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Abstract
Geodesic acoustic modes (GAMs) are ubiquitous oscillatory flow phenomena observed in
toroidal magnetic confinement fusion plasmas, such as tokamaks and stellarators. They are
recognized as the non-stationary branch of the turbulence driven zonal flows which play a
critical regulatory role in cross-field turbulent transport. GAMs are supported by the plasma
compressibility due to magnetic geodesic curvature—an intrinsic feature of any toroidal
confinement device. GAMs impact the plasma confinement via velocity shearing of turbulent
eddies, modulation of transport, and by providing additional routes for energy dissipation.
GAMs can also be driven by energetic particles (so-called EGAMs) or even pumped by a
variety of other mechanisms, both internal and external to the plasma, opening-up possibilities
for plasma diagnosis and turbulence control. In recent years there have been major advances in
all areas of GAM research: measurements, theory, and numerical simulations. This review
assesses the status of these developments and the progress made towards a unified
understanding of the GAM behaviour and its role in plasma confinement. The review begins
with tutorial-like reviews of the basic concepts and theory, followed by a series of topic
orientated sections covering different aspects of the GAM. The approach adopted here is to
present and contrast experimental observations alongside the predictions from theory and
numerical simulations. The review concludes with a comprehensive summary of the field,
highlighting outstanding issues and prospects for future developments.
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1. Introduction and background

Geodesic acoustic modes (GAMs) are ubiquitous oscillatory
flow phenomena observed in toroidal magnetic confinement
fusion devices, such as tokamaks and stellarators. They have
long been recognized as the non-stationary branch of turbu-
lence driven zonal flows (ZFs) and are understood to play a
consequent critical regulatory role in cross-field edge turbulent
transport, via enhanced velocity shearing of turbulent eddies,
or by providing an additional sink for the turbulence energy
dissipation through damping. Their role in moderating turbu-
lence is thus important for understanding the general behaviour
of turbulent transport in magnetically confined plasmas, and
hence they are a topic of high interest in fusion research.

Although the outpouring of publications on GAMs is a rel-
atively recent phenomenon, their story begins with the 1968
paper of Winsor [1] which introduced a simple magnetohy-
drodynamic (MHD) model describing low frequency elec-
trostatic n = 0 (toroidal mode number) acoustic modes in a
toroidal axisymmetric magnetically confined plasma—which
was originally sought as an explanation for oscillations
observed in the model C stellarator. Winsor’s fluid model (for
a low temperature, large aspect ratio r < Ry, circular cross-
sectional plasma of radius r) gives a local frequency for the
GAM

WoaM = Cgkﬁ(l +24°)

2¢2 2 2¢2 1
S e V=S (i), a
a(ram) =R (rg)

where k| =1 /(gR,) with toroidal major radius Ry, local
safety factor (inverse rotational transform) ¢ = 27 /., sound
speed cs = \/vpo/po = \/v(Te + T;)/m;, plasma pressure p,
plasma density p,, electron (ion) temperature 7 ), ion mass
mj, and 7 = 5/3 the specific heat ratio (adiabatic index) for a
monoatomic gas.

A critical aspect of the mode is the geodesic curvature (i.e.
the surface component) of the confining magnetic field lines in
a toroidal device, which gives a compressible plasma response
to poloidal rotation. This means that a v, = Er x B /B2 flow
perturbation compresses the plasma creating a p pressure dis-
turbance, which is compensated by an induced v parallel flow.
This is the situation for the classic zero-frequency ZF which
takes an m = n = 0 flow structure, without forming a pressure
mode. However, in the case of the GAM the v | perturbation is
too fast for the parallel flow to fully compensate the p pertur-
bation, resulting in an n = 0,m = +£1 pressure mode (called a
sideband, i.e. a higher mode due to modulation) linearly cou-
pled to the m = 0 flow via the radial diamagnetic current. This
sideband is also responsible for the coupling to an m = 1 paral-
lel ion sound mode wsw = ¢k In equation (1) the ion sound
mode appears in the term (1 + 1/24?), while the 1/Ry is the
result of the geodesic curvature. In short, the GAM oscillation
is supported by the plasma compressibility due to the toroidal
geodesic curvature, similar to sound waves (SWs)—hence the
name GAM.

The basic features of what was to become known as
the GAM were laid out in some detail in [1], which were

Pressure P

Magnetic B,
m=+2

Figure 1. Schematic of the GAM poloidal structure in a diverted
tokamak plasma configuration. The principle components are:
green = v flow (m = 0); red = pressure (up—down asym.

m = %1), blue = magnetic By (m = =2 up/down & in/out asym.).

supported by early numerical MHD simulations [2, 3]. The
model predictions for the GAM can be summarized as follows:

e It has a poloidal mode number m = 0 plasma displace-
ment within the magnetic surface, i.e. an oscillatory
poloidal rotation flow v, due to the radial electric field
E./potential ¢ perturbation.

e It has an m = %1 pressure disturbance (sideband) with an
up—down anti-symmetric p o sin 6 structure (tokamak),
induced by plasma compressibility via V - v, # 0. This
is a defining feature of the GAM which distinguishes it
from the classic ZF which has no sideband.

e In axisymmetric magnetic systems the flow and sidebands
have an n = 0 toroidal mode number structure.

e Ithasalocal (continuum) frequency in the low kHz acous-
tic range scaling with the local sound speed c;, but higher
than the parallel compressional SW wgy .

e It may exist in any magnetic system with geodesic curva-
ture and closed flux surfaces.

Figure 1 shows schematically the zonal/poloidal structure
of the GAM components: the m = 0 perpendicular flow in
green; the up—down m = +1 pressure/density 7, o sin 6 in
red, and the up—down, in—out m = +2 magnetic halo/zonal
By o sin 26 field in blue. The predicted ideal modal (toroidal
and poloidal) structure of the GAM flow and its sidebands,
together with its zonal radial nature have been verified exper-
imentally. Real experimental devices generally do not have
ideal circular flux surfaces, but are often elongated, triangu-
lar, and have field-nulls (X-points). These shape effects intro-
duce structure distortions as well as corrections to the GAM
frequency and damping.
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The original Winsor paper [1] used ideal single-fluid MHD
theory to obtain the basic GAM dispersion relation. Indepen-
dently, a much more general GAM dispersion relation was
obtained a little later in 1973 in the context of the finite m
and n electromagnetic (EM) drift wave instabilities, includ-
ing Alfvén waves, temperature gradients and ion finite Lar-
mor radius (FLR) effects [4], such that the basic GAM mode
of Winsor, equation (1), is only a special limit case of the
dispersion relation obtained in [4]. Along similar lines, the
GAM dispersion relation was later derived as a special limit
case of the general kinetic theory of Alfvén waves in inho-
mogeneous plasmas [5]. Note that neither [4] nor [5] refer to
the original Winsor paper, nor used the name GAM for this
mode.

As the GAM is a mode of plasma rotation it was natural
that GAM physics was discussed along the somewhat par-
allel studies of plasma rotation in a tokamak, in particular,
mechanisms of spontaneous poloidal spin-up [6], where the
GAM basic dispersion relation was explicitly derived as part
of the Stringer spin-up mechanism (1969) [7], again without
the reference to [1]. It was realised later that the oscillatory
GAM eigenmode is an inherent part of the relaxation process
for establishing the equilibrium neoclassical rotation [8, 9] at
which point the connection to the original work [1] was firmly
established.

The MHD dispersion relation gives a local frequency,
which, for experimental conditions with radial gradients
(‘system non-uniformities’) in the temperatures and g, means
the frequency varies continuously with the plasma radius giv-
ing a continuum mode spectrum. As with other types of contin-
uum modes (e.g. Alfvénic) observed in plasmas [10], the GAM
experiences phase-mixing (PM), continuum damping, as well
as FLR and finite orbit width (FOW) effects which result in
frequency corrections and are important for radial propaga-
tion and localization of the GAM. Nevertheless, there are also
some important differences to Alfvénic continua, particularly
concerning resonances and mode conversions. In addition to
PM and continuum damping, the GAM is also subject to col-
lisionless damping, which requires a kinetic description. In
the literature the term kinetic GAM (KGAM/GAM) [11] is
applied to the GAM dispersion relation derived from kinetic
based models, as an extension to the local continuum GAM at
the short wavelength regime and/or when wave-particle reso-
nances are involved—situations where MHD models are not
valid.

While many experimental observations conform to the
GAM continuum behaviour, there are, however, plasma con-
ditions where the GAM has a constant frequency extending
radially over a significant portion of the plasma cross-section
(although the GAM amplitude may still vary with radius).
The GAM may also form a series of radial steps with a
staircase-like behaviour. In these cases the GAM structure is
often referred to as global or eigenmode. Note in the liter-
ature the use of global and eigenmode terminology varies,
especially between experiments and theory. For example, the
term global GAM (GGAM) eigenmode [12, 13] specifically
refers to conditions when the GAM continuum frequency
has an off-axis maximum, which can occur in reversed shear

configurations of so-called ‘advanced tokamak scenarios’ with
raised ¢° in the core, or at high plasma core pressures where
the GAM frequency is reduced by w? = wg/(1+ 3) when
B = c2/v3 becomes significant. Here, the GGAM eigenmode
has a constant frequency close to that of the continuum mode
at the maxima location. Such eigenmodes can have substantial
m =2 flow and magnetic components that extend over
large distances—thus allowing their easy detection. Gener-
ally eigenmode GAMs are not fully understood, but there
are several theory mechanisms, including (linear) eigenmodes
forming where the GAM continuum crosses ion-sound [14] or
Alfvén branches [15]. Another concept is the radially prop-
agating wave-packet eigenmode. This GAM does not have a
specific radial position but has a radial width in the so-called
‘mesoscale’ range (between turbulence and system dimen-
sions) determined by FLR/FOW and temperature gradient
length scale parameters [11, 16].

Thus, from later observations and theory one can add to the
list of characteristics:

e Its local (continuum) frequency has equilibrium shape
(elongation, Shafranov shift, etc) dependencies.

e It is dispersive, i.e. radially propagating.

e It experiences continuum, collisional and collisionless
(parallel ion Landau and toroidal resonance) damping.

e Itis generally radially localised with a finite &, i.e. zonal-
like, with a radial width much less than the plasma minor
radius a.

e It can develop an extended radial structure with a fixed
frequency.

e It can develop m = +£2 sidebands which appear in pres-
sure and magnetic field, in particular at high plasma f.
The m = 2 magnetic field extends outside the plasma
facilitating the mode detection.

e It requires drive, typically from drift-wave (DW) turbu-
lence or energetic particles (EPs).

The basic GAM is generally stable [17] and therefore needs
to be driven. The most universal drive sources are related to
drift turbulence [via turbulent Reynolds stress (RS) or trans-
port modulations] and EPs. Developments in the theory of
plasma turbulence driven RS in the early 1990s [18], as well
as gyrofluid and gyrokinetic (GK) numerical simulations in
the mid to late 1990s, revealed the presence of turbulence
driven ZFs (both stationary and oscillatory) and their role in
turbulence and transport control [19-24]. Together with the
detection of GAMs as a result of the relaxation of the poloidal
rotation in numerical simulations [22, 24] this stimulated fur-
ther interest in GAMs as finite frequency ZF structures, leading
eventually to serious attempts to measure ZFs and GAMs in
experiments.

The first clear observation of (declared) GAMs in a toroidal
device was around 2002 with reports from the HT-7 [27],
DIII-D [28, 29], and TEXT [30] tokamaks, followed closely
with measurements from ASDEX Upgrade (AUG) [31], JFT-
2M [32], CHS [33], T-10 [34], TUMAN-3M [35], JIPPT-IIU
[36] devices. Two typical edge GAM spectra from HL-2A and
AUG are shown in figure 2, respectively with and without a
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Figure 2. Typical edge GAM spectra: (a) HL-2A Langmuir probe
(LP) V. Reprinted figure with permission from [25], Copyright
(2009) by the American Physical Society. (b) AUG Doppler
reflectometer flow. Reproduced from [26]. © IOP Publishing Ltd. All
rights reserved.

concurrent stationary (zero-frequency) ZF. Subsequently sev-
eral early observations of coherent flow and plasma potential
oscillations were either retrospectively identified as possible
GAMs, cf in the core (mid-radius) region of the H-1 heliac stel-
larator [37, 38], or in the case of early observations of plasma
potential modes in TEXT [39] and JIPP T-IIU tokamaks by
implication of later measurements [40, 41].

Turbulence driven GAMs have now been ubiquitously
observed in ohmic and low-confinement L-mode plasmas in
many devices, but not in strong high-confinement H-mode
plasmas—although recent results suggest GAMs may form
in weak H-modes where the edge turbulence level has recov-
ered sufficiently [42]. The detection of GAMs also requires
suitable diagnostics with sufficient sensitivity, and of course
GAMs of measurable amplitude. The GAM amplitude is
essentially a balance between the strength of the drive mech-
anism—which can include a variety of linear and nonlin-
ear sources—and the various damping mechanisms, such
as continuum, collisional and collisionless Landau damping.
The latter is sensitive to the safety factor, v oc exp(—g?),
therefore making the radial profile of ¢ an important factor
in distinguishing the edge turbulence GAM from the more
core localized ZF.

Figure 3 shows a measurement diagram of reported GAMs
as functions of net absorbed heating power P, (representing
drive) and line-averaged core density 7n¢ (representing damp-
ing) for a range of discharge conditions, such as ohmic heated,
additional heated low confinement L-mode and intermediate
(between L and H-mode) I-phase, in various devices. A large
majority of GAM studies have been performed in relatively
small devices with low ohmic or additional heating power,
hence the observations tend to cluster at low densities (low
collisionality and weak damping). Such devices tend to have
easier diagnostic access. The higher density regions have been
probed in some of the larger tokamaks, such as DIII-D, JET
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Figure 3. GAM measurement (existence) diagram in terms of net
heating power Ppet = Pohm + Phear — dW/dr and line average core
density 71¢ for different confinement regimes (colours) from various
devices (points = AUG). The thick line represents the typical L—H
power threshold for AUG. Reproduced with permission from [43].

and AUG which have greater capacity for additional heating.
In general, higher densities tend to result in lower tempera-
tures, thus reducing the GAM frequency to the low kHz, as
well as stronger damping.

While turbulence has been clearly established as the main
driving mechanism for the GAM excitation, directly via non-
linear RS or indirectly via transport and pressure modula-
tions, it is not the only drive mechanism. EPs with anisotropic
or inverted slope velocity distributions can also drive GAMs
via inverse Landau damping mechanisms. Furthermore, EPs
can lead to the excitation of new (additional) GAM-like
modes—EGAMs.

The first observations of EP driven GAM modes dates from
the mid 2000s with chirping modes observed in both JET
[12, 13] and DIII-D [44] tokamaks. The modes observed in
JET were due to energetic ions (several hundred keV) gener-
ated by ICRF minority heating. The inverted energy distribu-
tion of the ion beam excited a global eigenmode GGAM via
inverse Landau damping. Numerically it was shown [12, 13]
that the GGAM was formed as a result of an off-axis max-
imum in the GAM frequency in a reversed magnetic shear
equilibrium. The EM component (halo) of the GGAM made it
particularly easy to detect with external pick-up coils. New
GGAM-like modes in DIII-D [44] were observed well below
the ideal GAM frequency and were identified as non-
perturbative modes excited by anisotropic distributions of EPs
due to transit resonances. These modes had radial widths deter-
mined by the EP orbits and were termed EGAMs [45]. Gen-
erally the EGAM appears as repetitive bursts of large up and
down frequency chirping (in the tens of kHz range) due to
the formation of phase space structures (a kinetic effect) inter-
acting with the fluid ZF. Geodesic-like oscillations associated
with EPs have now been observed in the core plasma region of
numerous tokamaks and stellarators.

The GAM interaction with EPs has many facets and makes
for a rather complex, and sometimes confusing, story where
an EP effect can vary depending on competing parameters.
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Nevertheless, in the GAM/EGAM picture a more or less
definitive divide can be established between two main situa-
tions:

(a) Perturbative modes where the excitation is by EPs while
retaining the basic feature of the standard GAM as a lin-
ear eigenmode structure, which would exist even in the
absence of EPs. The JET observations of a reversed shear
GGAM driven by EPs would belong to this category;

(b) Non-perturbative modes whose existence, eigenmode
structure and localization is determined by the EP source.

In general, EP related GAM modes are of particular inter-
est due to the generation of energetic alpha particles in future
burning plasmas.

Finally, GAMs may even be pumped by external modu-
lation mechanisms, such as biased limiters, or theoretically
by localised plasma heating, or by magnetic field perturba-
tion coils. These possibilities open-up potential GAM appli-
cations for plasma diagnosis, or even the control of the edge
turbulence which may be used to facilitate confinement mode
transitions.

Already in the late 1990s the impact of coherent and
incoherent random flow shearing on turbulence moderation
was studied [46—48]. Indeed the significance of the GAM’s
role in moderating turbulence [48] and transport control [24]
either via turbulence shearing effects or direct energy sink
for ZFs [24, 49] is one of the main reasons for the intense
interest in GAMs. In addition to turbulence and transport
effects, GAM/EGAMs have also been associated with ion
heating—the so-called GAM energy and momentum chan-
nelling effects [50, 51].

GAMs are essentially part of the larger ZF and turbu-
lence picture. The flow spectrum can be divided into distinct
components:

(a) Zero-mean-frequency stationary zonal flows (SZF),
sometimes referred to as the Rosenbluth—Hinton residual
(RHR) in theory papers [52]. SZFs may have spectral
widths of the order of the ion—ion collision frequency,
ie. a few kHz [53]. They are generally damped by
collisions, but can also be damped by other linear and
nonlinear mechanisms such as Kelvin—Helmholtz (KH)
instabilities as well as by collisionless Landau resonances
in the plateau collisionality regime. SFZs do not have
pressure sidebands.

(b) Low frequency ZF oscillations (ZFOs) with frequencies
typically an order of magnitude smaller than GAMs, e.g.
low kHz. ZFOs include modes driven by linear mecha-
nisms such as plasma rotation, or equilibrium pressure
anisotropy, or diamagnetic drift (gradient) effects. ZFOs
can be viewed as an non-zero-mean-frequency oscilla-
tory version of the SZF (no pressure sideband) but, with
increasing frequency may convert to a GAM (with pres-
sure sideband). Radial drifts of trapped ion orbits can
also drive a radial current with a low frequency oscilla-
tory (LFO) response. For stellarator geometries they may
be particularly prominent [54, 55]. ZFOs may also result

from nonlinear interactions between a KH instability, SZF
and trapped ion modes in a tokamak [56].

(c) Standard GAMs with a frequency of the order of the
ion sound speed over the toroidal curvature length scale,
¢s/Ro. GAMs can be considered as the geodesic counter-
part of the ion acoustic wave (IAW in cylindrical geome-
try) due to the magnetic geometry of the tokamak/helical
device.

(d) EGAMs. EPs may couple to an existing GAM/GGAM
branch or drive an EGAM. These GAMs typically fre-
quency chirp around the EP ion transit frequency. In other
situations they are set by the EP resonances, so practically
the EGAM frequency is lower than (often around half),
but also as high as twice that of the standard GAM.

An example of this rich fluctuation spectrum is shown in
figure 6 of [57] (cf figure 114 in section 16) from a numeri-
cal simulation of a large helical device (LHD) configuration
with a simultaneous SZF, trapped particle driven ZFO/LFO,
and a GAM. ZFOs are important to the GAM story. In stel-
larator or helical-field configurations trapped particle driven
ZFOs are predicted to be stronger than GAMs in certain condi-
tions. Their frequency and damping being intrinsically related
to the magnetic geometry via iy = k4 (bounce averaged drift
velocity) [57]. In a tokamak the trapped particle response is
behind the neoclassical polarization (equivalently, neoclassi-
cal inertia enhancement) that defines the Rosenbluth—Hinton
(RH) residual [52] and collisional ZF damping. Strong mag-
netic field ripple and externally applied resonant magnetic per-
turbations (RMPs) may be a source of other trapped particle
resonances. Of equal interest are the effects of plasma rota-
tion, pressure anisotropy and diamagnetic drifts which may
open-up a low frequency GAM-like branch in the dispersion
relation, which bridges into the SZF. Since ZFOs and GAMs
are effectively in competition for the turbulent energy there
is the deeper issue of their interaction and transformation,
particularly when approaching confinement mode transitions.

In recent years there have been major advances in all areas
of GAM research with many hundreds of papers published.
This review assesses the status of these developments and the
progress made to-date towards a unified understanding of the
GAM behaviour and its role in plasma transport and confine-
ment. The focus is on the oscillatory flows in magnetic confine-
ment devices—principally GAMs, but extending to the low
frequency ZFOs and the transitions between them. The pure
zero-mean-frequency stationary ZFs are not discussed directly
as they have been extensively covered elsewhere, for example
in the wide-ranging review of [53] and the more focussed
reviews [58—61] of some ten years ago. There is also a col-
lection of papers on ZFs in a special section of the April 2006
issue of Plasma Physics and Controlled Fusion [62]. More
recently there have been a couple of brief reviews of GAMs
with emphasis on kinetic theory [63] and its application to
experiment [64].

The review begins with general tutorial-like introductions
to the basic linear theory of turbulence driven GAMs in
section 2 and EGAMs in section 3. The focus is on the basic
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concepts of the GAM formation, structure and damping mech-
anisms using MHD/fluid and kinetic models in simple toroidal
geometry. Some additional specific elements of theory relat-
ing to particular aspects of the GAM behaviour, such as equi-
librium shaping and rotation effects, are introduced in the
subsequent topic sections together with the experimental mea-
surements. The theory introductions are supplemented by two
brief reviews focussing on the theory of GAM generation
and non-linear effects in section 4, and on GK numerical
simulations and benchmarking studies in section 5.

The GAM experimental results are presented in the second
part of the review, which begins with an overview of the current
status of experimental observations and diagnostic capabili-
ties in section 6 in the form of tables. Then follows a series of
topic orientated sections which review, first the basic GAM
characteristics and its identification in section 7—including
the effects of pressure anisotropy, isotope, and impurities as
well as plasma shaping—then the GAM modal structure and
sidebands in section 8, and the GAM radial structure and prop-
agation in section 9. Most GAM studies have been made in sta-
tionary plasmas, but the effects of plasma rotation on the GAM
frequency and amplitude can be significant. These effects are
discussed in section 10.

The approach adopted here is to present and contrast
the experimental evidence against the theory predictions and
numerical simulations. Each section contains an introduc-
tion and a summary with the intention that each topic can
be read independently, allowing the reader to dip into the
review at will. Nevertheless, the GAM has many overlap-
ping and interlinked elements, which are brought together via
cross-referencing.

After the basic characteristics it is logical to address the
GAM drive and damping. Section 11 reviews the various GAM
drive mechanisms; including turbulence threshold effects as
well as external drive mechanisms such as modulation and
biasing. This is followed by GAM damping mechanisms in
section 12. EGAMs are the topic of section 13. This leads
into the role of the nonlinear coupling between the turbu-
lence and the GAM in section 14, and then to the impact of
GAMs on plasma transport in section 15. The effects of non-
axisymmetric field configurations are addressed in section 16,
which includes the special feature of stellarator LFOs, and
the driving and suppression of GAMs by MHD islands and
externally applied RMPs. Section 17 addresses the forma-
tion of finite frequency ZFOs and their transition into GAMs.
The specific ZFO generation mechanisms include: rotation,
which was addressed in section 10; pressure anisotropy in
section 2.3 and diamagnetic drifts in section 2.13. The last
topic of the review, in section 18, is the role of GAMs in
plasma confinement mode transitions. Finally, conclusions
are drawn in section 19 with an outlook to future prospects
and developments.

2. Overview of GAM theory

In this section an overview of theoretical developments in lin-
ear GAM theory and its components is given. To simplify

exposition, different effects are considered separately, pro-
gressing from basic MHD model to more advanced formu-
lations with two-fluid, kinetic and GK theories and include
dispersion, drift, and wave—particle interactions effects. The
collation of the linear effects of plasma rotation is presented
separately, in section 10. Table 1 provides a high level synopsis
of various effects discussed in this section.

The GAM oscillation is based on the balance and feed-
back of two mechanisms for the radial current: one induced
by the inertial plasma response related to the time deriva-
tive of the m =0 component of the radial electric field
E. = —¢ (1) /Or, and the other one, the diamagnetic current
J. = —(¢/B}) By x Vpi, due to the m = 1 poloidal oscilla-
tions of plasma pressure p;.*

In toroidal geometry these two mechanisms are coupled via
feedback when the poloidal plasma flow v, = ¢B x V¢ /B?
induces oscillations of plasma pressure due plasma compress-
ibility, V - v, # 0. Additional contribution is also provided by
ion sound perturbations propagating along the total magnetic
field.

The dispersion relation for the GAM obtained from simple
MHD theory [1], as described in section 2.1, is quantitatively
different from the later result obtained in the kinetic theory [9].
Such a difference is not expected nor natural as the GAM is a
low frequency mode to which the fluid (MHD) theory should
be well applicable. The above discrepancy is corrected when
one takes into the account the anisotropy of plasma pressure
perturbations [65] in the low frequency MHD as described in
section 2.2.

The coupling of the diamagnetic current (due to poloidal
perturbations of plasma pressure) and radial inertial current
also exists for modes with a finite toroidal mode number n.
Such coupling of the finite m and n, EM (Alfvén) modes with
GAMs result in the so-called beta-induced Alfvén eigenmodes
(BAE) which have been ubiquitously detected in experiments
[66—69]. The BAE dispersion relation is closely related to the
GAM for modes with m = ngq as outlined in section 2.12. The
GAM contribution to the BAE dispersion relation becomes
a minimum frequency of the Alfvén continuum (achieved
for kj = 0). The GAM related plasma pressure effects are
important for Alfvén cascades (ACs) and g-profile diagnostics
[67, 70-73].

The GAM inherently involves an m = 1 poloidal harmonic
of pressure perturbations and, as a result, is coupled to the
m = 1 ion sound mode. The ion sound corrections ~ ¢ /¢*R}
to the GAM dispersion can be obtained in the fluid the-
ory (section 2.1), however, due to anisotropy of the pressure
perturbations, the exact expressions are different from those
obtained from a single fluid (isotropic pressure) MHD. More
accurate expressions can be obtained either from two-pressure
MHD or from the kinetic theory as described in section 2.5.
A finite electron temperature provides additional contributions

41n what follows, unless stated otherwise, the notation X, denotes the equilib-
rium values, X—general perturbations, X,—the perturbed m = 0 quantities,
and X,,—m # 0 sidebands, CGS notation is also used throughout the theory
sections.
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Table 1. Overview of GAM theoretical models and effects.

Model Effects Notes
MHD fluid Compressibility p~ V -v; #0 & Basic GAM, v = 5/3, equation (1)
diamag. current due to p sideband
Anisotropy of pert. p; # p| ~; = 7/4, equation (15)
Anisotropy of equilib. p o # pjo Additional ZFO branch/instability, equation (22)
Rotation effects Additignal ZFO/GAM branch(s) and instability, equation (265)
EM effects and finite 3 m = 2By sideband, GGAM, BAE degeneration,
equations (112) and (110)
Two-fluid Ion sound Larmor radius dispersion Equation (26)

Drift effects & GAM instability

Geodesic oscillations of 7;

Convective damping

Ion—ion collisional damping & freq. modifications

Two w roots, equation (119)

Short wavelength mode, equation (127)
Equation (106)

Equation (93)

Drift-kinetic Ion transit (Landau) damping
Ion sound coupling

EGAM drive, reactive EGAM

Equation (50)
Equation (53)
Equation (183)

Transit & toroidal resonances
Dispersion & radial propagation
EGAMs

Gyro-kinetic

p = 2 resonance damping, equation (88)
Equation (84)
Equations (143)—(151)

to the GAM frequency. These modifications can be described
within the two-fluid theory as presented in section 2.4.

In the lowest order, the basic dispersion relation for the
GAM has no dispersion as the GAM frequency is indepen-
dent of the wave vector of the perturbations. The higher
order effects introduce a dependence on the radial wave
vector—GAM dispersion. The GAM dispersion wgam (k)
induces the radial propagation dwgam/Ok: # 0 and is impor-
tant for the global eigenmode structure. There are several
sources of dispersive corrections to the GAM frequency. GAM
dispersion, related to the effects of ion inertia and finite elec-
tron temperature (the so-called ion sound Larmor radius effects
~ k2p?, p? = T./mw?) can be investigated within the basic
two-fluid theory with a finite electron temperature. Other dis-
persion effects, such as finite ion Larmor radius ~ k2p?, p? =
v, /w?, and finite magnetic gradient drift ~ w?/w?, where
wq = kvg = ke (vi /2 4+ vﬁ) JweiRo, generally require FLR
kinetic (GK) theory, as described in section 2.5. Note that
with wy ~ k3, /(weiRo) and GAM frequency w ~ v /Ry, the
finite magnetic drift frequency effects scale similar to the
FLR effects, (wq/w)? =~ k2v3; /w? ~ k?p?. Although these two
effects formally look similar and both scale as ~ kZ?p?, they
have different origins.

The terms due to the finite ratio w3/w? come from the
radial excursion of particles due to the magnetic drift vq and
are sometimes called finite orbit width (FOW) effects. They
appear in the second order expansion in a small parameter
w}/w? < 1 and are related to the higher (m > 2) poloidal side-
bands of plasma pressure, density and potential. Numerically,
they have large factors related to ~ <w§m> moments of the dis-
tribution function and are different from the standard ion FLR
term ~ 3k2p? /4. It is interesting that the sign of the finite ion
sound Larmor radius dispersion k? p? = kZT./ (miw3) is neg-

ative while the ion FLR and FOW are positive, so that for high

electron temperature 7. > 5.45T; [74], the dispersion may
change sign to negative. The kinetic and m = 2 effects on the
GAM dispersion are described in section 2.6.

In the literature, another expansion parameter
wa/(vti/qRy) ~ kep;q is also referred to as the FOW
effect. For the basic GAM the natural small parameters are
w > wqg and w > v /qRy ~ v1i/qRy, but wy can be of the
same order as the transit frequency v|/qRy, wa ~ v|/qR,.
Thus the parameter wq/(vri/qR,) ~ kepig does not need to
be small and only occurs as a result of the specific method
of the solution of the kinetic equation, see section 2.6. This
parameter, however, defines the relative contribution of the
transit and toroidal resonances to the mode damping as
discussed below and further in section 2.6.

The various GAM driving mechanisms compete against
the GAM damping, and their competition eventually deter-
mines the GAM occurrence and its amplitude for a particu-
lar set of plasma parameters. The collisionless GAM damping
occurs due to collisionless wave—particle interactions. Typi-
cally, and for g > 1, the GAM frequency is larger than the
particle transit w; = v|/gR, and toroidal drift wy frequencies,
wgaM > (wy, wq). For a small fraction of particles, however,
in the tail of the distribution function, the w, and wqy could be
of the same order as wgam resulting in the effective energy
exchange between particles and waves d€ /df = e(v|b + vq) -
E, where vq = w;'(v1/2 +v})B x VInB/B. Note that the
contributions of both, the poloidal, v ByEy /By, and the radial
components of the electric field, vy.E; are important. Respec-
tively, both resonances w >~ v /qRy, and w ~ wy are respon-
sible for collisionless GAM damping. We will refer to the
condition w ~ v)|/gR, as the transit (Landau) resonance and
the condition w ~ wq as a toroidal resonance. Interaction with
m = 1 components of the electric field, w =~ v /qRy, results in
the damping rate ~ exp(—w?q*R}/v%,) and for w? = Wiy ~
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v3,/R3, leads to the damping rate scaling as v ~ exp(—q?)
which is considered as one of the factors responsible for the
typical absence of GAMs in the tokamak core region. Often,
due to the GAM eigenmode structure k. > 1/r, the contribu-
tion of the poloidal drift velocity v40Ey is neglected, however,
it could be important for the global modes if k, ~ 1/r. The
energy exchange due to the interaction of circulating particles
with parallel electric field, v|ByEy /By, is also important for
energetic particle (EP) driven modes. This is discussed further
in sections 2.5 and 3.4.

The second order, m = 2 sidebands are often detected with
GAMs. Indeed, these are often instrumental in GAM detec-
tion since m = 2 appear as magnetic signals that can be mea-
sured externally (see sections 13.3 and 8.4). It has been noted
[54, 75-77] that the second order resonances w ~ 2v/gR,
related to the m = 2 sidebands could provide damping rates
comparable to those from the m = 1 harmonics. The higher
order Landau resonances occur at lower velocities w ~
mv /(qRy), so that more particles participate. This effect how-
ever competes with the smaller amplitudes of the higher
order sidebands which enter with a small dispersion factor
K?p? < 1. It was shown numerically that, generally, several
harmonics have to be included in the analytic expressions to
fully match the GAM damping results from full kinetic sim-
ulations [78, 79]. In general, the transit and toroidal reso-
nances are coupled, e.g. the resonance condition for the first
order resonance has the form A = w? — v} /¢’R§ — w3 /2 = 0,
so that both transit and toroidal drift resonances have to
be considered.

