An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan

To cite this article: Tahir Azeem et al 2017 J. Geophys. Eng. 14 212

View the article online for updates and enhancements.

Related content
- Anisotropy parameters estimate and rock physics analysis for the Barnett Shale
 Zhiqi Guo, Xiang-Yang Li and Cai Liu
- Application of different classification methods for litho-fluid facies prediction: a case study from the offshore Nile Delta
 Mattia Aleardi and Fabio Giabani
- Estimation of anisotropy parameters for shales based on an improved rock physics model, part 2: case study
 Feng Zhang

Recent citations
- Effect of pore structure on the dispersion and attenuation of fluid-saturated tight sandstone
 Changsheng Duan et al
An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan

Tahir Azeem1,2, Wang Yan Chun2, MonaLisa1, Perveiz Khalid3, Liu Xue Qing2, Muhammad Irfan Ehsan1, Muhammad Jawad Munawar4 and Xie Wei2

1 Department of Earth Sciences, Quaid-I-Azam University, Islamabad, Pakistan
2 School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
3 Institute of Geology, University of the Punjab, 54590 Lahore, Pakistan
4 School of Geosciences, China University of Petroleum, Qingdao, People’s Republic of China

E-mail: tahir2rd@yahoo.com

Received 15 October 2015, revised 24 November 2016
Accepted for publication 30 November 2016
Published 20 January 2017

Abstract
The sand intervals of the Lower Goru Formation of the Cretaceous age, widely distributed in the Middle and Lower Indus Basin of Pakistan, are proven reservoirs. However, in the Sawan gas field of the Middle Indus Basin, these sandstone intervals are very deep and extremely heterogeneous in character, which makes it difficult to discriminate lithologies and fluid saturation. Based on petrophysical analysis and rock physics modeling, an integrated approach is adopted to discriminate between lithologies and fluid saturation in the above-mentioned sand intervals. The seismic velocities are modeled using the Xu–White clay–sand mixing rock physics model. The calibrated rock physics model shows good consistency between measured and modeled velocities. The correlation between measured and modeled P and S wave velocities is 92.76\% and 84.99\%, respectively. This calibrated model has been successfully used to estimate other elastic parameters, even in those wells where both shear and sonic logs were missing. These estimated elastic parameters were cross-plotted to discriminate between the lithology and fluid content in the target zone. Cross plots clearly separate the shale, shaly sand, and gas-bearing sand clusters, which was not possible through conventional petrophysical analysis. These data clusters have been exported to the corresponding well for the purpose of interpolation between wells and to analyze the lateral and vertical variations in lithology and fluid content in the reservoir zone.

Keywords: petrophysics, rock physics modeling, elastic parameters, reservoir characterization, cross well correlation, Sawan gas field

(Some figures may appear in colour only in the online journal)

1. Introduction
Petrophysical analysis plays an important role in reservoir characterization, especially in discriminating between the hydrocarbon and non-hydrocarbon bearing zones (Yuedong and Hongwei 2007). In the literature, different techniques have been proposed for fluid and lithology discrimination (Castagna and Swan 1997, Chi and Han 2009, He et al 2011, Hu et al 2011, Ahmed et al 2016). Generally, petrophysical analysis is performed to transform the wireline log data into
reservoir properties such as volume of shale, porosity, permeability, and water and hydrocarbon saturation. Proper analysis of these reservoir properties can significantly enhance the ability to discriminate between the hydrocarbon and non-hydrocarbon bearing zones (Ajisafe and Ako 2013). However, petrophysical results can be affected by bad borehole conditions, missing logs, temperature, pressure, and salinity. In addition, based on single-well data, petrophysical models are generally established for the particular interval of interest. Therefore, petrophysical models are often consistent over the particular interval of the well and sometimes fail to provide good results between the wells, even when the wells are very closely spaced (Bisht et al. 2013). The integrated workflows of petrophysics and rock physics are used to find a consistent rock physics model for the entire area of interest. Once a consistent rock physics model has been established, it can be effectively used to synthesize the elastic logs, identify the inconsistencies in the well logs and quick well data analysis, and improve seismic to well tie, which improves the reservoir characterization and minimizes the risk of uncertainty (Bisht et al. 2013, Sams 2014). These calibrated models also have the ability to accurately predict the variations in lithology and fluid saturation (Odegaard and Avseth 2004, Mavko et al. 2009, Grana et al. 2012). The most important aspect of these integrated models is to use the accurate and consistent mineral and fluid properties, which leads to an accurate calibration of these rock physics models (Mavko et al. 2009). Accurate and consistent rock physics models not only efficiently differentiate between the hydrocarbon- and non-hydrocarbon-bearing zones but also indicate the problems present in the well log data such as borehole washouts, data gaps, mud filtrate, and insufficient log suites (Avseth et al. 2001).

