This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
ACCEPTED MANUSCRIPT The following article is Open access

Simulations of beta-induced Alfvén eigenmode mitigation by off-axis energetic particle distribution

, and

Accepted Manuscript online 23 April 2024 © 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA. All rights reserved

What is an Accepted Manuscript?

DOI 10.1088/1741-4326/ad41c4

10.1088/1741-4326/ad41c4

Abstract

The effect of different off-axis energetic particle (EP) slowing down distribution on beta-induced Alfven eigenmode (BAE), driven by the on-axis EP distribution, is systematically studied using kinetic-magnetohydrodynamic code M3D-K. The aim is to analyze the optimal parameter region for controlling AEs via varying EP distribution parameters. The simulation results reveal that by modifying the gradients of the EP distribution, the off-axis EP can further destabilize or mitigate the on-axis EP driven BAE, depending on the off-axis EP distribution's parameters: deposition profile, EP beta, pitch angle, injection velocity and direction. When the off-axis EP is deposited outside the mode center, and its injection velocity is sufficiently large to satisfy the resonance with BAE, the stabilization of BAE is achieved. This stabilizing effect is directly proportional to the off-axis EP beta, while excessive off-axis EP beta can trigger a new EP-driven instability located outside the BAE. Furthermore, to achieve a stronger stabilizing effect, the pitch angle distribution and velocity direction of the off-axis EP should be close to those of the on-axis EP. For instance, compared to the counter-passing off-axis EP, the co-passing off-axis EP can lead to a more effective mitigation of the BAE driven by the co-passing on-axis EP.

Export citation and abstract BibTeX RIS

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

10.1088/1741-4326/ad41c4