The collisionless wave—particle interaction may also result
in GAM excitation due to EPs with non-Maxwellian distribu-
tions leading to the inverse Landau damping (mode growth)
of GAMs. Furthermore, a strong contribution of EPs may
result in a significant modification of the eigenmode structure
and the appearance of new types of modes (see section 3),
EGAMs. In this case, the higher m sidebands and FOW
effects can be even more important due to larger values of
the k.pq parameter for EPs, also leading to GAM excitations
via the fractioanal resonances at large amplitudes, as discussed
in section 13.5.

The GAM is also subject to collisional damping due to
ion—ion collisions, vj;, which results in neoclassical viscosity
damping of poloidal rotation [9, 80], 7, ~ vii/e*, where the
value of o depends on the collisionality regime and whether
passing or trapped particles are considered. The ion—ion colli-
sions also result in a modification of the GAM real frequency
[80] towards the isotropic MHD result, due to the equilibra-
tion of the perturbed plasma pressure resulting in the isotropic
perturbations, (p1 — pj) ~ exp(—~.?), see section 2.10.

2.1. Basic mechanisms

The basic physics of GAM oscillations can be presented within
arather simple MHD model. Though it misses on many impor-
tant questions, e.g. the GAM dispersion, the radial eigenmode
structure, as well as damping and particle Landau resonance
effects, the MHD model presented in [ 1] is an appropriate start-
ing point of GAM theory providing a local MHD dispersion

relation and giving the GAM frequency scaling with plasma
pressure. Additional effects will gradually be introduced in
subsequent sections for a more complicated and complete

GAM theory.
The single-fluid ideal MHD equations have the form
dv 1
— =-JxB—-Vp, 2
Pa = oI% p 2)
1
E + JVX B =0, 3)
d
d—f+7pv-v=o. @)

The poloidal plasma rotation is a critical element of the GAM.
Within the ideal MHD model the plasma flow velocity v is
determined by the frozen-in condition (3). Then, in the low-
est order, the m = O perturbation of the electrostatic potential
¢y (r, t) produces the radial electric field E; = —V(;NSO, and, sub-
sequently, the poloidal plasma flow within the magnetic flux
surfaces, vp = cE, x B /B2. For simplicity, one can use the
circular geometry and the radial coordinate r as a magnetic
flux surface label. Finite plasma compressibility, V - vg # 0,
is another inherent element in the GAM picture. As the plasma
moves poloidally in the nonuniform toroidal field, compress-
ibility results in volume changes generating the m = 1 pres-
sure/density sidebands. In the linear approximation one has

Opr

— = —ypoV - Vg. 5
or YPo E (&)
Here, p; means the m = 1 harmonic of the perturbed pressure.
In low temperature (low ) plasmas, V - vg = —2vg - VInB,

which emphasises that it is the poloidal plasma flow which
generates the m = 1 pressure sidebands p;.

The restoring feedback that results in oscillations is pro-
vided via quasi-neutrality and the radial polarization current
compensating the compressible part of the diamagnetic current
fromthe p; perturbations. The expression for the perpendicular
current has the form

en dvg c

Ji = UJ_cib X ar + 2

d/dt=0/0t+vg- V.
leads to the equation

B x Vp, (6)
The quasi-neutrality V,-J; =0

enyc

—2%h x V- VInB —
B 0Wei

(Ve - vvigza)o) =0. (7

0, ~ c
X (EV J_¢0 + B_O
The last term in this equation is the m = 0 component of the
nonlinear inertial term Reynolds stress (RS) that will be dis-
cussed in section 4. Neglecting the nonlinear effects and using
in (7) the expression for the perturbed pressure from (5) one
has a basic GAM dispersion relation

2¢2
3 (3
R§

w? =4cA(VInB)? =

where cf = ypo/nom;, and (V In B)2 = (2R(2)) - for the large
aspect-ratio and circular cross-section used. In what follows,
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Table 2. Summary of model predictions for the GAM modal structure and sidebands.

Parameter Mode Notes
Flow m=0,n=0 v, magnitude follows RS strength
v o< (1/Ro)0p/ 0
m#0,n#0 Non-axisymmetric equilib. + rotation, section 16.4
Pressure m==+1,n=0 px poEr sin(f), up—down asymmetric
x ¢ sin(#), one-fluid MHD
Magnetic m=42,n=0 By  sin(26;), up—down & in—out asymmetric
m==+1 T, # Ty section 2.3, T, dispersion, section 2.12, equation (111)
m=+4 Shape & EGAM, section 8.4

B = By(1 — r/Rcos0) is assumed. Note that v =5/3 for a
monoatomic gas.

Plasma flow along the magnetic field line couples the GAM
with an m = 1 ion sound mode. This can be simply included
by adding the parallel flow v to the pressure perturbation
equation

% = =V - VE — YpoV Dy, - 9

Respectively, the parallel flow is driven by the pressure gradi-
ent force

ov
m;ing I — =V |p1,

ot

(10)

where V| = B - V/B,.
The effect of the parallel flow 0|, modifies the p; response
in equation (5) bringing in the finite 1/gR,, effects

. Vi . .
—iw | 1+ 2 | = —ypoV - Vg.

(1)

The quasi-neutrality condition (7), which is the equation for
the m = 0 harmonic, is not affected by the 9. Thus from (7)
and (11), and using V| = (qRo)~' (8/96), the dispersion rela-
tion, modified to take account of the m = 1 ion sound harmonic
f’lh , becomes

2.2
W= Cq

— 2 - - OO
Wi R} (w? — ¢*c?)

=0, (12)
which results in equation (1).

These simple arguments also highlight the polarization
properties of the basic GAM which involve the m = 0 har-
monic of the potential ¢y and the radial electric field E, and
the m = 1, ~sin # sideband of the pressure perturbation

2iyc
wB OR()

P =

poEy sin 6, (13)

and the m = 1, ~ cos ) sideband of the parallel velocity ¥,

i 0 (14)

o =——r T p
I wminggRy 06 P

The poloidal sin € distribution of density fluctuations has been
detected experimentally—see section 8.1. Table 2 summarizes
the predicted modal structure for the flow and the accompany-
ing sidebands.

It is worth noting that the dispersion relation (12) also
shows the presence of the degenerate mode w = 0. This degen-
eration can be removed by the nonlinear RS, plasma tem-
perature gradient, anisotropy, or rotation, so that the w =0
mode becomes a low frequency ZF mode (termed ZFO).
These details are described in sections 4.2, 2.13, 2.3, and 10
respectively.

2.2. GAM frequency in Kinetic theory and two-pressure
(CGL) model

This section describes how the superficial discrepancy
between the kinetic and fluid calculations of the GAM fre-
quency is resolved when taking into account the anisotropy of
the perturbed pressure.

The first kinetic derivation of the GAM frequency making
a direct connection to the original paper [1] was probably in
[9] in the context of the relaxation of the poloidal rotation in
tokamaks. There, the drift-kinetic equation (DKE) was used to
obtain the expression

7 v,
Woam = <4 + Te) FQ,
0

where the term with 7. = T/T; describes the electron con-
tribution, and v = 2T;/m;. Thus, the kinetic theory predicts
the factor 7/4 for the ion term compared to the factor v from
the single-fluid MHD. Noting that v = 5/3 for a monoatomic
gas, the factor 5/3 of the fluid theory should be compared with
7/4 of the kinetic theory. Although the actual difference is not
large, it is discomforting as the basic low frequency GAM
should be fully amenable to the fluid description. The dis-
crepancy between the GAM frequency obtained from the ideal
MHD in [1], giving equation (8), and the results of kinetic
calculations [5, 9, 81] that give (15), is not natural. The discrep-
ancy is resolved by realizing that in general the pressure per-
turbations due to the compressibility of the poloidal flow are
anisotropic even when the equilibrium pressure is isotropic.
In other words, the compressibility indices for the parallel
py and perpendicular pressure p; are different. The two-
pressure fluid model that takes into account the anisotropy of
the perturbed pressure fully removes [65, 82] the discrepancy
between fluid (8) and kinetic results (15). The two-pressure
((Chew—Goldberger—Low (CGL)) model [83] with | and p|
is equivalent to the equations for the evolution of isotropic
pressure p and the parallel viscosity tensor IT; = 37 (bb —

s)
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1/3)/2, which defines the pressure anisotropy, 37 /2 = p| —
p, . The equation for the evolution of the parallel viscosity
tensor can be obtained from Grad type moment equations
[65, 84]. For a monoatomic gas the perturbed pressure and
parallel viscosity are [65]

3dp

EE_SPOiVE'VlnB—O, (16)
d 2

4"~ ZPovE” VInB=0. 17)

The anisotropic part of the diamagnetic current due to IT) has
to be added to the perpendicular current that takes the form

d
M0y E+%bx vp+§bx VoI (18)

Ji= Wei dr

Then, the quasi-neutrality equation V - J | = 0 (7) is modified
as follows:
engc O

5 ~
— =0.
Bowei al‘viqso

(19)

Using the m = 1 components of the pressure p; ~ sin 6 and
parallel viscosity 7|; ~ sin ¢ from (16) and (17) one obtains
the kinetic result of (15) with a 7/4 factor for the ion part of
the GAM frequency. Note that the electron contribution with
the 7. factor in (15) is obtained by the addition of the electron
pressure to the diamagnetic current in equation (18), assum-
ing isothermal electrons, which is justified due to the condition
w < vre/qRy.

2c . 1.
EV <p1 + ZW1> -bxVInB—

2.3. Anisotropic plasmas — GAM and the low frequency
(zonal flow) instability

The GAM frequency is modified when an anisotropic equi-
librium is considered. But what is more important is that the
anisotropic pressure induces a coupling of the GAM and the
ZF (zero-mean-frequency, degenerate mode) so that the ZF
acquires a finite frequency. The latter low frequency branch
may become unstable when the anisotropy is sufficiently large.
This phenomena, and relevant results from the literature, are
reviewed in this section.

The effect of anisotropy in the background or equilib-
rium plasma pressure x = p, / p| # 1 on the ZF and GAM
behaviour has been studied in a number of recent works
[85-88]. These studies were performed within the MHD
framework with the two-pressure CGL model (see section 2.5)
from which a general GAM dispersion relation was obtained
in the form [87]

4
X [O Lo [sL)\_
T 5K <aa gt S =0. 20

where

1/3
2 In il
o6 B?

21

and a poloidal average over the magnetic surface defined
as (f) = (R3/2nr?) [ f db, ¢t = 3py/p. The entropy func-
tions are defined as in the CGL model: s = pyB*/p’ and
s; = p, /pB. From equations (20) and (21) one sees that for
anisotropic pressure, the value of the GAM mode, which
involves m = 0 and m = +£1 sidebands, depends not only
on the average of the poloidal oscillations of the magnetic
field B but also involves poloidal oscillations of plasma
pressures p, p| and density p, which enter via the S| S1
functions. Thus, the application of equations (20) and (21)
requires specification of p,,p, and p profiles. The latter
cannot be fully determined from CGL theory, and in gen-
eral require solution of the Grad—Shafranov equation for
the equilibrium.

However, an important result is that there now exist two
branches for w?: wi and w?, with wi > w? for qg>1.
Using the anisotropic pressure equilibrium conditions for a
tokamak with circular magnetic surfaces gives the following
expressions [87]

2
2 €| G1 =Gy
= 22
w:l: R(z) 2 > ()
where L 2 |
X, X
Gil=-+ 2420 4+, 23
1=t 3zt (23)
1 2y 1\* 2 Y\ 2
Go=(5+2+30-—) +5(1+3). o4
0 <2+3+3J_ q2> +612 +3 (24)
with

o 1\2\ /o 0. 1
M:<<Wﬁ>> (o) @

Note that the result depends significantly on the poloidal vari-
ation of the perpendicular pressure—which remains a free
parameter in the CGL equilibrium. The low frequency mode
w_ was called the zonal mode as it merges into the zero-
frequency ZF at x = 1, while the high frequency mode w
was called the GAM mode. For a plasma equilibrium with a
homogeneous average pressure (p + p, = p(¢)) then A, =
(1 —x)/2x and one obtains the earlier ideal MHD model
[85, 86]. An interesting result is that the w_ mode can become
aperiodically unstable for certain equilibria [85, 87]. Lakhin e?
al [87] give the following condition for the instability: A\ | <
x/6 — 1.

In general, the MHD/CGL results [85, 87, 89] show the
GAM frequency increasing with the x (anisotropy) and A
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Figure 4. Normalized GAM frequency wR,/vr and damping rate
¥Ry /vr vs (ion) temperature anisotropy 7' /T ;. from GK
simulations of standard GAM in a low f3, circular plasma, with
gRyw/vr > 1. Reproduced from [90]. © 2018 Hefei Institutes of
Physical Science, Chinese Academy of Sciences and IOP
Publishing. All rights reserved.

parameters. Similar behaviour was obtained from GK theory
[86, 90], and from an extended fluid model with Grad type
evolution equations for the heat flux [89, 91]. The effects of
plasma anisotropy in combination with toroidal rotation have
also been considered [88, 92]. Centrifugal and Coriolis forces
further modify the plasma equilibria, thus affecting the per-
turbations. A general low-frequency continuous MHD spec-
trum in a toroidally rotating plasma with anisotropic pressure
was derived in [88] giving expressions for GAM frequencies,
equivalent to (22)—(25), generalized for a rotating plasma.

The effect of an anisotropic ion distribution on the GAM
frequency and damping was also studied by numerically solv-
ing the GK equation [90]. As shown in figure 4, the GAM
frequency decreases with increasing ion y ! = T/Ty, while
the damping rate increases. For T /T > 1.5 the variation in
frequency and damping are less dramatic.

Finally, the GAM magnetic components in a collisionless
plasma with a weakly anisotropic ion distribution have been
investigated [93]. An m = 1 perpendicular magnetic pertur-
bation is discovered to be proportional to the relative differ-
ence between the perpendicular and parallel ion temperatures,
in addition to an m = 2 perpendicular magnetic perturbation
which always exists due to the m = 2 parallel return cur-
rent. That is, a small temperature imbalance, of the order of
10%, can induce an m = 1 magnetic component of comparable
amplitude to the m = 2By component.

2.4. GAM dispersion due to ion sound Larmor radius effects

A finite electron temperature provides an additional correction
to the GAM frequency that depends on the radial wavenumber
so that GAM becomes dispersive and, as a result will propagate
radially. The dispersion due to finite 7 is in fact due to the

1

ion transverse inertia, similar to, for example, the dispersion
of drift waves. This is the so-called ion sound Larmor radius
effect and is easily described within the two-fluid theory as
presented below.

The one-fluid MHD model for GAMs does not distinguish
separate contributions of the electron and ion temperature to
the GAM frequency. As discussed above, due to anisotropy
of the perturbed ion pressure, the ion temperature enters the
expression for the GAM frequency with a specific coefficient
~; = 7/4, instead of the standard v = 5/3 for a monoatomic
gas. In the main order, neglecting non-adiabatic contributions,
e.g. due to electron—ion collisions, the electron temperature
remains constant due to the condition w < vre /Ry, thus result-
ing in the electron contribution corresponding to the isothermal
ion sound velocity (with respect to the electron temperature),
wiam = 2(7T: /4 + T.) /miR3.

The electron contributions to the GAM can be described by
a simple two-fluid model with cold ions. Such a model also
instructively highlights another important effect: the GAM
dispersion due to the finite electron temperature, or the so-
called ion sound Larmor radius, p? = T,/miw?. The GAM
dispersion lowers the mode frequency and is responsible
for radial GAM propagation due to the finite group veloc-
ity Owgam/0k: # 0. The GAM dispersion is critical for the
eigenmode structure and determines the radial length scale
of the localized GAM eigenmodes. For cold ions the local
GAM frequency is

(26)

The dispersion corrections to the GAM frequency require
accounting for the second order sidebands of pressure and
potential, that need to be included in addition to the first
order sidebands ¢, ~ ns ~ sin#. Such effects can be easily
illustrated within the two-fluid model.

The main constitutive equations in two-fluid model are the
ion and electron continuity

On cny 0 _,

gy Ve V= 2nve - VInB 4V (my) — g o5 Vie =0,
(27)

on

Fn +vVe-Vn—2nvg - VInB —2nvy - VInB + VH (m;He) =0,

(28)
supplemented by the electron momentum balance (Ohm’s law)

- eE” - TCVH}’Z =0. (29)
The equation for the ion parallel velocity can be added to
include the ion sound effects.

It is often convenient to use the current closure equation
instead of the ion (or the electron) continuity equation. From
the quasi-neutrality condition one has

cny O

2nvpe - VInB + V) (nvni - nUHe) - B_ow ot

Vip=0.
(30)
The m = 0 components of the current closure and density
evolution are separated from (27) and (28) by the averaging in
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poloidal angle, (...) = (27)~! ( ..)d#, giving
—_— cng O ~
2nV,e - VInB — Bow §vi¢0 =0. (31)
on -
A ony, VB — 0 viqso —0. (32

Bow.i ot

Here, the oscillating (sideband) harmonics are defined as
(. . ) =(...)—(...); note that X = X, will be used below for
m = 0 perturbations.

For the adiabatic sideband, when 7 = e&ﬁ/ T.ng, and
Vpe - VInB + Vg - VIn B = 0, one can see from equations (31)
and (32) that the m = 0 component of the perturbed density
is zero, n = 0, while the m = 0 potential perturbation is finite,
¢ # 0. The equations for the oscillating sidebands follow from
the density equations (27) and (28)

. cny 0
(2% - VinB = () = & "Cl 5 Vie=0. (3
on cng 0 5
E—Z(nVE VInB—(...) - B cﬁv p=0. (34)

Here, the parallel ion density contribution is neglected, so the
coupling to the ion sound modes is omitted.

As follows from equations (33) and (34) the dispersive
effects in the two-fluid model with cold ions originate from
the transverse ion inertia (ion sound Larmor radius effect),
described by the last terms in (33) and (34). One has to
require the small parameter, k>p? < 1, to justify neglecting
the higher sidebands. Therefore, considering X = X, sin 6 +
5((26) cos 20, for X = (n, &)), one has the full system:

o L= . - i -
— iwi) — iwpd — iwk; pldr) + EWD¢(2c) =0, (35
o i, .
— lwitge) + Swpd) — iWki pide) = 0 (36)
— iOJkrngqAS(S) — iwDﬁ + %WDfl(QC) = O (37)
e
— Wk piPae) + 5 wpits) = 0. (38)

Here, dimensionless €¢A5(s,2c) /T, — qAS(quc) and 700 /N are
used, and wp = 2k.cT./(eBr). The mean part of the current
closure (31) in the form

— iwk?ple — 1—n(b) =0, (39)
with equations (35)—(38) results in the GAM with the ion
sound Larmor dispersion (26). The finite ion sound Larmor
radius corrections to the GAM frequency are negative, while
the finite ion temperature effects are positive as discussed in

the section below.

2.5. Transit resonance (Landau) and coupling to the ion
sound

The ion parallel motion in response to the m = 1 electric field
perturbation is responsible for the GAM coupling to the ion
sound branches and for the resonant Landau interactions due

to the w ~ v /gR, resonance. In this section a basic theoreti-
cal framework required for the description of these effects is
outlined.

Many significant GAM properties such as damping, disper-
sion and EP effects cannot be described within the fluid theory
and thus require the kinetic theory. A simplest form of the drift-
kinetic theory allows to highlight the main features of resonant
GAM interactions leading to damping and GAM excitation as
well as to obtain the ion-sound corrections to the GAM due to
the inertial ion parallel motion. The lowest order drift-kinetic
equation (DKE) can be written as [94]

9
—+v”b-Vf+vE-Vf+vd-Vf+1E”—f
ot m aUH
of of
+VE~VIHB<’U|8 m” +Ulavl>
v] dfo 28f0 o
+<281} urige V.b=0. (40)

Here, f = f (v),v%,r,1) is the particle distribution func-
tion where r is the guiding centre coordinate; in this order
(without the inertial drift) the difference between guiding cen-
tre and particle coordinates is not important. The low [ limit,
V x B ~0, is assumed so that the magnetic drift velocity

Vq 1S

In the linear approximation and omitting the effects due
to density and temperature gradients in the equilibrium, the
m = 1 harmonics of the pressure p; and viscosity 7 (or alter-
natively py; and py;) can be calculated from the linearized
form of the DKE (40) assuming the Maxwellian (isotropic)
equilibrium function f; (v, v?)

1
Vg = —
We

(41)

Ifo
—i(w — wd)f+ R 69f+_ HBUH
fo 2 ORY _
+ve VlnB(va g ) =0 @
where
o= - ﬁ+2k'9 (43)
Wq = cho 2 ’UH r Sin U.

From this equation, in the lowest order, w > (wd, | / qRo),

the perturbed distribution function, f; ~ sin 6, is due to the
compressibility of the v flow due to the m = 0 electrostatic
potential ¢y as

\750 -VInB
wv%i

Jo- (44)

}1 ~i (2vﬁ + vi)
Expression (44) clearly shows that the pressure perturbations
are anisotropic even if the equilibrium distribution function f;
is isotropic Maxwellian. The perturbed distribution function
(44) can be used to find the total contribution of the ion dia-
magnetic current including the anisotropic pressure tensor in
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equation (18):
(vaf) = (pr+p))bxVinB
MW
1 1
= <2p+7r>b><V1nB
mwe 2
=V (5bx Vp+ b x V-IL),  (45)
Y\ YPT 1)
where the pressure moments are
vt
pL=m 7f s (46)
pp=m <vﬁf> . 47)

Here, the angle brackets (..) means averaging over the full
velocity space. Instead of p, and p|, one can use the isotropic

pressure p = (2p, + p) /3 and the parallel viscosity 7 =
2(p; — p1)/3. The latter notations are convenient to make
the connection to the standard neoclassical theory of plasma
rotation in a tokamak.

The GAM oscillation feedback relies on the inertial polar-
ization current, the first term in equation (18), which is absent
in the lowest order DKE as given by equation (40). In other
words, the first term in equation (18) cannot be obtained from
(40). Therefore, the full quasi-neutrality condition has to be
obtained either from the higher order kinetic equation with
large flows [95-98] that amounts to adding the inertial term
to equation (40), as it was done in [8], or from the full GK
equation, as in [5]. Equivalently, one can use the current clo-
sure equation in the form (134), and use the DKE to find the
perturbed distribution function for calculations of p; + 7 /4.
Using equations (19) and (44) one finds the ion contribution
with the 7/4 factor as in the dispersion relation (15).

The DKE (42) also clearly illustrates the nature of the res-
onant ion Landau damping that leads to collisionless damping
of GAMs [9]. Here, we have to allow for the mode resonances
with the ion transit motion so that w ~ v /qRy > wq. Then,
one finds from (42) for the perturbed distribution function in
the form f = f. cos 6 + f; sin 6:

~ U ~
wh — q—lgofs =0, (48)
2 2
~ Y~ 2 = t+ul/2
Wi+ L7 =S g —0.  (49)
f qRof B()R() 0 ’U%i fO

where radially localized perturbations are assumed so that
k: > 1/r. Solving equations (48) and (49) one has the expres-
sion

7= 2w cquﬂﬁvo Uﬁ + vi/Z

w? — vﬁ /q*R5 BoRy

Jo, (50)

2
Ui

which shows the resonance at w ~ v|/gR, leading to the
transient resonance damping.

The transient time damping is often approximated
as vy exp(—vﬁr Jv3) oc weam exp(—g?)  [99],  where
V| = weamgRy. However, this simple estimate neglects
a toroidal resonance since w ~ v|/qRy > wq was assumed.
Since the effects of wgq = k: Vg4 correspond to the radial

7_‘__'_-—..
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Figure 5. Frequency of SW branches (thin solid), GAM (thick), and
pure GAM frequency (dashed) versus safety factor g. Reproduced
from [14]. © IOP Publishing Ltd. All rights reserved.

particle drift off the magnetic surface, such effects are often
called FOW. FOW effects are important both for the GAM
dispersion and GAM damping due to the toroidal resonance
w ~ wq. In general, the transit and toroidal resonances are
coupled even in the lowest (non-dispersive) order, so they
can be considered within the drift-kinetic approximation
as given by equations (40) and (18). However, since the
GAM requires an inertial current (omitted in the drift-kinetic
theory) it is more convenient to discuss the transit and
toroidal GAM damping in more general GK theory which
fully takes into account all inertial and FLR effects. GK
theory is also more convenient for the discussion of the
second, m = 2, harmonics that are important both for the
GAM damping and dispersion. This discussion is presented
in section 2.6.

As outlined in section 2.1, the GAM is inherently related
with ion-sound perturbations due to plasma motion along the
magnetic field, formally manifested via the o); and p; cou-
pling. Within the simple one fluid MHD, such coupling results
in the 1+ 1/2¢? correction factor to the GAM frequency.
In fact, the anisotropy of plasma pressure perturbations also
affects the contribution of the ion sound coupling which can
be accurately described by the full CGL model taking into
account the parallel velocity. Alternatively, such corrections
of the order of ~ v%;/ (w?q*R]) can be obtained from kinetic

i

theory. From equation (40) one finds
o 2 2
f1 =1 (2’UH +,UL) (1 — w2q2R3>
Using this expression in (46) and (47), one obtains from (19)
46

A
<1+49q )

Finite electron temperature allows the excitation of the par-
allel electric field E |1 related to the m = 1 harmonic of the
perturbed potential which also needs to be included into the
calculation of the ion response. The dispersion relation (52)
is then modified and additional terms of the order v7, /w?¢*R}

Q’E() -VInB

2
WO

Jo- (5D

2
2 Tug

_ LUn 52
Y TIR (52)
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Table 3. Various model predictions for the GAM frequency, with
2 =po/po — (Te +~iT))/m;, and v%i = 2T;/mj, and 7. = T./T; and M = Mach number.

Formula w?

Model

w? =2c2/R3(1 + 1/2¢%)

W =+ /RS

2= (7 +7e) /RS

P= i+ T)n/RiA+ )]
2 — (% + 1172(1 + 6i1/i/5w)*1) v /R3
2 = 2T, /miRo(1 — K2p2/2)
* = Bk; p)vri /RS

2 = 2/R3 fct.(k,¢c, . .)
i

2

i

= (Gi £ v/Go)/2¢} /R

One-fluid MHD + ion sound, equation (1)

Two-fluid MHD with warm electrons

Kinetic and two-pressure, equation (15)

Finite B correction, equation (110)

Two-pressure + collisions, equation (93)

Dispersive, T; = 0, equation (26)

Ion temp. oscillations, equation (127)

Non-circular, section 7.6

Equilib. pressure anisotropy, equation (22)

Rotation effects, section 10, equations (265) and (266)

should be included [11, 74, 100]

) v (17 VY 23 2 1
i R} (4 +Te> * W qR} ( g " Te * 27'3) '
The coupling to the parallel ion motion (effectively the
ion sound modes) displayed in equations (52) and (53) was
obtained as the corrections to the basic GAM mode frequency.
It was suggested [14, 101] that crossing of the GAM contin-
uum with ion-sound branches may result in non-perturbative
modification of the mode frequency and formation of the radi-
ally localized eigenmodes. Figure 5 from [14] shows local
GAM and ion-sound continua when higher m modes are
included. FLR and FOW effects need to be included near
the crossing point and it may be expected that the localized
GAM eigenmodes occurs, squeezed, between the ion sound
branches. It is interesting that somewhat similar localization
of GAM eigenmodes was observed in nonlinear simulations
in [102], see figure 26, and in [103], see figure 27.

Table 3 summarizes the various predictions for the GAM
frequency from different models and effects.

(33)

2.6. Coupling of transit and toroidal resonances

Coupling of the m = 0 and higher m = £1,+2, ... poloidal
harmonics (sidebands) is a fundamental feature of the GAM
dynamics. In general the truncation of the infinite series of har-
monics m = £1,+2, £3, ... requires some small parameters.
In this section we present two alternative approaches to deal-
ing with such series, describing the various pitfalls, and review
some of the literature results dealing with this problem. It is
shown that even in the lowest order coupling to the m = 41
order terms, the transientw = v /qR, and toroidal w = w res-
onances are coupled, in particular, affecting the mode damping
and growth rates due to EPs.

GK theory provides the most complete description of GAM
dynamics. GK formulation is required for the dispersion
effects related to the higher order (m > 2) sidebands, in par-
ticular, those related to the ion Larmor radius effects, ~ k2 p?.
As is well known, in the linear GK theory, the FLR effects
are manifested by the gyro-averaging operators represented by
the Bessel functions, o Jg(k 1) /wei), which are not directly

related to the magnetic gradient effects. For GAMs, there are
additional dispersion effects directly related to the magnetic
drifts, wyg = kvg. The FOW effects appear as second order
corrections due to small terms of the order of w3/w? < 1.
These are obtained as the expansion of the solution of the
GK equation in the (wg/ w)*" small parameter, and thus cor-
respond to the higher moments of the distribution function

~ <(vi /2 + vﬁ)2m> with m > 2. The dispersion due to the

finite value of the w3/w? (FOW) terms formally has a scaling
similar to the finite ion Larmor radius, since w3 /w@any ~ k2 p?,
though numerical values of the coefficient due to these terms
greatly exceed the typical value 3 /4 that comes from the Bessel
function expansion due to the ion FLR effects. In principle,
following the Grad scheme, it is possible to devise a hierar-
chy of the higher order fluid moment equations that would
capture the (wq/ w)* order terms, however, such equations are
not easily available at the moment, and are not more compact
and transparent compared to the direct GK formulations. The
higher order terms w3" /w?™ can also be derived in the drift-
kinetic approximation; the latter however misses the ‘real’
FLR effects.

A description of the dispersion and Landau damping is
possible with full Vlasov equation as a starting point [104].
Effectively, the expressions for the dielectric permittivity ten-
sor obtained in [104] correspond to the low frequency GK
ordering: w < wej, with finite (but small) values of the ion Lar-
mor radius, so that the dispersion effects due to k3 p? < 1 and
higher order terms (w3 /w*") are included. Here, the overview
of the GAM dispersion and collisionless damping based on the
GK approach is presented.

The standard GK equation in the form [105, 106] is used
for ions

e
fi= —fFOiQH-gi, (54)

. i e

(w — Wi + ) g = (W —wsi)
q T;

X (¢ — %A) Jo (kv Jwi)Foi,

(55)
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where the harmonic time dependence exp (—iw?) was assumed,

and
v? 3
i =wii [ L+ | 5 — 5 56
o <+n<”% 2)) .
v /2+ )
wg=i———(bxVInB)- V. 57)

ci

As standard in GAM theory, the normal magnetic curvature is
neglected assuming that radial gradients are large compared to
the poloidal, V; > V,. Then for V — ik one has

= —Wdi sin 9,

kocT; ny,
Wy = -

eB ny’

where Wy = kv, / (Rowe).

The GK equation (55) takes into account the EM per-
turbations (important for BAE modes) and drift effects and
has been used to study kinetic properties of GAM and BAE
modes in many works, e.g. [5, 74, 75, 107-109] and many
others.

For the electrons FLR effects are not important, so the
equations analogous to (54) and (55) can be used taking
into account that J3(k v, /we) — 1. In the limit (w, wpe) <
v/ qRo, and neglecting the EM effects and all kinetic effects
related to the damping due to electrons, the electron density
response for the sidebands is Boltzmann in the main order,
while the m = 0 component of the density perturbation is
zero. Thus, one can use 7, = e&)m/TenO, form = £1,+2, and
ng =0 form = 0.

In the context of GAM theory there exist two approaches
to the solution of the GK equation (55). In one approach, the
exact solution of equation (55) is obtained by the method of
integration over ion trajectories [ 110]. This method was widely
used in many kinetic studies of GAMs. For example, [108]
gives the formal solution of equation (55) for ions in the form
fi=> 0" fm exp(imb), where

fm - _eTﬁ {¢I’ﬂ - Jé(k’Ul/Ql)
> c—I+m wjn(g)Jn—H-m(g)
8 n,;wl w + (n — Dwri ¢[} S

Here, ¢ = wqi/wi = waigRy/v|, and only passing ions are
included.

Practical use of the expression (60) requires some care
in handling the infinite series of Bessel functions. The basic
GAM frequency has the ordering w > (wai, v|/gR,). How-
ever, the ratio of the magnetic drift frequency to the tran-
sit frequency does not have to be small, so the value of the

parameter £ = wq;/w, in the argument of the Bessel func-
tions in (60) can be arbitrary. For large £ > 1, the contri-
bution of the terms J,(&)J,—14+,(&) is not small for n > 1,
n—Il+4+m>1, so that formally all terms in the series
have to be included, even for w > (wai, v /gRo). Moreover,
small £ < 1 expansions of the J,(6)J,_i4m(€) ~ &> terms for-
mally contains singular ~ 1/v denominators that diverge
for v — 0, e.g. see equation (1) in [76]. It was shown in
[111] that these divergences are superficial and the diverg-
ing terms are cancelled with proper summation of all terms
to the relevant order. A somewhat similar procedure to remove
the 1/ v divergence was also used in [79]. Nevertheless, the
most common approach was to expand the Bessel function in
equation (60) for small £ and retain only the first few terms in
powers of £ = wg;/w;. As was shown in [111], this expansion
becomes equivalent to the direct expansion of the GK equation
in powers of w3 /w?.