Integrated rock physics models provide more accurate and reliable links between petrophysics and seismic and reservoir properties (Avseth 2000, Xu and Payne 2009, He et al. 2011, Khalid et al. 2014b). A significant number of rock physics models have been proposed by various workers (Mavko et al. 2009). Avseth et al. (2005) has classified these models into different categories such as inclusion models (Kuster and Toksoz 1974, Cheng and Toksoz 1979, Berryman 1980, Liu and Sun 2015), contact models (Mindlin 1949, Walton 1987, Dvorkin et al. 1994, Dvorkin and Nur 1996), transformations (Gassmann 1951, Berryman and Milton 1991), bounds (Voigt 1910, Reuss 1929, Hill 1952, Hashin and Shtrikman 1963), and computational models. Recently, Khalid et al. (2014) proposed a modified rock physics model based on thermodynamic properties of reservoir fluids at in situ conditions.

Inclusion models ponder the rock as an elastic block of minerals containing the pore spaces. Therefore, results of these models show better consistency with the measured well log data. Xu and White (1995) proposed a clay–sand mixture model which is based on the Kuster and Toksoz (1974) inclusion model, supplemented by the Gassmann (1951) and effective medium theories (Zhang 2008). This model can account for the effect of clay content on the seismic velocities, and is very useful for estimating shear wave velocity. A combination of shear and acoustic velocities has been extensively used as a seismic attribute in reservoir characterization (Avseth et al. 2005, Chi and Han 2009). Seismic velocities of rock provide information about minerals, pore fluids, and their distribution within the rock skeleton (Mavko et al. 1998, Avseth 2000, Feng-Ying et al. 2014). Like other parameters such as porosity, permeability, fluid saturation, fluid composition, formation temperature, pressure, and mineralogy, clay content also influences the seismic properties of a porous rock (Ahmed et al. 2016, Wang et al. 2015). The presence of clay decreases the seismic velocities (Minear 1982, Han et al. 1986, Marion et al. 1992, Ahmed et al. 2016) and aspect ratio values (Sams and Andrea 2001, Sams and Focht 2013). Thus, it is important to account for the volume and distribution of clay when trying to estimate the elastic velocities.

The Lower Goru Formation of the Cretaceous age is a proven reservoir in the middle and lower Indus Basin of Pakistan. In the Sawan gas field of the middle Indus Basin, the sand intervals of this formation are composed of quartz, feldspar, volcanic rock fragments, chlorite, clay, glauconite, and minor amounts of calcite. The core and wireline log data show that the mineral composition of these sands is very much heterogeneous from one well to another, which makes it difficult to use a single petrophysical model for reservoir characterization. The aim of this study is to use an integrated approach based on petrophysical analysis and a rock physics model to solve the rock heterogeneity effects (Fitch et al. 2015, Ahmed et al. 2016, Khalid et al. 2016) on seismic properties such as velocities and elastic moduli of the sand intervals. The rock physics model proposed by Xu and White (1995) is calibrated using wireline logs for the study area.

2. Geological setting

The study area is located in the north–south trending prolific middle Indus Basin, which is bounded by the Indian shield in the east; Kirthar Ranges, Sulaiman Fold, and Thrust Belt in the west; Sargodha High in the north; and Jacobabad–Khairpur High in the south (Kadri 1995). The location of the study area and Jacobabad High is shown in figure 1. In the northwest direction of the study area, the famous Khairpur High is located that exhibits very high geothermal gradient up to 4.8 °C/100 m. Khairpur High played an important role in the formation of structural traps in the Kadanwari, Sawan, and surrounding areas (Ahmad and Chaudhry 2002, Berger et al. 2009). Since the Indus Basin is rich in hydrocarbon and contains several complete petroleum systems, a large number of wells have been drilled in the middle and lower Indus Basin. The organic rich black shales of the Sembar Formation, early Cretaceous in age, are the proven primary source rock in the basin. In the middle and lower Indus Basin, the Sembar Formation, with variable thickness (0–260 m), has been deposited in a marine environment (Iqbal and Shah 1980). Sembar Formation mainly consists of type-III kerogen organic matter, which is mainly favorable for gas generation. This formation is deeper and thermally mature...
towards the western part, while it is shallower and less mature towards the eastern part of the Indus Basin (Wandrey et al. 2004). Sembar Formation is overlain by the Goru Formation, which is divided into two parts. The upper part is mainly composed of shale and is termed the Upper Goru whereas the lower part is termed the Lower Goru (Kadri 1995).

