −A3

A1
k(zi, ζ1)

2k(zi, ζ2)
2k(zi, zj)

4, j �= i, i + 1,

p(zi; z1, . . . , ẑi, ẑi+1, . . . , zL) = − AL

AL−2

k(zi, ζ1)
2k(zi, ζ2)

2
∏

j �=i,i+1

k(zi, zj)
4.

(5.15)

Using similar arguments, it can be deduced that the proportionality factors r0 and
rL in the boundary recursions (5.7) are given by

r0(z2, . . . , zL; ζ1) = (−1)L+1 AL

AL−1
k(ζ1, ζ2)

L∏
i=2

k(ζ1, zi)
2, (5.16)

and

rL(z1, . . . , zL−1; ζ2) = (−1)L+1(s2)
AL

AL−1
k(1/sζ2, sζ1)

L−1∏
i=1

k(1/sζ2, szi)
2. (5.17)
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5.1.3. Recursion for components. We would like to find recursions relating certain
components of |Ψ〉 for size L to components for size L − 1 and L − 2, as we already
have done for small system sizes. Such a recursion would allow us to determine the still
unknown functions fL and f̃L in (5.2) and (5.3). Recalling the definition of si in (4.14),
we have that

ψ(...() = sLψ(...(, (5.18)

and since ψ(...(|zL=qzL−1
= 0, it follows that

ψL
(...()|zL=qzL−1

=

(
πL

k(szL, sζ2)

[q][s2z2
L]

∏
0≤i<j≤L

k(zj , zi)fL(z1, . . . , zL)

)∣∣∣∣∣
zL=qzL−1

= k(zL−1, ζ2)

L−2∏
i=0

k(zL−1, zi)
2

∏
0≤i<j≤L−2

k(zj , zi)fL(z1, . . . , zL−1, s
2qzL−1)

= k(zL−1, ζ1)
2k(zL−1, ζ2)

L−2∏
i=1

k(zL−1, zi)
2 fL(z1, . . . , zL−1, s

2qzL−1)

fL−2(z1, . . . , zL−2)
ψL−2

(···( .

(5.19)

Here we have used the properties of k given below (5.9). From above, the proportionality
factor in this relation is given by p(zL−1; z1, . . . , zL−2), so we arrive at a recursion for fL:

fL(z1, . . . , zL−1, s
2qzL−1) = − AL

AL−2

k(zL−1, ζ2)
L−2∏
j=1

k(zL−1, zj)
2fL−2(z1, . . . , zL−2). (5.20)

A similar argument finds a recursion for f̃L. Due to the symmetry properties of both these
functions, the recursions can be generalized to arbitrary i:

fL(z1, . . . , zi, s
2qzi, . . . , zL) = − AL

AL−2
k(zi, ζ2)

∏
j �=i,i+1

k(zi, zj)
2fL−2(z1, . . . , ẑi, ẑi+1, . . . , zL),

f̃L(z1, . . . , zi, s
2qzi, . . . , zL) = − AL

AL−2
k(zi, ζ1)

∏
j �=i,i+1

k(zi, zj)
2f̃L−2(z1, . . . , ẑi, ẑi+1, . . . , zL).

(5.21)

The boundary recursion (5.7) can be immediately applied to the extremal

components (5.2) and (5.3), and we find that f and f̃ in addition satisfy

fL(z1, . . . , zL−1, ζ2/q; ζ1, ζ2) = (−1)L+1 AL

AL−1

L−1∏
j=1

k(1/ζ2, zj) fL−1(z1, . . . , zL−1; ζ1, ζ2/q),

f̃L(qζ1, z2, . . . , zL; ζ1, ζ2) = (−1)L+1s2 AL

AL−1

L∏
j=2

k(ζ1, zj) f̃L−1(z2, . . . , zL; qζ1, ζ2),

(5.22)

where we have explicitly indicated the dependences on ζ1 and ζ2.
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5.2. Degree

Polynomial solutions of the qKZ can be labeled by their top degree μ, where μ is a
partition, μ1 ≥ μ2 ≥ · · · ≥ μL ≥ 0. These solutions are of the form∑

ν∈W ·μ
cνz

2ν , (5.23)

where W · μ denotes the orbit of μ under the action of the Weyl W group of type BCL,
cν are constants, and

z2μ =

L∏
i=1

z2μi
i .