The above noted technical difficulty becomes more severe
when using the expression (60) for the calculation of the
GAM damping due to passing ion resonances, with w ~
v|/qR,. Expression (60) directly shows the resonant contribu-
tions of passing ions at w = pv”/qRO, where p = £1,+2,...;
and the magnitude of the J,(§)J,4nm(§) coefficients indi-
cates the strength of the resonances at each value of p.
For large & = waqi/wi =~ gk.p; > 1, the J,(§)J ppm(§) coeffi-
cients do not decrease and all terms have to be formally
included. Therefore, the FOW effects are even more impor-
tant for the GAM damping in the regime wgi/w; > 1. The
importance of the higher order resonant term was pointed
out in [76, 78, 112]. The higher order terms were handled
numerically in [78, 112], where it was shown that many res-
onant terms, up to p = 10, have to be included for larger
values of g.

An alternative approach to the solution of the GK equation
consists of a perturbative treatment of the coupling of various
poloidal harmonics of the perturbed distribution function.
This suggests directly solving the GK equation in the form

of the series f = fy+ fccosf + fisinf + fo.cos26 +
fssin26..., assuming an analogous series for ¢ =
@0 + Py cosf + P sin b + ¢, o826 + Py sin20 ...  Such

an expansion is based on the fundamental small param-
eter that is required in the analytic theory of GAMs:
L/fi~ &2/d1 ~ 1/ ~ wa/w ~ kep < 1. This approach
was followed in [100, 107, 113, 114], in particular, for
studies of the GAM dispersion [111]. Note that in this
approach no restriction is placed on the value of the wg;/w,
parameter.

To illustrate the main idea we consider the solution for the
main order terms (all variables are for the perturbed quantities)

¢ = o + &5 sin b, (61)

f = fo+ fssin 0+ f, cos 0, (62)

which are sufficient for the basic electrostatic GAM including
the m = 0 and m = 1 harmonics of the perturbed potential and
m = 1 density perturbations; one can show that the ¢, cosf
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component is decoupled in the absence of the drift effects and
symmetric (in v)|) equilibrium distribution function.

From equation (55) one obtains the following system of
equations for (61) and (62)

1 eFoi ,
wgo + Swags = woo i, (63)
eFl
wgs + wdgo — lq?gc = Wehy Jo, (64)
SV
wee +i—g =0, (65)
4Ro
which has the following solution for g, and g,
(W2 — wwpgo)  eFo ,
s = J5, 66
& w? — v} /q’R§ — wi/2 Ti (66)
. (—waqﬁs/Z + (W — vﬁ/quﬁ)qi?o) eFoi , )
SRR -G T
where )
2 YU wd

is the resonance propagator.

Using ng = e /Teng and nyp = 0 one easily gets from
equations (66) and (67) the general dispersion relation in
neglect of dispersion effects

To— 1+~ <wd1]2/A> 4+ <ww§iJ§ JA) = (69)
Note that this dispersion relation fully takes into account
resonant effects due to the transient and toroidal reso-
nances In neglect of the resonances, A — w?, and one has
w? = (7/4 + 7o) W3 /k2p?. In general, the resonance propa-
gator shows coupling of transient (passing particles), w =~
w, and toroidal, w ~ wq/ /2 resonances, even in the main
order.

One can represent the resonance function as a series

1 S SN PO 7/
w? — UH/qZR2 Wiz w?—w? w? — w?
wilt L o)
e

which illustrates that the toroidal resonance can be viewed as
a series of multiple transient resonances of the higher orders,
such as 1/(w? — w?)", as has been noted in [115].

In [115, 116], an approximate procedure was used with
the expansion of the resonant denominator 1/ (w — wq) =

1/ (w — @q sin 0) near the § = +7/2. Note that the sign of
the magnetic drift term wq = kvripri (vi /2 + vﬁ) sin 0 in
[115] and a number of other works, is opposite to what
is used here in equation (58), which is the same conven-
tion as used elsewhere, e.g. [11, 116]. The representation in

equations (66)—(68) directly captures the toroidal resonances
effects 1/ (w? — wj/2) for the GAM mode involving the ¢,

and ¢, perturbations without any additional expansions. The
addition of second harmonics makes the coupling more com-
plicated; the expressions for f;, fe, foc and fo5 with the second
order resonant propagator A, were obtained in [114]. It would
be important to compare the GAM damping obtained with the
full propagator A in equation (68), or A, from [114], with the
results of the summation of multiple harmonics as in [78, 79,
112]. The representation (66)—(68) will also be useful in the
EGAM theory discussed in section 3. It is also worth noting
at this point that the above discussion of toroidal resonance
only applies to passing particles. Effects of the toroidal drift
of trapped ions are more involved and will be commented on
later.

2.7 GAM dispersion and radial propagation

This section summarizes the literature results on the dispersive
correction to the GAM frequency due to finite electron and ion
temperatures.

As discussed above, in the expression for the perturbed den-
sity the terms leading to GAM dispersion appear as fourth
order terms, n o (e¢o/T) wi/w*, therefore, the second order,
m = 2, poloidal harmonics have to be included in the solution
of the GK equation (55) for

& = P + ¢s sin O + ¢, cos 20, (71)

f = f, sin 0 + fo. cos 26.

The higher order terms ¢sg, P4c, 8- - -
order.

In the limit of w > v /¢R,, thus neglecting the ion Lan-
dau damping due to transit resonances, from equation (55) one
finds the equations for g, g, and g,., cf with (63)—(65),

(72)

do not contribute to this

1 e
w80 + 5Wags = Wfé(klw/wci)ff()%’ (73)
Wago + wgs — Ewdgzc = w]o(klvl/wci)fﬁ)(ﬁs’ (74)
e
— 5Wags T wg = wjé(kLUL/Wci)ffO@C' (75

The perturbation of the electron density with m = 0 com-
ponent is absent, np = 0 and the first and second poloidal
harmonics follow Boltzmann distribution:

e
= 7 Pus 76
T @, (76)
where 1 = (s, 2¢).

The perturbation of the ion distribution function is found
from the coupled equations (73)—(75) solved for g, and g,
and expanded to the fourth order in wq/w. Integration over the
velocity space gives the perturbed ion density which is closed
with the expressions for the perturbed electron density and
quasineutrality conditions for each harmonic. After some alge-
bra [100, 111] one eventually arrives at the dispersion relation
v

1
+ w?R3

7
(4 + Te> + kzple =0. (77)
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where the dispersive term D; has the form

3 (13 ,
Dl = |:4 — R%wz (4 +37—e+7—e
4
vk (747 481 35, 1,
22 B 78
ng4<32 Rty )] 09

It has been shown [111] that the same results can be
obtained using the exact solution in the form of equation (60).
As was generally discussed above, the dispersive corrections
in D originate from several different sources. The 3/4 term
is a result of direct ion FLR effects, while both the last terms
in round brackets, ~ 7202, /R3w? and 7307, /2Rw* are due to
the ion sound Larmor radius related to the finite electron tem-
perature (compare with equation (26)), and all other terms are
the FOW effects due to a finite ratio of the magnetic drift
frequency to the mode frequency, ~ w}/w*. Expression (77)
is identical to that obtained previously with different meth-
ods [11, 74]. Also a general expression for shaped magnetic
surfaces in [117] reduces to (77) in the absence of ellipticity
when k = 1.

It is worth noting that the form of the dispersion equation
given by equation (77) may not be unique but depends on the
way the initial equations are expanded in the small parameter
k?p?. For instance an alternative derivation gives the following
equation

s U (7o) s legp=0. a9
PRI\ 4 TTe) T =
where
K o[ 13 39 3,
D. = {z Tt R (‘I* gt ETe>
4
v (747 59 T,
a2, 80
ng4<32 g 8 (80)

In fact, equations (77) and (79) are equivalent to the order of
the terms k2 p?. This can be seen by noting that the dispersion
factors D and D, in these equations are different by the term
containing the lowest order dispersion equation:

w2 (1)
P (53))

As a result, the difference in D, and D, does not affect the first
order dispersive corrections in k2p? in the GAM frequency.
Expanding (77) in the small parameter, k>p? < 1, one obtains
for the GAM frequency

2
Ui

w2R}
35

8

2
Uri

Te
e ‘e
w*R;

2

81)

wZ

1
= w} (1 + 2k2p%D) : (82)

Here,

)“(13
+ Te

1 + 37, +7'62>

747
32

481
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(83)
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+(Fen)

Equation (83) gives the following group velocity for the
radial wave energy propagation

4

o
Ok;

1

) karpizD.

(84)

’Ugr -

It is interesting that the dispersion effects due to ion sound
Larmor radius are negative while those due to the finite ion
temperature are positive. The latter are dominant in plasmas
with 7. ~ 1. The sign of the dispersion correction D changes
to negative around 7. = T./T; ~ 5.45 [74, 118].

Analytic calculations of the GAM dispersion are cum-
bersome, and literature provides several conflicting expres-
sions for the higher order effects, e.g. expressions in [63,
116] are different from those in [11], and respectively from
equation (77). Other expressions [16, 101, 119, 120] miss
some terms and have some incorrect coefficients. It is also
noted that [118] presents an original method of the calcula-
tion of the GAM group velocity based on energy conservation
and compare the results from the fluid and GK theory, which
are in good agreement for large g.

2.8. Collisionless damping of GAMs

Here, the main results in the literature on the rate of collision-
less damping of GAMs are summarized and the comparison
with some numerical results are presented.

As was discussed above, in general, the collisionless damp-
ing of GAMs is a combination of the Landau (transit time)
w =~ v /qR, and toroidal resonances w =~ wg;/v'2. The GAM
damping due to the resonant contribution from Landau damp-
ing in equation (69), in neglect of the magnetic drift velocity,
provides the scaling exp(—w?q*R}/v}) ~ exp (—¢*) [9]. This
basic scaling is behind the common view that strong Lan-
dau damping for smaller ¢ values is the reason why GAMs
are more often observed at the edge rather than in the core
region. In [5], from the lowest order GK equation, neglecting
the dispersive effects, coupling to the ion sound, and magnetic
drift contribution to the resonance, the real part of the GAM
frequency and damping were obtained as

03 = G + Te> 7. (85)
. T
Q=0Q— lngﬂg exp (—93), (86)

where Q = gRyw/vri. The same expression for the GAM
damping was also obtained in [108, 121].

As noted above, the higher order transit resonances, w ~
va/qRO, p=2,3,..., are also involved, and may even
become more important, because the resonance parallel veloc-
ity is shifted to the lower values for larger p, so that the number
of resonant particles is increased thus resulting in increased
damping as pointed out by Sugama [75]. The expression for
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Figure 6. (a) Numerical solution for collisionless GAM relaxation
rate corresponding to k = k; p; = 0.1375 with 7 = 1. Number of
poloidal harmonics retained in the asymptotic analysis are N = 1
(dashed curves), N = 2 (dotted-dashed curves), N = 3 (solid
curves). (b) Decay rate as function of safety factor ¢. Dots are from
COGENT simulations with lines from numerically evaluated analytic
predictions with N = 3 transit harmonics with Z; = 1, ¢ = 0.2,

ki pi =27pi/Ar = 0.1375, and T /T; = 1 (blue), 0.1 (red).
Reproduced courtesy of IAEA. Figure adapted from [79]. Copyright
(2013) TAEA.

the GAM damping, taking into account the second order reso-
nance with p = 2, and neglecting the toroidal resonances, was
obtained in the form [75, 76],

NIET T 2 (23 + 167, + 4772
o = VT EATetn [} 203 s
2 Ry q*(7T+41.)
_ 7Pung | 223/ 4+ )71
Teol = TR, P(7/2 1 21

1 (kvrig :
A\ o

X [exp(—cbé){@é + (142705} +

R w8 1+7 .
X exp(—sz/4) {—12% + T ofé
3 I7e 57}2 2
+<§+16+32>WG : (85)

where &g = wgam gRo/vri. The term exp (—@3) is respon-
sible for p =1 resonance, and the term with exp (—&g/4)
describes the p = 2 resonance: w ~ 2v| /qR,,. Expressions for
helical systems were derived within the same approximation
[54, 77]. Analytic calculations of the GAM damping includ-
ing the p = 2 transit resonance are cumbersome as they have
to be performed simultaneously with the calculations of the
dispersive correction to the frequency, see section 2.7. There
are several different expressions in the literature [11, 75, 76,
116, 120]. Comparison with numerical simulations [78, 79,

TEMPEST, squares GYRO, and diamonds XGcC1 simulations.
Reproduced courtesy of IAEA. Figure adapted from [112].
Copyright (2009) IAEA.

112] show that the inclusion of higher harmonics in the ion
response, as in equation (60), improves agreement with results
of direct simulations with GK codes such as TEMPEST [78, 112]
and COGENTA [79]. The effect of adding higher transit harmon-
ics to the numerical solution is shown in figure 6(a) [79] and
in figure 6(b) with a comparison to results of COGENTA.

Similar numerical solutions with many transit harmonics
following the theory of [108] were compared with results of
GK simulations from TEMPEST, GYRO and xGcl [78, 112]. It
was shown that up to ten transit harmonics need to be included
to achieve agreement with the results of direct kinetic simula-
tions for larger values of the safety factor, g > 4. However for
smaller g ~ 2, the results from the different codes themselves
and the theory disagree up to a factor of 2, figure 7.

Expression (88) well illustrates the technical difficulty,
noted above in section 2.6, of using the parameter ¢ =
wdi/wy = kepyq as an expansion parameter. The contribution
of the second order resonance, p = 2 to the growth rate in
equation (88) has a pre-factor £%, which in general, does not
need to be small. Moreover the contributions of the second,
and higher order resonances, are increasing with p due to the
exponential factor exp(—wg/2p). Thus it is not obvious if the
corresponding series will converge as commented in [122].
Nevertheless, numerical calculations in [79, 112] show the
improvement of the agreement between the results of direct
GK simulations and analytical expressions with large number
of terms corresponding to the higher order transit resonances
w = pv/qR.

In the limit of large ¢ and shorter radial wavelengths, when
the £ parameter is large & = gk,p; > 1, the resonance with
the magnetic drift frequency w ~ wgy/ V/2 becomes dominant,
as was discussed in section 2.6. In this limit, the authors of
[11, 116], using alternative expansion for resonant particles,
have obtained a cumbersome expression for the damping rate
due toroidal resonances, which has a general scaling of the
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exp ( ) . (89)
This expression does not consider the trapped particles which
may significantly affect the damping rates. Trapped parti-
cle effects were considered in [54, 55, 57, 123] where it
was shown that additional trapping due to the ripples in
helical toroidal systems enhances collisionless damping of
GAMs.

A note on terminology: the limit when the toroidal reso-
nance is dominant, wq > wy, or £ > 1, corresponding to the
expression (89), was referred to in [11, 116] as KGAM but
also as FOW effects. The effects of the p = 2 resonances with
the prefactor £ as in equation (88) were also termed as FOW
effects in [76] and some later publications. In [117, 122],
the case of £ > 1, analogous to equation (89), was called
large orbit drift width (ODW), while the expression analo-
gous to equation (88) was called the low ODW limit. In this
review, similar to other literature, we refer to FOW as an
expansion in terms of the wq/w ~ k;p; < 1 small parame-
ter, i.e. on par with the ion FLR effects, except section 12.2
where large and small ODW classification are used, as in
original papers and subsequent comparison with experiments,
to avoid confusion.

2.9. Electron contributions to GAM damping

The electron contribution to the damping is often neglected
since, most commonly, the electron response in GAM the-
ory is assumed in the Boltzmann form, or its natural gener-
alization to the EM case. The natural justification is that the
transit frequency of passing electrons is much higher than the
GAM frequency, so generally it is expected that the electron
contribution to damping is small [124, 125]

)"

However, the trapped electrons can provide a larger contribu-
tion. This has been investigated analytically in [125] where it
was shown that the boundary between barely trapped and pass-
ing electrons is most important and the electron damping was
estimated in the form
2
(14 )

where D(c*,¢) < 1| is some weight function.

It was concluded in [126] that the trapped electrons have
negligible effect on the GAM frequency, but can be important
for damping. Thus, for large values of g ~ 7 the damping due
to trapped electrons can reach that of due to circulating ions in
the low ¢ region.

The effects of kinetic electrons were investigated in global
GK particle simulations with the GTc code [127] where it was
shown that indeed kinetic electrons increase the GAM damp-
ing in the high g region, as shown in figures 8 and 9. It is noted
that the GAM real frequency is weakly affected by kinetic elec-
trons and generally follows the scaling from [75], as shown in
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Figure 8. Comparison of GAM (a) frequency and (b) damping rate

between adiabatic and kinetic electrons at different g; solid line from
[75]. Reprinted from [127], with the permission of AIP Publishing.

8 9

figure 9. The GAM damping rate increase with the aspect ratio
€, as shown in figure 9, is an indication of the trapped electron
contribution.

The comparison of theoretical predictions on the role of
barely trapped and passing electrons [125] with dedicated GK
simulations was performed in [128] with full-f codes with
kinetic electrons GYSELA and ORBS. These results confirm that
the electron contribution to GAM damping is not negligible
and that analytical results show good agreement with simula-
tions. Similar to other works the GAM frequency is weakly
affected by kinetic electrons.

2.10. Collisional effects and collisional damping

This section summarizes the effects of collisions, presenting,
among others, the physical picture of GAM collisional damp-
ing and real frequency modification due to ion—ion collisions.

Collisions may affect GAMs in several different ways. In
the main order, the electron—ion collisions are ambipolar in
strongly magnetized plasma. While the electron—ion collisions
cause plasma diffusion across the magnetic field, they do not
produce any perpendicular current, and thus do not affect the
GAM directly. The electron—ion collisions may also affect the
parallel (to the magnetic field) electron current modifying the
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Boltzmann relation between the sidebands of the electron den-
sity and potential and affect the electron temperature evolution
due to the parallel heat flux as considered in [129] together
with the EM effects. Therefore, the electron—ion collision
effects will also appear in the next order, including m = 2 side-
bands, together with the dispersion due to ion sound Larmor
radius, finite ion Larmor radius, and finite <w%> / w? terms. To
our knowledge, such higher order effects were not considered
in the literature.

Contrary to the electron—ion collisions, the ion—ion colli-
sions directly affects the GAM resulting in collisional damping
and modification of the real part of the GAM frequency. Col-
lisional GAM damping was studied in the drift-kinetic theory
[8, 9, 130] and in fluid theory in [80]. Recently, results similar
to [80] were obtained in GK theory using various forms of the
collision operator [131, 132].

The basic behaviour of the GAM due to ion—ion collisions
can be easily understood from fluid theory [80]. The key effect
of the ion—ion collisions is the relaxation between parallel
and perpendicular components of the perturbed pressure, the
so-called magnetic pumping. The relaxation between the per-
turbed p, and pj can be described by the evolution equation for

the parallel viscosity, 7 ~ (p — p.), equation (17), which is

20

and the aperiodic root is w ~ —6iv;; /5.

An interesting property is that in the high collisionality limit
the GAM frequency decreases from the collisionless value,
\/m vri/Ro, to the one-fluid value \/% vri/Ry constant
value, which does not depend on the collision rate v;. There-
fore, GAMs ‘survive’ the collisional damping even when v; is
large, albeit with a different frequency, see equations (94) and
(99).

Equations (94) and (95) demonstrate a related interesting
feature: the non-monotonic behaviour of the GAM collisional
damping with collisionality. The damping is initially rising lin-
early at low ion collision rates v; but then decreasing inversely
at high collision rates, ~ vZ /R3v;. In both the low collisional-
ity ;i < vri/R, and high collisionality v; > v7i/Ro, regimes
the damping rate remains smaller than the real part of the fre-
quency. The damping is maximal at v; ~ v7;/R. In the regime
of high collisionality, v; > vr; /Ry, the GAM frequency nat-
urally reduces to the isotropic one-fluid MHD result, because
in this limit collisions make pressure perturbations isotropic.
This behaviour was also found in GK theory as illustrated in
figure 10 obtained in [132] as discussed below.

Collisional damping was also studied directly with kinetic
theory. Novakovskii [8], using a specific collision operator in
the Hirshman—Sigmar—Clarke form, derived

Yeol = _4/7’/1 (96)
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Gao, starting from a GK model with a number-conserving
Krook collision operator, derived [131]

WA
(7/4+Te)7+?+%(472+47V1+V12):0’ O

where 7; = vjqRy/vri and 5 = yqRy/vri. For Uy < 1 and
7 < 1 this simplifies to:

. 31/1 (98)
Tl T 14 1 87,
while for 7 > g and 7 < 1 one obtains
31/1
VYeol = (99)

(14 + 87 + 8U7R3 /v3,)

Damping rates derived from a drift kinetic model with dif-
ferent collision operators, including Lorentz operators, Hir-
shmann—Sigmar—Clarke form, and Krook operators with and
without energy conserving collision rates were compared by
Li [132]. For a number only conserving Krook operator at
low collisionality Li obtained Gao’s equation (99), with a very
weak v; dependence in the real frequency. However, with a
number and energy conserving (NEC) operator the damping
rate is a factor of 9 smaller:

Vi

3(14 + 87, + 8L2R2 /12,

Tnec = (100)

21

7
et

VIRG
3 (Tv}, + 41ev}, + 4U2RY)

Uri

Ry

Wnee =

with real frequency
) 1/2

(101)

The structure of the equation obtained in fluid theory (93)
is similar to equations (97)—(101) obtained with kinetic
approach. Note that the latter equations correspond to a pure
fluid limit and any differences between them and fluid result
(93) should come from the form of the collisional operators
used in these calculations. Overall, the collisional GAM damp-
ing rate is non-monotonic, initially rising linearly at low ion
collision rates v; but then decreasing inversely at high colli-
sion rates, as shown in figure 10. At the same time, the GAM
frequency decreases from the collisionless (in the kinetic or
two-pressure model) value, +/7/4 + 7 vri /Ry, to the isotropic
perturbed pressure (one-fluid or two-fluid MHD) value, which
does not depend on the collision rate. This effect has a sim-
ple explanation as it was discussed above: the primary role of
ion—ion collisions is to mix parallel and perpendicular pres-
sure, so the GAM frequency reduces to the isotropic pressure
result. The conservation properties of the collision operator
used in [132] affect the frequency in the limit of strong col-
lisions. For the number-conserving-only operator the GAM
frequency limit is /1 + 7. vr;/Ro as v; — oo, while for the
NEC operator the limit is y/5/3 + 7. vri /Ry, corresponding
to the isothermal and adiabatic behaviour of ions.

The GAM damping due to the ion—ion collisions originates
in the relaxation of the parallel viscosity, 7| ~ (p| — p.), in
other words from mixing parallel and perpendicular pressure,
the process which conserves the total energy. One notes that
the Krook operator, while still approximate but with energy
conservation gives the result (100) closer to the value in (94)
obtained with the collisional relaxation rate (in equation (92))
from the 13-moment Grad approach [84] with the collisional
operator in the Landau form [133]. More accurate results can
be obtained by using the 21-moment system [84], which also
includes the relaxation of the higher order (energy weighted)
viscosity tensor, 7% in notations of [84]. In the latter case, the
coefficient 6/5 in equation (92), and respectively in (93), has
to be replaced with another coefficient 6/5 — 6 x 178 /(5 x
205) = 1.042, which will slightly modify the results (94) and
(95). The accuracy of the fluid results obtained with Lan-
dau collision operator for the relaxation of the viscosity and
energy weighted viscosity tensor is expected to be higher than
those employing the reduced forms of the Krook collision
operators [131, 132]. The accuracy of the Grad 21-moments
system corresponds to the accuracy of the Braginskii trans-
port equations employing the direct solution of the kinetic
equation with Landau collision operator with two-polynomials
expansion.

Additional collisional effects, such as due to the heat flux
related to the ion—ion collisions [ 134], will appear in the higher
order compared to the relaxation of the parallel viscosity. The
electron—ion collisions also enter the GAM damping via the
parallel electron current [129], which is, in general, related to
the m = 1 magnetic perturbations.
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Table 4. Model predictions for the various classes of GAM damping. Notes: zero orbit (drift)

width = k;p;qg — 0.

Damping rate, ~y

Model

Collisionless

v = —¢’ expl—¢*(7/4 + 70)]

v = —(kep)? expl—+/7/4 + 7/ &epil
Equation (88)

Equation (269)

Equation (270)

Collisional

v~ Tl

~v = —4/7v; equation (96)
Equations (98) and (99)
Equation (100)

Landau/Watari [99] zero OW, circular
Gao 2013 [131] large OW, circular
Sugama [75] finite OW, circular
Gao 2008 [108] small OW with shape
Gao 2010 [117] large OW with shape

Lebedev [9], general collision operator
Novakoskii [8], HSC operator

Gao 2013 [131], number conserving Krook operator
Li 2015 [132], number and energy conserving operator

The presence of impurities was found to enhance the col-
lisional damping of ZFs by at least a factor of Z., as it was
shown in case of an additional single species of charged heavy
impurity ion Z > 1 [135]. The enhancement increased with the
aspect ratio Ry/a.

Table 4 summarizes the various model predictions for
the GAM collisionless and collisional damping. In practice,
expressions for the damping rates should be understood as
qualitative estimates. In general, there are several mecha-
nisms and distinct time scales in the damping rate: v;, wp and
vri/qR,. The toroidal resonances and higher harmonics, as
discussed in section 2.6, will also strongly affect the damp-
ing rates. At low frequencies the trapped ions will become
important. Interaction of various mechanisms and sensitivity
to initial conditions [136] is expected to create several dif-
ferent damping regimes [23], which also depend on magnetic
surfaces shaping.

2.11. Convective, continuum damping and phase-mixing
effects

Radial inhomogeneities (profile effects) of plasma parameters
bring a number of new effects to the GAM dynamics such
as GAM propagation and an effective GAM damping. Pro-
file effects are also crucial for the GAM eigenmode formation.
The main ideas and some literature results are discussed in this
section.

In addition to the damping due to the wave—particle inter-
actions and collisions, GAMs are also subject to an effec-
tive damping related to the radial propagation and associated
phase-mixing (PM) [137-141]. Essentially, different mech-
anisms involved in such damping are all due to the non-
eigenmode nature of the considered perturbations. Plasma
inhomogeneities, giving rise to the radial dependence of the
local GAM frequency, result in additional amplitude decay due
to PM thus amplifying the wave damping due to the direct
energy absorption related to collisions and wave—particle res-
onances. Nonlinear interactions also affect the radial propaga-
tion effects [142]. Here, we discuss some basic ideas illustrat-
ing convective and continuum damping, which are discussed
further and contrasted with observations in section 9.6.

22

A simple deviation from the local theory in an inhomoge-
neous medium results in the convective damping. To illustrate
this we consider a simple case of cold ions so that the radial
diamagnetic current is only due to the electron pressure. Then
the basic GAM equation (19) for the m = 0 component of the
potential perturbation 50 has the form

engc 0

_— 102
Bowei ot ( )

—2Bib X Ve VInB — V2 o =0,
0
while the electron pressure perturbation is determined by the
compressibility of the vg plasma flow due to the ¢, potential
perturbation,
on on
- V.vy = —
i TV VE=
The electron temperature is assumed constant so that p. = Te.
One finds from (103)

— znoVE . VIHBO =0. (103)

2noTec
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Equation (102) takes the form
peme s 2 (0p 10 o T T0h 0 o N
1Bowciwqr¢0 By ( orr 89va r 06 8rVInB =0
(105)

Here, in addition to the standard term with radial deriva-
tive of the pressure 0p./Jr, the second term with the poloidal
pressure gradient is retained. Using (104) in equation (105) the
GAM dispersion equation is obtained in the form

2c2

(-0

The non-local (due to the deviation from the local Boussinesq
approximation) term i/q,r describes the radial propagation
and, associated with this, a reduction of the amplitude of the
wave packet in non-homogeneous medium. This expression
(106) illustrates a simple example of convective damping due
to the radial propagation. Such damping is a non-dissipative
process that occurs due to the wave radial propagation.

The GAM dispersion makes these processes more compli-
cated when the radial inhomogeneities of plasma density and,

i
qrr

w2

(106)
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Figure 11. Contour plots of E; as function of k, and time 7 for
(a) aky = 0 and (b) aky = 7. Adapted from [149]. CC BY 3.0.

especially, temperature are included [140]. Radial GAM prop-
agation is important for GAM coupling to turbulence and low
frequency ZFs and also can be modified by turbulence and
nonlinear interactions [142—148].

PM distorts the radial structure of the propagating
GAM and, for a wave-packet, can be characterized by a
radial wavevector k.(f) which increases in time as k; o
—(dwgam(r)/drt, i.e. proportional to the local radial deriva-
tive of the continuum frequency [11, 139, 150, 151]. The linear
time evolution of the radial wavevector was directly shown
in simulations [149, 151, 152], see figures 11 and 12. The
variation of the local k; results in the effective GAM ampli-
tude decaying in time as A oc 1~ ! exp[—iwgam(r)], giving rise
to the continuum damping. An approach based on the com-
plex eikonal formulation was recently developed to study the
two-dimensional propagation of the GAM in inhomogenous
plasmas [153].

In the context of damping mechanisms, collisionless and
collisional GAM damping are expected to be enhanced by
the PM resulting in a stronger combined damping mechanism
[139]. In particular, the damping increasing with the temper-
ature gradient was demonstrated in [139, 151], cf figure 13.
Estimates of the damping rates indicate that the combined
PM/Landau damping (PL) mechanism can raise the effec-
tive damping in realistic tokamak conditions by an order of
magnitude [139, 151].

It was suggested that continuum damping may also enhance
other dissipation mechanisms, such as viscosity, leading to the
damping factor of exp[—(t/t0)3] with 7y ~ v~'/3 where v is
viscosity [137].

The continuum damping in general disappears if a local-
ized eigenmode is formed, though some residual damping may
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code including first order global effects (blue crosses), for a case
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still be present due to tunnelling and coupling to the con-
tinuous spectrum. A simple example of the stationary (non-
damped) eigenmode in a plasma with strong pressure gradient
was presented in [154]. In general, such inhomogeneous situ-
ations where plasma parameters (specifically the local GAM
frequency) are functions of the radial coordinate, should be
treated as an eigenvalue problem with appropriate boundary
conditions. The eigenmode (the GGAM) that exists due to EM
effects is discussed in the next section.
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When the dispersive effects are included the GAM
behaviour can be compared with the resonance and mode con-
version for shear Alfvén waves [10]. The model differential
equation used to describe this situation, as obtained from the
GAM dispersion equation (83), has the form

o=

where « is a numerical parameter characterising the FLR dis-
persive corrections to GAM, as in equation (83), and wgam(7)
is the radial profile of the local GAM frequency. In neglect of
the FLR effects, equation (107) describes the GAM continuous
spectrum. It also shows that for & > 0 the propagating solu-
tion with k2 > 0 exists in the region w > wgawm, while for w <
wgaMm one has a localized solution with kf < 0. A pointr = ry
where the frequency of the external perturbation wy matches
the local GAM frequency, wy = wgam (7o), becomes a reso-
nance point. Expanding equation (107) near the resonant point
one has the eigenmode solution in the form of the Airy func-
tion with the characteristic length scale A ~ (ap?L,,)!/?, where
L' = wgiy Owdam/Or is the characteristic length scale of the
GAM frequency variation near the r = ry point [16, 155, 156].
For a typical situation with Ow3 /97 < 0, one has the out-
ward propagating solution in the region r > ry, and decaying
solution for r < ry. Note that in the case of an electron dom-
inated dispersion, when o < 0, see section 2.4, the regions of
the decaying and propagating solutions (and the direction of
propagation) reverse.

It is expected that a solution in form of the Airy func-
tion will carry a finite energy flux away/towards the reso-
nant point r = rp. One can envisage the situation when the
GAM is generated near the local resonance and the wave
packet propagates away from the generation region, or the case
when the GAM is generated off the resonance and the wave
packet propagates towards the resonance where the energy
is absorbed (mode conversion). In both situations the mode
frequency (and the location of the resonance) will be deter-
mined by the source frequency. The mode conversion process
is similar to the shear Alfvén wave resonance [10]. Radial
GAM propagation was observed experimentally, as discussed
in section 9.6, but to our knowledge there was no clear indica-
tion of the nature (and frequency) of the external perturbations
that would resonantly couple to the GAM via this linear pro-
cess, nor a clear correlation of the generating source with the
resonance point.

Note also that in the case of the Alfvén wave resonance
the range of possible resonant frequencies is rather wide,
from high frequency kjva ~ va/gR, to the very low values
w = kjva — 0 for k| — 0 in a sheared magnetic field, while
for GAM it is limited by the range of the radial variation of
weam(r).

One can also readily see that in the case of the pos-
itive dispersion, a > 0, and with a non-monotonic GAM
profile with an off-axis maximum wgam(r) = wgam(ro) +
Weam(ro)(r — 10)* /2, wiam(ro) < 0 one can easily construct
from equation (107) an eigenmode solution localized near
r = ro. This localization mechanism is purely electrostatic and

d? w?
2
ap; @QS + ((JJZ -

T (107)
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not related to the m = 2 magnetic component as discussed
in section 2.12, but requires m = 2 electrostatic components
which are important for the dispersion.

Table 5 summarizes the various forms and model effects for
the GAM radial structure.

2.12. Electromagnetic effects and relation to Alfvén
eigenmodes

Finite plasma pressure couples the GAM with magnetic pertur-
bations, modifying the GAM frequency. Coupling to the m = 2
magnetic sideband results in the GGAM eigenmodes. These
and related EM effects are described in this section.