The medium to coarse grained sandstone of the Lower Goru Formation is the main reservoir rock in the middle Indus Basin, which is deposited in a shallow marine environment. This reservoir formation is composed of sandstone, siltstone, inter-bedded shale, and thin bedded limestone (Kazmi and Jan 1997, Berger et al. 2009). The lower sandy part of this formation has been further divided (from bottom to top) into four stratigraphic intervals, i.e., A, B, C, and D as shown in figure 2 (Krois et al. 1998). The B, C, and D intervals act as potential gas reservoirs in the study area (Ahmad et al. 2004, Munir et al. 2011). Petrographic analysis reveals that the A and B intervals are quartz arenite, whereas the C interval is sublithic to lithic arenite, which includes a significant amount (almost 13%) of partially altered basic volcanic rock fragments (McPhee and Enzendorfer 2004, Berger et al. 2009). The upper part of the Lower Goru Formation acts as a regional seal which is mainly composed of transgressive, siderite cemented shales and siltstones. Chlorite acts as cement and comprises almost 80% of the clay fraction; this significant amount of the chlorite decreases the porosity of the rocks (McPhee and Enzendorfer 2004).

3. Methodology

The sand intervals of the Lower Goru Formation in the Sawan gas field are very heterogeneous, are considered as hot sands, and reflect a high value of gamma ray and sonic logs, which makes it complicated to accurately estimate the reservoir zones through conventional petrophysical analysis. The reservoir exhibits high temperature (175 °C) and pressure (37.14 MPa) due to high geothermal gradient and burial depth. Wireline logs (e.g., DT, GR, SP, RHOB, NPHI, LLD, LLS, and LLS) from four wells (Sawan-01, 02, 03 and 07) were used for this study. Well Sawan-07 has a full suite of logs and the borehole condition also seems to be good in the target zone. In other wells, shear log is missing and borehole conditions in the target zone are also not as good as in the Sawan-07 well. Log data from the Sawan-07 well along with mineral and fluid properties have been used to calibrate the Xu–White (1995) rock physics model. The workflow of the methodology is shown in figure 3. In the first step, the petrophysical parameters of the reservoir intervals are estimated using PowerLog software. Volume of shale, effective porosity, and water saturation parameters have been estimated by using the available well log data set through petrophysical
analysis. In a second step, these estimated petrophysical parameters along with fluid properties, solid mineral matrix values, and pore aspect ratios were utilized to calibrate the proposed model. Then, modeled and measured velocities were cross-plotted to check the degree of matching. In next step, this calibrated model was used to estimate elastic parameters in the remaining available wells. These estimated elastic parameters have been cross-plotted to mark the litho-fluid zones and cutoff values of each elastic and petrophysical parameter. Finally, correlation between wells was performed to check the lateral and vertical variations in the target zone.

4. Results and discussion

The methodology proposed in the previous section is applied on the wireline logs of four wells: Sawan-01, -02, -03, and -07. In this section, the petrophysical study of reservoir intervals is presented firstly. Then the results of rock physics modeling are thoroughly discussed. The calibrated rock physics model and petrophysical analysis are used for reservoir characterization in the reservoir intervals encountered in the four wells of the study area.

4.1. Petrophysical analysis

Petrophysical analysis fills a gap between core and seismic data and plays an important role in reservoir characterization. The estimation of various petrophysical parameters from wireline logs with accuracy can significantly enhance the ability to interpret the lithology and reservoir characterization (Fitch et al 2015). The quality of log data has a strong influence on the accuracy of rock physics models (Avseth et al 2001). Conventional well log curves such as density, gamma ray, caliper, resistivity, neutron porosity, and sonic are available in the Sawan-07 well. Considering the availability of well log curves and borehole conditions, the Sawan-07 well was chosen as a reference well for this study. Petrophysical parameters such as volume of shale, effective porosity, and water saturation were estimated as follows.

4.1.1. Volume of shale

Proper estimation of shale content provides the basis for accurately deriving the other petrophysical parameters such as porosity and water saturation in the shaly formation. Different shale indicator methods are used in practice, which are based on the estimation of gamma ray index (equation (1)) from the gamma ray log:

\[I_{GR} = \frac{GR_{\text{log}} - GR_{\text{min}}}{GR_{\text{max}} - GR_{\text{min}}} . \]

(1)

where \(I_{GR} \) is gamma ray index. \(GR_{\text{log}} \) represents gamma ray log value at a particular depth, while \(GR_{\text{min}} \) and \(GR_{\text{max}} \) are minimum and maximum values of gamma ray log in a given depth interval. However, this linear method overestimates the volume of shale in real formations (Poupon and Gaymard 1970), whereas non-linear methods give more accurate results (Larionov 1969, Stieber 1970, Clavier et al 1971). Therefore, we have used these non-linear methods to estimate the volume of shale (equations (2)–(4)). The value of \(I_{GR} \) has been substituted in equations (2)–(4) to estimate the volume of shale:

\[V_{sh,(Larionov,old)} = 0.33(2^{2 \times I_{GR}} - 1) \quad (2) \]

\[V_{sh,(Stieber)} = \frac{I_{GR}}{3 - 2 \times I_{GR}} \quad (3) \]

\[V_{sh,(Clavier)} = 1.7 \sqrt{3.38 - (I_{GR} + 0.7)^2} \quad (4) \]