We can use the recursions (5.21) and (5.22) to find out what the minimal degree
of fL has to be for arbitrary size. Consider i = 1 and denote the top degree of fL by

ν(L) = (ν
(L)
1 , . . . , ν

(L)
L , 0, 0, . . .). Since the degree of k(z1, zj) is (1, 0) in the variables z2

1

and z2
j , the top degree in z2

1 on the right-hand side of (5.21) is 2L − 3. Comparing top

degrees in (5.22), it immediately follows that ν
(L)
j is at least equal to ν

(L−1)
j + 1. We thus

find that the following inequalities have to hold,

ν
(L)
1 + ν

(L)
2 ≥ 2L − 3, (5.24)

ν
(L)
j ≥ ν

(L−1)
j + 1. (5.25)

For a possible minimal degree solution these inequalities become equalities, and we find
that

ν
(L)
j = L − j (j = 1, . . . , L), (5.26)

which agrees with the solutions we explicitly constructed for the small system sizes
L = 1, 2, 3 in section 5.1.2. We will write ν(L) = λ(L) + λ(L+1), where λ(L) is the partition
of |λ(L)| = 
L

2
(L

2
− 1)� with

λ
(L)
j =

⌊
L − j

2

⌋
, j = 1, . . . , L, (5.27)

i.e.

λ(2n) = (n − 1, n − 1, . . . , 1, 1, 0, 0), λ(2n+1) = (n, n − 1, n − 1 . . . , 1, 1, 0, 0). (5.28)

From the degree of k(zj , zi) it immediately follows that the product of factors in the
expression for the extremal components amount to a degree of λ(L+1) + λ(L+2). Solutions
of the qKZ equation of minimal degree, which are relevant for the O(n = 1) loop model
with open boundaries, therefore have degree μ(L), with

μ(L) = λ(L) + 2λ(L+1) + λ(L+2), (5.29)

so that

μ
(L)
j = 2L + 1 − 2j. (5.30)

The total degree of these solutions is equal to |μ(L)| = L2 and the degree in each variable
z2

i is equal to μ1 = 2L − 1.
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5.3. Solution

For L = 2 and 3, the solution contains a symmetric function which involves the symplectic
character defined in (4.21). The solution for general L can also be expressed in terms of
a special symplectic character. It turns out that the following two functions satisfy the
necessary recursions (5.21) and (5.22), and have the correct degree ν(L),

fL(z1, . . . , zL) = ALχλ(L+1)(z2
1 , . . . , z

2
L, ζ2

2)χλ(L)(z2
1 , . . . , z

2
L),

f̃L(sz1, . . . , szL) = AL(s2)Lχλ(L+1)(s2ζ2
1 , s

2z2
1 , . . . , s

2z2
L)χλ(L)(s2z2

1 , . . . , s
2z2

L).
(5.31)

The classical character χλ for the partition λ = λ(L) appears repeatedly in related studies
on loop models [14, 17] and symmetry classes of alternating sign matrices [36]. It is further
worthwhile noting that (5.21) is satisfied because of the recursion

χλ(L)(z2
1 , . . . , z

2
L)|zj+1=qzj

= (−1)L
∏

i�=j,j+1

k(zj, zi) χλ(L−2)(z2
1 , . . . , ẑ

2
j , ẑ

2
j+1, . . . , z

2
L), (5.32)

and the specification s4 = 1.

5.4. Normalization

The normalization of the ground state eigenvector is defined by

ZL = 〈Ψ|Ψ〉L, (5.33)

which can also be expressed as the sum over all the coefficients of |Ψ〉L,

ZL =
∑

α∈LPL

ψα, (5.34)

as the left eigenvector of the transfer matrix satisfies 〈Ψ|α〉 = 1 for all α.
We have derived in (C.5) and (C.6) the recursions for the normalization ZL. Using

the recursion (5.32) for the symplectic character SL(. . . , zi, . . .) = χλ(L)(. . . , z2
i , . . .) defined

in (4.21), we thus note that

SL+2(ζ1, z1, . . . , zL, ζ2)SL+1(ζ1, z1, . . . , zL)SL+1(z1, . . . , zL, ζ2)SL(z1, . . . , zL)|zi+1=qzi