Though the basic GAM is seen as an electrostatic mode,
in general one expects finite magnetic fluctuations in finite
B plasmas. The presence of the magnetic component is eas-
ily seen in the standard MHD model that show the coupling
of Alfvén and SWs due to the geodesic curvature [12, 13,
158, 159].

[2V¢| + (Bo - V)W" By V)| ¥+ KBgz 0,

(108)
2 1

[uﬂ (1 + ;) + 2By V) (Bo- V)] Z+wKY =0.
Ua B()

(109)

Here, Z = V - £ describes full plasma compressibility respon-
sible both for the radial diamagnetic current that provides feed-
back for the GAM oscillations as well as for the SWs, ¢ is the
plasma displacement vector, and Y = (ic/w) 0¢/0¢ is effec-
tively the poloidal plasma velocity, v is the poloidal magnetic
flux, and K = (2/B}) K x By - V) is the geodesic curvature
operator, K = (b - V) b.

The first and last terms in equations (108) and (109) are
responsible for the local GAM eigenmode while the second
terms in (108) and (109) describe the coupling to the ion-sound
mode. One can already see that the first term in (109) has the
B = ¢2/v3 correction to the basic GAM dispersion relation
[160] ,

2c;

Ri(1+5) (1o
Such finite plasma pressure corrections arise from the per-
turbation of the parallel magnetic field due to the radial dia-
magnetic current. The perturbation of tbe parallel magnetic
field can be found from the equation By, - B+ 47p ~ 0, which
means the absence of compressible magnetic sound for low
frequency modes. Therefore, within standard MHD theory,
one can expect small m = 1 magnetic perturbations of BH’
correlated with pressure perturbations, BH ~ —47p /By.

From equations (108) and (109) it is also easy to see the cou-
pling to m = 2 magnetic perturbations of the Alfvén type. The
m = 2 component is critical for the existence of the GGAM
eigenmodes [12, 13, 161-163]. When the m = 2 is artificially
omitted from full MHD equations, no eigenmode occurs, even
for profiles with a local maximum in the GAM frequency as
shown numerically [164] and analytically [165].
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Table 5. Summary of model predictions for the GAM radial structure.

Structure Mechanism Prediction
Continuum w X ¢s/Ry MHD Exists with T, & T; # 0
(a) Non-linear DW turb. A = narrow. Profiles set location of singular r = r( surface
(b) EP v distribution A & location set by EP

(a) MHD + EM, non-local
(b) ISW/Alfvén resonances

(¢) Kinetic FLR/FOW +VT

Eigenmode w = const.

Global w = const. Off-axis max. in wgam
m = 2 mag. coupling
(1) reverse shear

(2) high beta

m =0 & 1 flow coupling [157]
A setby wgam & wsw [14] or wa profiles [15]
A~ Apiry X pil/3Li/3, p; — 0 converts to
continuum, PM — propagation [11, 16, 108, 155]

(a) Turb.: A set by profiles
(b) EP: A set by beam width
waam ~ ws(1 4+ 1/2¢) [12, 13]
weam ~ ws/(1 + B) [158, 159]

In contrast to the m = 0 and m = 1 components, which are
localized near the local frequency maximum, the m = 2 mag-
netic component has a tail (a halo) extending to the plasma
edge [12, 13] and outside in the vacuum region [166, 167].
It is this tail that allows the detection of GAMs by external
magnetic probes. These features of m = 2 magnetic signatures
have been clearly demonstrated in numerical MHD simula-
tions with CASTOR code [12, 13, 164]. Within the framework
of the ideal MHD theory, several models including the m = 2
component for global eigenmodes with the local maximum of
the GAM frequency have been developed [160, 162, 168—170]
and in particular for profiles with monotonic temperature and
positive magnetic shear [161, 163]. The coupling to the m = 2
component is in fact controlled by the value of the ¢* param-
eter. The detailed theory of the poloidal mode coupling includ-
ing the m = 2 and higher harmonics in plasmas with high beta,
q2 B < 1, was presented in [160]. This analysis, based on MHD
theory, was extended for non-circular magnetic surfaces [169]
and to plasmas with energetic ions [168]. Simple expressions
for GAM frequencies in various ¢*> regimes were proposed
and verified numerically as well as with the solution of the
Mathieu’s equation that takes into account infinite coupling of
Alfvén and sound harmonics [160].

The EM effects on GAMs were also studied with kinetic
theory in whichm = 2 [171] and m = 1 [100, 107, 114] side-
bands were considered. It was noted from kinetic theory that
the m = 1 magnetic component appears in the higher order
in the k,p; parameter compared to the m = 2 sideband [109].
Kinetic analysis reveals that the m = 1 magnetic component
may be related to the anisotropy of the equilibrium ion tem-
perature [93] and plasma rotation due to the equilibrium radial
electric field [172]. The m = 1 component was also found in
the ideal MHD analysis [173] and in two-fluid theory with
dissipation and heat flux due to the electron—ion collisions
[129].

The simple two-fluid model with cold ions shows [174]
that the m = 1 magnetic component appears as a dispersive
correction (therefore smaller as k;p, compared to the mag-
netic m = 2) and inevitably related to the m = 0 density per-
turbation. The amplitude of the m = 1 poloidal magnetic
field perturbation By = E; cos # and m = 0 density 7 are
related as
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The discussion above was concerned with the GAM mode
which has an m = 0 perturbation as a principal component and
zero toroidal number, n = 0. Another type of tokamak oscil-
lation with finite m and n are the so-called BAE, which are
closely related to GAMs. BAE modes are detected in many
situations as being excited by energetic ion beams which lead
to enhanced losses of energetic ions. Clearly EM, and with
a cluster of different toroidal harmonics, their characteristic
frequency is inside the beta-induced gap [175] and below the
toroidicity-induced Alfvén eigenmode (TAE) frequency. They
show both Alfvén mode type ~ B/+/n and ion-sound type v/7
scaling, but ‘... A BAE is not necessarily an Alfvén eigen-
mode...” [176]. It is notable that the comprehensive BAE
review [176] does not cite the Winsor paper and does not
mention the possible relation of BAEs and GAMs. Similarly,
some earlier fluid derivations of GAM-like dispersion rela-
tions were performed for the EM modes with finite poloidal-m
and toroidal-n mode numbers [4], and the KGAM dispersion
relation was obtained for low-frequency Alfvén modes in [5],
again without the reference to the Winsor paper [1].

The relation of the BAE and GAM was explicitly realized
in studies of the excitation of the AC eigenmodes by EPs [70],
who have derived the following expression for the AC modes

()i ()

4 + Te
This dispersion relation can be easily derived from
equations (108) and (109). The main harmonic, m = ngq,
is EM and the ideal MHD-like with approximately
Ejjyn = =V | Pn — %8Am,,/8t ~ (0, while the pressure
Pmx1, and potential sidebands <2~5m¢1,n generated by the
geodesic coupling are mostly electrostatic. In the limit
kj = (m —nq)/qR, — 0, the dispersion relation (112) is
reduced to the GAM modes. This is the so-called BAE and
GAM degeneracy, which at a certain level allows the treatment
of the BAE and GAM modes within a unified formalism [11,
74]. The geodesic effects on Alfvén waves were further
studied in the full (Vlasov) kinetic theory [104, 177]. The
deformation of the Alfvén continuum due to the geodesic
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effects results in the chirping modes that could be used for
the g-profile diagnostic [72, 73]. A detailed analysis of the
coupling of ion sound, EM effects and geodesic curvature in
plasmas with magnetic shear reveals the global beta-Alfvén-
acoustic-eigenmodes modes that can be destabilized by EPs
and have been detected in experiments [15, 178—180].

2.13. Drift (diamagnetic) effects on GAMs

Density and temperature gradients mix parities of the GAM
sidebands which, in particular, result in the excitation of the
cos 6 sideband of density (temperature). As is discussed in
this section, one of the possible consequences is the GAM
destabilization due to the ion temperature gradient (ITG).

There are only a limited number of works that take into acc-
ount the profile gradient (drift) effects on the GAM dynamics.
The m = 0 component of the GAM is not subject to the drift
effect, but the m = 1 components of the density and poten-
tial obviously may be affected by the gradients. Due to the
frequency separation between the GAM mode and the m = 1
drift frequency, wgam > Wi, Where wy, = —cTen(/reBono,
and kg = m/r is taken as the wave vector of the drift mode,
the drift effects are not commonly considered in the GAM
theory, except in earlier work where GAMs were considered
as a special case of more general EM drift and drift-Alfvén
modes [4, 5]. Drift effects were also considered in the theory
of the closely GAM related BAE [113, 179] with finite poloidal
and toroidal mode numbers, m, n. Here, a simple model is pre-
sented which takes into account the drift effects on the GAM
mode with m = 0 and m = 1 potential perturbations.

First, a simple model of cold ions is considered, thus
neglecting any effects of the ITG. The basic m = 0 GAM
equation (19), or (7) is not modified by the plasma density gra-
dient nj,. However, the density gradient has to be retained in the
m = 1 equation (27), or (103), which now has the form

% + Q’E . Vl’l() — ZnOVE . VlnBo =0.
Here, v¢ and Vg are respectively the m = 1 and m = 0 com-
ponents of the E x B velocity. One can see that the drift term
in (113) mixes the parity and couples to the cos # component
of the density (potential) perturbations, which are usually not
included in GAM theory. Thus, the general equation for the
m = 1 density becomes

(113)
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Here, the coupling to the higher order sidebands cos 26, sin 26,
... has been neglected. These are important for the disper-
sion but can be omitted in the main (non-dispersive) order.
Separating the density perturbation into the cos# and sin 6
components, 1 = ng sin 6 + n. cos 6, one finds

)

Using this expression in the m = 0 equation (19), or (7), one
obtains
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Although the electron drift frequency w;. correction to the
GAM frequency is generally small, it may contribute to the
GAM local frequency in regions of large density gradients.

The effects of the ITG are more involved, and more inter-
esting. The inclusion of such effects into the GAM theory is
also straightforward within the two-fluid MHD model [181].
The ion pressure equation (16) is modified as follows

:(

while the equation for the ion parallel viscosity (17) remains
unchanged. Now, the radial diamagnetic current in the m = 0
quasineutrality equation (19) should include both the electron
and ion pressure contributions from (32), (115) and (117). The
final dispersion equation has the form [181]

(

where w,; = —wy, /7 with 7, = T; /T and n; = JIn T; /Oln n.
The solution of this equation has two branches:
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where Wiy = (7/4+7") v} /R}.

The higher frequency branch is the usual GAM modified
by the drift effects and the low frequency branch is related
to the zero-frequency stationary ZF. It is interesting to note
that the low frequency mode becomes unstable for n; > 3/4.
This branch is possibly related to the low frequency ZF branch
which is destabilized by pressure anisotropy or by plasma flow,
etc—see sections 2.3 and 10. It is noted that the approach
of [181] did not include the ion FLR corrections in the iner-
tial term. For EGAMs (eigenmode GAMs) these may become
particularly important. Further studies here are warranted.

To our knowledge there have been no attempts to include
drift corrections into the comparison of theoretical predic-
tions for the GAM frequency with those of experimental
measurements.

2.14. Geodesic oscillations of ion temperature

Ion diamagnetic effects result in ion temperature oscillations
which are similar in nature to GAMs. The same effects lead
to the additional short-wavelength branch of GAMs due to a
finite ion temperature. This section presents the fluid model of
such effects.

The standard GAM does not induce an m = 0 componentin
the density. This is most easily seen from the electron density
equation (28) which shows that for isothermal Boltzmann elec-
trons the contributions of the electron pressure and potential
exactly cancel each other and the m = 0 density perturbation
is absent. Such a constraint is absent for the ion pressure. The
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ion pressure equation can be written as [182]
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This equation includes the additional inertial terms associated
with finite ion temperature fluctuations, such as the inertial

heat flux q,,
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where the collisionless diamagnetic heat flux

1
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The ion polarization flux is also modified by the addition of
the ion pressure

1 0
Vv = ;mb X & (VE +Vpi)
c 0 1
= — — |V —V.pil, 122
Bon 8t< ¢¢+en J.P) (122)
where c
i = —— ;. 12
\f: enBob X Vp, (123)

Separating now the ion pressure perturbations into the m = 0
and m = 1 parts, p and p, respectively, so that p = py + p + p,
where p, is the equilibrium pressure, one has for the pressure
evolution

30, _ c _
29 —SpVE~VlnB—56—Bb x V (pT) -VInB
5 . .

+ 5P0V~V1+V~q1 =0, (124)
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One can observe the following important features in these
equations: (a) the m = 1 pressure oscillations, that were
responsible for the m = O radial diamagnetic current, now con-
tribute to the m = 0 pressure perturbation in equation (125);
(b) the contribution of the m = 1 pressure in equation (143) is
not cancelled by the m = 1 perturbation of the potential, as it
happens for the m = 0 density; (c) the m = 0 ion pressure adds
to the inertial ion response in equation (125) and also adds an
additional driving term b x V (pT) - V InB for the p excita-
tion, in addition to Vg - V In B in equation (124); (d) the radial
ion polarization current in the quasineutrality equation is also
modified by the m = 0 ion pressure perturbation

2(nVpe —nvV,) - VInB +nV - v, = 0. (126)

Thus coupling to the m = 0 ion temperature (pressure) pro-
duces an additional geodesic type mode. This additional eigen-
mode, associated with oscillations of the ion temperature, in
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general, appears as a short wavelength mode with a frequency
scaling as [183]
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where (3 is a numerical coefficient of the order of unity. In [184]
this coefficient was obtained from the two-fluid MHD theory
(and neglecting the anisotropy of the perturbed pressure) in the

form
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where 7, = T./T;.

The important feature of this short wavelength mode is
its strong dispersion due to the linear dependence on k.p;,
w ~ wqi. Note that here k. p; appears not due the ion FLR effect
but from the magnetic drift frequency due to the radial wave
vector k;, which is a result of the radial excursion of particles
from the magnetic surface (FOW effects). The short wave-
length geodesic oscillations were identified in nonlinear fluid
simulations [183] where it was concluded that this branch is
more effectively excited by ITG turbulence.

2.15. Electron GAM

Geodesic effects also affect the higher frequency turbulence
modes, such as electron temperature gradient modes (ETG).
Geodesic coupling via magnetic perturbations leads to a sepa-
rate branch of unstable EM short wavelength ETG mode [185]
and results in symmetry breaking of ETG in toroidal plasmas
[186]. A higher frequency GAM type branch, the so-called
electron GAMs (el-GAM), was also predicted [187]. Using
simple fluid/MHD equations a high frequency GAM with a
dispersion relation different from the conventional GAM is
obtained:
\/EUTC krpe(l + Te)
Ry (7e+ k?pez: )’

where vy, = (Te/me)l/2 and 7, = T/T; and k, is the GAM
radial wavenumber. It is interesting that the el-GAM frequency
is a radially propagating mode and has a frequency scaling
analogous to the short wavelength ion temperature oscilla-
tions—see section 2.14. They are also expected to be restricted
to the plasma edge by Landau damping. Since the Landau
damping rate scales as exp(—w?¢?R3/v%,), thus for the el-
GAM to have a non-negligible amplitude requires both g > 1
and 7. ~ 1. The el-GAM is coupled to ETG modes and can be
driven by ETG turbulence as modelled using the fluid descrip-
tion [188] and also including the finite 3 effects [189]. It should
be noted that the ZF growth rate for ETG turbulence is slower
than for DW/ITG due to a higher effective inertia [58] and thus
weaker. No obvious experimental observations of el-GAMs
have been reported to date.

(129)

3. Theory of energetic particle driven GAMs

Energetic particles (EPs) are a robust source of free energy
leading to the appearance of geodesic acoustic-like modes as
reported in experiments, cf [44] and section 13. EPs can drive
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GAM modes, with frequencies close to the natural GAM fre-
quency of the bulk thermal plasma, as well as excite modes
with frequencies different from that of the bulk GAM mode.
The physics of such modes is closely related to the physics of
natural GAMs and both can be conveniently discussed within
a uniform approach. One has to note however that the ter-
minology in the literature differs, e.g. the often used term
EGAMs may be used for the GAM-like and for GAM related
modes of different types. In this review, and to emphasize the
common physics, we refer to such modes as EP GAMs and
EGAM/GAMs, while in reference to the original publications
we will use the terminology of the authors to avoid the con-
fusion. In this section, an overview of the main developments
and results in EGAM/GAM theory are presented.

As is the case with many other instabilities in plasmas, some
anisotropy in the population of the EP is required to excite
GAM-like modes. The pressure anisotropy is an important
feature of high energy particles, and the theory of GAMs in
plasmas with anisotropic pressure provides a simple insight on
the special case of GAMs driven by EPs. Equations (20)—(25)
in section 2.3 illustrate that an anisotropic plasma pressure
p1 # pj may result in a significant modification of the natu-
ral GAM frequency and the appearance of an additional mode
which may become unstable. As a matter of terminology, in
the literature, such modes often are not discussed as EGAMs,
though their physics have much in common with some types,
in particular, with the so-called reactive EGAMs [190].

Another type of the anisotropy that may induce GAM
modes is the presence of beams of high energy particles. Such
instabilities may be viewed as analogous to plasma—beam
instabilities. Furthermore, two types of EP related GAM
modes discussed in the literature, dissipative (resonance) and
reactive EGAMs [190, 191], are analogous to two regimes
of plasma—beam instabilities, respectively to kinetic, or finite
temperature plasma—beam instabilities, and to fluid, or cold
plasma—beam instabilities. As is well known, plasma beam
instabilities are driven by the population of particles with
an inverse, or beam-like, derivative of the distribution func-
tion, dfy/Ov > 0, at the point of the resonance with some
plasma eigenmode, k - v = w. Formally, for a beam with a
finite temperature (finite energy spread) the contribution of
such particles is described by the pole (residue) resonance giv-
ing an imaginary contribution to the dispersion relation result-
ing in the instability. This is the mechanism of the so-called
dissipative or resonant EGAMs which require a kinetic theory
treatment. Alternatively, cold beams, with delta-function like
distribution functions, result in real contributions to the disper-
sion equation, so that the full dispersion equation has all real
coefficients. As a result, unstable eigenmodes appear in com-
plex conjugate pairs, resulting in reactive instabilities. This is
the mechanism of the so-called reactive EGAMs, which, in
general, can be described by fluid theory. The actual conditions
when the beam may be considered cold, and therefore lead to
the reactive EGAMs, will depend on the type of anisotropy of
EPs (‘the beam shape’), and the relation of the beam temper-
ature (energy spread in the beam distribution function) to the
bulk plasma temperature.
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Another aspect of EP driven GAMs is their relation to the
GAM existing in the bulk thermal plasma. In some situations
the contribution from high energy particles may be consid-
ered as a small perturbation to the initially stable (without
EP) GAM that existed in the bulk plasma. In other cases the
effect of the EPs is large and result in the appearance of modes
with significantly different frequencies from that of the bulk
plasma GAM mode. This suggests the distinction of pertur-
bative and non-perturbative solutions. Perturbative and non-
perturbative solutions are understood here as regular and sin-
gular perturbations: regular perturbations modify the old solu-
tion, while singular perturbations result in the appearance of
new solutions.

A simple classification of reactive and dissipative EGAMs
may be transparent and attractive but it has some limitations.
Essentially such a classification is based on the reduced fluid
theory where the GAM dispersion relation (in the absence of
EPs) is described by the polynomial in w (typically of the sec-
ond order in the absence of dispersive effects), and the notion
that the contribution of high energy particles is real (for reac-
tive EGAMSs) or imaginary (for dissipative EGAMs). In fully
kinetic theory, and in regimes when both bulk and high energy
ions have finite temperature, the dispersion equation is tran-
scendental and there are multiple solutions even in the absence
of high energy particles [192—194]. Thus, in kinetic theory,
in addition to the basic fluid GAM mode with weak damp-
ing, there exist heavily damped modes. With addition of high
energy particles the basic fluid GAM may acquire a positive
imaginary part of the frequency, turning it into an EGAM, in
the terminology of [194] —EGAM from GAM. Alternatively,
aheavily damped mode may become unstable leading to a Lan-
dau EGAM [194]. Typically, the latter show a stronger modi-
fication of the real part of the frequency compared to the case
of EGAM from GAM [192, 194]. Therefore, it is also possible
that the reactive contribution of EPs modifies the real part of
the GAM frequency without making it unstable, and additional
effects may also be at work resulting in the instability. Table 6
provides a basic classification of the EGAM/GAM excitation
mechanisms and the dominant mechanism defining its radial
structure.

It is generally thought that the destabilization of GAM
modes by EPs is related to the sign of the derivative of the
EP distribution function at a resonant point, and, that the con-
dition for the instability can be determined by the sign of the
energy exchange term, i.e. the mode becomes unstable when
the energy input from EPs (due to the inverted distribution
function) exceeds the energy losses due to the damping in the
thermal ions [192]. The situation may become more compli-
cated when the contribution of the EPs have both a cold beam-
like reactive part and the pole-like resonant part. The presence
of the equilibrium flow due to the beam may create the con-
dition for the existence of a negative energy mode excitation
which can be made unstable by positive dissipation, i.e. the
EGAM can be excited when the resonant energy exchange
is negative, that is the total energy losses are positive. Such
a situation of the EGAM instability of the negative energy
mode induced by the positive dissipation was considered
in [195].
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Table 6. Simplified classification of EP driven GAMs by: (1) excitation mechanisms and

(2) radial structure.

1. Excitation mechanisms

A: Dissipative EGAM
- Full kinetic theory—multiple solutions

- Warm-beam—imaginary contribution to the dispersion relation

- Inverse Landau damping [45]

A-1: EGAM from GAM (from weakly damped/stable modes) [192, 194]
A-2: Landau EGAM (from heavily damped modes) [194]

: Reactive EGAM
- Reduced fluid theory

- Cold-beam—real contribution to the dispersion relation

- Two stream instability [190, 191]

. Radial structure

1. Fast ion distribution

ii. Local GAM continuum maxima (GGAM)

Despite that the discussed classification is somewhat sim-
plified, and that more complex realistic scenarios may occur,
it is still useful for highlighting different physics and regimes
of EGAM/GAM instabilities that depend on the type of the
distribution function of the EPs as they are produced by vari-
ous sources in fusion plasmas, such as neutral beam injection
(NBI), RF heating, and fusion products.

The analysis of GAMs in plasmas with anisotropic pressure
well illustrates another point often missed or neglected in the
existing literature on EGAMSs. As noted in the brief account
of the pressure anisotropy effects in section 2.3, the pressure
anisotropy is a part of the plasma equilibrium and the con-
clusions on the GAM modifications and possible instability
are sensitive to the details of the equilibrium and the nature
of the anisotropy. The quantitative analysis of the conditions
for EGAM instabilities should include a consideration of the
equilibrium constraints taking into account the contribution the
EPs, which is rarely (if ever) done in the EGAM theory. This
could be especially important in situations when EPs provide
a large fraction of the total plasma pressure. The main ideas
and equations of EGAM/GAM theory can be presented within
the fluid and kinetic frameworks as similar to those presented
in sections 2.2 and 2.5. This will be done in the next sections.

3.1. Hybrid MHD-kinetic formulation for the EGAM/GAMs

The presence of high energy particles modifies the basic con-
stituent equation—the quasineutrality condition

Ne = N + Ny, (130)
where n., nj, and ny, are the electron, bulk ions, and high energy
particle density, respectively. One of the approaches in the the-
ory of EP related GAMs is based on the fluid like reformulation
of the quasineutrality condition (130) in the form of the cur-
rent conservation, V - J = 0, which is often more transparent.
Using continuity equations for all species,

% +V- (n(yv(y) - Oa

o (131)
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where o = (e, i, h), the current conservation, equivalent to the
condition (130), becomes

V - (nvi + npvy — neve) = 0. (132)
As in the basic GAM theory, it is most convenient to use the
m = 0 component (by averaging over the poloidal angle) as the
main equation: (V - J, ) = 0. In the next steps the calculation
of the transverse currents in (132) proceeds with some simpli-
fications, as in the original work [45]. Formally, it is based on
the strong magnetic field expansion when the velocities of all
species can be written in the form

Vo = VE + Vp, + Via, (133)
where respectively vg, v, and v, are the electric, diamag-
netic, and inertial drifts. Upon summation over all species
in equation (132), the electric drift contributions cancel out
due to the quasineutrality, and the diamagnetic drifts sum up
into the diamagnetic current due to the total pressure from
all plasma components. The inertial currents are also added
together producing the m = 0 equation

¢ 2 2 - A
5 (V (b +bo+ b+ pun) b x VInB)
enpiC enon 0 5 =
- Iy =0. (134
(Bowci Bowch> g VL% (134)

Note that the diamagnetic current has to be calculated tak-
ing into account full pressure anisotropy as in equation (18).
Here, pj and p, are the m = 1 components of the bulk plasma
pressure (electron + ion), and py, and pyy, are the m = 1 com-
ponents of the parallel and perpendicular pressure of high
energy particles, and engic/Bowei + enonc/Bowen = ¢*p/Bo,
where p = ngim; + nonmy is the total plasma density, we, =
eBy/myc. An equation in the form of (134) was obtained in
[45]. Note that equations (133) and (134) respectively, neglect
the effects of FLR for thermal and high energy ions.

Kinetic effects and resonances are generally important for
EPs and are included in the kinetic calculations of the high
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energy particles pressure

P + Pin = /m (vﬁ + vi/z)?hd%, (135)

where 7{1 is found from the kinetic equation, e.g. either from
the reduced DKE (40) or from the full GK equation (55).
When the pressure perturbations of the thermal ions is found
in the MHD limit, equation (134) together with (135) and
the kinetic equation for the EPs form the so-called pressure
coupled MHD-kinetic formulation.

As was discussed in section 2.1, the GAM disper-
sion relation is defined by the balance of the inertial
current (last term in equation (134)) with the radial diamag-
netic current (the first term in equation (134)). Assuming
that the response of the pressure of the EP is similar
to that of the bulk plasma pressure, (pyn+ pin) ~ (P +
PnonTn/(negTi) ~ () + PL)(von/vn)*non/neq one  gets a
simple estimate for the GAM frequency modified by the pres-
ence of the EPs [193]

w = \/wé (14 G (oon/va) non /) (136)
where vo, is the characteristic ‘beam’ velocity of the EPs,
mhv(z)h ~ Ton, and Ty, is their characteristic temperature. The
numerical coefficient C}, depends on the type of the EP dis-
tribution function [50, 193]. The response of the EPs, how-
ever, can be very different from that of the thermal plasma
due to kinetic resonances so that the estimate (136) would not
apply, and the EP modified GAM frequency is below that of
the natural GAM.

3.2. Local kinetic theory of EGAM/GAMSs

One of the restrictions of the hybrid MHD-kinetic approach
presented in section 3.1 follows from the fluid-like represen-
tation of the velocities of all species in the form (134) which
means that the ion inertia, both for thermal ions and EPs, is cal-
culated in the cold plasma approximation, and thus provides no
systematic guidance on how the effects of FLR can be incorpo-
rated for thermal and EPs. An alternative approach is to use the
full GK equations for thermal ions and EPs and the quasineu-
trality condition in the original form, equation (130). In this
straightforward approach one uses the full GK theory to find
the perturbed distribution functions, f, ,, and, respectively, the
densities of the ions and EPs, n,, ,,; @ = (i, h), in terms of the
potential harmonics, ¢,,, m = 0, 1, ... The electron density is
typically taken in the Boltzmann form n,, = e®,,/Teny with
m # 0, unless the electron kinetic effects are included. The
m = 0 component of the electron density is usually assumed
to be zero, but see comments in section 2.12. The solubility
condition for the resulting system of equations for ¢,, defines
the local EGAM/GAM dispersion relation. This direct and for-
mally most accurate approach was used, e.g. in [50, 192—194].
This approach is illustrated here using the direct separation of
the harmonics in the potential and the distribution functions
in each order, as in the section 2.6, and differences with other
formulations commented on.
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The high energy particles are described by the GK equation
similar to equation (54) but allowing the anisotropic equilib-
rium Fyy, (€, p, ) for high energy particles:

OF
fu=ed ol + g (137)
v, O oK
(w—wdh+ 11}3” 89) —weo agshjz(klvl/wch)
(138)
Here,
R . ky (vi/Z—i—vﬁ) .
Wdh = —wWgp SIn 0 = ——————72 in 6, (139)

chh

and we, = eB/m;. is the high energy particle cyclotron fre-
quency; in what follows it is assumed that the EPs have single
charge and are of the same species as the bulk ions.

Separating the perturbations of the potential and dis-
tribution function into the m =0 and m = 1 components,
similarly to (73) and (67), ¢ = ¢y + ¢, cos f + ¢, sinf, and
fin = foin + fean €088 + fiin sinf, one can obtain from
equations (137)—(139)

wdhw BFOh vH/ T’RG | OFy, )
_ g J
gno = ¢ A, ego 2g 7o
wavy ., OFon
— . J, 140
26]ROAh ¢ 86’ ( )
w2 8F ww 8F
8hs ¢€ Bt ¢o y
w| anh >
— ] , 141
qROAh ¢C ( )
L 3F0hJ L BFOh
Bhe =1 R, 7 08 10 T T ReA, P 0E
2_ .2 2 F
_ﬂ_ﬁ@i_@awh, (142)
h

where the resonance propagator for the high energy particles
isAp = w? — vz‘ /q*R3 — w3,/2. One can see here that, similar
to the expression (68), the transit and toroidal resonances are
coupled in Ap.

Also included here are the cosf parts of the perturbed
potential and distribution function that can be coupled via
the asymmetric (in v|) equilibrium function of the EPs,
(v OeFon), # 0. The second order sidebands, ¢y e, &s- S2c-
are neglected assuming the standard small parameter in the
GAM theory: fo/fi ~ ¢2/dy ~ &1/ dg ~ wai/w ~ kep; < 1.
From the quasineutrality condition for the m = 0 component,
and taking into account that for the electrons the m = 0 density
perturbation 719 = 0, one has the equation

o (noiLyy + nonLgo + nonGo)

— s (”OiL})s + ”Oths) +igenonld. = 0 (143)
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Ly = % (— (Foi (1 =J3)) + <F01 2AJO>) (144)
Lyy = <88th (1- Jo)>h (145)
Ly = <X%@’J§>h (146)
Lo = Tlo <F°‘ 2A J°2> (147)
Ly, = —<sz: %J§>h (148)
s (Zmm o

The first term in the Li, expression is the ion inertia and the
second term corresponds to the perturbed pressure of the ther-
mal ions in (134). The L) term corresponds to the perturbed
electron pressure (134). Respectively, the Lfy) and L? terms are
due to the pressure and inertia of the EP related to the ¢, and
L., Lb. are related to the pressure perturbations due to the ¢,
and ¢, sidebands.

Equations for the potential sidebands ¢, and ¢_ are found
from the quasineutrality conditions for the m = 1 components
and have the form

(%

- + nOlLss + nOhL55> —+ d)() (I’lOiLiSO + I’l()hLls]O)

Toe
+ igenonll, =0, (150)
be (T_Oe + nonL?, ) — igononLly + igsnonll, = 0. (151)
Here,

sk ((-54) o
L —<% (1 - Z—il@) >h (153)
0 = TLOi <WT%F01> (154)
23 —<1°:Z}I%Fgm’fg>h (156)

- (1 (- 58),
Ll = <;§;‘Zh aathJ2> (157)
e (o ).
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The averages over the respective distribution function are

defined as |
()= — [ C.od, (159)
noh
1 3
(...):—/(...)dv (160)
noi

The terms Li,, and L} in equation (143) are the main terms
defining the basic GAM dispersion equation. The term L}
determines the contribution of the electron temperature. The
main order contribution from EP is given by the L{3 term,
which scales to the main order GAM terms as the pressure
of high energy particles to the thermal pressure: Li, /L2 ~
nonTon/noiToi- The FLR effects of the high energy particles
are described by the L3} term, which is generally smaller than
the bulk ion inertia as ngp/ng; < 1. The addition of the high
energy particle to the sideband coupling is generally small as
non/noi < 1 so that the amplitude of the sideband ¢, is mostly
defined by the electron temperature, ¢s/@o ~ (Toe/Toi) wa/w.
Additional corrections due to the high energy particles are
also typically small, (non/noc) (Toe/Ton) k2pf < 1. As can be
seen from equation (151), due to the asymmetry of the dis-
tribution function <'U|\F()h> # 0, the EPs may couple to the
¢, sideband normally omitted in the standard GAM treat-
ments, though the amplitude of the ¢, sideband would nor-
mally be small: ¢c/¢0 ~ (}’l()h/noe) (TOe/TOh) (’UTh/u)Ro) ~

(non/noc) (Toe/Ton) (TOh/TOi)l/z <1l

Equations (143)—(151) form the most complete kinetic
model that describe local EGAM/GAMs in the main order, i.e.
in neglect of the dispersion effects. Though, some dispersive
effects, both from thermal and energetic ions, can be obtained
from equations (143)—(151) by expanding to the higher order,
~ (k¥pt, ktpl), their retention would not be self-consistent,
because of the omitted terms due to the second harmonics
Pres Do and go, 85.» Which are formally of the same order,
(wi/w*, wi/wih) ~ (ki p!, kipt), and typically larger numer-
ically, as explained in section 2.6. Since the second harmonics
of ¢y, Pos and g, g5, are not included here, for consistency,
only the first order expansion has to be kept in the ion Larmor
radius term (Fo; (1 —J3)) ~ —kZp?/2, becoming equivalent
to the cold ion inertia in equation (134). Additional correc-
tions from EP are normally small as explained above, how-
ever, when resonant damping effects from thermal ions (which
have additional small parameters) are included, the additional
effects from EPs may become important, especially in plasmas
with large fractions of EP. An analytical dispersion equation
based on equations similar in structure to (143)—(151) was
derived in [193, 194] but neglecting the toroidal corrections
to the resonances, and assuming the symmetric bump-on-tail
distribution function for the EPs so that (v|dsFon), = 0 and
coupling to the ¢ sideband was not present.