Here, \(V_{sh,(Larionov,old)} \), \(V_{sh,(Stieber)} \), and \(V_{sh,(Clavier)} \) represent volume of shale measured using Larionov old rock, Stieber, and Clavier methods, respectively. The estimated shale volumes are shown in figure 4. The purpose of using different methods was to choose the method which gives lowest volume of shale in order to minimize the risk of errors due to the presence of hot sands (sands including some content of radioactive material, usually potassium or thorium, and
showing high values of gamma ray log) or interbedded shales (Hussein and Ahmed 2012). In practice, the neutron-density method is used to minimize the effect of radioactive minerals. However, in some cases, the neutron-density method does not provide accurate results, especially when hot sand is saturated with gas or light hydrocarbon fluids (Hamada 1996, Adeoti et al. 2009). In the case of dirty sand, modern spectral gamma ray is a more appropriate technique for computing volume of shale. Since spectral gamma ray was not available, non-linear methods proposed by different authors (Larionov 1969, Stieber 1970, Clavier et al. 1971) were used to calculate the volume of shale of the target interval. Figure 4 clearly indicates that the volume of shale calculated using the Stieber (1970) method is lower compared to other methods. Moreover, the Stieber method is also suitable for gas reservoirs (Adeoti et al. 2009). Therefore, volume of shale calculated by using the Stieber method was utilized for further analysis.

4.1.2. Porosity

Gas saturation near the wellbore affects the porosity logs. In the gas-bearing zone the density porosity log shows high values whereas the neutron porosity log shows low values, so a combination of neutron and density porosities is used to remove this effect. However, in shaly formation, it is necessary to remove the effect of shale as the presence of shale affects the porosity. Equations (5) and (6) were used to remove the effect of shale on neutron and density porosities (Schlumberger 1974, Doveton 1999):

\[
\Phi_{\text{NC}} = \Phi_N - V_{\text{sh}} \Phi_{\text{Nsh}}, \tag{5}
\]

\[
\Phi_{\text{DC}} = \Phi_D - V_{\text{sh}} \Phi_{\text{Dsh}}, \tag{6}
\]

Here, \(\Phi_{\text{NC}}\) and \(\Phi_{\text{DC}}\) are the corrected neutron and density porosities; \(\Phi_N\) and \(\Phi_D\) represent neutron and density porosity log, respectively; while \(\Phi_{\text{Nsh}}\) and \(\Phi_{\text{Dsh}}\) represent neutron and density porosities in the shaly area, respectively. Finally, we combined these corrected porosities in order to calculate the effective porosity \(\Phi_e\):

\[
\Phi_e = \sqrt{\frac{(\Phi_{\text{NC}})^2 + (\Phi_{\text{DC}})^2}{2}}. \tag{7}
\]

4.1.3. Water saturation

As the presence of shale also affects the water saturation, we compensate for the effect of shale by applying the Indonesian model (Poupon and Levaux 1971). This model improves the results reliability in shaly formations, as it is based on field observations (Widarsono 2012, Alao et al. 2013). The mathematical form of this model is

\[
S_w = \frac{\left[\frac{\phi_{\text{sh}}}{V_{R_{\text{sh}}}} \right]^{1/2} + \left(\frac{\phi_{c}}{R_i} \right)^2}{R_i}^{1/2}, \tag{8}
\]

where \(S_w\) represents water saturation; \(R_{\text{sh}}, R_w,\) and \(R_i\) are the shale, water, and true resistivities, respectively; \(m\) is cementation factor and its value is 2.15; \(V_{R_{\text{sh}}}\) is volume of shale; and \(\phi_c\) is effective porosity. These estimated petrophysical parameters (volume of shale, porosity, and water saturation) are shown in figure 5.

4.2. Rock physics modeling/calibration of rock physics model

Rock physics modeling is a process of finding an appropriate model that shows good consistency with the available well log data (Walls et al. 2004). The proposed Xu–White (1995) clay–sand mixing model is based on the Kuster and Toksoz (1974) model supplemented by the Gassmann (1951) and pore aspect ratio theories. This model has the ability to separate the sand- and clay-related pores by assigning them different aspect ratios. If \(\alpha_S\) and \(\alpha_c\) are the aspect ratios of sand- and clay-related pores, \(\Phi_S\) and \(\Phi_c\) are porosities of sand grains and clay content, respectively. Then these sand and clay grains can be mixed through clay content in order to calculate the elastic properties of dry rock porous media, as shown in equations (9)–(11):

\[
\frac{K_d - K_m}{3K_d + 4\mu_m} = \frac{1}{3} \left[\frac{K_i - K_m}{3K_m + 4\mu_m}\right] \sum_{l=1}^{N} \Phi_l T_{ijl}(\alpha_l), \tag{9}
\]