= k(zi, ζ1)
2 k(zi, ζ2)

2
∏

j �=i,i+1

k(zi, zj)
4 SL(ζ1, . . . , ẑi, ẑi+1, . . . , ζ2)

× SL−1(ζ1, . . . , ẑi, ẑi+1, . . .)SL−1(. . . , ẑi, ẑi+1, . . . , ζ2)SL−2(. . . , ẑi, ẑi+1, . . .).

(5.35)

Since the recursions (C.5) and (C.6) specify enough points to uniquely determine ZL of
degree μ(L) = λ(L) + 2λ(L+1) + λ(L+2), see (5.30), and, when we set AL = (−1)LAL−1, this
product of four symplectic characters satisfies the same recursions, we conclude that

ZL(z1, . . . , zL) = SL+2(ζ1, z1, . . . , zL, ζ2)SL+1(ζ1, z1, . . . , zL)

× SL+1(z1, . . . , zL, ζ2)SL(z1, . . . , zL). (5.36)

This proof also requires equivalence for L = 1 and 2, which is easy to show. In particular,
the normalization of the ground state of the Hamiltonian (2.4) is obtained by setting
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zi = 1, and is given by

ZL = Z̃2(c1, c2)Z̃1(c1)Z̃1(c2)Z̃0, (5.37)

where

Z̃0 = SL(1, . . . , 1),

Z̃1(ci) = SL+1(ζi, 1, . . . , 1),

Z̃2(c1, c2) = SL+2(ζ1, 1, . . . , 1, ζ2),

(5.38)

and

ci =
3

1 + ζ2
i + ζ−2

i

. (5.39)

6. Conclusion

We have given an explicit description, for finite system sizes and without resorting to the
Bethe ansatz, of the ground state of the O(n = 1) loop model with open boundaries. The
boundary conditions considered in this paper contains as special cases those of reflecting
and mixed boundary conditions which have been considered before [14, 17, 20]. In an
alternative interpretation the O(n = 1) model is equivalent to the stochastic raise and
peel model [5, 26] for which the ground state is a stationary state distribution. In this
setting it is important to compute the normalization so that the stationary state is a
properly normalized probability distribution. The derivation of the normalization of the
raise and peel stationary state, or O(n = 1) ground state, with two open boundaries is
presented in section 5.4.

There is another, independent reason for computing the normalization, which is in the
context of the Razumov–Stroganov conjecture [1, 2, 12]. This conjecture states that there
is an intriguing relation between the O(n = 1) ground state |Ψ〉L and the combinatorics
of a fully packed loop (FPL) model on finite geometries, as well as other combinatorial
objects such as alternating sign matrices and symmetric plane partitions [37]. In particular
it states that the ground state normalization is equal to the statistical mechanical partition
function of an FPL model on a certain finite patch of the square lattice. Such a link has
been made for the ground state of the model with identified open boundaries (see [38]),
but for the model considered here, which genuinely has two open boundaries, it is not
known which FPL geometry gives rise to a partition function equal to the normalization of
|Ψ〉L as computed in (5.37). Understanding the underlying combinatorics for the general
case of two boundaries will therefore lead to a deepening of our understanding of the
RS conjecture, as well as to possible generalizations of symmetric plane partitions and
alternating sign matrices.

We hope and expect that our results will lead to explicit expressions for finite size
correlation functions of the open O(n = 1) loop model, as well as for those of the closely
related XXZ quantum spin chain with anisotropy Δ = −1/2 and non-diagonal open
boundaries at both ends. Other incarnations of the model considered here to which
our results may be applied include the conformally invariant stochastic raise and peel
model [5, 26], and supersymmetric lattice models with boundaries [7, 8].