Formally, it is also possible to use for the EPs the kinetic
solution in the form of the formal series (60). As was discussed
in section 2.6, treatment of resonant terms with this approach
is difficult to implement technically because of the absence of
small parameters to cut-off the infinite series. For EPs with an
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explicit optimal ordering w ~ vry/gR,, it is even more prob-
lematic since resonant effects cannot be treated as small pertur-
bations and the infinite sequence of resonances w ~ Iv| /qR,,
I =1,2,... would have to be included. Moreover, the param-
eter §, = wangRy/v| ~ gk.p, can be large for EPs and the
infinite series in equation (60) with J, (&4) J,y (§h) cannot be
truncated. Typically in most works only the / = 1 terms are
included for EPs neglecting the magnetic drift resonances w ~
v /qRy > wa, or the opposite limit w ~ wq > v /qR, is con-
sidered [50]. Our approach allows the analysis of the reso-
nant interaction in the optimal ordering w ~ v, /gRy ~ wan
for EPs.

Below, the simplest formulation of the GAM/EGAM dis-
persion equation in the main order is given, similar to [156,
195, 196] but extending resonances to the optimal ordering
w ~ vr/qRy ~ wq for both thermal ions and EPs.

In the main order the m = 0 EP particle density is due to ¢,
only and is given by the expression

< h
_ - (16D
Together with the bulk ions contributions L, and L, one has

In the expanded form one has a general local EGAM/GAM
dispersion equation in the form

2
Wdh OFon

w? — vj /q*R) — w§, /2 O

(Sl’lho

5o

rion
2

h2
>~ nOhLO() = —

2

2,2
enoik; vz 1 “GaM
2

162
T (162)

> + nOth% =0.

2
L (3 +02/2) .
- oi
viRG \ w? — v} /q*Rg — wi/2
Toe nop o (vﬁ + vi/Z)

2

F01>

> _o.
h

(163)

2 p2
T()i Npoe UTiRO

(

The EGAM/GAM dispersion equation in the form similar
to (162) was given in [156, 195, 196] with the difference that
the toroidal resonance correction due to w /2 was omitted
in the resonance denominator. In expression (163) the tran-
sit and toroidal resonances damping on thermal and energetic
ions are included. Our formalism also allows simple treatment
of the magnetic drift resonance driven modes [50], which is
described in section 3.6.

w? — vt [q*R§ — wgy /2

(7 422 /z)2 OF,

_ non_Toi
w? — vj /q*R} — wg,/2 O

2 p2
noi VriR;

3.3. Selected examples of EP driven GAMs for different EP
distributions

In fusion plasmas, various sources of EPs are expected. Here,
an overview is presented of some specific numerical and
analytical results for the GAM like modes driven by EPs
with some common distribution functions considered in the
literature.
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In the original EGAM paper [45], the authors used the pres-
sure coupled MHD-kinetic model to investigate instability for
the anisotropic slowing-down distribution function in the form

1
= —— € —
=g Xp( )

where A and P, are the pitch-angle and toroidal momentum.

P; (A=A
eAW AA?

(164)

The perturbed distribution function ﬁ was found from the
lowest order DKE

dfi A€ Ofom

= (165)

dr 0€°

Here, fon is the equilibrium distribution function of the EPs, £

is the energy, and
dé

—:evd~E0:—m

2 2
= (’U” +o? /2) vio-VInB,  (166)

where Eg = —V¢y is the electric field due to the m = 0 com-
ponent of the perturbed potential. The general solution of
equation (165) was obtained by integration over the parti-
cle trajectories that, in principle, includes both passing and
trapped particles. The perturbation of the pressure of the bulk
plasmas was taken to be isotropic with some effective adiabatic
index -y, similar to equation (17).

The numerical solution of equation (134) together with
(165) reveals three EGAM roots that sensitively depend on the
ratio of the EP to bulk plasma pressure y = (py, + p11)/27Pn
and the ratio of the passing particles transit frequency wyy =
vn/gR, to the GAM frequency, Z = wyo/wcam- ForZ = 1 and
low values of EP pressure, y < 1, the thermal bulk GAM fre-
quency is modified, roughly consistent with equation (136),
and remains stable. Two new roots appear for finite values of
y (y ~ 0.2) with the real frequencies well below wgam. With
a further increase of y, one of two new roots become unsta-
ble leading to the EGAM instability. For values of Z larger
than some critical value Z > Z, (Z., = 1.4 for the DIII-D
parameters used in [45]), the behaviour changes. There are still
three roots, but the unstable root originates from the GAM bulk
mode, whose frequency decreases with EP pressure as shown
in figure 14.

Thus, the frequency of the unstable EGAM is always below
the wgam. EGAMs are destabilized by the inverse distribution
of the EPs, dfy,/0E > 0 and the contribution of EPs to the
total diamagnetic current is negative so that wggam < WGaM,
contrary to equation (136). The EGAM for Z = 1.8 is a pertur-
bative destabilization of the GAM and, using the terminology
of [194], can be called an EGAM from GAM, while the case
with Z = 1, the EGAM is a result of the singular perturbation
due to high energy particles.

In [195, 196] analytical calculations are presented based on
amodel similar to equation (161) but omitting the w3, terms in
the resonant denominator. The ‘clipped’ distribution function
was used to illustrate the effect of the loss region and to explain
fast excitations of EGAMs during counter NBI (against the
plasma I,,). The distribution function of the NBI was assumed
in the form

Fon = non () f () g (M), (167)



Nucl. Fusion 62 (2022) 013001

Review

2 T
(a) Z2=1
1-5- -nﬂﬂnﬂﬂﬂﬂnﬂﬂﬂﬂﬂ-ﬂﬂ
E nuununnnuunn
- = goa=®
& lee=e
3
05} G D E 08 S bbb e b Bt
0 02 0.4 06 os ]
y
1 B
(b) et
o
D—unnnnﬂnngnﬂg:unnnnuuunnnnnunuununuununnl
‘3. (-3
S_ L]
i &
= "
L3
0°°
°°°°
-2, 02 0.4 0.6 0.8 A
y
2 ' ' ‘ 000000008007 8
2=t oowoooooooooooo
&
: 1.5“ 8:0
= o
© 1 °°°°Oo°°°°°°°°°°°°°Ooo°°°°o°
= Poog
<} .u-.“m-’n.-u-m’--n-!“““ﬂ!uuunnn
0.5
o 02 04 06 08 1
y
To ‘ , —
ﬂﬂ...n
:Iunnlunnuuannnn-nﬂn
|-}
_  Omommmm o 6000000000000000000000000009
= -
S [+]
- °°°
o °°°°ooooo
00000000
2 0000000‘,
0 02 04 06 08 1

y
Figure 14. Real and imaginary part of the eigen-frequencies as
function of y = (pjn + pin) /2P for Z = wyo/weam = 1 (@) and
(b) and Z = 1.8 (¢) and (d). Colours indicate separate modes.

Adapted figure with permission from [45], Copyright (2008) by the
American Physical Society.

fQ) = 6(u — uo) /ug,

2
(5]
XHA =N +ANHN g+ Ay —MNHA =AY,
(169)

(168)

3

87TAA

A=Ay

g(A) = Ax

where A = u/u is the pitch angle, A, is the loss boundary to
mock up the loss of EP, Ay is the width of the distribution
function in the pitch angle, which is clipped by the A. value,
Ao — Apr < Ac < Ay + Ay, and H is the Heaviside function.

The theory in [195, 196] also takes into account that the
equilibrium distribution of high energy particles depends on
the canonical angular momentum subtracted by the bounce
average of the mechanical momentum, Py — miRou,. This
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dependence produces an extra term in equation (162) with the
radial gradient of EPs density.

The authors of [195, 196] have studied the beam mode
with w >~ wy, = upAc/gR,. It was shown that the beam mode
has negative energy for wgam > w > wy, so it can be desta-
bilized by the positive dissipation due to the resonant energy
exchange. The dissipation turns positive when the loss region
is present for the high energy neutral beam injected counter
to the plasma current. In [195, 196] it was proposed that the
loss region for the counter injection provides a mechanism for
the asymmetry in the EGAM excitation for the co- and counter
injected neutral beams observed in DIII-D [44].

The simpler slowing-down distribution function in the form

co(NH (Ey — E)

Oh — E3/2_|_E2r/2 5(A_A0)’ (170)
co = /20— AoBo)my (1) / (47B1n (Ey/E.))  (171)

was analysed in [156] also using the model equation (161) and
neglecting the toroidal resonance. Such a distribution function
allows full analytical integration in equation (161) so that the
final dispersion equation for EGAMs is obtained in the form

w2
—1+&2M+Nb{c1n<1— )
w

+D< 1)] =0, (172

where Wi, b = \/ZEb (1 — AQBQ)/qRO and C = (2 — A()Bo)
(5A0By — 2)/(2(1 — AgBy)*/?),

N — VT = 8oBog’ my
* 7 4n (Eo/E.) ne

2
wlr, b
w?

1
= wi/w? -

(173)

The authors of [156] find two unstable branches. For
wgam < wyrp there is a GAM-like branch with the real fre-
quency close to the GAM frequency, with the instability condi-
tion AgB > 2/5.Forwgam > Wi, there is a beam branch with
the real frequency close to wyp and an instability threshold
which depends on EP density.

In [197] the dispersion equation (162), again in neglect of
the toroidal resonance term w3, /2, was analysed for the dis-
tribution function that is not yet completely slowed down:

coH (Ey — E)H (E — Er)
B2+ B

where Ep, = Ey, exp (—27c), is the energy of the time depen-

dent lower end of the distribution function, v, is the slow-

ing down rate, ¢co = I' /47y, and T is the beam flux. For this
distribution an analytical dispersion equation was derived

Fon = 6 (A= Ao, (174)

1
— wi Jw?

)] =0, (175)

1
D _
- <l—w§/w2 1
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Figure 15. (a) Real and (b) imaginary part of the EGAM frequency
vs time 7 = +,t, for a not fully slowed down EP beam with pitch
angle AgBy < 2/5. Adapted from [197], with the permission of AIP
Publishing.

where D = AgBo(2 — AgBo)?/2(1 — AoBy)*/?), and wy, and wi.
are transit frequencies defined for E}, and Ey respectively. The
solution of the dispersion equation (175) shows that there are
three modes here: the GAM branch w >~ wgam, the lower beam
branch w ~ wy (), and the upper beam branch w ~ wy. Note
that the wy, is time dependent. It is shown that the lower beam
branch with wy > wgamt may become unstable. The real fre-
quency and growth rates are shown in figure 15 as a function of
time 7 = ~.t, for AgBy > 2/5. It was found in [197] that the
behaviour of all three modes for AgBy < 2/5 is qualitatively
similar.

The results in [45, 195] were obtained by using the fluid the-
ory for bulk plasma (thermal) ions. Therefore kinetic effects
in the thermal ions distributions were not included. A small
amount of damping in model form was used in [197] but was
found not so essential. The more general case, when the kinetic
effects were considered both for thermal and high energy
particles, was considered in [192, 194] for a double bump
distribution function in the form

3/2
( ) exp <_
; (176)

2
my (v +v))" + 2uxB
xp <_ (H 2T3'k

my(v) = 7))" + 2B

ZTiTk

Nk
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my

27TTiTk
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where k (kinetic) stands for high energy particles, and
7x = Tx/Ti, the ratio of EP spread in energy to the thermal
temperature, is a measure of the width of the bump v. For
this distribution function the contributions of the thermal and
EP species to the full kinetic model, such as in section 3.2,
can be reduced to the plasma dispersion functions. In [194]
the emergence of EGAMs from initially damped modes was
investigated in detail using an analytical dispersion relation
for different plasma and EP parameters. The emergence of an
unstable EGAM root in this model is shown in figure 16(a)
for the EGAM from GAM case, when the thermal GAM
mode becomes unstable with the addition of EPs, and in
figure 16(b) for the Landau EGAM case, when the initially
damped mode becomes unstable. Whether one or other situ-
ation occurs depends on the values of various parameters of
thermal plasma and EPs [194]. It is interesting to note that in
this model the EGAM frequency is close to half of the GAM
frequency, as was also found in numerical simulations with
global nonlinear code GYSELA [192].

Two different types of modes modified by the presence of
EPs were also found in [198]. The frequency of the branch
related to the original GAM grows with the EP density ny,
with a scaling similar to equation (136). At some critical den-
sity nner =~ 1%—-2%, two new branches appear, with the lower
frequency branch being unstable. For higher electron temper-
atures, the solutions on different branches bifurcate. The fre-
quency of the GAM related branch starts to decrease with
n, and this branch becomes unstable, while the two other
branches remain stable, figure 17. It seems that this bifurca-
tion is similar to that observed in [45], see figure 14, and is
related to the value of the ratio wgamgR,/vb. It has been noted
in [198] that the bifurcation point coincides with the condi-
tion that the contribution of the hot particles changes its sign.
This is consistent with the arguments leading to the expression
(136).

3.4. Reactive EGAMs

The reactive EGAM is a simper case of an EP driven instability
by a cold beam-like EP distribution when the dispersion rela-
tion can be derived from the fluid theory, and, appears as high
order polynomial in w with all real coefficients. Therefore, the
unstable roots appear in complex conjugate pairs. As is typi-
cal for all reactive instabilities, the reactive EGAM instability
appears as a result of the interaction of the negative and pos-
itive energy modes. It is noted that the negative energy mode
was shown to be destabilized by the positive dissipation due
to the resonant wave absorption in [195], which is an alterna-
tive to the reactive EGAM destabilization mechanism. Despite
the fact that reactive EGAMs present some idealized situation,
they transparently illustrate important physics and it is useful
to consider them in some detail.

Though in the case of the cold beam distribution function
for EPs it is possible to derive the dispersion relation for reac-
tive EGAMs from fluid theory, as was done in [190, 191], here
a simple derivation is presented based on the MHD-kinetic for-
mulation that can be easy generalized to include kinetic effects
such as finite temperature of the EP beam.
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The quasineutrality condition in the form of equation (134)
is used where the perturbed pressure of high energy particles
will be calculated from the DKE. In (v, v,) variables the
lowest order DKE has the form

)=

B 177)
where f, fy are the perturbed and equilibrium distribution
function of high energy particles, here the index ‘h’ has been

o 2 9o

s L
I aU”+ Lavi

%4"1)“1) . V?—kvd . V}-l—VE -VInB (U
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omitted. In neglect of toroidal resonances, vjb - V > vq - V1,
the leading order solution of (177) can be obtained similarly to
ofo . - 90f

equation (50) in the form
— + -— |, 178
(Ul 31)” YL 81& ) ( )

where f; is the sin# component of the perturbed distribution
function of EPs. This form allows an easy evaluation of the
contribution of EPs with cold beam like distributions, such as
performed in [190, 191]. Taking the equilibrium distribution
in the form,

2w cqugo
w? — v} /q’R§ BoR

L=

Hh

fo § (v — Vo) 6 (wo), (179)

27T'UJ_

where vy is the cold beam velocity, one obtains for the sin 6
component of the pressure tensor of high energy particles

Ckr(go
(P + pin), = —mhnhvﬁwBO RO (180)
where
1 1 w?
G (w) = 8w? P—
(@) = 8w <w2—w§+2w2—w§>
402(200? — o2
_ e wh) (181)
(w? = wp)

and where wi =vZ/q’R;. For the bulk plasma ions,

equation (178) gives the expression for the thermal pressure

n;n 1}2 Ckr¢0
g 0.
PTG BoR

> (182)

(P + o), =
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Combining equations (180) and (182) in the quasineutrality

condition (134) one obtains the dispersion relation

_ T
4 R}

2

2
w (1—a)+aGw), (183)
RO

where « = ny/ (noi + nn) and my, = m; was assumed.

Equation (183) can be viewed as a prototypical local dis-
persion relation for reactive EGAMs. A similar equation was
obtained in [190] from the fluid theory with somewhat dif-
ferent coefficients in the expression (181) for G (w). The bi-
quadratic equation (183) has two branches, upper and lower
frequencies EGAMs in the terminology of [190], that can be
roughly identified with w3,y and w? frequencies. The fre-
quency of the upper EGAM branch increases with the den-
sity of high energy particles, figure 18(top (a)). This branch
remains stable in fluid theory: figure 18 (top (c)), but is weakly
damped in the kinetic theory [190], see comments below. The
lower EGAM branch can be destabilized by high energy parti-
cles. For w, < wgam the upper mode frequency starts at wgam
atn, = 0 and increases with the fast particle fraction consistent
with the relation (136). The real frequency of the lower branch
starts at wy and decreases with n, = 0, while its growth rate
has no threshold and increases with ny,, as shown in figures 18
(bottom (b) and (d)).

For wy, > wgawm, the real frequency of the unstable EGAM
starts at wp and decreases with the EP density ny. In the fluid
model, the reactive instability onset has a threshold at some
finite ny,, while the kinetic theory predicts that the instability
has no threshold with weak growth rate increasing with np;
possibly as a result of the dissipation due to GAM damping.
It is interesting that both fluid and kinetic theory predict the
upper threshold with ny, figures 18 (bottom (b) and (d)); as is
also typical for many reactive instabilities.

One can note a certain analogy of the reactive EGAMs with
the lower and upper frequency branches in an anisotropic pres-
sure plasma, compared with equation (22), where the lower
frequency branch can be destabilized for a certain value of
anisotropy.

The authors of [190] also compared the results of fluid and
kinetic theory. In case of a beam with a finite temperature 7},

such as
> b

the perturbed pressure of high energy particles can be
expressed in terms of the plasma dispersion functions. The
latter includes the finite beam temperature effects leading to
Landau damping due to energy spread in the beam distribution.
The main result here is that the frequency of the upper GAM
branch is modified by high energy particles but remains stable;
this branch is not affected by the kinetic effects, see figure 18
(top). The lower branch has two complex conjugate roots in the
fluid theory, corresponding to the reactive EGAM. The extent
to which the finite spread of high energy beam affects the
instability depends on the wy/wgam ratio. For wy/weam < 1
and low g, the results of the kinetic and fluid theory are very
close for the unstable branch which has no threshold in high

(v —w)* + 0%

184
3T, (184)

Jon = npA exp (—mi
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energy particle pressure. For wy/wgam > 1 and larger ¢, the
kinetic effects are more pronounced, extending the instability
region and eliminating the threshold (in high energy particles
pressure) which was predicted in the fluid theory, as shown
in figure 18 (bottom). In all cases, the real frequency of the
unstable mode is below wgam consistent with results of [45].

An example of the reactive EGAM for a cold slowing down
distribution is also provided in the form [190]

2
FEN) = Mé(ﬁ —E0)6(A = Ay).
2m€

The reactive EGAM frequency and growth rates in this case
are shown in figure 19 for DIII-D parameters.

(185)

3.5. Global profile effects and EGAM radial eigenmode
structure

Before a discussion of the global profile effects in EGAM
theory it is useful to recall the mechanisms that lead to the
formation of the GGAM eigenmodes. In the ideal MHD the-
ory the GGAM occurs near the local maximum of the con-
tinuum GAM frequency [12, 13, 164] that usually require
negative shear. In this case, the global eigenmode is formed
due to the coupling to the EM m = 2 harmonic which has
a global character. The analytical theory of such GGAMs
was developed in [162, 168, 170, 196]. The GGAM MHD
solutions were also obtained for the monotonic local GAM
frequency for some special plasma parameter profiles [161,
163]. These theories do not include the dispersion due to
“finite ion Larmor effects’. The latter are absent in MHD
and require the kinetic theory. As discussed in section 2.7,
the dispersion corrections to the GAM frequency arise
from three different effects: the ion sound Larmor radius,
k2p? = KT,/ (miw}); the actual ion Larmor radius effects,
kip? = k2T;/ (miw?); and the ‘apparent’ ion Larmor radius
effects due to finite magnetic drift frequency, w?3/w? ~
w3 /wiam =~ kZp?. The latter effects are also called FOW
effects as they originate from the radial excursions of parti-
cles due to the magnetic drift. As it is described in section 2.7,
up to the fourth order expansion in wj/w* is required so that
the second order m = 2 sidebands have to be included.

As discussed in section 2.11, while the dispersion effects
define the radial propagation of GAMs [11], e.g. in the form
of the radial Airy functions [16], they do not define a unique
eigenmode frequency. Additional profile effects need to be
considered, such as the profile of the local GAM frequency,
the localization of the GAM drive either from linear (e.g.
due to EPs) or nonlinear effects (due to drift wave turbu-
lence). Accordingly, there are several effects that may affect
the radial localization and radial structure of the EP related
GAMs, such as the MHD coupling to the global EM m = 2
mode similar to the standard GGAMs, the radial variation of
the EP source (beam) together with radial variations of other
(bulk) plasma parameters, and EP FOW effects. It is noted
that while the analysis of the global m = 2 coupling requires a
fully EM theory, the dispersion effects due to FLR and FOW
effects are often considered in electrostatic models. Barring
full numerical simulations within the global GK model, it
is difficult to present a uniform model where all the above
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[190], Copyright (2016) by the American Physical Society.

effects are included and their relative importance determined.
Thus, we are confined here to brief comments on the theoret-
ical results as presented in the literature and to discuss their
limitations.

In addition to the local solution (in the limit of zero orbit
width of EPs), Fu [45] presented the global generalization for
EGAMs by including the effects of the FOW of the EPs using
the model equation in the form

+ (Wz - WIZEGAM) E. =0,

d

YV EE
dr "

w(

Wh

d <PLh+PHh> 22

dr pR(z) h

(186)

where W (w/wp) is the Kinetic integral due to the width
of the EP orbits, (no explicit expression was given), and
wegam 1s the local expression for EGAM frequency. Similar
to equation (107), expansion of (186) near w? — wigay = 0
gives the solution in terms of the Airy function, with the char-
acteristic radial width of the propagating eigenmode as A, ~

(Bu/ Bu) PLY (qpn)?3.
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Equation (186) was analysed in [45] for the case of counter
injected beam with the parameters of DIII-D experiments
[44] and a global EGAM mode was found with the eigen-
mode maximum at r/a ~ 0.2 and w;/wgag(0) ~ 0.63 and
wi/wy >~ 0.5.

The model equation for the global EGAM in a plasma with
a spatially broad EP beam was proposed in [199] in the form

e 1 0 0
_— _— ri pu— s 1
minh w? 8;’60 8}'% +mo =0 (187)
where
2 » Loy >
éor:—l-i-wGAM/w _ED'O‘@’ (188)

and ¢, is the m = 0 component of the perturbed potential, and
npo i the m = O perturbed density of the EPs, and the D is
the dispersion parameter from equation (83). It is easy to see
that equation (187) has the structure of equation (162) with
the addition of the second order term due to the thermal ions
Larmor radius. The kinetic EP m = 0 response in this model
was further generalized to include the higher order finite orbit
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1 0?
2 b0,

nno (r) = ny (1) (gh_EHp%W (189)

where ny(r) is the EP beam density, and &}, H are some func-
tions of the EP beam parameters. The numerical analysis of
the eigenmode equation (187) with (189) in [156] shows that
the eigenmode is localized near the maximum of the EGAM
drive. It was also shown that mode tunnelling to the GAM con-
tinuous spectrum results in the continuum damping that may
lead to the EGAM instability threshold.

Equations (186), (187) and (189) have a similar struc-
ture to the GAM eigenmode equation [11] of the type of
equation (107), which is explicitly written in [156, 199] for
EGAM s including the higher order in ©%/(w’q*R}) correc-
tions due to the ion sound coupling.

One should note that the higher order dispersion term D in
equation (187) comes from effects related to the m = 2 side-
bands which were not included in the derivations of the EP
particle response g in equation (187). To our knowledge most
publications omit the m = 2 effects in calculations of the EP
response. It is not clear how the m = 2 dispersive terms due
to EP will compare with the higher order terms represented by
the H function in equation (189).

It is noted, however, that the global structure of the reac-
tive EGAMs in [191] was studied within the fluid theory and
included the m = 2 sidebands of the parallel velocity of the
EPs. The eigenmode equation was derived where the second
order radial derivative, responsible for the mode localization,
included the m = 2 terms. The global EGAM was obtained
with a frequency close to the maximum of the local frequency,
both for the monotonic profile where the local frequency max-
imum is at the plasma centre, and the non-monotonic (reversed
shear case) profile with an off-centre position of the local
EGAM frequency, see figure 20. It was found that the EGAM
for the counter beam injection is notably more unstable com-
pared to the co-injection direction—see figure 21. It was also
shown that in the presence of EPs, the EGAM continuum can
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EGAM frequency for (a) monotonic and (b) reversed shear cases.
Adapted from [191]. @ IOP Publishing Ltd. All rights reserved.

have an off-axis maximum even when ¢(r) and radial pro-
files of plasma parameters are monotonic, so that an EGAM
eigenmode may form near the maximum point [191].

In [168] the local EGAM dispersion relation was obtained
by considering EM coupling of m = 0 and m = 2 harmonics
(within the model equations similar to (108) and (109) and
included the m = 0 and m = 2 current contributions from the
EPs

Ju=e / vafi dv. (190)
Note that the current coupling of MHD and kinetic effects of
high energy particles is different from the pressure coupling
scheme described in section 3.1; the comparison of the cur-
rent and pressure coupling approaches is discussed in [200,
201]. The perturbed distribution function for the EPs in [168]
is found from the DKE; both m = 0 and m = 2 components
of the radial electric field are included. It is shown that in the
local approximation, and for the slowed-down EP distribution
function in the form

(Vo —v)
P =0

Foo = 10 (1) 8 (X — Xa) L , (191)
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where n,, (r) is the particle density, y = v|/v is the pitch angle,
1 (v, — v) is the step function, that there are two local EGAM
branches. For low plasma pressure, only one of the branches
is unstable, while for higher pressure, 5 = 8/ (1 + ) = 17%,
B = c%/vZ, both branches have finite growth rates. It was also
shown that the inhomogeneity of the energetic ion density
favours the larger growth rate for the counter-injected energetic
ions—the result is also shown in [195].

3.6. EP induced GAMs driven by magnetic drift resonances

The majority of analytic calculations of the EP driven GAM
instabilities consider the resonant interaction of EPs at the tran-
sit resonance w ~ v| /R, and neglect the effect of the mag-
netic drift frequency, assuming that wqgR,/v| < 1. At best,
the role of the magnetic drift, labelled as a FOW effect, is
considered perturbatively, assuming the ordering wq/w < 1,
e.g. in the calculations of the dispersion effects in the GAM.
This approximation is similar to the theory of collisionless
GAM damping due to transit resonances w ~ v||/gR,, when
most works adopt an auxiliary ordering w ~ v /gR, > wq
thus excluding the modification of the transit resonances due
to the magnetic drift. An exact solution of the GK equation
in the form of the formal series (60) is valid for arbi-
trary values of the wygR,/v|. However, practical calculations
with this series for large values of the wagR,/v| parame-
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ter are difficult due to the coupling of an infinite number
of transit resonances w =~ Iv|/qR,, | =1,2,..., since the
strength of this coupling is determined by the values of the
Ji(waqRo/v|)Jy(wagqRo/v)) coefficients. The authors of [116]
have proposed an alternative treatment of the resonant particles
(ions) for the regime wagR,/ v = gkvri Jwei > 1 to describe
the collisionless damping of the GAM due to magnetic drift
resonance w ~ wy, see section 2.8.

The authors of [50, 115] considered the regimes w ~ wy for
EPs and show that magnetic drift effects resonance may lead
to the excitation of the GAM modes. Since the treatments of
[50, 115] are somewhat different these results are presented
separately.

The authors of [50] consider equation (55) in the formal
limit ¢ — oo and write its solution as

w OFy,

8= —_7wdhfo§¢(9), (192)

where the potential was represented as a sum of many poloidal
harmonics

$(0) =Y ¢ exp(imb). (193)

The dispersion equation is obtained as a solubility condition
for the matrix form of the quasineutrality conditions for a sys-
tem of poloidal harmonics. The numerical solution for the cold
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beam-like distribution function

005 (e — o) 8 (A — Ao)
’/TMO

FOh:2

(194)

indicates the beam instability near the crossing of the beam
mode w ~ wgp and the GAM mode with w ~ wgam, as shown
in figure 22. The lower branch with w < wgam becomes unsta-
ble. The eigen-function has substantial finite m harmonics so
it is peaked off the # = 0 point.

The authors of [115] have considered the GAM destabi-
lization by the EP with a distribution function in the form

0= 20— AoBodnIn (Bo/Ee) 2 g 22 0 000
(195)

and have also considered the limit ¢ — oo, where equation (55)
gives for the perturbation of the EP particles

fn (@) = —ep () - wa (@)  OFy

w0 0E (196)

Contrary to [50], the authors of [115] included only the m = 0
harmonic of the potential, so that the main equation is similar
to (162) with the EP density response in the form

o — —€¢07{d9w wa (0)  OFon

W —we () OE (197)

The average integral over 6 is taken, by assuming that
the response is localized and expanding the wq(#) function
near 6 ~ 0. In the result, an analytic dispersion equation
was derived that shows the instability for A¢By > 2/3 and
Qp/weam > 1, as shown in figure 23, with Q, = wq (E = Ey).
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Figure 23. Normalized (a) real frequency w/wg and (b) growth rate
~/wg vs normalized magnetic drift frequency € /wg. Adapted from
[115], with the permission of AIP Publishing.

We note that as discussed in sections 2.6 and 3.2, the transit
and magnetic drift resonances are coupled in the m = 1 order,
e.g. the last term in equation (163) includes both transit and
magnetic drift resonances due to the EPs. It would be important
to compare the results of the approaches in [50, 115] with the
method presented in section 3.2.

3.7 Comments on trapped particles and electron current
effects

Most analytical treatments of EGAMs consider the effects
of passing EPs assuming that their velocity is constant,
v|| = const., neglecting the effects of trapped particles. A gen-
eral expression for the EP response including passing and
trapped particles was given in [45], but the specific influence
of trapped particles was not studied. Elfimov has considered
the effects of EP and GAM destabilization in the analytical
theory by integrating the DKE over the exact ion trajecto-
ries using the Jacobi function representation for trapped and
passing particles [202-204]. The instability criteria was deter-
mined for a specific EP distribution which has a maximum at
the trapped and un-trapped boundary and with high energy
tail of several hundred keV. Another result here [202, 203]
is the modification of the neoclassical polarization factor by
the EPs. Using a similar approach, Elfimov [204] also consid-
ers the EGAMs destabilization due to un-trapped resonances
of NB energetic ions with v ~ (1.2-1.5)wRyq. Such EGAMs
have a maximum growth rate in the frequency range near the
slowing-down transit frequency, cf [198].

In addition to the ion beam flows, the contribution of the
electron current and drift effects has also been investigated, so
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that more general conditions for the GAM instabilities were
derived [202, 205, 206].

4. GAM generation and other nonlinear effects

In this section we review some analytical and numerical results
concerning GAM coupling to plasma turbulence, in particu-
lar, nonlinear GAM generation from turbulence, and discuss
other nonlinear effects that may affect the GAM dynamics.
First, we discuss some examples of GAM generation in non-
linear turbulence simulations of the ITG driven instabilities.
These simulations demonstrate that the nonlinear development
and saturation of the ITG modes is accompanied by the occur-
rence of intense fluctuations in the GAM frequency range.
Such GAM fluctuations are well correlated with the measured
RS suggesting that the turbulent RS is a source of the GAMs.

The RS provides a direct nonlinear contribution to the radial
current in equation (7) thus affecting the GAM dynamics.
Another channel for the turbulence to affect GAM dynamics
is to drive the m = 1 pressure perturbation. In fact, modula-
tions of plasma pressure induced by modulations of transport
(either energy or particles) represent a wide class of several
related phenomena that may result in the GAM excitation.
Such mechanisms are intrinsically related to the phenomena
of spontaneous generation of poloidal and toroidal plasma
rotation (plasma spin-up), and damping of poloidal plasma
rotation in toroidal systems, a subject that was extensively
discussed in the neoclassical theory of plasma rotation and
transport [7, 207-210]. In the literature, the related mecha-
nisms are often referred as Stringer spin-up [6, 211]. In the
context of GAM generation, Stringer spin-up was considered
in [6]. Subsequent generalizations included effects of anoma-
lous transport [212], and were specifically considered as the
GAM generation mechanism [24, 213] and were referred to
as the dynamic shearing (DS) mechanism. We review here
the classical Stringer spin-up mechanism and its DS varia-
tion. We also present a simple analytical model for the Stringer

4

spin-up GAM instability induced by transport modulations due
to the parametric decay of the DWs. The section concludes
with a general discussion of the relative importance of the RS
and DS drive and their possible interactions. The experimen-
tal evidences illustrating nonlinear behaviour, GAM drive and
interactions are reviewed in sections 14, 11.1 and 15.

