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Introduction

In seismic data processing, the separation of signal and 
noise is a significant issue, because the random and coherent 
noise widely exists in seismic data. To attenuate these two 
kinds of noise, a number of methods have been proposed in 
previousdecades.

For random noise attenuation, several methods exist. Based 
on signal predictability, the prediction filter in the frequency-
space ( −f x) domain was proposed and became a widely used 
technique (Canales 1984). Based on it, Wang (1999) proposed 
a random noise attenuation method, which overcomes the 
transient-error inherent and minimizes prediction residues. 
The polynomial fitting (PF) (e.g. Yu et al 1988) technique is 
another useful tool for random noise suppression. Although 
it can remove random noise effectively by considering the 

continuity of the desired signals, it can also damage them. 
Then, the edge-preserving smoothing (EPS) method (Luo 
et al 2002) was proposed to preserve desired signals as well 
as attenuate random noise. Since then, the EPS method was 
extended to 3D cases (AlBinHassan et al 2006). Lu and Lu 
(2009) proposed the edge-preserving polynomial fitting 
(EPPF) method, which had several merits compared with EPS 
and PF methods.

The attenuation of coherent noise is another main issue 
in seismic signal enhancement. Coherent noise suppression 
methods can be classified into two types: global filtering and 
local filtering. Among global filtering methods, the Radon 
transform filtering is widely used, with which Turner (1990) 
proposed a coherent noise suppression method. However, a 
common drawback of global filters is that it may cause wormy 
appearances in the results. Among local filtering methods, 
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Abstract
Random and coherent noise attenuation is a significant aspect of seismic data processing, 
especially for pre-stack seismic data flattened by normal moveout correction or migration. 
Signal extraction is widely used for pre-stack seismic noise attenuation. Principle component 
analysis (PCA), one of the multi-channel filters, is a common tool to extract seismic signals, 
which can be realized by singular value decomposition (SVD). However, when applying 
the traditional PCA filter to seismic signal extraction, the result is unsatisfactory with some 
artifacts when the seismic data is contaminated by random and coherent noise. In order 
to directly extract the desired signal and fix those artifacts at the same time, we take into 
consideration the amplitude variation with offset (AVO) property and thus propose a robust 
polynomial PCA algorithm. In this algorithm, a polynomial constraint is used to optimize 
the coefficient matrix. In order to simplify this complicated problem, a series of sub-optimal 
problems are designed and solved iteratively. After that, the random and coherent noise can 
be effectively attenuated simultaneously. Applications on synthetic and real data sets note 
that our proposed algorithm can better suppress random and coherent noise and have a better 
performance on protecting the desired signals, compared with the local polynomial fitting, 
conventional PCA and a L1-norm based PCA method.
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many different methods are proposed in recent years. Lu 
(2001) proposed a localized 2D filter in the Fourier projection 
domain (FPF). The methods in the radial trace domain were 
applied to both prestack and poststack seismic data by Brown 
and Claerbout (2000) and Henley (2003). Polynomial fitting, 
as a random noise suppression method, can also be used in 
coherent noise attenuation. Lu et al (2006) proposed a local 
polynomial approximation (LPA) based coherent noise atten-
uation method, which can estimate locally linear coherent 
noise (LLCN) effectively, proving that a LPA filter can gain 
a brilliant performance in signal enhancement. Even though, 
polynomial fitting based filters have a common drawback of 
low robustness to outliers, and they are also sensitive to the 
size of the analysis window.

Principle component analysis (PCA) is another useful tool 
in signal enhancement, especially for the pre-stack gathers 
flattened by normal moveout (NMO) correction or migra-
tion. Ulrych et al (1999) applied a singular value decomposi-
tion (SVD) filter to seismic image enhancement. Although a 
conventional SVD filter based on the L2-norm can separate 
signal and noise subspaces, it shows low robustness to out-
liers. To alleviate this drawback, much work has been done 
(Baccini et al 1996, Aanas et al 2002, Ke and Kanade 2003, 
2005, De La Torre et al 2003). Ding et al (2006) proposed the 
R1-PCA algorithm, which keeps the merits of L2-PCA and at 
the same time reduces the effects of outliers. Besides, it owns 
the advantage of rotational invariance compared to L1-PCA. 
Kwak (2008) proposed the PCA-L1 algorithm, which maxi-
mizes the L1-norm in the feature space instead of maximizing 
variance, in which the proposed L1-norm optimization algo-
rithm is fast, simple and intuitive using a greedy algorithm.