One way forward would be to express certain linear combinations of the components
of the ground state eigenvector in terms of multiple contour integrals such as was done
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for reflecting boundary conditions [18, 19]. However, we anticipate some fundamental
difficulties with this approach for the case of open boundaries, related also to the lack
of convenient factorized expressions which do exist for reflecting and mixed boundary
conditions [20]. We further hope to make a connection between our solutions and
Macdonald–Koornwinder polynomials of type (C∨

n , Cn) for specialized parameters [39],
as well as with those in the form of Jackson integrals for qKZ equations on tensor product
spaces; see [40, 41] for the case of type A.
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Appendix A. Proof of the recursion (3.21)

In the following we will use the shorthand notation

a(z) =
[q/z]

[qz]
, b(z) = − [z]

[qz]
.

We first define |α′〉L = ϕi|α〉L−2 to be the link pattern of length L with a small link
connecting sites i and i + 1 inserted into the link pattern |α〉L−2. Restricting our focus to
the action of the transfer matrix on the sites i and i + 1, we find

TL(w; zi+1 = qzi)|α′〉L = . (A.1)

As each R-operator consists of two terms, the action of TL on sites i and i + 1 produces
sixteen terms,

a(ziw)a(qziw)a(w/zi)a(w/qzi)

+ a(ziw)a(qziw)a(w/zi)b(w/qzi) + · · · . (A.2)
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Some of these pictures are equivalent with respect to their external connectivities. In total
there are five different kinds of connectivities. For instance, one of the connectivities has

a(ziw)b(qziw)a(w/zi)b(w/qzi)

+ a(ziw)b(qziw)b(w/zi)b(w/qzi)

+ a(ziw)b(qziw)a(w/zi)a(w/qzi) . (A.3)

The closed loop in the first diagram is erased at the expense of a factor −(q + q−1),
after which the coefficients of the three diagrams sum to 0. Using the fact that
a(qu)a(u) + b(qu)b(u) − (q + q−1)a(qu)b(u) = 0, it is easy to show that this happens
for three of the remaining four kinds of connectivities as well, and we are left with

TL(w; zi+1 = qzi)|α′〉L

= a(ziw)b(qziw)b(w/zi)a(w/qzi)

= a(ziw)b(qziw)b(w/zi)a(w/qzi)ϕi

=
[q/ziw][q2zi/w]

[q2ziw][qw/zi]
ϕi TL−2(w; ẑi, ẑi+1)|α〉L−2. (A.4)

Appendix B. Example: L = 3

For this example we will take q = e2πi/3 and s4 = 1, but we will leave b generic. For
N = 3, we use the notation

ψ1 = ψ((( ψ5 = ψ)(( ψ2 = ψ(() ψ6 = ψ)()

ψ3 = ψ()( ψ7 = ψ))( ψ4 = ψ()) ψ8 = ψ))),

and we recall the definition (4.14):

si = q + q−1 − ai = −1 − ai. (B.1)

Considering in turn each i and α, the qKZ equation∑
α

ψα (ei|α〉) = −
∑

α

(aiψα) |α〉 (B.2)
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implies the following 32 system equations:

a0ψα = 0
s0ψα+4 = ψα

}
α = 1, . . . , 4 (B.3)

a1ψα = 0 α = 1, 2, 5, . . . , 8

s1ψ3 = ψ1 + ψ2 + bψ5 + ψ7 s1ψ4 = ψ6 + ψ8
(B.4)

a2ψα = 0 α = 1, 3, 4, 5, 7, 8

s2ψ6 = ψ4 + ψ5 + ψ7 + ψ8 s2ψ2 = ψ1 + ψ3
(B.5)

a3ψ2α = 0 α = 1, . . . , 4

s3ψ2α−1 = ψ2α α = 1, 3

s3ψ2α−1 = bψ2α α = 2, 4.

(B.6)

The relations where the action of the projector ai gives zero force certain symmetry
restrictions on the components. For instance,

ψ1 = k(z1, ζ1)k(z2, z1)k(z2, ζ1)k(z3, z2)k(z3, z1)k(z3, ζ1) f1(z1, z2, z3),

ψ8 = k(1/sz1, 1/sz2)k(1/sz2, 1/sz3)k(1/sz1, 1/sz3)k(1/sz3, 1/sζ2)

× k(1/sz2, 1/sζ2)k(1/sz1, 1/sζ2) f8(sz1, sz2, sz3),

(B.7)

where fα(z1, z2, z3) is a symmetric function invariant under zi → 1/zi.
Using the system equations we may obtain the components ψα in terms of ψ1 and ψ8.