4.1. GAM generation in nonlinear fluid simulations of ITG
driven turbulence

Earlier analytical work demonstrated the excitation of GAMs
during the relaxation of plasma rotation towards the neoclas-
sical equilibrium [8, 23]. Such oscillations are transient and
eventually die out as a result of GAM damping due to the col-
lisionless (wave—particle) and collisional processes. Sustained
GAM excitation by nonlinear processes was clearly shown
in a number of simulations [183, 214-217]. As an example,
figure 24 [215] shows the GAM mode born out of a finite
amplitude ITG mode with a clear correlation of induced GAM
mode intensity with the amplitude of the ITG pump mode.

Three-dimensional fluid simulations of flux-driven electro-
static ITG turbulence [183,214] show a GAM range frequency
peak in the m = n = 0 components of the flow velocity, see
figure 25. It is interesting to note that in the I'TG saturated state,
the for m = n = 0 GAM peak in rotation are somewhat below
the linear GAM frequency and remain constant across a rela-
tively wide radial region, figure 25, while in the linear growth
stage the ITG produces a transient GAM excitation close to the
linear GAM frequency. Qualitatively similar features of non-
linearly sustained GAM modes were demonstrated in other
3D fluid ITG simulations [102, 216, 217], which also show
the GAM peak frequency below the linear GAM frequency,
radially uniform, and seemingly sandwiched between the lin-
ear GAM and ion sound modes frequencies, such as shown
in figure 26. These simulations also show that the GAM fre-
quency remains constant across radial regions of the order of
y/ap; with step-like transitions in between [217].
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Figure 25. Simulation radial spectra of the (n = 0, m = 0)
component of (a) RS and (b) squared poloidal flow velocity in
turbulent stationary state. Both spectra show a well localized peak
around the same w ~ 1.74(csa/Ry), lower than the linear GAM
frequency (dashed line). Adapted from [183], with the permission of
AIP Publishing.
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Figure 26. Radial variation of ZF frequency spectra. Dashed lines
show the GAM and parallel SW frequencies for the (1, 0) mode.
Adapted from [102], with the permission of AIP Publishing.

The plateau in the radial profiles of the GAM frequency
were also identified in other simulations with a global two-
fluid EM turbulence code cENTORI [103] for the conditions of
MAST, and were interpreted as a result of the GAM damp-
ing at the transit ion sound resonances. The overall profile of
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Figure 27. Simulated radial profile of the density fluctuation power
for Ry = 110 cm from [103] for MAST conditions. Black line
shows the sound speed transit frequency fos = ¢5/(27Ry), the
magenta dashed line is the local GAM frequency based on [122].
Adapted from [103], with the permission of AIP Publishing.
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the GAM frequency, overlaid through the plateaux centroids
were found in good agreement with the local GAM frequency
prediction for the shaped tokamak from [122], as shown in
figure 27. These simulations show excellent agreement with
MAST experimental data, cf figure 56 in section 7.7.

4.2. GAM generation by Reynolds stress

Substantial RS was directly measured in simulations demon-
strating the GAM born out of turbulence, e.g. figure 25(a)
[183], with a peak of the m = n = 0 component of the RS at the
same GAM (nonlinear) frequency as the m = n = 0 poloidal
rotation. Similar results on RS were shown in other papers
[217]. Therefore, the prevailing thought is that the finite fre-
quency GAMs are driven directly by the poloidally symmet-
ric m = 0 component of the RS, similar to the low frequency
ZFs [53].

A simple analytical model of GAM generation by RS is
based on the parametric decay instability of finite amplitude
DWs [218, 219], induced by the symmetry breaking GAM
perturbation. Briefly outlined below are the main ideas of
this model which is also useful to describe the DS, or more
generally a transport modulation mechanism.

Weakly nonlinear theory of GAM generation by RS were
formulated using the wave kinetic equation formalism [218,
220], and the parametric instability of the coherent pump wave
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[11, 218]. Generally the results from both approaches are
similar but the condition for the resonant wavevector of an
unstable GAM mode can be different [218]. In the coherent
pump wave model one considers a large amplitude DW with
k = (kg, ki, ky), kg = m/rs, m>1,

ap - ¢m,kr (t) exp (—1m9 —+ ikrr)

+ i, (D) exp(—imb — ikr), (198)

that generates the GAM eigenmode consisting of an m = 0
perturbation

& = oy (1) exp (iqir),

and m = £1 components

(199)

6= (10 Wexp ) + 61, (0 exp(—i6) ) exp (iger).
(200)
The interactions of the drift pump wave djp with the Eo,q and
al,qr GAM perturbations produce two types of the DW side-

band satellites. The 551 satellite is formed due to the 51’ and
¢0,4 interaction:

¢! = exp (iqur)
X [¢m«kr+qr eXp (lme + 1kr)
+ ¢—m,—kr+qr exp(_lme -

ikr)],  (201)

and ¢*2 is due to ¢® and & interaction:
¢ = exp (ig;r)
X [ Bt 1ds+qr €Xp (im0 + 10 + ik,r)
+ Pt 1 —ktq €XP(—imb 410 — ik;)
— ik;)

— k)] -

+ Om—1,~ketg, €Xp (imb —

+ 1 —kytqr EXP(—imb — (202)

Therefore, the total potential is

p=0+0+0,
where ¢ = ¢P +¢*! + ¢*2 are the DW perturbations. As is
standard in the parametric interaction theory, the amplitude
of the pump wave is assumed to be large ¢ > (¢*!, $*2, 6, ¢)
so its amplitude remains constant in time, while the (@, qﬁsz,
¢, ¢) amplitudes are evolving in time. Therefore, the paramet-
ric decay theory is linear in ¢, ¢, and ¢!, ¢*> and nonlin-
ear in ¢P. The latter requires that the ¢P variable is real, i.e.

* sl,s2 3&

ke = @—m k> While in general for the satellites ¢ "0~

(203)

1,52
¢§ k; k{+‘]r' 3 . )
Similar to the potential, the total density is represented as

n=no+n+n, (204)

where ny is the equilibrium density, # the m = 1 GAM com-
ponent, and 7 includes all the DW components. Note that
the m = 0 density component of the GAM is absent, 7 = 0,
and all m # 0 components are Boltzmann, 71/ny = edAa /T, and

i/ng = ep/Te.
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The m = 0 component of the quasineutrality equation (7)
can now be written as

T g (.
qr at¢0q 6 eO R; (}’l l,g — nl q) RO,q =0, (205)
where Ry, is the m = n = 0 component of the RS
Rog = {¢ Vi) (206)

Calculati~ons of the m = n = O RS are standard [221] and only
involve ¢, 1k, 44, satellites:

*{¢ Vig}
~ B [qfk(; (afkﬂfkrakevkr+qr - 5k9,kr57k9,—kr+qr)

+ 2kckogr (&ke,—krgke,kﬁqr + 5kﬂvkr$*k6»*kr+qr)j| .
(207)

The m = 1 components of the perturbed density are found
from the ion continuity equation

Oy 1 g,

o - 2(VE . VlnB)il

—2(avg-VInB),, —Rije =0,  (208)
where the dispersive corrections of the order of p2(r;% + ¢2)
were neglected.

The first term in equation (208) is the standard linear GAM
term due to the compressibility of the poloidal flow, as in
equation (34), section 2.4. The third term describes the mod-
ulation of particle transport due to the compressibility of the

nonlinear particle flux 2(?175 -Vin B) ., Which will be dis-

cussed below. The last term, Rﬂ,qr, is the m = 1 component
of the RS. This term will also lead to the nonlinear modula-
tions of plasma density 711 4, but is generally smaller than the
compressibility of the nonlinear particle flux.

The ¢y 1k 44, satellites which are required for the RS in
(207) are found from the ion density equation (27) where the
ion sound corrections related to the ion parallel velocity are
neglected, assuming large safety factor g:

8¢im,ikr+q

i (1+ kipb) + ik(ﬂ)*g:tm,kr+q F grke

C — ~
X =004, P+mtk = 0, (209)
By

where k% = k7 + (£k; + ¢,)>. Here, the density convection
due to the m = 0 GAM perturbation, Vg - Vn, is the main order
term for the interaction of the pump DW with the GAM mode
perturbation; the contributions of the RS and nvg - VInB
terms to this equation are generally smaller. The dispersive cor-
rections ~ k2 p? are important here as they define the resonant
radial wavevector for the unstable GAM.

To find explicit expressions for the DW satellites one
assumes GAM perturbations in the form (¢ (1), qASiLqr(t)) ~
exp(—iQ2r). The pump wave amplitude is constant so one
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has for ¢, (1) = exp(—iwor), and @ (1) = ¢, (1) =
exp(iwopt) where wy is the eigen-frequency of the drift mode,

Wi
1+ k2’
ws = —kgcTenly/eBong, k> = kj + k2. Therefore the sidebands
have time dependence of the form

wp = (210)

Dok tq ~ XD (—IQU T iwpr), (211)
and from (209) one finds

Qrkﬂ
(ino) (1+4%) F

Gimkotq = ¢o,qr¢7im,ikr. 212)

Using these expressions in (207) one obtains the RS in the form

407 |7 |P({ 2Do
RO,qr = 16]?k5¢0,qr ¢m,kr <D2 D2>
. — = P 2D,
+ 21krk§ ‘If P0.qe | Pk ( D2 Dz)
— 1~ PO+ R+ -4k
- ZqukgqsO, Tt ¢m,kr . : ?
‘f D} =1
(213)
where
Dy =(Q+wo) (1+k.) —w.=Dy+Dy, (214)
=Q—wp) (1+k) +w.=Dy— Dy, (215)
and
Dy = (1 + kz + qrz) + 2errWO, (216)
Dy = 2Qk.q; + woq’. (217)

Using expression (213) for the RS, from (208) and (205) one
obtains the final dispersion equation for the GAM modified by
the nonlinear contribution from the RS

92(1+q2+k2
Dj — D}

eqﬁm k& — 4kr2)

T.

0? 2“+22k24 =0.

(218)
The amplitude of the nonlinear correction here (the last
term) is fairly small, so the only situation when it may be effec-
tive is the resonant regime when © ~ wgam = V/2¢s /Ry and
Dy ~ £D, corresponding to the resonance between the GAM
and one of the sidebands, (€2 % wo)(1 + k%) F w. ~ 0 [218].
The resonant condition imposes a constraint on the value of the
radial wavevector of the GAM mode that can be excited. For
the case with k;, = 0, from Dy ~ D one has an estimate for
DO~ V2 /R =~ ¢?p>wy. The higher order dispersive cor-
rectlons (kK* 4+ ¢*)p? < 1 were neglected here. The nonlinear
GAM growth rate can be found by taking 2 = wgam + dw,
and expanding (218) near wgam from which one obtains for
the growth rate

e¢m,kr

(bw) = T.

Figrcskops (219)

44

It is also assumed here (¢ + k* — 4k?)p? < 1.

In the resonant parametric decay case only one sideband is
included, so it is often referred to as the three-wave interaction,
contrary to the four-wave interaction models for ZF generation
where the linear eigenmode is degenerate with {2 ~ 0, so that
both sidebands should be included. For the case of a broad
wave spectrum, when the wave kinetic equation is used, the
resonance between the DW group velocity ve = dwy/0k, and
the GAM mode is considered, so the resonance condition is
4 Vgr = WGAM-

A similar model was considered for the GAM generation by
ITG modes [219]. It was shown also that EM effects in finite
B-plasmas provide a stabilizing effect [222] due to the addi-
tion of the Maxwell stress. Nonlinear excitation of GAMs due
to three-wave decay was also considered in the kinetic theory
for the DW [11], collisionless trapped electron mode (TEM)
[223], and toroidal Alfvén modes [224].

The parametric GAM drive by DWs was generalized to
include the radial propagation in a non-uniform plasma and
dispersion effects [142, 148, 225, 226]. The analysis in [142,
148] has shown that nonlinearly excited GAMSs propagate at a
group velocity much larger than that predicted by linear theory,
and also show the nonlinear shift of the GAM frequency due to
the finite amplitude of the DW pump wave. The non-local the-
ory of [225] has shown that the resonant three-wave interaction
of the DW, GAM and drift sideband determine the mode local-
ization and the resonant GAM frequency, thus converting the
local continuum mode into the global discreet mode. Multiple
resonant modes of this type can co-exist.

4.3. Stringer spin-up and GAM instability

The GAM represents the linear oscillatory eigenmode of
(mostly) poloidal plasma rotation, and thus the problem of
GAM generation is inherently related to a more general phe-
nomena of the generation of poloidal and toroidal plasma rota-
tion. Earlier works [7, 207] have pointed out that the radial
diamagnetic current induced by plasma diffusion in toroidal
geometry results in the instability of the poloidal rotation. The
phenomena, which has been later called as Stringer spin-up,
relies on the m = 0 radial diamagnetic current induced by the
m = 1 oscillations of plasma pressure that are supported by
Pfirsch—Schliiter type diffusion fluxes. This mechanism of the
radial current is the same as in GAM dynamics, given by the
first term in equation (7). In fact, the basic GAM dispersion
relation describing the GAM instability also appears in the
context of a study of the poloidal Stringer spin-up driven by
the turbulent anomalous transport [6, 211]. It is instructive to
review the Stringer spin-up mechanism as a proxy for various
models of GAM generation by plasma turbulence.
Essentially, the GAM instability driven by the Stringer spin-
up is the GAM eigenmode made unstable by the presence of
the equilibrium plasma flow vﬁ that is poloidally non-uniform

v‘(" = v‘(" (#). Such a flow, along the magnetic field, can be

supported by the poloidally non-uniform plasma sources and
plasma diffusion, e.g.

18

D0 )— + — L m}H @) =S8(r0). (220)

qRy 06
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The equations for oscillations on the background of such equi-
librium are analogous to the GAM equations (7), (222) and
(10):

engc O

cT . 2
—25bx Vit - VinB — m&vmﬁo =0. (221)
90
% = —noV -V — noViy, . (222)
1
({%)H _ 8vﬁ(9) A
miny ( atl VE]‘B—G = —TV”nl (223)

The only modification here is the addition of the second term
on the left-hand side of (223) which becomes a driving term
for the GAM instability in Stringer spin-up. For simplicity, the
isothermal plasma case is assumed.

Solving equations (221)—(223) one finds the dispersion
equation [6]:

—iw [~w? +2¢X(1 + 1/2¢7)/R5] = 2¢3v), /qRGr,  (224)

where ¢2 = T/m; and vﬁs = (277)’1f027rv|(‘)(9) sin(6)dd. On can
see that this is the basic GAM dispersion relation modi-
fied by the presence of the inhomogeneous parallel flow, v‘("
which makes the GAM unstable. In general, the instability
occurs for either sign of v‘(’s < 0 although the growth rates are
different [6]. Therefore, the poloidal spin-up investigated in
[6, 211] in the context of the L—H transition is in fact the
instability of the GAM oscillation. The inhomogeneous paral-
lel flow may be caused by the poloidal non-uniformities of the
anomalous transport, plasma sources, and/or magnetic geom-
etry. A similar model of the Stringer spin-up in the divertor
X-point configuration was considered in [212].

4.4. GAM generation by dynamic shearing of turbulence
and transport modulations

The central point of GAM generation via Stringer spin-up
is the diamagnetic radial current induced by poloidal varia-
tions of plasma pressure caused by the perturbation of the
Pfirsch—Schliiter parallel flow. The symmetry breaking per-
turbation, the second term in equation (223), provides a pos-
itive feedback on the GAM Vg perturbation leading to the
instability. One can envisage that the GAM may affect the
anomalous transport resulting in poloidally varying plasma
perturbations driving the radial current. Such a mechanism
of GAM excitation was generically called the diamagnetic
drive [14, 24, 227]. One specific realization of this mechanism
was suggested as turbulence shearing by the time dependent
m = 0 GAM flow, i.e. dynamic shearing.

The basic model of the DS mechanism was formulated in
[213] for the isothermal GAM by an analogy with Stringer
spin-up. The main equation is the density evolution in the form

ony

5, H oV Ve noV oy, =S-V-I'=F(@,r1.

(225)
Here, F (0, r,1) is the nonlinear driving term depicting mod-
ulations of the density transport. The poloidally non-uniform
F(0,r, 1) drive induces the density perturbation. The up—down
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asymmetry in the density perturbation is required, 77; ~ sin 6,
to affect the GAM, so it is assumed that
F,r,0) = f,(r,f)sin 6. (226)
Using the arguments of the wave action conservation and
shearing of fluctuations by the GAM poloidal flow, the driv-

ing term fi(r, ) was obtained [213] as a function of Vg in the

form
t 2

dr WVE> .
hence the DS name. Assuming strongly ballooning radial

transport I', = T'o(1 + cos 0), the DS coefficient upg was esti-
mated in the form

fs(r,t) = ups ( (227)

r

2 2,10

ups =~ 3kzpis—,
no

(228)

where s is the magnetic shear. The corresponding GAM growth
rate was obtained as
1,
v EkrROUDS- (229)

In the DS model described above [213], the assumption of
strong ballooning of the anomalous transport is essential. More
generally, the transport modulation mechanism does not neces-
sarily require the ballooning assumption. However, the impor-
tant element of this mechanism is the compressibility of the
anomalous transport flux resulting in poloidally non-uniform
pressure perturbations.

One can illustrate the main features of such a mechanism
with the example of the density transport by the DW. It is
often assumed that for simple (neutrally stable) DWs, with the
adiabatic electron response, 71/ny = e%/ T., the particle trans-
port is identically zero due to the identity vg - Vii = 0. More
accurately, the condition Vg - Vii = 0 for adiabatic electrons
refers to the divergent-free particle flux, V - (nvg) = 0, which
is only true for the case of a uniform magnetic field. In fact,
for a non-uniform magnetic field one has
Thus, the particle flux in the inhomogeneous magnetic field is
compressible and can induce finite asymmetric density vari-
ations even for the adiabatic density response due to the last
term in (230). The corresponding m = 1 density perturbations
can be found as

. ~ ~ cng  — ecny
0 (g, — frg) = 2-0 4 Foe =2
i (P1g, = Ao1g,) BoRy 0 ~ 25 BT
X qr (¢m,kr d)—m,_kr“l‘qr + ¢—mq_kr ¢m,kr+‘]r) = O’
231)

where the last term describes the nonlinear transport modula-
tions. The structure of this term is similar to one of the compo-
nents of the RS (207) and can be calculated using (212). Using
(231) in the basic GAM equation (7) one obtains the GAM dis-
persion relation which includes the GAM instability due to RS
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Figure 28. Contour plots of GAM poloidal flow velocity (top), ion
diamagnetic velocity (middle), and turbulent ion heat flux (bottom)
versus time and minor radius in a fluid turbulence simulation.
Adapted with permission from [227].
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Here, the first two terms describe the standard linear GAM
oscillation with wgam = v/2¢s /Ro. The third term is the RS
from (218), and the last term is a nonlinear drive due to
the transport modulations. The contribution of the RS to the
quadratic dispersion relation is real, while that of the trans-
port modulations is imaginary. The nonlinear corrections to
the GAM frequency driven by transport modulations can be
obtained from (232), again, by considering the resonant case
w = wgam + dw, so that

) 1/2

It is important to note that in this simple model, the RS drive
via the modulational instability results in the appearance of
only the imaginary part of the GAM frequency, while the trans-
port modulations produce the imaginary part of the GAM fre-
quency and modify the real part thus broadening the GAM
eigenmode.

In the above model, when the neutrally stable DW is con-
sidered, the GAM growth rate (233) is smaller than that due
to RS (219). One can expect that for ITG type turbulence with
significant energy transport, the pressure modulations can be
much larger. Correlations of turbulence, plasma transport and
the GAM were detected in many experiments, as reviewed in
detail in section 15. Any up-down asymmetrical pressure vari-
ations, dp, ~ sin @ will drive the radial current that will feed-
back to the m = 0 GAM mode. From equation (10) one can
obtain the following maximum estimate for the GAM growth
due to the diamagnetic drive

e¢m,kr
T,

Qrkﬂpg
2

Sw = i(—i)'/szAM< (233)

2
8

" po Rove'

_0ps ¢

(234)

46

E x B flow profile

o
s
2]
= S ———_
el
T
o
2 4 6 8 10 12 14 16
lon heat flux profile
i)
s
[72]
=]
2
©
04 -
2 4 6 8 10 12 14 16
Time (arb.)

Figure 29. E x B flow (top) and turbulent heat flux (bottom) for the
time evolution of an initially isolated single GAM peak. Adapted
with permission from [227].

Here, dp, is the amplitude of up—down pressure asymmetry
perturbation, and Vg is the amplitude of the GAM induced
poloidal rotation. Strong correlations of GAMs with anoma-
lous energy transport and up—down asymmetrical pressure
fluctuations were demonstrated in the 3D simulations of the
ITG driven turbulence [24], as shown in figures 28 and 29. For
a discussion of similar effects observed in GK simulations see
section 5.

The contributions of the RS and the diamagnetic drive were
directly measured in 3D fluid ITG turbulence simulations [24]
where it was concluded that the diamagnetic drive can be as
important as RS and is dominant in certain regimes, e.g. the
plasma edge with strong temperature gradients. It was sug-
gested that the diamagnetic drive is also a cause of strong mod-
ulations, transport suppression by GAMs, and GAM bursts
observed in nonlinear fluid simulations [227-229].

Generally, poloidal modulations of plasma pressure result-
ing in the radial current driving the GAM can be induced
by other interactions of various modes and excitations that
might be present in a tokamak. Such mechanisms are briefly
discussed below and further in section 11.4.

The GAM drive due from a magnetic-island induced BAE
mode has also been considered [230]. In this model the axisy-
metric radial current inducing the GAM is ‘slaved’ to the
amplitude of the primary BAE mode. The driven GAM ampli-
tude is two orders of magnitude smaller that of the BAE, which
isroughly consistent with observations of axisymmetric modes
accompanying Alfvén island modes in HL-2A tokamak [231].
An indirect GAM excitation mechanism was also suggested
[232] in which poloidal variations of the plasma pressure are
induced by cyclotron heating, which is naturally non-uniform
due to piling up of non-resonant particles at the low-field
side. The external excitation of GAMs is discussed further in
section 11.

4.5. Nonlinear self-interactions in GAMs

The nonlinear self-interaction of GAMs has attracted some
attention due to the observation of second GAM harmonics in
both experiment [233] and numerical simulations [234]. These
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effects and the related issue of the generation of low frequency
ZFs by GAMs were theoretically analysed in several papers
[143, 220, 235-238]. Here, the main ideas and some results
are briefly reviewed.

Based on a fluid approach [235], it was concluded that
GAMs do not generate second harmonics in the radial electric
field while producing the second harmonics of the perturbed
density. The standard GAM is a low frequency process and
thus fluid theory is sufficient as an adequate framework [235]
for analysis. However, it is instructive to consider nonlinear
terms also using kinetic theory to extend the consideration to
EGAMs which, in general, require a kinetic approach, and also
to make connections to the arguments based on kinetic theory
as in [234, 237, 238].

It was emphasized that the so-called parallel nonlinearity
is important in the self-interaction of GAMs [234]. The term
‘parallel nonlinearity’ can be confusing as it refers to a specific
form of the GK equation and more general than the commonly
assumed parallel momentum transfer term due to the paral-
lel electric field, gE I af/ 81)”. Here, the standard DKE is used,
which is more transparent compared to the Hamiltonian form
of the GK theory but fully appropriate for the main order non-
linear effects in neglect of the FLR effects. Also provided is
the fluid interpretation of the relevant effects.

Writing the nonlinear DKE in the phase space conserving

form as follows
of . (R dyy doi 2 _
(B () e () o
(235)

ot dr
where R is the guiding centre coordinate, the total drift velocity
is defined as

0

a’UH

Lo
ot

R bvet
dt_U” VE Vd,

and the evolution of the v and v are defined by the equations

(236)

d’l)H

q 1,
=—E. = . -VInB 2
P - b+21}J_V b + v vg - VInB, (237)
dvi 2 2
5 - —viyV-b+vivg-VinB. (238)
The phase space conservation here has the form
dR 0 d’UH 0 dvi
V. [— — (= —(—=)=0. 239
(dt>+8v<dt>+8vi<dt (239)

The second term in this equation is analogous to the parallel
nonlinearity terms discussed in [234]. Note that the form of the
‘parallel nonlinear’ terms may change depending on the choice
of independent variables, for example instead of (v, , v|) other
pairs are used, e.g. (v, E = mv*/2) or (v, p = v /2B) as in
[234].

In the fluid limit, w > wy = k:vq;, in the linear (first order)
approximation, one has

ofv __(, 0k 20k
o \ oy "o

where f is the equilibrium distribution function, and Vg is the
poloidal flow velocity due to the m = 0 GAM potential pertur-
bation, cf with equation (44). In the first nonlinear order, and

) Ve -VInB, (240)

47

zeroth order in (wd/w, vHVH/w) < 1, one has from (235)

vy
(&)

0

a’UH

dvi "
( dr )

It is easy to see here that the nonlinear density perturbation in
the GAM is finite and is due to the convective perpendicular
nonlinearity related to the E x B drift

on®
or

where 7" and v are the total density and E x B drift velocity
due to the linear GAM. In this form of the DKE the ‘parallel
nonlinearity’, the second and third terms on the right-hand side
of equation (241), do not contribute to the nonlinear density
perturbation n®. In the linear approximation, the GAM den-
sity perturbation has only an m = 1 component, n’ = 7, and
the potential has m = 0 and m = 1 parts, ¢ = ¢ + ¢. Thus,
the second order density perturbation is

on®
ot

of®
or

V- (VEf(l)) _

0

o (241)

V. (vg>n<1>) -v. (vg?)no (242)

= —Vg-Vi+2iavg - VInB+2avg - VInB

— v - Vng + 2ngv? - VInB, (243)

where the superscript for the linear terms is now dropped. This
structure is similar to that in [235] except the term with the sec-
ond order electric field and density gradient v\ - Vg which
was not included in [235].

The first term in (243) is dominant, Vg - Vii/ivg - VInB ~
R/r > 1, and the third term is small with respect to the sec-
ond one for long wavelength GAM modes, Vg - V In B/avg -
VInB ~ wg/w ~ kep;. Taking the GAM radial field in the
form Eyg = —9¢'V /Or = E cos wt, one can write the linear
density perturbation as

¢ Ey sin wt sin 0

= —opy— LR

244
B() w R() ( )

thus obtaining for the second order nonlinear density pertur-
c

bations
2 _
n = n
0 (Bo

+l’lo<

Only the contribution from the first two terms from (243) is
shown here. Note that the poloidal dependence of the nonlin-
ear density perturbations in (245) is different from the linear
polarization (71 ~ sin ). The coupling to the linear term will
come from the third order term in (243) which produces the
sin # components (as well as the third order harmonics ~ 36).
The density gradient term in (243), omitted here, also will
contribute.

In the considered order, the density perturbation in (243)
does not affect the electric field because these perturbations
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are automatically ambipolar and do not produce an electric
current. The non-ambipolar contribution to the density result-
ing in the nonlinear current (and electric field) perturbations,
have to be found from the higher order in magnetic drift
and parallel velocity when the time derivative /0t in the
equations (235) and (241) is replaced with 9/9r + v40/dr +
vV and the resulting equation is solved to the first order
in (wg/w, V) /w). Alternatively, one can find the nonlinear
pressure and parallel viscosity perturbations from (241) and
use it in the equation for the electric field, similar to (19). The
equation for the nonlinear electric field has the form

2c

1 enpc 0O
2ec (o L :

Bowei ot

V2 ¢(2)
(2406)

The second order pressure perturbations were not consid-
ered in the quasineutrality equation in [235], thus resulting in
the conclusion that the second order electric field is absent,
E® = 0. Below, we discuss how the nonlinear electric field is
produced by the second order perturbations in pressure (and
parallel viscosity).

The expression for the nonlinear perturbed pressure has a
structure similar to (243),

B )-belnB—

0 4 1
g0 _y. (VEP(I))+3 ( M 7Tﬁl)

T ) -VInB+--

(247)
and the combination of the perturbed pressure and viscosity
that defines the nonlinear electric field in the quasineutraliy
equation (246) is given by the equation

o 1 1
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3 1
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+3 (p + 57 ) -VInB.
(248)

The main order nonlinear pressure perturbations have a struc-
ture similar to density (245)
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radial electric field from (248) is
1 7 ¢ \? ,cos 2wt
@ Lo _ 7 ) g2 9
)4 + 47TH 8p0<B0> 0 szor oS
25 c\’ ,COS 2wt . ,
+ Zp()(B_o) EOTR(Z) sin” 6.

(250)

Here, the terms due to the mirror force and the second order
electric field are omitted. Therefore, the main order nonlinear
electric field, produced by nonlinear pressure perturbations,
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Figure 30. Frequency (a) and damping rate (b) vs safety factor g,
from ORBS (black crosses), GENE global (blue crosses), GENE
flux-tube (red crosses), and GYSELA (magenta stars) for small value
of k. p; = 0.055. Explicit analytical formula results of Sugama-2006
[75] and Sugama-2008 [76] are shown in green, and the numerical
solution of the dispersion relation from [5] in black. Adapted from
[138], with the permission of AIP Publishing.

from the first term on the right-hand side of (250), is defined

by the equation
2
sin 2wt sin 26 ( 0 (E ) )
or

(251)
Since the polarization, ~sin 26, of the nonlinear electric field
in (251) is different, it is a ‘slaved’ perturbation, that would not
couple effectively to the primary m = 0 eigenmode. The next
order electric field, determined by the second term in (250),
has the poloidal structure ~sin? 6, and only the terms similar
to the third term in (243) will produce an electric field with an
m = 0 component.
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Figure 31. The same as for figure 30 for k;p; = 0.22. Adapted from
[138], with the permission of AIP Publishing.

Note that the m = 0 part of the nonlinear density perturba-
tion, from the second term in (249), n® ~ E2, will generate
the next order nonlinear sin# density sideband, which will
eventually couple to the m = 0 nonlinear electric field. Such
terms were pursued via the kinetic theory in [237] by treating
the wq and vV in the same order. However, the nonlinear
density correction found in [237] is identically zero for the
symmetric, in v, distribution function, as pointed out in [238],
where the next order corrections due to geometric asymmetry
in trajectories of passing particles was included.

The EGAM could be much more effective in producing
nonlinear second order harmonics of the electric field coupled
to the initial m = 0 mode, when the EP distribution function is
asymmetric and produces the cos 6 density and pressure pertur-
bation as in equation (142). Then the convective nonlinear term
in (248) would produce the sin § perturbation directly coupled
to the m = 0 electric field. Second harmonic generation by an
EGAM was studied in [239].
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Figure 32. Frequency and damping rate of E; vs k;p;, from ORBS
(black crosses), GENE global (blue crosses), GENE flux-tube (red
crosses), and GYSELA (magenta stars) as a function of wavevector,
compared with analytical theories of Sugama-2006, Qiu-2009, and
Gao-2010. Adapted from [138], with the permission of AIP
Publishing.

Some comments are in order regarding the possibility of
the generation of a low frequency ZF by GAMs. Coupling
of nonlinear perturbations of the electric field to the m =0
mode has been interpreted as evidence of the ZF genera-
tion by GAMs [237-239]. This is different from the usually
understood mechanism of ZF generation via modulational or
parametric instabilities [221] in which the ZF perturbation
becomes unstable and grows (exponentially in the linear stage)
at the expense of the energy of the pump wave. The expo-
nential instabilities ‘ZF from GAMs’ were not demonstrated
in [237-239] and are not guaranteed by the simple presence
of the nonlinear effects. The nonlinear terms (from GAMs)
in the m = 0 ZF equation may lead to a nonlinear frequency
shift (finite nonlinear frequency) for the ZF resulting in sta-
ble ZFOs, or they may be important for the saturation of
ZFs (driven by other mechanism), or they may determine the
shape of nonlinear oscillations and other similar effects, but
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Figure 33. (Top) GAM frequency as a function of the safety factor
for several values of the wavenumber. Theory lines are from [11, 74,
111]. (Bottom) GAM damping as a function of wavenumber &, for
several values of the safety factor, theory lines are from [75, 76].
Adapted from [140], with the permission of AIP Publishing.

not necessarily mean ZF instability (generation). Conversely,
the absence of the direct nonlinear terms does not mean the
absence of the instability and ZF generation. For example, in
the standard RS mechanism of ZF generation by DWs, the
nonlinear RS on the plane DW of the primary pump mode is
identically zero (because of symmetry) and becomes finite to
drive the ZF only after the symmetry breaking ZF test mode
perturbation is introduced, as is apparent from the expression
(207). It is worth noting that nonlinear effects of the RS from
GAMs were not considered in [237-239]. The possibility of
ZF generation by GAMs via the modulational instability from
RS was analysed in [236], where it was shown that GAMs do
not lead to the ZF instability but merely produce the nonlin-
ear frequency shift 62 from the linear GAM frequency, with
502 ~ \QSGAM\Z > 0. Some indirect mechanisms of ZF gener-
ation and GAM self-interaction’s via the coupled dynamics of
turbulence, ZF and GAMs [143, 146, 147, 220] are discussed
in section 17.