For seismic signal enhancement, many PCA based algo-
rithms can achieve good performance, but also with some 
artifacts. A main cause of these artifacts is the strong coherent 
noise. To overcome this shortcoming, many researchers 
try to estimate and remove the coherent events from the 
original data first when using PCA-based multichannel fil-
ters. For instance, Lu (2006) used a dip scanning method 
to estimate the coherent events and extract them before 
attenuating random noise with a SVD filter. However, the 
performance can deteriorate if there are multiple coherent 
noises with different slopes, and the computational cost will 
increase at the same time. Besides, L1-norm based robust 
PCA methods were introduced, instead of the conventional 
PCA method. This solution can obtain a slight improvement 
to the results according to the signal-to-noise ratio (SNR), 
but the artifacts still exist to some extent. In this paper, we 
focus on the noise attenuation for flattened prestack gathers, 
where the amplitude variation with offset (AVO) property 
exists. We find that the influence of the coherent noise can be 
eliminated if we use the AVO property to constrain the coef-
ficient vectors during the PCA. Thus, we propose a robust 
polynomial PCA (RPPCA) algorithm by optimizing the 
coefficient vectors with a polynomial constraint and apply 
it to seismic random and coherent noise attenuation. The 
proposed method can separate signal and noise subspaces 
directly without estimating the coherent events and be robust 

to outliers. To ameliorate the problem and make sure that the 
subspaces are orthogonal with each other, we simplify the 
problem to a sub-optimal form and solve it with a greedy 
algorithm (Kwak 2008). In practice, we subtract a certain 
percentage of the energy of the original signal in each pro-
cessing window. Thus, the number of maintained principle 
components (PCs) can be chosen adaptively in each calcul-
ation, which can insure that signal with higher SNR can have 
more PCs maintained.

This paper is organized as follows. In Theory, the proce-
dure of our algorithm is described and some details are dis-
cussed. Some synthetic and real data examples are shown 
to illustrate the performance of the proposed algorithm in 
Examples. Finally, we give our conclusions in Conclusions.

Theory

Review of PCA-L1 algorithm (Kwak 2008)

Assume that = ∈ ×�[ ]D d d R, , n
m n

1  is the original flat-
tened prestack seismic data, where m denotes the number 
of samples in the time direction and n indicates the number 
of traces. To separate signal and noise subspaces with 
conventional PCA, a projection matrix ∈ ×W Rm k should 
be established and its corresponding coefficient matrix 
∈ ×V Rk n which can satisfy the following minimization 

problem:

D WV W W Imin , s.t.  ,k
W V,

2
2 T− = (1)

where ⋅ 2
2 is defined as the energy of a matrix in this paper. 

We can get the global minimum of equation (1) by the SVD 
algorithm.

It is well known that L2-norm optimization shows low 
robustness to outliers, which make an SVD filter introduce 
some artifacts when applied to signal and image enhance-
ment. To improve its robustness, many researchers drew their 
attention to the PCA methods based on L1-norm optimization 
(Baccini et al 1996, Aanas et al 2002, Ke and Kanade 2003, 
2005, Torre et al 2003, Ding et al 2006, Kwak 2008), which 
can be expressed as:

− =D WV W W Imin , s.t.  .k
W,V

1
T

 (2)

Since the exact optimum of equation (2) is difficult to get and 
is not invariant to rotations, Kwak (2008) solved the following 
maximization problem instead:

∑∑ ∑= =
= = =

w dW D
W

W W Imax max , s.t.  .
i j

k

l

m

lj li k
W

T
1

1

n

1 1

T (3)

The projection matrix obtained by solving equation  (3) is 
invariant to rotations and robust to outliers. However, the 
global optimum of equation (3) for >k 1 is difficult to find. 
To ameliorate the problem, Kwak (2008) used a greedy search 
method to get a local optimum, in which =k 1 is assumed in 
each iteration, thus equation (3) becomes a series of following 
problems:
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w D w d wmax max , s.t.  1.
i

i
w w

T
1

1

n
T

2
2∑= =

=
 (4)

With equation  (4) solved iteratively, the signal subspace is 
separated with higher robustness to outliers.