\[
\frac{\mu_d - \mu_m}{6\mu_d(K_m + 2\mu_m) + \mu_m(9K_m + 8\mu_m)} = \frac{\varphi_l \mu_l - \mu_m}{25\mu_m(3K_m + 4\mu_m)} \sum_{l=1}^{N} \Phi_l F(\alpha_l), \tag{10}
\]

\[
F(\alpha_l) = T_{ijl}(\alpha_l) - \frac{T_{ijl}(\alpha_l)}{3}, \tag{11}
\]

where \(K_d, K_m,\) and \(K_i\) represent bulk modulus of dry rock frame, solid matrix, and pore fluid respectively, and \(\mu_{\text{sh}},\) \(\mu_m,\) and \(\mu_l\) represent the corresponding shear modulus. \(\frac{\mu_d - \mu_m}{6\mu_d(K_m + 2\mu_m) + \mu_m(9K_m + 8\mu_m)}\) is the porosity, while \(T_{ijl}(\alpha_l)\) and \(T_{ijl}(\alpha_l)\) are the scalar functions of the aspect ratio, which have been calculated using the Eshelby (1957) approach.

The elastic properties of clay are not well established in this area and vary dramatically for different clay types. At the initial stage of this model, we used the typical solid mineral values for clay and sand as proposed by Han et al. (1986) and...
Carmichael (1989), respectively. The Wyllie et al (1956) time average equation was used as a mixing algorithm to get the solid matrix properties. Batzle and Wang (1992) proposed relationships were used to compute in situ fluid temperature and pressure. These fluid properties have been mixed using the Brie et al (1995) mixing algorithm as shown in equation (12):

\[
K_{\text{Brie}} = (K_b - K_g)(S_w)^\gamma + K_g. \tag{12}
\]

where \(S_w\) represents water saturation; \(K_b\) and \(K_g\) are the bulk modulus of brine and gas, respectively; \(K_{\text{Brie}}\) represents the

Table 1. Parameters used for rock physics modeling.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbols</th>
<th>Numerical Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk modulus of sand</td>
<td>(K_s)</td>
<td>(3.7 \times 10^{10})</td>
<td>Pa</td>
</tr>
<tr>
<td>Shear modulus of sand</td>
<td>(\mu_s)</td>
<td>(4.4 \times 10^{10})</td>
<td>Pa</td>
</tr>
<tr>
<td>Density of sand</td>
<td>(\rho_s)</td>
<td>2650</td>
<td>Kg m(^{-3})</td>
</tr>
<tr>
<td>Bulk modulus of clay</td>
<td>(K_c)</td>
<td>(2.14 \times 10^{10})</td>
<td>Pa</td>
</tr>
<tr>
<td>Shear modulus of clay</td>
<td>(\mu_c)</td>
<td>(1.19 \times 10^{10})</td>
<td>Pa</td>
</tr>
<tr>
<td>Density of clay</td>
<td>(\rho_c)</td>
<td>2590</td>
<td>Kg m(^{-3})</td>
</tr>
<tr>
<td>Reservoir temperature</td>
<td>(T)</td>
<td>448</td>
<td>K</td>
</tr>
<tr>
<td>Reservoir pressure</td>
<td>(P)</td>
<td>37.14</td>
<td>MPa</td>
</tr>
<tr>
<td>Salinity of brine</td>
<td>(S_b)</td>
<td>20,000</td>
<td>ppm</td>
</tr>
<tr>
<td>Specific gravity of gas</td>
<td>(G_{\text{gas}})</td>
<td>0.642</td>
<td>SG</td>
</tr>
<tr>
<td>Bulk modulus of gas</td>
<td>(K_g)</td>
<td>(7.97 \times 10^{7})</td>
<td>Pa</td>
</tr>
<tr>
<td>Density of gas</td>
<td>(\rho_g)</td>
<td>171.23</td>
<td>Kg m(^{-3})</td>
</tr>
<tr>
<td>Bulk modulus of brine</td>
<td>(K_b)</td>
<td>(3.17 \times 10^{9})</td>
<td>Pa</td>
</tr>
<tr>
<td>Density of brine</td>
<td>(\rho_b)</td>
<td>928.18</td>
<td>Kg m(^{-3})</td>
</tr>
<tr>
<td>Aspect ratio of sand</td>
<td>(\alpha_s)</td>
<td>0.12</td>
<td>Unitless</td>
</tr>
<tr>
<td>Aspect ratio of shale</td>
<td>(\alpha_c)</td>
<td>0.035</td>
<td>Unitless</td>
</tr>
</tbody>
</table>

Figure 5. Display of log curves and estimated petrophysical parameters in the Lower Goru Formation encountered in the Sawan-07 well.