5. Gyrokinetic simulations of GAMs and EGAMs

In section 4, the results of some 3D nonlinear fluid simula-
tions of GAMs were discussed. These simulations have pro-
vided good physics insights on some GAM features, including
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a convincing demonstration of the generation of GAMs in ITG
driven turbulence, some global characteristics such as radial
GAM localization, and signatures of coupled dynamics and
interactions between GAMs, turbulence and anomalous trans-
port dynamics. However, the fluid models used in nonlinear
simulations are simplified and are not able to fully describe
the ion FLR effects and GAM dispersion from higher order
toroidal (FOW) effects. The closures used in some fluid sim-
ulations to account for the wave—particle interactions are only
approximate and do not describe the full complexity of the
nonlinear kinetic effects expected to be relevant in realistic
conditions. Nonlinear kinetic effects may directly affect the
nonlinear dynamics and mode saturation, such as the saturation
of EP driven modes due to flattening of the distribution func-
tion of resonant EPs. Therefore, GK simulations are impor-
tant tools that provide a confirmation of theoretical models,
and, extend modelling towards realistic tokamak conditions.
In this section an overview of some of the results from such
simulations is given.

5.1. Verification and benchmarking of the linear GAM
dynamics

In this section, numerical studies devoted to verification of the
GAM frequency and damping rates in linear GK codes will be
described. In general, the real GAM frequency is well repro-
duced in numerical simulations with uniform profiles and in
the long wavelength limit, k.p; — 0. However, when the dis-
persion due to FLR and higher order transit resonances are
included, and in the general case of the nonuniform profiles,
the agreement becomes less obvious. The latter is especially
true for effective damping rates which are affected by the radial
propagation and phase-mixing (PM) which is energy conserv-
ing. The radial propagation is due to the GAM dispersion with
the density and temperature gradients bringing additional com-
plexity. Thus, the dispersion and radial profiles need to be
accounted for to describe the GAM amplitude decay in real-
istic non-uniform plasmas. The problem becomes even more
intricate because the higher order theories involving higher
harmonics are cumbersome, there are different expressions in
the literature, and in the case of m > 2 the dispersion relations
generally require pure numerical evaluations, cf [79, 112].
These issues have motivated dedicated efforts to compare ana-
Iytical theory and GK numerical simulations [138, 140, 193,
240, 241].

The linear simulations using the GK code NEMORB with flat
density and temperature profiles [240] have shown that in the
high g limit the GAM frequency fits well with the dispersion-
less explicit expression from [75] (also derived in the high ¢
limit), while for the lower values of ¢ the agreement improves
for the expressions from [5, 192] obtained for general q.

Extensive verification and benchmarking of three different
GK codes and analytical theory in appropriate regimes have
been performed [138]. As per [138] definitions, verification
is understood as running a code in particular regimes where
analytical solutions are available and with comparison to ana-
Iytical predictions, while benchmarking means comparison of
results from different codes under the same set of parameters
and within regimes where the underlying physics in the codes
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Publishing.

is the same. The results of the Lagrangian orBS, the Eulerian
GENE and the semi-Lagrangian GYSELA were compared for lin-
ear properties of GAMs. Flat temperature and density profiles
were considered. A set of analytical expressions for the real
frequency [75, 76, 116], plus an expression for non-circular
geometry [117, 242], and solutions of the dispersion equation
[5], were compared. The GAM damping has been compared
with theoretical results from [75, 76, 116, 117, 242].

The GAM frequency and damping were measured for peri-
odic perturbations initially excited with a fixed value of the
radial wave vector in two cases: the long wavelength regimes,
kep; = 0.055, and the finite wavelength with k.p; = 0.22. It is
important to note that the above theoretical expressions for the
GAM frequency, though partially overlapping in some regions
of parameters, were generally derived with different assump-
tions and approximations regarding the dispersion, values of
g and elongation. Here, we comment only on selected results
regarding the ¢ dependence, elongation and dispersion, and
refer to [138] for more details.

For small value of the wavevector, k. p; = 0.055 the results
for the frequency and growth rate are shown in figure 30. The
frequency dependence is generally well reproduced by all three
codes and agrees well with theory, see figure 30(a). Note that
while Sugama-2006 [75] has provided an explicit expression
for the real frequency in the asymptotic limit of large but finite
g, the exact numerical solution of the dispersion relation from
Zonca-1996 [5] for arbitrary g is used in figure 30. This is
likely the reason for a small difference in the real frequency
between Zonca-1996 and Sugama-2006 in figure 30(a). The
theoretical calculations of the real frequency in these papers
did not include any dispersion effects.

The mode damping in these simulations starts to diverge
from the theory for large ¢, cf figure 30(b). The dispersion
relation from [5] does not include the second harmonics of
the transit resonances, w ~ 2v| /gR,, which are important for
larger ¢, as discussed in section 2.7 and which were analyt-
ically included in the damping rate Sugama-2008 [76]. This
explains the divergence between Zonca-1996 and Sugama-
2008 results in figure 30(b) for large values of g. One can also
observe a difference between numerical results and Sugama-
2008 result at even larger values of g. This is possibly due to
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the effects of the higher harmonics, m > 2, which were not
included in [75, 76]. Effects of the higher harmonics were
included and compared with the results of direct numerical
simulations in [78, 79, 112], see the discussion in section 2.7
and figures 6 and 7.

For larger values of k;p; = 0.22 the numerical results, com-
pared with theoretical expressions from [75, 116, 117] without
elongation (e = 1), are shown as a function of ¢ in figure 31.
The dependence of the frequency and growth rate on the wave-
vector for constant g are further shown in figure 32. The results
from all three codes are generally in good agreement with each
other, but differ from theory, which are also different from
each other. The difference between the theoretical results are
expected because the expression for the real frequency in [75]
does not include the effects of m = 2 harmonics, therefore no
dispersion, while the expressions in Qiu-2009 [116] have some
other inaccuracies in the dispersion terms for frequency, as
discussed in section 2.7.

It is important to note that the above result did not con-
sider the effects of propagation in non-uniform plasmas. The
effects of dispersion including GAM radial propagation and
damping were specifically studied in [140]. Here, the linear
global dynamics was studied with GK simulations using the
ORB5 code for different equilibrium profiles and nonuniform
temperature. For the uniform temperature, small aspect ratio
€ = a/Ry = 0.1 and circular geometry case, it was shown that
the real frequency including the dispersion effect was found to
agree with the result of the analytical theory in [11, 74, 111],
see figure 33 (top). The linear GAM damping was found to be
in agreement with the analytical results from Sugama [75, 76],
see figure 33 (bottom). The radial GAM acceleration and the
related evolution of the radial wave vector was investigated for
the case of non-uniform temperature profiles, demonstrating
a significant increase of the radial group velocity bringing
it closer to the values observed in the experiments—see
section 9.6. Taking into account PM effects, a good agreement
of numerical results with the closed form analytical expres-
sion from [11, 74, 111] was found. In particular, the change
in the direction of propagation for large values of 7, was con-
firmed, in agreement with the analytical theory. These results
suggest that proper account of the PM process may reduce
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Figure 35. (a) Frequency and (b) damping rate of E; from ORBS
(black crosses), and GENE global (blue crosses) as a function of
elongation parameter e. Analytical expressions of Gao-2009 (red),
and values from Sugama-2006, 2008 (green) are shown for
comparison. Adapted from [138], with the permission of AIP
Publishing.

the gap between the value of the GAM velocity observed in
experiments/simulations and linear and quasi-linear theories.
The dependence on elongation was studied with the ORBS
and GENE codes. Figure 34 show the effect of elongation on
the frequency and growth rate compared to those of the cylin-
drical case from ORBS simulations along with the comparison
with theoretical dispersion relation [243]. The comparison of
ORBS5 and GENE results [138] are shown in figure 35 as com-
pared with the analytical expressions from Gao-2009 [242].
For the comparison the values from Sugama-2006, 2008, [75,
76] which have no elongation dependence are shown as well.
Note that the expressions of Gao-2009 and Sugama-2006 for
the real frequency are identical in the absence of elongation for
elongation parameter e = 1, except that the 1/¢* correction to
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Figure 36. Radial profiles of GAM frequency from enhanced
scattering diagnostic on FT-2. Solid and broken lines are analytical
GAM theory predictions (Gao) [248] for initial and relaxed profiles.
Adapted from [249]. © IOP Publishing Ltd. All rights reserved.
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Figure 37. Temporal and spatial distributions of the electron particle
I'e (@) D- and (b) H-discharges, and energy Q. fluxes (c¢) D- and (d)
H-discharges from ELMFIRE global simulations. Adapted from [250].
© IOP Publishing Ltd. All rights reserved.

the frequency is assumed small and shown in Gao-2009 as the
expansion.

Also simulations with drift-kinetic electrons have been per-
formed and compared with the case of adiabatic electrons
[138]. Effects of the finite electron mass have been studied
as a measure of the importance of the kinetic electrons vs the
approximation of the adiabatic electrons usually used in the
analytical theory. Large differences (order of magnitude) in the
growth rate are observed between the numerical simulations
with kinetic and adiabatic electrons. Generally smaller influ-
ence of the kinetic electrons on the growth rate was observed
in numerical simulations with Grc code [127], see figures 8
and 9. Further studies of the GAM frequency and growth rates
with linear GK simulations with orB5 performed with kinetic
electrons with realistic electron/ion mass ratio, temperature
profiles and elongation are reported in [241].

The effects of kinetic electrons on GAM damping were
studied with full-f GK codes GYSELA and ORBS [128]. The scal-
ing of the GAM damping rate with the ion to electron mass
ratio, the electron to ion temperature ratio, the safety factor,
and the aspect ratio were investigated showing good agreement
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Figure 39. Power spectra of simulated vgyp for (a) radially ‘GGAM’, (b) ‘local GAM’ using experimental conditions. Magenta dashed line
is the analytic linear GAM frequency estimate from [117]. Adapted from [257]. © IOP Publishing Ltd. All rights reserved.

with theory in most regions of the relevant parameter space. It
is worth noting that such comparisons are not straightforward,
e.g. the analytical theories are typically developed for a simple
harmonic eigenmode, exp (ik.R), while in global simulations
with toroidal effects and radial plasma parameters variations,
the actual eigenmodes can be very different. In addition the
damping rates are typically small that requires high accuracy
(long runs) in simulations.

5.2. GAMs in nonlinear gyrokinetic simulations

Full global GK simulation capabilities developed in recent
years have specifically addressed GAM dynamics among other
phenomena for a number of experimentally relevant parame-
ters. In this section we comment only on selected results and
refer the reader to the original publications for full details.

In oRrRB5 simulations [244—-246] the interaction of ITG tur-
bulence, ZF and GAMs was studied as a function of plasma
current and elongation effect. It was found that the radial pro-
file of GAM amplitude is positively correlated with the ¢ value
(i.e. GAM amplitude increases with ¢) and, globally, inversely
dependent on the total plasma. At the same time, the ion heat
transport increased with the plasma current. This observa-
tion was interpreted as a result of the preferential excitation
of oscillatory ZF (GAMs) rather than stationary ZFs which
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were proposed to be more effective in transport suppression.
It was suggested that the same physics was involved in the
observed dependence on elongation: the elongated equilibrium
produced less GAMs and more stationary ZFs and thus lower
heat transport.

TEMPEST simulations [78, 112] show GAM modes excited
in the edge pedestal region of DIII-D with steep density and
temperature gradients. These modes exist as radially propa-
gating outgoing waves with a length scale determined by the
temperature gradient. The latter which were found to be nec-
essary for the radial propagation. For DIII-D conditions, GYRO
simulations have shown the GAM frequency peaks in turbu-
lent spectra and GAM induced ZF shearing in the outer region
[247].

The full-f ELMFIRE GK code was used to study the turbulent
transport and fluctuations in FT-2 tokamak conditions [249,
251-255]. The simulations predict the correct amplitude of
GAM E; amplitude and show the GAM frequency profile con-
sistent with continuum GAM dispersion relation modified by
the presence of impurities [248], as shown in figure 36—see
section 7.4. The intensity of turbulent fluctuations and associ-
ated transport are found to correlate with large GAM intensity
suggesting their connection. The radial GAM wavelength scal-

ing in simulations was found to agree with the scaling p*/3L}/*
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proposed in [256]. Strong correlations of density and elec-
tron energy fluxes with GAM fluctuations are found, consistent
with TEM turbulence expected in these regimes also show-
ing the isotope scaling, see figure 37. It is interesting to note
that no clear correlations between the anomalous transport and
OE,/Or were found in these simulations. However the electric
field E, was found in cyclic relation with the transport as shown
in figure 38.

The local and non-local nonlinear simulations have been
performed with GENE code for TCV tokamak conditions [257].
By varying the discharge parameters, in particular the edge
q value, two characteristic GAM regimes were reproduced as
also observed in the experiments: the ‘global’ GAM with the
radially uniform frequency and the ‘local’ GAM with the inho-
mogeneous frequency and roughly following, but noticeably
below, in both cases, of the local GAM profile, see figure 39.
The transition between these two regimes cannot be explained
by the g values alone (see section 9.3), but seems to be a result
of combination of different factors. Strong modulations of the
electron and ion energy, particle fluxes and E' x B velocities at
GAM frequencies are observed.

The linear and nonlinear simulations of TEMs with global
GTC code [258] for the parameters of HL-2A tokamak reveal
GAM generation which is fed by the turbulence energy. The
coupled dynamics of GAMs and turbulence exhibit typical
predator—prey (PP) cycle dynamic: the GAM electric field
grows while turbulence decays and the turbulence grows when
the GAM decays. A comprehensive study of GAMs properties
has been performed with GYSELA code for the parameters of
the Tore Supra discharges in the regimes with varying colli-
sionality. The GAM intensity is found to be larger for lower
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values of v*. The GAM frequency in the simulations follows
the prediction of the local kinetic theory but is considerably
higher than the experimental values—see section 7.5.

5.3. Linear and nonlinear dynamics of EP driven GAMs in
gyrokinetic simulations

Here, numerical studies detailing linear eigenmode proper-
ties and selected nonlinear effects for EGAMs are reviewed.
The linear excitation of EGAMs by EPs for bump-on-tail and
slowing-down distributions in plasmas with warm bulk ions
was directly demonstrated with GYSELLA simulations [192],
see figure 40 which shows the behaviour of the real frequency
and the growth rate of GAMs and EGAMs as a function of the
EP density. These simulations have confirmed that the condi-
tion for EGAM excitation is determined by the magnitude of
the (positive) derivative of the high energy particles at the reso-
nance velocity with respect to the stabilizing Landau damping
from bulk thermal ions. The critical (for EGAM excitation)
density of EPs determined from the simulations was found to
be in agreement with theoretical estimates.

The verification of the EGAM frequency and growth rates
with the NEMORB code against the theoretical dispersion rela-
tion was reported in [ 193] for the case of the double-hump dis-
tribution of EP, as is shown in figure 41. For g = 2 this EGAM
is the mode born out of the original GAM. For ¢ = 3 the
excited mode occurs from the initially highly damped mode,
and therefore is a different branch from GAM, as shown in
figure 41 (bottom). This behaviour is consistent with theoret-
ical analysis of the relation of GAM and EGAM branches in
plasmas with warm ions [193, 194] as discussed in section 3.3.

In general, good agreement between the theoretical calcu-
lations of the EGAM frequency and growth rate for a double-
hump distribution are shown with several codes: NEMORB
[193], figure 41, OrRBS [259], figure 42, and GYSELA [260] for
different species of EP, figure 43. Likewise good agreement
between the linear results from GYSELA and NEMORB was found
[240].

The approachin [261] follows that of the original paper [45]
with emphasis on a more general case of the EP distribution
that covers the range from the initial bump-on-tail distribution
to the fully slowing-down distribution for plasma parameters
similar to those in DIII-D experiments [44]. The dependence
of the EGAM frequency and growth rate as a function of the
EP pressure, beam velocity, transverse energy (EP gyroradius),
and pitch angle were studied. The correlation of the width of
the EGAM eigenmode with the EPs orbit width was demon-
strated, so that the eigenmode extends radially as the EP distri-
bution was changed from bump-on-tail to fully slowing-down.
It was also shown that for the case of the bump-on-tail distri-
bution the EGAM frequency is higher (by about 25%). One of
the important results is that the EGAM instability threshold for
the bump-on-tail distribution is much lower.

A series of numerical studies of EGAMs were performed
with a hybrid MHD-kinetic code MEGA [262-265] where the
EP distribution was calculated with the § f method and current-
coupling was used for the EPs. The slowing-down distribu-
tion function was used for EPs with balanced beam, as in
LHD experiments [266]. These simulations confirm the basic
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structure of the EGAM as a global mode with m = 0 poloidal
velocity, m = 1 plasma density, and m = 2 magnetic field
perturbations, as shown in figure 44.

The radial structure of EGAMSs was also studied in [267],
which reports m = 2 sidebands, both cos 26 and sin 26 of com-
parable amplitude, as well as the presence of a noticeable
cos  component in the perturbed potential, in addition to the
standard sin @, figure 45. It is worth noting that the m =2
sidebands in [262] are EM and are responsible for the global
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character of the EGAM, while simulations of [267] are electro-
static. Observation of the cos # and sin 26, which normally are
not excited in GAMs, may be a manifestation of the effect dis-
cussed in section 3: the coupling to the cos # and sin 26 occurs
as a result of the v| asymmetry in the EP distribution func-
tion, as follows from equation (151) and the definition of the
coupling coefficient L. in equation (142). Similar coupling to
the cos #, and sin 26 density also occurs due to plasma rotation
[268] and plasma radial gradients as discussed in section 2.13.
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The extension of MHD-kinetic MEGA model included the
inertia of EPs [263]. The appearance of the high frequency
EGAM mode (above the GAM frequency and weakly depen-
dent on the bulk ion temperature) was demonstrated in condi-
tions similar to LHD experiments. This higher frequency mode
is one of the EGAM eigenmodes identified as damped mode in
[45]. Here, it is destabilized by the bump-on-tail EP distribu-
tion due to the resonance of passing particles. These and other
results of such simulations, as well as the comparison with the
experimental data, are discussed further in section 13.

High energy particles will be a substantial reservoir of free
energy in fusion plasmas. Therefore, EGAMs excited by EP
particle are expected to significantly affect the turbulence,
energy balance and transport in a tokamak. It was suggested
theoretically [269] that GAMs driven by EPs (EGAMs) can
effectively heat bulk ions and thus transfer energy from EPs
to thermal plasmas (GAM channelling). The energy transfer
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Figure 45. Radial profile of m = 1 (thick) and m = 2 (thin) poloidal
components of electrostatic potential oscillation at EGAM
frequency. Sine and cosine components are shown by solid and
dashed lines respectively. Reproduced courtesy of IAEA. Figure
adapted from [267]. © EURATOM 2017.

between the EP, the mode and thermal particles was inves-
tigated in detail [193] with the NEMORB code and also with
the extended MEGA code where the thermal particles are also
described by the kinetic equations thus including the Landau
damping on thermal ions [265]. An example of the energy
channelling facilitated via the excitation of the EGAMs is
show in figure 46.

The role of EGAMs in plasma turbulence and transport
overlaps with the general problem of instabilities and trans-
port associated with EPs in toroidal fusion plasmas which
has been a subject of intense interest and numerous publica-
tions, cf reviews [180, 270] and references therein. Here, we
discuss only selected examples of EGAMs numerical sim-
ulations illustrating some nonlinear effects discussed in this
review.
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Figure 47. Contour map of thermal diffusivity modulated by
EGAMs as function of time. Adapted figure with permission from
[271], Copyright (2013) by the American Physical Society.

The excitation of EGAMs embedded in ITG turbulence and
their effects on anomalous transport is demonstrated in [271].
The EPs excite EGAMs enhancing the transport and leading
to the destruction of the transport barrier. The energy transport
appears to be modulated by EGAMs, as shown in diffusiv-
ity, figure 47 and temperature gradients profiles, figures 9(a)
and (b) [271], but no turbulence suppression is observed. The
effects of EGAMs on the turbulence was studied further in
[267] which shows the EGAM destruction of the staircase
structure that existed without EPs, thereby allowing more
extended radial transport that was inhibited by the staircase.
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In general, the heat flux is increased with the presence of
EGAMs.

The three-way coupling between EGAMs and turbulence
modes was also revealed via bispectral analysis [267]. The
wavelet bispectra in figure 48 show the coupling of w; and w,
modes through the third mode w = w; + w,. The spectra in
the top row show the interactions that occur before the EGAM
is excited (top left) and in the linear EGAM stage (top right)
when the interaction is mainly via the zero frequency mode,
wi + wy = 0, as shown by the crossing of the w;, w, line at
0. At later times, shown in the bottom row, when the EGAM
is well into the nonlinear and saturated states, the crossing
clearly occurs at finite +wggam frequencies, indicating non-
linear interactions of turbulent modes and the EGAM zonal
component, w; + Wy = WEGAM-

The nonlinear phase space features of the EGAM excita-
tion by resonant EPs are examined in [259, 260, 272]. It is
shown in [260] that flattening of the EP distribution function
in phase space occurs via the particle trapping and forma-
tion of an island in (v, ). The EGAM induced EP losses
occur due to the interaction and overlap of the separatrix of
the EGAM island and the X-point of the trapping cone, so that
the losses are mostly of counter-passing particles. The analogy
between beam—plasma instabilities and resonant EGAM exci-
tation has been exploited to study the EGAM saturation [259].
The maximum value of the radial electric field is found to scale
quadratically with the linear growth rate, as shown in figure 49
based on OrB5 simulations. This analogy is studied further in
[272] showing that the deformation of the EP distribution is
similar to the evolution of the distribution function in the 1D
plasma—beam system.

6. Overview of experimental observations

In this section a collation of experimental GAM results are
presented in the form of tables organised by device (follow-
ing a rough chronological order of discovery) for three cate-
gories: tokamaks, helical/stellarator devices and other toroidal
devices. The intent is to provide a resource of currently pub-
lished work. Although GAMs are ubiquitously observed in a
range of configurations and devices, reports of their absence
are equally important in confirming expected parameter depen-
dencies and in the validation of theory and numerical codes.
The banner line for each device gives the machine dimensions,
the main configuration, principle gas isotope, available heating
schemes (OH = ohmic, NBI = neutral beam injection, ECH =
electron cyclotron heating) and the principle diagnostics used
in the study of GAMs. The diagnostic abbreviations are given
in section 6.4.

6.1. Tokamak devices

The focus of early works was on reporting first existence and
the fundamental characteristics of the GAM. Although many
works were already contrasting results to theory, they also
helped to highlight the deficiencies in early theory and mod-
elling (which tended to concentrate idealized circular, large-
aspect-ratio configurations) and to provide an impulse for
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Figure 48. Wavelet bispectra showing nonlinear interactions w; + w, = w occurring for w ~ 0, in early (top) and late times for w = wggam
(bottom). Reproduced courtesy of IAEA. Figure adapted from [90]. © EURATOM 2017.

more comprehensive modelling in matching the GAM fre-
quency and amplitude behaviour in real devices. Reports of
detailed investigations followed on parameter scaling and tur-
bulence—GAM interactions using bicoherence and non-linear
data analysis techniques. Also, first indications of the non-
electrostatic nature of GAMsS via observations of the magnetic-
halo field and multi-diagnostic approaches appeared. More
recent topics include attempts at external control or excitation
of natural GAMs with a view to modifying edge transport, or
even triggering confinement mode transitions. The final area is
the interaction of GAMSs with magnetic islands—either natu-
ral MHD modes or induced edge magnetic field perturbations
via RMP coils (table 7).

6.2. Stellarators and helical devices

While natural turbulence driven GAMs were initially predicted
to be weaker in stellarators and helical devices compared to
tokamaks [59], measurements from CHS provided some of the
most convincing early GAM observations [398]. In addition,
one of the earliest mentions of a GAM-like flow oscillation
was from the W7-AS stellarator [399]. While the measured
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f ~ 10 kHz was close to the Winsor prediction, the measure-
ment location was just 2 cm inside the last-closed flux sur-
face (LCFS) where the high ¢/27 = 1/¢ might be expected to
strongly damp GAMs, and just before an H-L back transition,
suggesting a limit cycle oscillation (LCO) [400].

While an acoustic-like mode (an m = 2, 20 kHz close to
the GAM frequency) was reported in the U-3M torsatron using
magnetic probes [401], many helical devices do not appear to
show GAMs. Neither the Heliotron-J, HSX, and to-date nor
W7-X devices have reported natural GAM activity, despite
searching. On the other hand, core EGAMs and Alvén eigen-
mode driven GAMs are now substantiated in stellarators and
helical devices (table 8).

6.3. Other devices

Although there is ample evidence of GAMs in the core regions
of helical and stellarator devices, there appears to be a distinct
absence of them in reverse field pinch (RFP) configurations.
The overall low safety factor g < 1 (i.e. strong Landau damp-
ing), plus the presence of strong, broad-spectrum tearing mode
(TM) activity leading to a chaotic or ergodic field topology
(with similarities to the RMP effects in tokamaks) tends to
make RFPs rather unfavourable for GAMs [424]. As such, the
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number of specific ZF and GAM related reports is very lim-
ited. Nevertheless, ZFO signatures are beginning to appear in
experiments and numerical simulations [425]. Further details
of the measurements listed in table 9 are given in section 16.5.

6.4. Diagnostic techniques

What can be experimentally measured on the GAM depends
on the availability and resolution of the diagnostics. The prin-
ciple distinction of the GAM is the plasma potential oscil-
lation ¢~>, or the corresponding radial electric field E,, or the
perpendicular plasma flow vg.p. This was the first aim of
early measurements, via heavy ion beam probe (HIBP), LPs,
beam emission spectroscopy (BES) and microwave reflectom-
etry techniques. In recent years many diagnostic opportunities
have evolved which now allow simultaneous multi-diagnostic
measurements of multiple GAM fields, including E;, ne, T.
and By using familiar diagnostic techniques. The following is a
brief summary of the currently employed techniques and their
capabilities. ~

HIBP measures the local electric potential ¢, the electron
density 71, and possibly magnetic field B fluctuations with high
temporal and spatial resolution. As a singly charged, accel-
erated (hundreds of keV) heavy ion ‘primary’ beam, such as
K™ or TI'", propagates through the plasma it experiences elec-
tron impact ionization creating doubly charged ‘secondary’
beams, such as K*T or TI>T, which are detected externally. The
position and number of sample volumes is determined by the
beam trajectory and the diagnostic sophistication. Sweeping
the beam injection angle increases the measurement coverage.
The difference in the energy between the primary beam and
the detected secondary beam is equivalent to the local ¢ at the
ionization point (relative to the wall). In addition, the fluctu-
ation of secondary beam current is proportional to 7., though
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the path integral effect should be taken into account. In princi-
ple the diagnostic can give core to near edge coverage even in
high temperature plasmas. Data analysis techniques, such as
cross-correlation, are used to extract the GAM signature [36].
A further diagnostic development is the detection of the hori-
zontal movement of the secondary beam which is proportional
to the poloidal magnetic field. Thus a localized spectrum of
BI, can give information on the GAM’s zonal magnetic field
structure [406, 407]. HIBP has also been used to measure the
cross-phase between 7. and q~5 on JFT-2M [32, 317]. HIBP
was one of the first GAM measurement techniques and has
been employed on several devices: TEXT [30], CHS [33, 406,
407], JIPPT-IIU [36], JFT-2M [317, 318], T-10 [292, 298],
TUMAN-3M [333, 428] and LHD [429].

LPs measure the potential o (floating probe), and 7,
(biased probe). Probes offer good temporal spatial resolu-
tion, but are restricted to the far plasma edge or low power
discharges and are most often mounted on fast reciprocat-
ing shafts. To interpret the probe floating potential as plasma
potential requires knowledge or an assumption on the mag-
nitude of the electron temperature fluctuations 7. Mostly
probes are used in multiple pin combinations or arrays (LPA)
with both radial and poloidal/toroidal separations from which
the E, ~ (¢1 — ¢2)/6r is approximated. LPs have been exten-
sively employed on many devices: DIII-D [274], HT-7 [27],
HI1-NF [402], T-10 [292], JFT-2M [316], HL-2A [345], IST-
TOK [361], CHS hybrid probe array [408], TEXTOR [342],
MAST Gunderstrup reciprocating probe [374], J-TEXT [389]
and COMPASS [394].

Doppler reflectrometry/backscatter (DR/DBS) measures
the propagation velocity | = vg,xp + vy, of turbulent density
structures moving with the plasma. Here, a microwave beam
probes the plasma cutoff layer with a deliberate tilt angle to the
cutoff surface so that the plasma rotation induces a Doppler
frequency shift wp = u, k; in the Bragg back-scattered sig-
nal spectrum, where k; = 2koN | is the probing wavenumber
with N the refractive index at the cutoff location (which is
obtained with ray-tracing and separate density profiles) [304].
Since the measured flow velocity contains the E; X B veloc-
ity, fluctuations in E, will appear directly as fluctuations in
the Doppler frequency shift—with the assumption that fluc-
tuations in turbulent phase velocity v, ~ 0. The amplitude
of the back-scattered signal is also a measure of the (dn/n)>
of the turbulence at the probed k. The flow and turbulence
spectra are typically obtained by extracting the spectral peak
frequency and amplitude as function of time using a temporally
sliding FFT on the raw reflectometer data. The measurement
is thus direct in the sense that the velocity is obtained directly
from the Doppler shift, but is indirect in that the turbulence is
used as a tracer. If there is no turbulence then there is no back-
scattered signal. The need for a ‘reasonable’ back-scattered
signal tends to restrict probing access to the plasma edge
region. Pairs of DR systems separated toroidally or poloidally
have also provided information on the long-range correlation
(LRC) properties of the zonal/GAM flow perturbation. DR has
been employed on several machines including: AUG [304],
DIII-D [280, 282], Tore Supra [372], Globus-M [384, 386],
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Table 7. GAM observations in tokamak devices.

DIII-D R/a = 1.66/0.67 m, divertor: D,: NBI: BES, DBS
2001: suggestions of GAM/ZF in edge [273, 274]
2002-03: first clear results/observations 28, 29, 275-277]
2006: GAM to ZF transition [278]
2007-08: basic properties [279, 280]
2008: NBI driven EGAM [44]
2009: GAM and rotation [281]
2012-13: structure and drive/damping [282], peak splitting [247], multi-field measurements [283]
2013: GAM/ZF at L—H transition [284]
HT-7 R/a = 1.22/0.27 m, Circ. limiter, D,: OH: LPA
2002: low freq. ZF near GAM frequency using edge probes [27]
2010: spectral characteristics [285, 286]
2013: nonlinear coupling between multiple-KGAMs [287]
2015: using collective scattering of density [288]
TEXT R/a =1.0/0.28 m, circ.: HIBP
2003: first measurement using HIBP [30, 289]
1993: retrospective—quasicoherent modes as possible GAMs [39, 290]
T-10 R/a =1.5/(0.27-0.30) m, circ. lim., D,: OH, ECH: CR, HIBP, MPA, LPA
2003: low freq. potential mode—possible GAM [41]
2005-13: edge and core continuum GAM [34, 291-293]
2016: He pufting effect [294]
2015: MHD effect on GAM [295]
2015-17: core GGAM [294, 296-298]
2017: GAM~—turb. interaction [299, 300]
2018: GGAM scaling [301], ECRH driven [302, 303]
AUG R/a =1.65/0.5 m, Div., D,: NBI, ECRH, ICRH: DR, PCR, MPA
2004-05: first observations [31, 304]
2008: parameter scaling [26, 305]
2011: GAMs across L—-I-H-mode transition [306]
2015: GAM modulation of WCM in I-mode [307]
2015: RMP impact on GAM [308]
2016: frequency scaling comparison to models [309], mode structure and propagation [310-312]
2016: core EGAM [313]
2018: envelope analysis [314]
2019: non-linear transfer [315]
JFT-2M R/a = 1.31/0.35 m, divertor, NBI & ECH: HIBP, LPA
2005: non-linear coupling [316]
2006: eigenmode GAM and radial propagation [317]
2006: turbulence and turbulent flux modulation [318]
2006: non-linear coupling [233, 319, 320]
2006: L—H trans. [321]
2009: eigenmode GAM close to the separatrix [322]
2013-14: GAMs at L—H trans. [323, 324]
2018: GAM drive: RS vs DS [325]
JIPPT-1IU R/a =0.91/0.23 m: circ. limiter: OH & NBI: HIBP
1997: retrospective—quasicoherent modes as possible GAMs [40]
2005-7: [36, 326—328]
2010-12: core GAMs [329-331]
TUMAN-3M R/a = 0.52/0.24, circular OH & NBI: HIBP

2005: first edge GAM profiles [35]
2011: GAM over L—H transition [332, 333]
2013-16: isotope impact [334, 335]
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Table 7. (Continued)

TEXTOR R/a = 1.75/0.48 m, circular: PCR, LPA
2006: frequency and isotope scaling [336, 337]
2007: radial extm. and mag. island interaction [338]
2009: GAM structure and turb. interaction [339]
2010: GAM structure, bicoherence with LP [340]
2011: LRC of GAMs [341], radial propagation and ~ scaling [342]
2012: ACFM analysis method, GAM amp. profile [343]
2013: isotope effect on GAM LRC [344]

HL-2A R/a = 1.65/0.4 m, circ. limiter: OH, H,: LPA, MPA
2006—10: basic obs. [141, 345-350]
2013: EGAM [231]
2013: GAM/ZF with ECRH [351]
2016: synchronization of GAM & magn. fluctuations [352, 353]
2017: coexisting GAMs [354]
2018: GAMs and density limits [355]
2018: L—H transition [356]

JET R/a = 3.0/1.25 m, divertor, D,: NBI, ICRH: DBS
2006: ICRH driven core GGAM [12, 13]
2013-16: GAMs using probes and DR [357, 358]
2018: GAM scaling studies [359]
2018: L—H transition [360]

ISTTOK R/a = 0.46/0.09 m, circ. limiter: LPA
2008-9: long range correlations [361, 362]
2012: impact of plasma biasing [363]
2018: shearing [364]

EAST R/a = 1.88/0.45 m, divertor, LHCD, ICRF, ECRH: DBS
2011: GAM only at low density and high ¢g. Does not appear to play a role in L—H transition. No GAM in H-mode [365]
2013: GAMs in probe V¢ [366]
2015: various GAM analysis methods with DR data [367]
2018: structure [368]
2018: GAM in weak H-mode [42]
2019: No GAMs in I-mode [369]

JT-60U R/a = 3.37/0.84 m, divertor, NBI, ECH, LHCD
2012: EGAM [370]

NSTX R/a = 0.85/0.68 m, NBI: GPI
2011: plausible observation [371]

Tore Supra R/a = 2.39/0.72 m, circ. lim. ICRH: DR
2012: scaling [372]
2015: GAM scaling compared with modelling [373]

MAST R/a = 0.85/0.65 m, divertor: LP
2012: RMP impact and fluid simulations [374, 375]
2018: radial wavenumber estimates [376]

Alcator C-Mod R/a = 0.68/0.21 m, divertor, ICRH: GPI
2013: GAMs and WCMs in I-mode [377]
2015-17: GAM-ZF coupling [378, 379]

TCV R/a = 0.88/0.25 m, multi-X-point, ECR heated
2013—4: multi-field measurements [380—-382]
2018: GAMs in SOL [383]
2019: triangularity scan [157]
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Table 7. (Continued)

Globus-M

R/a = 0.36/0.24 m spherical tok.: OH

2014: scaling and localization [384, 385]
2015-16: multi-diagnostic measurements [386, 387]

FT-2

2013: structure [255]
2015: DR meas. with comparisons to ELMFIRE gk code [388]
2016: isotope effect [250]

R/a = 0.55/0.08 m, circular, H,: OH: Doppler UHR BS

J-TEXT

R/a = 1.05/0.26 m, circ. limiter, OH: probes

2015: GAMs suppressed with RMPs [389]

2016: GAMs enhanced with biasing H-mode [390]
2015-17: GAMs, MHD islands and enhanced RS [391, 392]
2019: effect of RMPs on GAMs [393]

COMPASS

R/a = 0.56/0.2 m, divertor, NBI: probes

2017: EM GAMs [394]

SINP

R/a = 0.3/0.075, circular, OH

2017: parameter scaling studies [395]
2018: effect of plasma biasing [396]

STOR-M

R/a = 0.46/0.12 m, circular, OH: LPA

2018: GAM-like oscillation suppressed by RMPs [397]

TJ-II [417], TUMAN-3M [35, 387], FT-2 [428], JET [358],
EAST [42, 368], HL-2A [430], FT-2 [255] and W7-AS [399].