Assuming we know ψ1, we find ψ2 = s3ψ1, then ψ3 = s2ψ2 − ψ1, and ψ4 = b−1s3ψ3. Then
we can find ψ8 from

ψ8 = s2ψ6 − ψ4 − ψ5 − ψ7, (B.8)

by using ψ6 = s1ψ4 − ψ8 and applying s3 on both sides of (B.8) to get

−ψ8 = s3s2(s1ψ4 − ψ8) + ψ4 − ψ6 − bψ8, (B.9)

which implies

(b − 1)ψ8 = (s3s2s1 − s1 + 1)ψ4. (B.10)

The expressions for ψ2, ψ3, ψ4 as well as ψ8 can be neatly rewritten in a factorized form
as in [20]. However, if b = 1, the component ψ8 cannot be determined this way.

In a similar way, given ψ8 we can find ψ4, then ψ6, and ψ2. Since we can express ψ4

and ψ2 in two different ways, these have to satisfy certain consistency conditions. Now
we can find the remaining two components:

(b − 1)ψ5 = s1ψ3 − ψ1 − ψ2 − s2ψ6 + ψ4 + ψ8 ψ7 = s1ψ3 − ψ1 − ψ2 − bψ5. (B.11)

Again, if b = 1 these two components cannot be found separately in this way. However,
their sum can be determined. Assuming that we find an expression for one of these
components (say, by solving s0ψ5 = ψ1 for ψ5) which satisfies the appropriate degree
and the symmetries imposed by (B.4) and (B.5), the entire system can be shown to be
consistent.
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Appendix C. Symmetry of the proportionality factor

Denoting the proportionality factor of (5.6) as pi(zi; z1, . . . , ẑi, ẑi+1, . . . , zL), we want to
show that pi takes the same form for each i. To do this we consider the normalization

ZL = 〈Ψ|Ψ〉L, (C.1)

which can also be written as the sum over the components of |Ψ〉, as in (5.34). Acting
with 〈Ψ| on both sides of the qKZ equation (4.3), and using that πi commutes with 〈Ψ|,
we have

πiZL = 〈Ψ|Ři(zi/zi+1)|Ψ〉L
=

∑
α

ψL,α〈Ψ|Ři(zi/zi+1)|α〉

=
∑

α

ψL,α

(
[qzi+1/zi]

[qzi/zi+1]
〈Ψ|α〉 − [zi/zi+1]

[qzi/zi+1]
〈Ψ|ei|α〉

)
. (C.2)

Since ei|α〉 = |α′〉 for some link pattern α′, and 〈Ψ|α〉 = 1 for all α, this becomes

πiZL =
∑

α

ψL,α

(
[qzi+1/zi]

[qzi/zi+1]
− [zi/zi+1]

[qzi/zi+1]

)

=
∑

α

ψL,α = ZL. (C.3)

Similar arguments can be given to show that π0ZL = ZL and πLZL = ZL. We therefore
know that ZL remains unchanged under any permutation of the variables zi. Recalling
that∑

α

ψL,ϕiα(zi+1 = qzi)ϕi|α〉 = pi(zi; . . . , ẑi, ẑi+1, . . .)
∑

α

ψL−2,α(ẑi, ẑi+1)ϕi|α〉, (C.4)

we have

ZL(zi+1 = qzi) = pi(zi; . . . , ẑi, ẑi+1, . . .)ZL−2(ẑi, ẑi+1). (C.5)

Since taking zi → zj would give the same result, we know that pi = pj for all i and j. We
hence drop the index i from pi.

Completely analogously we can derive boundary recursions for the normalisation,
which result in

ZL(z1 = qζ1, . . . , zL; ζ1, ζ2) = r0(z2, . . . , zL; ζ1)ZL−1(z2, . . . , zL; qζ1, ζ2),

ZL(z1, . . . , zL = ζ2/q; ζ1, ζ2) = rL(z1, . . . , zL−1; ζ2)ZL−1(z1, . . . , zL−1; ζ1, ζ2/q).
(C.6)
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