Figure 6. Analysis of gas saturation versus bulk modulus of fluid estimated using Brie’s fluid-mixing algorithm.
bulk modulus of fluid calculated using Brie’s approach; and e is the exponent of fluid mixing whose value varies from 1 to 40. When $e = 1$, the mixing is Voigt’s average and when $e = 40$, the mixing results are very near to wood’s average (Brie et al. 1995). Figure 6 clearly shows that the value of fluid modulus (K_{Brie}) increases with decrease in gas saturation (S_g) and vice versa. This behavior indicates that the stiffness of effective modulus of gas-bearing sediments decreases with the increase in gas saturation.

The elastic moduli of saturated rocks were calculated using the Gassmann (1951) fluid substitution model, which gives the relationship between bulk modulus of saturated rock, dry rock modulus, pore fluid, and solid matrix (equations (13) and (14)):

$$ K_{sat} - K_d = \frac{\left(1 - K_d\right)^2}{\frac{\Phi}{K_t} + \frac{(1 - \Phi) - K_d}{K_m} - \frac{K_d}{K_m}} $$

(13)

$$ \mu_{sat} = \mu_d. $$

(14)

Density of saturated rock was calculated using equation (15):

$$ \rho_{sat} = \Phi \rho_i + (1 - \Phi) \rho_m. $$

(15)

Here, K_{sat} and μ_{sat} are the bulk and shear modulus of the saturated rocks, respectively, whereas ρ_{sat}, ρ_i, and ρ_m represent the densities of the saturated rock, pore fluid, and solid matrix, respectively. Finally, we substitute K_{sat}, μ_{sat}, and ρ_{sat} values in equations (16) and (17) to obtain the elastic velocities

$$ V_P = \sqrt{\frac{K_{sat} + 4/3\mu_{sat}}{\rho_{sat}}} $$

(16)

$$ V_S = \sqrt{\frac{\mu_{sat}}{\rho_{sat}}} $$

(17)
After building a rock physics model, the most important task is to adjust the input parameters for the specific reservoir. Most of the default parameters failed to properly match the modeled logs with the measured logs, as elastic properties of clay have not been clearly defined. Therefore, it is necessary to adjust the elastic parameters (density, P and S wave velocities) of clay to achieve an optimal fit with the measured logs within the target interval. For this purpose, we constructed a series of models to adjust the elastic values of clay and aspect ratios. The typical values for sand and clay related pores are 0.12–0.15 and 0.02–0.0, respectively (Xu and White 1995) which were tested in the calibration process. We observed that if low values of elastic parameters were chosen, then higher values of aspect ratios were required to achieve a good match between measured and modeled logs. Moreover, the value of aspect ratio decreases with the increase in clay content and decrease in porosity. After trial and error, the final values of aspect ratios and elastic parameters were selected (table 1). At these selected values, the modeled velocities show very good consistency with the measured velocities (figure 7).

4.3. Reservoir characterization

Rock physics models are utilized as an important tool in reservoir characterization. They create the bridge between elastic properties (P-wave velocity, S-wave velocity, density, impedance, and V_p/V_S ratio) and reservoir properties (porosity, permeability, and saturation) (Avseth 2000, Chi and Han 2009). The calibrated rock physics model has been utilized to estimate the elastic properties of reservoir interval encountered in each well. The derived petrophysical parameters from petrophysical analysis are cross-plotted against the elastic properties computed from the rock physics model in the reservoir intervals. Cross-plotting of different parameters is a powerful tool for visual analysis and helpful in marking the data clusters in the target zones (White 1991). Based on their response, these data clusters can be classified into different lithologies/facies (Mavko et al 1998). Elastic

Figure 9. Cross plots of acoustic impedance versus V_p/V_S ratio developed using modeled elastic parameters of (a) Sawan-01, (b) Sawan-02, (c) Sawan-03, and (d) Sawan-07 wells at various gamma ray values.
attributes (\(V_p/V_s\) ratio) has the ability to discriminate between different type of lithology and payable sand in the target zone (Benzing et al. 1983, Miller and Stewart 1990, Hughes et al. 2008). However, a combination of P-impedance and \(V_p/V_s\) ratio can be utilized to efficiently predict the lithology and fluid saturation (Odegaard and Avseth 2004, Avseth and Bachrach 2005, Chi and Han 2009).