RPPCA algorithm

Although the PCA-L1 algorithm is more robust to outliers 
than the conventional PCA, it still causes some wormy areas 
and artifacts in the result because of the strong coherent noise. 
In our research, we find that the influence of strong coherent 
noise can be eliminated if we take the AVO of seismic events 
into account.

In essence, the prestack seismic data can be approximated 
by:

d i j a j s i, ,
k

l

k k
1
∑=
=

( ) ( ) ( ) (5)

where l is the number of flat events in the selected seismic 
data, ( )s ik  is the seismic wavelet corresponding to the kth 
event, and a jk( ) is the AVO curves of the kth event. It can be 
proved that if we use SVD to separate the signal and noise 
subspaces, every coefficient vector will vary following a 
polynomial. Furthermore, a seismic data consisting of sev-
eral n-order polynomial reflection coefficients can be decom-
posed into at most n  +  1 components. The related proof can 
be found in the appendix.

Therefore, in order to eliminate the artifacts, we can 
pose a polynomial constraint to the coefficient vectors when 
enhancing the seismic signal with PCA filters. Thus, different 
from the SVD filter, we want to find a projection matrix W 
and the compatible coefficient matrix V to satisfy the fol-
lowing optimization problem:

λ− + − =D WV V V W W Imin , s.t.  ,n
W V,

2
2

0 2
2 T

 (6)

where every row of V0 is a polynomial vector and λ is a weight 
factor.

However, as mentioned above, SVD-based filters show 
low robustness to outliers, then a L1, L2-norm optimization 
is adopted instead of equation  (6). The new optimization 
problem is expressed as below:

D WV V V W W Imin , s.t.  .n
W,V

1 0 2
2 Tλ− + − = (7)

Similar to Kwak (2008), finding a global optimum of equa-
tion (7) for >k 1 is difficult. To ameliorate the challenge and 
ensure the orthogonality at the same time, we replace equa-
tion  (7) with a sub-optimal problem, which simplifies and 
approximates equation (7) into a series of vector optimization 
problem as follows:

Dv w v C C C C vmin ,
v

1 r r
T

r
1

r
T

2

2
λ− + −∼ − �( ) (8)

where ∼w is the projection vector obtained by the PCA- 
L1 algorithm,�v is the corresponding coefficient vector, 
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 L is the length of �v and 

( )− �C C C C vr r
T

r
1

r
T  is the r-rank polynomial approximation of �v.

These optimization problems are solved with a greedy 
search method, and a L1–L2 optimization problem for each 
dimension should be solved. Here, we adopt the iterative 
reweighted least square (IRLS) algorithm to solve the above 
mentioned optimization problem. IRLS is a fast L1 estima-
tion algorithm and has been applied into many seismic data 
processing problems (Guitton et al 2004).

For the vector β = − ∈∼Dv w Rk, the L1-norm is defined as

( ) ∑β β β= =
=

f .
i

k

i1
1

 (9)

In the IRLS algorithm, ( )βf  in each iteration is written as

∑β β β γ= +
=

−( )( ) ( ) /( ) ( ) ( )f ,t

i

k

i
t

i
t

1

2 1 (10)

where t is the number of iterations and γ is a regularization 
factor.

Thus, the objective function value in each iteration should 
be written as

f w wv d v d v

v C C C C v .

t

i

n

i i
t

i i i
t

i
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1 T 2 1 T
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( )
 

(11)

In practice, we set an energy-proportion threshold to end the 
iterations, which is determined by the SNR of the processed 
signal. In this paper, we estimate the SNR as follows:

SNR ,
i

n
i

1

1∑
λ

λ
=

′

=

 (12)

where λ1 is the largest eigenvalue and λ∑ =i
n

i1  is the sum of all 
eigenvalues. Thus, the energy-proportion can be set as

∑
η

λ
λ

= − −
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1 1 .

i

n
i

1

1

2 
(13)

By doing so, our algorithm can adaptively choose the number 
of maintained PCs. Then, the procedures of the proposed 
algorithm can be summarized as follows:

 (1) Initialization: Pick any ( )w 0 . Set ( ) ← ( )/ ( )w w w0 0 0 2
and =t 0. Set λ and energy-proportion η to suitable 
values. Set η =� 0.

 (2) For all ∈ �{ }i n1, , , if ( ) <tw d 0i
T , ( ) = −p t 1i , other-

wise ( ) =p t 1i .
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 (3) Set +←t t 1 and t p tw d1i
n

i i1=∑ −=( ) ( ) . Set ( )←tw   
( )/ ( )t tw w 2.

 (4) Converge check: (When Convergent, Stop.)

  a. If ( ) ( )≠ −t tw w 1 , go to Step 2.
  b.  Else if there exists i such that ( ) =tw d 0i

T , set 
( ) ← ( ( ) )/ ( )+∆ +∆t t tw w w w w 2 and go to Step 2. 

Here, ∆w is a small nonzero random vector.
  c. Otherwise, set ( )=∼ tw w .

 (5) Set = ∼�v D wT .

 (6) Solve Dv w v C C C C vminv 1 r r
T

r
1

r
T

2

2
λ− + −∼ − �( )  with 

IRLS.
 (7) Set w D v v 2= ⋅ / .
 (8) Set /η η= +� � wv D ,T

2
2

2
2

  a. If η η<� , Set = −D D wvT. Go to Step 1.
  b. Else end loop.

In summary, the proposed method separates the signal 
and noise subspaces and maintains the AVO curve by solving 
an L1–L2 problem iteratively. The proposed algorithm can 
attenuate random noise and coherent noise effectively when 
applied to horizontally aligned seismic data and protect the 
desired signal at the same time. The performance of the pro-
posed method is demonstrated in the next part.

Examples

Synthetic data example I

To illustrate our assertion in the Theory part and the artifacts 
brought by the coherent noises, we simulate a dataset and 
use the SVD filter, the PCA-L1 filter and the RPPCA filter to 

extract the desired signal. The size of the dataset is 80 samples 
in the lateral direction and 1000 ms in the time direction. The 

Figure 1. Synthetic data example I. (a) Desired signal; (b) desired signal with six coherent events; (c) the AVO curves of the desired events.

Figure 2. Synthetic data example I. (a) The first coefficient vector 
obtained by SVD; (b) the first projection vector obtained by SVD; 
(c) the second coefficient vector obtained by SVD; (d) the second 
projection vector obtained by SVD; (e) the third coefficient vector 
obtained by SVD; (f) the third projection vector obtained by SVD.

J. Geophys. Eng. 13 (2016) 1002
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time interval is 1 ms. As shown in figure 1(a), the dataset con-
sists of four desired events with different AVO curves, which 
are quadratic polynomial, shown in figures  1(c) and sixco-
herent events with constant reflection coefficient are inserted 
in figure 1(b). We use the SVD, PCA-L1 and RPPCA filters 
to obtain the first three principles of the desired signal and the 
noisy signal. The coefficient and projection vectors obtained 
by SVD are shown in figures 2(a)–(f), and those obtained by 
PCA-L1 and RPPCA are shown in figures 3(a)–(f) and 4(a)–
(f), respectively. The vectors extracted from the desired signal 
and the noisy signal are denoted by black lines and red lines, 
respectively. In this example, the size of the analysis window 
is equal to the data size.

It can be noted from the black lines of figures 2 and 3, that 
the coefficient vectors follow different quadratic polynomials. 
In constrast, the red lines note that the coherent events bring 
strong fluctuations to the projection vectors and the coeffi-
cient vectors which make them deviate from the true values. 
Compared with figure 2, figure 3 shows that PCA-L1 is more 
robust to outliers than SVD and it alleviates the fluctuations 
on the projection vectors and the coefficient vectors. However, 
the artifacts still exist to some extent.

In contrast, comparing the red and black lines in figure 4, 
we can note that the result obtained from the noisy signal 
is quite similar to the true value, especially in the first two 
comp onents, which indicates that the influence of the coherent 

events is eliminated effectively and the robustness to outliers 
is enhanced with the proposed method.