To verify the effectiveness of the model, calculated and measured elastic impedance is cross-plotted against \(V_p/V_s\) ratio for the entire reservoir interval (figure 8). The data points are color coded using gamma ray log. Figures 8(a) and (b) are totally different from each other. The cross plot between modeled parameters (figure 8(b)) clearly separates the different types of facies whereas cross plot between measured (logs) parameters (figure 8(a)) fails to separate these facies. Since the measured log data is affected by different parameters and environmental conditions, it is difficult to discriminate fluid contents or lithology from log data. However, in modeled data, we have more control over the input parameters, so it is more suitable and effective for differentiating different type of facies as shown in figure 8. The facies against high GR values (shales) are clearly separated from the facies of low GR values (sands). Keeping in mind the effectiveness of the model, cross plots between \(V_p/V_s\) and acoustic impedance (figure 9) have been developed in order to discriminate between the different type of facies in all wells. In each cross plot (figures 9(a)–(d)), different type of data clusters can be clearly identified in the graphs. The data cluster present at the lower portion of the graph with low acoustic impedance, \(V_p/V_s\) ratio, and water saturation shows gas saturation.

Figure 10. Cross plots of acoustic impedance versus \(V_p/V_s\) ratio developed using modeled elastic parameters of (a) Sawan-01, (b) Sawan-02, (c) Sawan-03, and (d) Sawan-07 wells at different water saturation values. Data cluster with low acoustic impedance, \(V_p/V_s\) ratio, and water saturation shows gas saturation.
API. On the other hand, if sand is saturated with gas, then the value of acoustic impedance, V_P/V_S ratio, and water saturation parameters will be on the lower side (figure 10). The presence of gas strongly affects the elastic parameters and causes the acoustic impedance and V_P/V_S ratio values to decrease (Zhao et al 2013). From figures 10(a)–(d), it can be clearly seen that the gas-bearing sediments have V_P/V_S and acoustic impedance values less than or equal to 1.65 and 1.02×10^7, respectively.

Rock physics attributes such as acoustic and shear impedances have been combined to discriminate fluid saturation. Water saturation is used to color code the data points.

![Figure 11](image.png) Cross plots of acoustic impedance versus shear impedance calculated using modeled elastic properties of (a) Sawan-01, (b) Sawan-02, (c) Sawan-03, and (d) Sawan-07 wells. Color coding represents water saturation. Data cluster with low water saturation, acoustic impedance, and shear impedance represents gas-saturated zone.

Table 2. Quantitative values (in average) of elastic and petrophysical parameters for different identified rock types.

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Parameters</th>
<th>Gas-Bearing Sand</th>
<th>Shaly Sand</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma ray (API)</td>
<td>< 80</td>
<td>80–120</td>
<td>>120</td>
<td></td>
</tr>
<tr>
<td>Water saturation (V/V)</td>
<td>< 0.55</td>
<td>0.55–0.9</td>
<td>>0.9</td>
<td></td>
</tr>
<tr>
<td>Porosity (V/V)</td>
<td>> 0.11</td>
<td>0.05–0.11</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>P-Impedance (Kg m$^{-2}$S)</td>
<td>$< 1.02 \times 10^7$</td>
<td>1.02 $\times 10^7$–1.2 $\times 10^7$</td>
<td>>1.2 $\times 10^7$</td>
<td></td>
</tr>
<tr>
<td>S-Impedance (Kg m$^{-2}$S)</td>
<td>6.2×10^6</td>
<td>6.2×10^6–7.2 $\times 10^6$</td>
<td>>7.2 $\times 10^6$</td>
<td></td>
</tr>
<tr>
<td>V_P/V_S ratio</td>
<td>≤ 1.65</td>
<td>1.65–1.72</td>
<td>>1.72</td>
<td></td>
</tr>
</tbody>
</table>
The cross plots of these attributes clearly separate the data points into three types of clusters. The cluster having low water saturation, acoustic impedance, and shear impedance values represents gas-bearing sand. However, the cluster having high water saturation (100% saturation), acoustic impedance, and shear impedance values represents shale bodies with no gas saturation. The separation between these two clusters (sand and shale) represents water saturation (figure 11). The water-bearing sediments exhibit higher values of acoustic impedance and water saturation as compared to gas-bearing sediments. These water-bearing sediments can also be clearly identified on the cross plots having elastic and water saturation values between gas-bearing sand and shale bodies. On the basis of petrophysical and cross-plot analysis, the average quantitative (cutoff) values of elastic and petrophysical properties for different rock types have been defined (table 2). The cross-plotting results show that our calibrated model effectively predicts the lithology and fluid content in the Sawan gas field, Middle Indus Basin, Pakistan.