Synthetic data example II

In this example, synthetic seismic data shown in figure 5 con-
sists of eight flat seismic events with different AVO curves, 
eight coherent noises with different dips, and  −5 dB addi-
tive Gaussian random noise. The desired signal is shown in 
figure  5(a) and the corresponding AVO curves are shown 
in figure  5(c). Figure  5(b) shows the noisy signal. Results 
obtained by LPF, SVD, PCA-L1 and RPPCA are shown in fig-
ures 6(a)–(d), respectively. The corresponding noise removed 
by each method is shown in figures 7(a)–(d), respectively. In 
this example, the size of the processing window used for the 
SVD filter, PCA-L1 filter and RPPCA filter is 200 samples 
in the time direction and 120 samples in the lateral direc-
tion, and the size of the processing window used for LPF is 
80. The number of PC we use in the three algorithms is two, 
and the rank of polynomial fitting used in LPF and RPPCA 
method is two. The reason that we do not use the third PC 
is that the SNR of it is too low to use. Figures 6(b) and (c) 
show that SVD and PCA-L1 have good performance in atten-
uating random noise and coherent noise, but with strong arti-
facts and damage the desired signal. By contrast, RPPCA and 

Figure 3. Synthetic data example I. (a) The first coefficient vector 
obtained by PCA-L1; (b) the first projection vector obtained by 
PCA-L1; (c) the second coefficient vector obtained by PCA-L1; 
(d) the second projection vector obtained by PCA-L1; (e) the third 
coefficient vector obtained by PCA-L1; (f) the third projection 
vector obtained by PCA-L1.

Figure 4. Synthetic data example I. (a) THE first coefficient vector 
obtained by RPPCA; (b) the first projection vector obtained by 
RPPCA; (c) the second coefficient vector obtained by RPPCA; 
(d) the second projection vector obtained by RPPCA; (e) the third 
coefficient vector obtained by RPPCA; (f) the third projection 
vector obtained by RPPCA.
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Figure 5. Synthetic data example II. (a) Original signal; (b) noisy signal; (c) the AVO curves of the eight desired events.

Figure 6. Synthetic data example II. (a) Result obtained by LPF filter; (b) result obtained by SVD filter; (c) result obtained by PCA-L1 
filter; (d) result obtained by RPPCA filter.

Figure 7. Synthetic data example II. (a) Removed noise by LPF filter; (b) removed noise by SVD filter; (c) removed noise by PCA-L1 
filter; (d) removed noise by RPPCA filter.

J. Geophys. Eng. 13 (2016) 1002
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LPF have better performance in protecting desired signal and 
eliminating artifacts. Comparing figures 6(a) and (d), we can 
also find that RPPCA removes noise better than LPF, espe-
cially in the areas marked by the red arrows. When the dip of 
the coherent noise is small, the LPF filter may contain some 
residue. In contrast, the result obtained by the RPPCA filter 
is cleaner in those areas. Figures 7(a)–(d) indicate the noise 
removed by the four filters. Comparing figures 7(a)–(d), we 
can conclude that RPPCA has a better performance in pro-
tecting valid signal. Furthermore, the result obtained by the 
RPPCA method has less edge effect compared with LPF. 
Table  1 shows the signal-noise-ratio of the results obtained 
by the four different methods. This is a statistics result of 100 
times experiments.

Real data

To further demonstrate the performance of the proposed 
method, we conduct an experiment on a field data set 
acquired in a desert in northwest China, which is arranged 
in common imaging point gathers (CIG). The whole data 
set has 830 gathers, and there are 23 traces in each gather. 
The length of each trace is 1100 ms, and the sampling time 
interval is 2 ms. The size of analysis window is 23 samples 
in the lateral direction and 100 samples in the time direc-
tion. The polynomial rank used in LPF and RPPCA is five. 
Figure 8(a) shows one gather of original data, which notes 
that the coherent noise and the random noise are compli-
cated. Firstly, the LPF filter is used to attenuate the noise, 
and the denoised result and the removed noise are shown in 
figures 8(b) and 9(a), respectively. Although much noise is 
suppressed, a little coherent noise remained. The denoised 
result obtained by the SVD filter is shown in figure 8(c), and 
the corresponding removed noise is shown in figure  9(b). 
The SVD filter suppresses most coherent noise and random 
noise, but there exist some wormy and fluctuant appearance. 
In contrast, the PCA-L1 filter is a little more robust than 
the SVD filter, but, the denoised result is still distorted in a 
certain degree. The denoised result obtained by the PCA-L1 
filter and the corresponding removed noise are shown in fig-
ures 8(d) and 9(c), respectively. Figures 8(e) and 9(d) indi-
cate the denoised result obtained by the proposed RPPCA 
method and the removed noise, respectively, which note 
that the coherent noise and the random noise are suppressed 
effectively, and the distortion of the desired signal is also 
reduced. In this example, the size of the processing window 
used in figures  8(c)–(e) is equal within each CIG gather, 
and the rank of polynomial fitting used in figures 8(b) and 
(e) is three. In the experiments of the SVD, L1-PCA and 
RPPCA algorithms, we subtract 55% of the total energy for 
every processing window, thus the algorithm can choose the 
number of PCs adaptively.

Conclusion

We propose a robust polynomial principle component analysis 
method for the suppression of random noise and coherent noise 

Table 1. SNR of the four results obtained by the LPF, SVD, 
PCA-L1 and RPPCA methods in synthetic data example II.

Method LPF SVD PCA-L1 RPPCA

SNR (dB) 16.77 13.89 14.82 18.96

Figure 8. Real data example with a common imaging point gather. 
(a) Original data; (b) result obtained by LPF filter; (c) result 
obtained by SVD filter; (d) result obtained by PCA-L1 filter;  
(e) result obtained by RPPCA filter.

Figure 9. Real data example with a common imaging point gather. 
(a) Removed noise by LPF filter; (b) removed noise by SVD filter; 
(c) removed noise by PCA-L1 filter; (d) removed noise by RPPCA 
filter.
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contaminated in flattened prestack seismic data. By posing 
polynomial constraints to the coefficient vectors, the proposed 
method can better extract the desired signal when it is polynomial. 
Because of the AVO of seismic events, when applied to seismic 
noise attenuation, the proposed method can reduce random 
noise and coherent noise effectively and overcome the drawback 
of causing artifacts on desired signal. Furthermore, the proposed 
method can attenuate the two kinds of noise simultaneously 
instead of estimating the coherent events at first. Applications 
on synthetic data and real data show that the proposed algorithm 
can achieve a good performance on enhancement and protection 
of desired signals. By setting an energy-proportion threshold, we 
make our algorithm subtract a certain percentage of the energy 
of the original signal in each window. Thus, our algorithm can 
choose the number of maintained PCs adaptively. The example 
on a real data set shows that our proposed method can be effec-
tive on CIGs, which can lay the foundation for several other 
seismic processing or interpretation works, like AVO analysis.
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Appendix  

Since an AVO curve follows a polynomial, the prestack 
seismic data can be expressed as:

∑ ∑=
= =

( ) ( )d i j s i p j, ,
k

l

k
h

r

kh
h

1 0
 (A.1)

where r is the rank of the polynomial, and pk  =   

p p, ,k k0 r
T�[ ]  are the polynomial coefficients.

Rewriting equation (A.1), we have,
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Equation (A.2) notes that the amplitude variation with offset 
follows a polynomial for the same sampling time, the coef-
ficients of which are defined by i q i q iq , ,0 r

T= �( ) [ ( ) ( )] .

Let w and v be the first principle component and its corre-
sponding coefficient vector obtained by SVD, then v should 
satisfy the following equation:

∑= −
=

( ) ( )w i iv v C qarg min ,
i
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r 2

2
 (A.3)
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 L is the length of v.

For each i, ( )w i  is a constant. Thus, the coefficient vector 
v is a linear combination of a series of polynomial, which is 
obviously a polynomial.

Let D D wvi
p

i i1= −∑′
= , where wi and vi are the ith principle 

component and its corresponding coefficient vector, respec-
tively. Suppose that for all <i p, vi follows a polynomial. Thus, 
the first coefficient vector of D′, which is the ( )+i 1 th coeffi-
cient vector of D, also follows a polynomial, which means that 
every coefficient vector of D is a polynomial.
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