In order to develop a good understanding of the geometry, depositional setting, and continuity of different stratigraphic units encountered in different wells in the same area, well correlation is performed. Therefore, to analyze the lateral and vertical variations in the marked stratigraphic units encountered in the four wells (Sawan-01, -02, -03, and -07), the logs of P-wave impedance, S-wave impedance, gamma ray, and Vp/Vs ratio are plotted together for all four wells. For this purpose, interpolation between wells was performed. Four wells (Sawan-01, -02, -03, and -07) have been used to analyze the litho-fluid behavior of the reservoir. The upper thick shale of Lower Goru Formation is considered as a datum plane. A SW–NE trending cross section (figure 12) through four wells shows the correlation between calculated lithologies. Figure 12 shows that the upper part of the Lower Goru Formation is composed of thick shale intervals with interbedded thin intervals of shaly sand, and the lower part of the formation is mainly composed of reservoir-quality sand with a shaly sand interval at the bottom. The analysis indicates that this sand interval is a gas-bearing reservoir in the study area. The thickness of shale increases from the SW to NE direction, whereas thickness of reservoir-quality sand decreases in this direction. In this area, Khairpur High plays an important role in controlling the reservoir quality and stratigraphic traps (Ahmad and Chaudhry 2002). The uplifting of Khairpur High positioned the Lower Goru reservoir-quality sand of proximal depositional system in structurally deep areas. While non-reservoir-quality shale and shaly sands are positioned updip to form traps (Berger et al. 2009), Sawan-02 well shows reservoir compartmentalization and has relatively poor reservoir character; this is due to the relatively
proximal location of the Sawan-02 well to Khairpur High compared to other wells.

5. Conclusions

In this study, an integrated petrophysical and rock physics modeling approach is adopted to understand the reservoir characterization of the Lower Goru Formation in the Sawan Gas Field of the Middle Indus Basin, Pakistan. The developed methodology helped us to build an accurate and consistent rock physics model. The calibrated model shows good consistency between measured and modeled velocities. The correlation between measured and modeled P and S wave velocities is 92.76% and 84.99%, respectively (figure 7). The good consistency of the model laid a significant foundation for improved reservoir characterization in the study area. The calibrated model has also proven helpful in accurately estimating the elastic parameters (density, P and S wave velocities) even in those wells (Sawan-02) where both sonic and shear logs were missing in the target zones. Cross plots of these calculated parameters clearly delineate the lithology and fluid content. On the basis of these cross plots, the quantitative values (average cutoff values) of elastic and petrophysical parameters have been defined in order to discriminate between the gas-bearing sand, shale, and shaly sand zones. It is found that the V_p/V_s ratio is more sensitive to gas-bearing sand followed by acoustic impedance. Lateral and vertical variation in the reservoir is analyzed through cross-correlation methodology. The correlation shows that thickness of shale increases whereas quality of sand decreases from the SW to NE direction. The proposed model allows for accurate discrimination between different types of facies and provides quick results. It can also be effectively utilized in seismic inversion to improve seismic reservoir characterization.

Acknowledgments

The authors would like to express their appreciation to the Directorate General of Petroleum Concession (DGPC), Pakistan for the release of data used in this study. We extend our appreciation to the China Scholarship Council for providing us a chance to enhance our research abilities. We are also thankful to Mr. Shahiq-ur-Rehan (meteorologist at Pakistan Meteorological Department, Islamabad, Pakistan) and our labmates working in the Geodetection Lab of China University of Geosciences, Beijing for their valuable suggestions and fruitful discussions.

References

Ahmad N and Chaudhry S 2002 Kadanwari gas field, Pakistan: a disappointment turns into an attractive development opportunity Petrol. Geosci. 8 307–16

Alao P A, Ata A I and Nwoke C E 2013 Subsurface and petrophysical studies of shaly-sand reservoir targets in Apete field, Niger Delta ISRN Geophys. 2013 102450

Avseth P 2000 Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems PhD Thesis Stanford University, CA

Avseth P and Bachrach R 2005 Seismic properties of unconsolidated sands: tangential stiffness, V_p/V_s ratios and diageneis 75th Annual Meeting SEG Expanded Abstracts pp 1473–6

Batzle M L and Wang Z 1992 Seismic properties of fluids Geophysics 57 1396–408

Berryman J G and Milton G W 1991 Exact results for generalized Gassmann’s equations in composite porous media with two constituents Geophysics 56 1950–60

Brie A, Pampuri F, Marsala A F and Meazza O 1995 Shear sonic interpretation in gas bearing sands SPE Annual Technical Conference and Exhibition SE-30595-MS

Cheng C H and Toksöz M N 1979 Inversion of seismic velocities for the pore aspect ratio spectrum of a rock J. Geophys. Res. 84 7533–43

Chi X and Han D 2009 Lithology and fluid differentiation using rock physics templates Lead. Edge 28 60–5

Yuedong Q and Hongwei A 2007 Study of petrophysical parameter sensitivity from well log data *Appl. Geophys.* 4 282–7
Zhao L, Geng J, Han D H, Cheng J and Guo T 2013 Rock physics based probabilistic lithology and fluid prediction in a heterogeneous carbonate reservoir *Annual SEG Meeting Houston* (USA) pp 2387–91 (http://dx.doi.org/10.1190/segam2013-0486.1)
Zhang Z 2008 A rock physics model for hydrates bearing sediments of near surface *SEG Las Vegas Annual Meeting* pp 1799–803