Poloidal correlation reflectometry (PCR) measures the
propagation velocity of density turbulent structures using cor-
relation time delay analysis of poloidally displaced microwave
reflectometer beams. Similar to DR/DBS, this techniques also
uses the turbulence as a tracer for the vg, . However, as the
reflectometer beams are at normal incidence rather than tilted
the reflected signal is stronger than for DR/DBS and thus can
be used at lower turbulence levels. The poloidal separation
between the beam pairs needs to be smaller than the poloidal
correlation length of the turbulence, which is usually achieved
with an array or close cluster of antennas. Pairs of standard
normal incidence reflectometers at wide toroidal and poloidal
separations have also registered long range correlations if they
are aligned on the same field-line by varying the g profile. PCR
has been employed on: TEXTOR [337], T-10 [292] and AUG
[314].

BES also measures the perturbation propagation velocity
u of large scale turbulence structures. This was one of the first
diagnostics used for GAM identification on DIII-D. The emis-
sion intensity 1 /I o 7. /n. along a heating or diagnostic neutral
beam is optically imaged (usually with a fibre array) onto a 2D
radial-poloidal plane. Using image processing techniques the
structure flow vy and v; velocity fields are extracted and further
processed. As with DR it is assumed that the turbulent struc-
tures move with the local E; x B velocity. A degree of signal
averaging and/or conditioning, as well as sufficient turbulence
(several percent), is usually necessary to overcome detector
(photon) noise, etc. BES has been employed on: DIII-D [276]
and TEXTOR (Li-BES) [343].

2D gas puff imaging (GPI) measures light intensity emis-
sion from locally injected neutral gas puffing due to electron
impact excitation. The emission is sensitive to 7. and 7. as
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I = And"T{7, but is principally most sensitive to 7, fluctu-
ations. From the 2D viewing image velocimetry analysis of
structures gives information on the turbulent flow velocities.
The 2D map essentially gives multi-point measurements from
which mode structures and nonlinear energy transfer direc-
tions can be obtained. Employed on Alcator C-Mod [377] and
TEXTOR [431] on ZFOs.

Upper-hybrid-resonance DBS measures the turbulence
propagation velocity in the Doppler shift in the back-scattered.
The technique is similar to DR except that the microwave
probe beam is back-scattered from the upper-hybrid resonance
layer. In order to access the upper-hybrid cutoff the probe beam
is launched from the tokamak high-field side. Due to the tech-
nical constraints the technique has so far only been employed
on FT-2 [255].

ECE and correlation ECE measures radiative electron
temperature fluctuations from the electron cyclotron emission.
The GAM is expected to have a pressure sideband, which in
principle could have a measurable 7. component. To extract
T the plasma should be optically thick to avoid contamination
from the density fluctuations 7., which for the tokamak plasma
edge requires reasonably high densities and strong GAMs. For
typical horizontal ECE lines of sight (LoS) the measured sig-
nals will be close to the node of the m = 1 pressure sideband.
Vertical viewing ECE LoS would be of particular interest.
Even in optically thin plasmas, ECE can provide information
on the m = 1 n, component. When combined with a normal
incidence reflectometer with the same probing LoS informa-
tion on the GAM’s cross-phase angle a7 between the density
and temperature fluctuations may be obtained [283]. (C)ECE
has been employed on: TCV [381], DIII-D [283] and LHD
[432] for LRC of edge modes.

Magnetic probe arrays measure the external B component
of the GAM. As part of the standard diagnostic suite many
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Table 8. GAM observations in helical devices.

H-1 heliac R/a = 1.0/0.22 m, 3 period flexible heliac, ICRH: LPA
2002: GAM-like oscillations [402, 403]
2006: spectral transfer [37, 404]
W7-AS R/a =2.0/0.17 m, 5 period stellarator
2004: edge flow oscillations suggestive of GAMs [399]
CHS R/a=1.0/0.2m,!=2,m = 8: HIBP, LPA
2006-8: natural core GAM, eigenmodes, intermittent [38, 398, 405, 406]
2007: zonal magnetic field [407]
2010: RS at L—H trans, [408]
LHD R/a =3.75/0.6 m, [ = 2, m = 10: HIBP, mag. probe, interf., ECE
2010-11: EGAM in reversed magnetic shear [266, 409]
2015: high frequency EGAM [410]
2013: no natural GAM observed [411, 412]
2016—17: subcritical GAM excitation [413—415]
TJ-IT R/a = 1.5/0.22 m, 4 period heliac, ECH: DRefl.
2012: core flow oscillation [416]
2015: AE driven core GAM & EGAMs [417]
2016: core GAM candidate [418, 419]
2018: ECRH enhanced LRC of ZFO [302]
TJ-K R/a =0.60/0.10 m, l = 1, m = 6 torsotron: LPA
2009: possible GAM in energy trans. [420]
2010: no coherent GAM observed [421]
2015: low freq. m = 6 edge density mode (reflecting six-fold magnetic field structure) with ZF scaling [422]
HSX R/a ~1.4/0.1-0.2 m 4-period quasi-helical stellarator, ECH: LPA

2011: no GAM during biasing, but increased LRC and bi-coherence [423]

Table 9. Observations in RFP devices.

RFX-mod R/a =2.0/0.46 m, ohmic: LPA
2011: absence of ZF LRC [426]
MST R/a = 1.5/0.50 m, ohmic: LPA

2019: low freq. < 10 kHz, edge ZFO—not thought to be a GAM [427]

devices are equipped with a range of poloidal and toroidal
arrays of Mirnov coils (By) as well as B; coils, which are usu-
ally mounted closer to the plasma boundary. These coils allow
the GAM halo field structures (poloidal and toroidal) to be
measured. Less common are magnetic coils mounted on recip-
rocating probes which can provided internal or radial structure
measurements. Inside the plasma HIBP has also been used to
measure the GAM zonal poloidal magnetic field By on CHS up
to 200 kHz [407]. Magnetic coil arrays have recently employed
on several devices: JT-60U [370], DIII-D [283], TCV [382,
383] AUG [307, 311], Globus-M [386] and EAST [433].

Tangential phase contrast imaging (TPCI) measures the
integrated electron density fluctuations, however, spatial reso-
lution is achieved via toroidal geometry and spatial filtering of
the signal. The tangent point to the LoS chord gives the radial
localization. In TCV radial profiles were obtained by vertically
shifting the plasma column [380].

Other diagnostics have also been employed, including a
variety of ‘exotic’, i.e. non-standard diagnostics, such as cam-
era arrays of XUV detectors (Ixyy o n.) in EAST [433] sug-
gesting the possibility of future tomographic reconstructions.
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Also on EAST solid-state neutral particle analyser detectors
with toroidal LoS (tangent point gives radial localization) have
been used to monitor energetic ion losses at the GAM fre-
quency, as well as soft x-ray (SXR) cameras (x n, & T.) for
ZFOs [433]. D, emission has also been used on Globus-M.
Although the emission depends on 7., T. as well as neutral
density, fluctuations are expected to be dominated by 72, [386].
Line integrated 7 signals from edge and core FIR interferom-
eter chords were also used on JT-60U [370]. Collective scat-
tering using a CO, laser with multiple detectors has also been
used on HT-7 [288].

7. GAM characteristics

This section reviews the basic characteristics of the GAM
and its identification in experiments and simulations. Exper-
imental results are presented together with the corresponding
theory and simulations with the aim to assess the degree of
convergence (or not) between them. Starting with evidence
for the acoustic nature of the GAM in the simplest geom-
etry, i.e. a limited, circular poloidal cross section in large
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aspect ratio devices dominated by toroidal (tokamak) geodesic
curvature, in section 7.1, where the continuum GAM fre-
quency should scale with the local sound speed ¢, (as /T
and inversely with the ion mass m;) and inversely with the
major radius Ry. The basic GAM amplitude behaviour follows
in section 7.2. Even in the simplest of geometries additional
dependencies are predicted, such as the electron to ion temper-
ature ratio 7, = T../T; and collisionality v—see table 3. The-
ory also indicates the important role of equilibrium pressure
anisotropy pj # p, (section 2.3) and this is discussed further
in section 7.3. The expected isotope dependence and effec-
tive ion mass meg are addressed in section 7.4, and the more
complex effect of impurities in section 7.5. The complexity
increases with the introduction of plasma shaping (elongation
K, triangularity 0, Shafranov shift A, inverse aspect ratio «,,
etc) in section 7.6. Further, the presence of a poloidal divertor
introduces a flux surface separatrix with one or more B-field
nulls (X-points) which strongly modifies the edge poloidal
(up—down) symmetry. The impact of non-limiter shapes is dis-
cussed in section 7.7. Subsequent sections will then address the
GAM'’s modal structure, it is radial structure and localization,
propagation, and the impact of plasma rotation.

71. Acoustic nature

The foremost characteristic of the basic turbulence driven
GAM is its acoustic nature, namely its frequency should scale
with the plasma sound speed ¢ with no strong Alfvénic (i.e.
density) dependence. (Note BAE type modes and ACs, which
are not strictly GAMs—cf section 2.12—are not considered
here.) The sound speed c; for a single species, fully ionized
plasma, where both ions and electrons are warm is given by

¢s = (Ve Zi Te + %T0) [ mi, (252)

where 7, ; are the electron and ion adiabatic indexes, Z; the
ion charge (= 1 for hydrogen isotope plasmas) and m; the ion
mass [11, 99, 434]. The relative contributions of the ion and
electron components can vary depending on the experimental
conditions. Since the GAM frequency depends on the temper-
ature, which varies with radius, the GAM is expected to have
a local behaviour with a radial continuum frequency depen-
dence. Indeed all experimental results show this basic depen-
dence on temperature [61]—see also the various examples
within this section. However, subtle variations are observed in
the exact scaling.

As discussed in section 2.1, Winsor, using an ideal sin-
gle fluid MHD model for both species, obtained for a circular
plasma cross-section

weam = V2¢/Ro = /7 (7e + Dvri/Ro

with vr; = (27;/m;)'/? the ion thermal velocity, 7. = T./Tj,
and v = 5/3 the specific heat ratio for a monoatomic gas.
Here, the weak safety factor ¢ dependence is neglected. Note
the /2 factor appears due to the definitions of ¢s and wvyj
used. Later, Hallatschek and Biskamp [24] employing two-

fluid equations obtained wgam = /7e + 5/3vri/Ro, where
the electrons are isothermal (since the T, relaxation is fast so

(253)
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Figure 50. Measured GAM frequency vs ‘Winsor’ scaling

foam = V2¢/(2mRy) with ¢ = /(T + T;)/m; from experiment
for core (solid) and far edge (open) GAMs with various ggs in
ohmic, circular, limiter AUG plasmas. Reproduced from [305]. ©
IOP Publishing Ltd. All rights reserved.

as to maintain a constant temperature), hence v, = 1, while
v, =5/3.

More sophisticated MHD [65] and the kinetic models [11,
54, 99, 108, 121], see section 2.2, give an expression of the
form wgam = /7 + 7/4v7ri/Ry, i.e. collisionless ions with
~; = 7/4, that takes into account an anisotropy of the per-
turbed pressure, while v, = 1 for the electrons, which remain
isotropic. It is important to note that v, = 7/4 is obtained for
the case when the equilibrium ion pressure is isotropic. More
on the theory of the anisotropic pressure in the equilibrium
is given in section 2.3 and in the experiment in section 7.3.
Further, extended fluid models [80] predict that with increas-
ing ion collisionality v; the ion adiabatic +y; coefficient reduces
from a collisionless 7/4 to an isotropic 5/3 result. GK models
show a reduction to an isothermal fluid-like value of 1 when
using a number only conserving Krook operator [131], or, to
5/3 with a more correct NEC operator [132]. In either case
it is noted that increasing collisionality can also significantly
reduce the GAM frequency [131]. Table 3 summarizes the
equation forms for the GAM frequency predicted by the main
MHD and kinetic models, which include a range of effects. The
somewhat special case of the EGAM frequency is discussed in
sections 3 and 13.

From the experiment, taking the simplest case of lim-
ited circular plasmas in large aspect ratio devices, one finds
overall good agreement with the basic Winsor model. As an
example, figure 50 shows the measured continuum GAM fre-
quency for a range of AUG ohmic, ECR and NBI heated
circular (kp ~ 1.1) limiter plasmas vs the model fgam =
V2¢, /(27Ry) with experimental ¢2 = (T, + ;T;)/m; (neglect-
ing g > 2.5 and Zg = 1) [305]. For GAMs in the near
edge/core region (p,,; < 0.95: closed symbols) an isothermal
v; = 1 appears to give the best fit to the frequency.
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Figure 51. Radial profiles of the measured GAM frequency

G = wgamRo/cs normalized to experimental ¢2 = (T, + v T))/m;
with v; = 1, Zer = 1 and m;j = mp from AUG limiter and divertor
plasmas with various gy5 and ~p,. Reproduced from [305]. © IOP
Publishing Ltd. All rights reserved.
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Figure 52. Measured GAM frequency vs electron temperature T
from LP V¢ in circular TEXTOR edge (r/a = 0.95-0.97) for
various g(a). Curves are single-fluid predictions with y = 1
(dashed) and v = 5/3 (dotted). Reproduced from [342]. @ IOP
Publishing Ltd. All rights reserved.

However, towards the more collisional AUG far edge
(Ppot > 0.95: open symbols) the GAM frequency begins to
deviate from the expected v/2 scaling. This is shown more
clearly by the radial profiles in figure 51 where the mea-
sured GAM frequency is normalized G = & = wgamRo/cs
(with a specified 7; = 1) to remove the temperature depen-
dence. Here, the scale factor rises G — 3 towards the last-
closed-flux surface, even though the flux surfaces remain
circular—although Shafranov shifted [305]. For these (lower
temperature) far edge GAMs a ~; = 7/4 tends to give a bet-
ter fit, particularly for NBI and ECR heated plasmas. Simi-
lar results obtained using a reciprocating LP in TEXTOR are
shown in figure 52 for various edge g(a) values. The curves are
for the Winsor scaling fgam = ¢sv/2 + ¢~%/(27Ry) with ¢
(Y(T. 4 T;)/m;)"/?, assuming T, = T; and Z. = 1. Despite
the use of a one-fluid v the higher T points (more core), nev-
ertheless, show the GAM frequency best follows v = 1 while
the lower T, at the (more collisional) edge tend to the higher
v =5/3[342].
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Other circular cross-sectional tokamaks also tend to favour
a v; = 1 adiabatic index. Table 10 summarizes the best fit
model scale factor G to experimental results from various
devices for GAMs in the outer core and inner edge regions of
circular boundary elongation x, < 1.1 limiter plasmas. Since
varying definitions are used in the literature it is necessary to
specify also the v; used. Aside from the three JIPP T-1IU [36,
327], SINP [395] and TCV [382] cases where the ions were
particularly cold T. > Tj, a ; = 1 was preferred. There is
also a notable variation in G between ~ 1 and /2, with lower
values appearing for cases where ions were cold or where
T; = T. was assumed. Unfortunately a more detailed analysis
of additional dependencies, such as the inclusion of Shafranov
shift corrections which may help to raise G values, is diffi-
cult since not all of the necessary parameters are given in the
literature. Clearly more careful and detailed experiments are
required.

Nevertheless, in this direction a couple of model com-
parison studies have been made. Continuum GAMSs (p =
0.75-0.95) in ICRF heated, Tore Supra deuterium discharges
were compared [373] with GK simulations using the GYSELA
code for low and high collisionality v* conditions, as well as
with various analytic models: including: an empirical fgam =
¢s/(2mRy) model with ~; = 1; the Windsor fluid model, the
Sugama kinetic model [75] in the fluid limit of high ¢ and the
Gao kinetic model [117]—cf table 3. At low v* the empiri-
cal model gave the best fit over the whole radial profile, while
at high v* the empirical model fitted well for the edge while
moving slightly towards a model that included impurities and
equilibrium parameters for the core region. For the high v*
case the GK simulations (very close to the Sugama model)
over-predict the GAM frequency. With the Gao model (see
below), which includes finite aspect ratio € = r/R, and Shafra-
nov shift gradient A’, the Sugama prediction is reduced by
(1 — 3624 — A8 — 5¢A'18), i.e. by some 5%—10% towards
the experimental values. Further parameters were also tested
(e.g. impurities—see sections below) but a perfect match was
not achieved [373].

Similarly for DIII-D, radial profiles of the GAM frequency
for core (0.5 < p < 0.9) continuum and eigenmode GAMs in
moderate x divertor plasmas were compared to various mod-
els [283]. Again the best overall fit was found to be wgam =
¢s /Ry, with y; = 1, as previously reported in low density, high
T. NBI heated discharges [277, 280, 435]. Models which
included g or a v/2 scale factor, or with ; = 7/4, notably over
predicted [283]. Also from DIII-D, an effective adiabatic index
v = (p. +7p;/4)/(p. + p; + ps) which includes the fast ion
pressure p; was used in the Nova code to calculate the GAM
continuum for modelling measurements [44].

Table 10 also includes measurements from the near
edge/core regions of moderately elongated limiter shapes as
well as more strongly elongated divertor shapes. The overall
behaviour is similar to the circular cases. This maybe partly
explained by the decreasing local x with minor radius r/a.
The tendency to a G — /2 towards the core of diverted elon-
gated configurations is also displayed in figure 51 for AUG
data. The role of the elongation x, X-points and g5 on the
far-edge GAMs is discussed further bellow.
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Table 10. Experimental best fit values reported for GAM scale factor G = wgamRo/¢s
with specified ion adiabatic index ~y; from various devices at radial position r/a or p,
elongation x, and inverse aspect ratio €, = a/Ry. Triangularity ¢ generally not available.
Unless stated, Z; = 1 and m1; = mjsorope assumed. The categories are circular limiter,
moderate elongated limiter and shaped divertor.

Device G ¥ r/a, p K € Notes

FT-2 V2 7/4 <094 Circ. 0.14 [255] with Z; = 3.5, ELMFIRE
HL-2A ~1 1 0.92 Circ. 024 [347),T;i~T., H,

HT-7 ~1 1 0.85 Circ. 022 [285],Ti~T., D>

JIPP TII-U 1 — <0.5 Circ. 0.25 [36,327], cold T;

SINP 1 — ~0.86 Circ. 0.25 [395], cold T;

T-10 1.15 1 0.73 Circ. 0.20 [34], also GGAM [302]
TEXTOR V2 1 0.96 Circ. 027 [337,342],H,D & He

Tore Supra ~1 1 ~0.85 Circ. 030 [373]T;~ T, with A" & Zu¢
AUG V2 1 <095 < 1.1 030 [305]Lim. D; core

AUG >2 1 > 0.95 1.1 0.30  [305] Lim. Edge

TCV 1.1 — 0.95 1.4 0.28  [382] Lim. cold T}, eigenmode
COMPASS ~ 1 7142 0.85 > 1.5 036 [394] Lim. eigenmode

JET ~ 1 1 0.97 1.4 0.42 [358, 359] Div. LSN D,

TCV <2 1 0.6-0.9 1.52  0.28 [383] Div.

AUG V2 1 < 0.95 1.63  0.30 [305] Div. LSN, core, D,
EAST V2 1 0.94 1.64  0.24 [368] Div.

MAST <2 0 0.95 1.55 0.76  [374] DNull with M, rotation
DIII-D ~ 1 1 0.5-09 ~ 1.8 040 [280,283,435] USN
Globus-M <2 74 0.85 1.8 0.67 [385] USN, Gao formula

As so many devices have reported a best scaling with ¢2 =
(Te + T;)/my it has been termed the standard experimental or
empirical scaling. Nevertheless, there remain significant vari-
ations in G between 1 and \/5, which cannot be accounted
for by measurement error bars, nor the chosen ~y; alone. As
discussed in the following sections there are additional fac-
tors, such as impurity Zg, isotope g, rotation M; as well as
the Shafranov shift and g effects to be considered—values of
which are not always available in the publications. Inclusion of
these effects, however, is also no guarantee of universal con-
vergence. Table 10 is thus a starting point indicating the need
for more detailed multi-device comparisons.

72. GAM amplitude

Both the GAM amplitude and frequency are important param-
eters in determining its impact on turbulence moderation. If the
GAM frequency is lower than the inverse turbulence decorre-
lation time fgam < 1/74, which is generally the case in the
plasma edge, and has a sufficiently large amplitude Agawm, €.8-
a physical poloidal displacement larger or comparable to the
turbulence poloidal structure size, plus a radial wavelength
narrower or comparable to the turbulence radial structure size;
thenits E; X B shearing rate may be effective in turbulent eddy
shearing, and thus in moderating cross-field particle trans-
port. The GAM radial structure and shearing are described in
subsequent sections 9 and 15.

Typically for turbulence driven GAMs the coherent edge
spectral peak is 1-2 orders of magnitude above the incoher-
ent background flow fluctuation level; AUG [304], DIII-D
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[435] and JET [358]. For tokamak devices the GAM oscilla-
tory velocity amplitude (peak-to-peak) generally ranges from
0.2 to 1.0 km s~!; AUG [26], TEXTOR [339], DIII-D [277],
Tore Supra [372, 373], COMPASS [394], HL-2A [141, 347],
TCV [382], JFT-2M [318], although in some devices, such
as JET, values of Agam ~ 3 km s~! (ptp) are reported [358],
and in TUMAN-3M during particularly intense GAM bursts
amplitudes of > 6 km s~! have been observed [335]. Simi-
lar, or larger magnitudes have been reported for core GAMs in
JIPPT-IIU (up to 300 Vp, potential) [327].

In general, the GAM amplitude appears larger in toka-
maks than in helical devices, cf JE, < 0.7 kV m~! in the
H-1 heliac [436]. This has been attributed to the larger mag-
netic field inhomogeneity (edge ripple) in helical devices [61],
although differences in experimental conditions may also play
a role. Theoretically, the helical magnetic ripple strength-
ens the damping rate of the GAM [123]. Concerning the
EGAM amplitude behaviour, this is discussed in more depth in
section 13.

In spatial terms such potential or velocity magnitudes trans-
late to poloidal displacements of several cm. The (ptp) Agam ~
0.2-0.8 km s~! in AUG correspond to poloidal displace-
ments Agam/wcam ~ 0.4—1 cm, which are comparable to the
density turbulence eddy size [26].

From the radial gradient of the GAM (rms) velocity pertur-
bation one can estimate an equivalent shearing rate wgyp =
Ovg/Or, or indirectly from the GAM width or its radial
wavenumber, Ygxp = key/ (V3 y) - Estimates have been made
from several devices [141, 277, 282, 306, 337, 347, 357, 363]
and generally find wg  rates of the order of 10° s~! compara-
ble, within a factor of 2—3, to the turbulence decorrelation rate
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1/74. Even when applying a frequency dependent downward
correction to account for the oscillatory GAM being less effec-
tive than a static velocity shear (see section 15.1) the effective
shearing rate is still significant [337]. In FT-2 a GAM (rms)
amplitude of vgam ~ 1.7 km s~! was measured, correspond-
ing to an E X B shearing rate of wp.p = kgamvcam =~ 442
kHz. Applying a shearing reduction factor of H ~ 0.5 this gave
an effective shearing rate wegr ~ 271 50 kHz, which was
again very close to the turbulence growth rate [388]. Therefore
the GAM should have a sufficient amplitude to mediate the
edge turbulence. This positive role is supported by other mea-
surements demonstrating that the GAM can directly affect the
turbulence, described in section 15.2 on the GAM modulation
of the turbulence.

In real experiments the GAM flow oscillation is not static
but sits on top of a mean (equilibrium driven) E; X B rotation.
Generally, experiments report relative flow oscillations of sev-
eral tens of percent [26, 277,339, 358,372,382, 394]. In some
reports it has reached up to 100% or more of the background
rotation velocity, cf Globus-M [385]. In one extreme case, the
GAM oscillation was up to two times the mean E x B veloc-
ity (i.e. E; ~ 3 kV m™!) at the GAM radial peak location in
TUMAN-3M [335]. The background rotation also generates
a mean E x B flow shear which generally adds to the GAM
shearing. The relative magnitude of these two shearing rates
varies greatly and can be an important factor in confinement
(e.g. L-H) mode transitions, cf section 18. In arelated vein, the
GAM magnitude, like the mean vgyp, is not constant on a flux
surface. Variations of some 20% or more have been reported
on TEXTOR, with the GAM being larger at the mid-plane
compared to the top in ISTTOK [363]. These asymmetries are
discussed further in section 8.2.

The GAM amplitude and its behaviour is essentially
an expression of the drive (via nonlinear turbulence cou-
pling—sections 11, 14, or EPs—section 13) and the damp-
ing mechanisms (section 12). The GAM magnitude increases
with heating power and can even reach one order of magni-
tude larger in an NBI heated L-mode compared to ohmic—due
to stronger E, gradients and vorticity in the L-mode edge
[304], or pressure gradient [358]. Other parameter dependen-
cies, such as plasma shaping, isotope, etc, are discussed in the
respective sections below, as well as the issue of thresholds in
the GAM appearance—see section 11.2 and GAM amplitude
modulation (AM) and intermittency in section 15.3.

73. Equilibrium pressure anisotropy

Anisotropy in the background or equilibrium plasma pressure
x=r./ P # 1 can occur in experimental conditions with
strong external drive, such as with NBI or ICRF heating. As
discussed in section 2.3 pressure anisotropy has an impact on
both the GAM frequency and amplitude. As indicated by the
GK modelling results in figure 4 for a low (3 plasma an increas-
ing parallel temperature anisotropy reduces both the GAM
frequency and the collisionless damping rates. Experimen-
tally, pure ohmic heating should lead to isotropic temperatures.
Hence equilibrium anisotropy was not found to be an important
factor for the GAM frequency behaviour in ohmic Tore Supra
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discharges [373]. Nevertheless, strong pressure anisotropy has
been observed in several devices (JET, MAST, LHD) with neu-
tral beam driving parallel anisotropy x < 1 or RF heating driv-
ing perpendicular anisotropy x > 1. Thus anisotropy should
be important for the GAM behaviour in strongly heated plas-
mas. Unfortunately there are, as yet, no detailed experimental
studies of the GAM frequency and amplitude dependence on
anisotropy.

A second, and perhaps a more interesting effect of pressure
anisotropy is the prediction from MHD theory of the formation
of two branches in the dispersion relation—cf equation (22).
The higher frequency branch wi is associated with the GAM,
while the lower frequency branch w? is a zonal mode (i.e.
a ZFO). As discussed in section 17, GAMs and ZFOs have
been routinely observed simultaneously, but a link to pressure
anisotropy has not yet been made. This would be an interesting
topic for future investigation.

Finally, it is important to note that the effects of equilibrium
anisotropy are intrinsically related to the EGAM, in particular
to so-called reactive EGAMs that are caused, not by resonant
interactions due to EPs (reactive, or dissipative EGAMs), but
rather due to the appearance of new branches which become
reactively unstable. See further discussion in section 13.

74. Isotope and effective mass Mes

The so-called isotope effect is the improvement in plasma con-
finement with increasing isotope mass, from hydrogen to deu-
terium to helium. It has long been a topic of investigation from
the perspective of transport studies, cf [437] and references
therein. Concerning the role of ZFs there have been several
recent investigations [344, 438, 439].

Specifically, for the GAM frequency the expected inverse
dependence on the ion mass m; has been confirmed in sev-
eral machines. A particularly clear example from TEXTOR
of the change in the GAM frequency scaling with helium
(He), deuterium (D) and hydrogen (H) plasmas is shown in
figure 53 [337]. The lines show the expected pure isotope fre-
quency scaling—which fit well the fairly pure H and He data.
In between are predominantly deuterium points with varying
H/D ratios [336].

Similar behaviour is reported for ISTTOK where the GAM
frequency decreases with isotope mass as fgam o< 1//m;
[440]. Likewise in AUG the GAM frequency increased by
30%—-40% when changing the plasma fuelling from deu-
terium to hydrogen, matching the expected ¢y scaling [309].
Changing from D to H plasmas in the Globus-M spheri-
cal tokamak produced a GAM frequency up-shift [385] in
good agreement with the large ODW formula of Guo [248].
Likewise in TUMAN-3M a corresponding D to H frequency
up-shift was observed, although the increase was less than
expected, which was attributed to a 20% H contamination
[335]. Here, the isotope purity will result in an effective ion
mass megr = (Y, mini) /(O ni) correction. Good agreement
with the Guo formula was also found in FT-2—once impu-
rities were included (see below)—for ohmic H and D plasmas
[255]. A detailed study of the isotope impact on both the GAM
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Figure 53. Measured GAM frequency vs /7. + T; between

0.8 < r/a < 0.9 for ohmic H (A), He (O) and D (o, V) plasma with
varying H/D ratio (colours) in circular limited TEXTOR. Reprinted
figure with permission from [337], Copyright (2006) by the
American Physical Society.

and turbulence properties with using Doppler UHR backscat-
ter was performed in FT-2 with comparisons to ELMFIRE global
GK simulations [250].

For the GAM amplitude the results are also consistent
across various machines. In FT-2 the frequency up-shift was
accompanied by a decrease in amplitude in H compared to D
plasmas [385]. Likewise, in AUG GAMs are generally weaker
in H compared to D [441], as in TUMAN-3M [335], and in
FT-2 where the GAM ‘contrast’ is higher in D compared to H,
with lower local y.g thermal diffusivity [250, 388]. Compar-
isons of GAM amplitude and radial wavelength in FT-2 with
ELMFIRE GK simulations also showed good agreement [442].
Helium puffing into a deuterium plasma in T-10 was seen to
reduce both the GAM frequency and amplitude, but unfortu-
nately produced such a strong perturbation in the edge 7. and
n. that it is not possible to identify a clear isotope effect [294].
Also in JET the GAM amplitude is ~ 20% larger in D than in
H plasmas [358].

Finally, in TEXTOR a decrease in the long-range-
correlation between toroidally spaced LP (Vy) arrays was
observed from H to D dominated plasmas [344]. Here,
the signals were dominated by f ~ 10 kHz—attributed to
GAMs—and lower amplitude 1 kHz oscillations. Similar
behaviour was observed with correlation reflectometry [443]
and Li-beam spectroscopy [343]. There was also evidence of
changes in the poloidal £ spectra which was attributed to a
decrease in the ZF amplitude.

75. Impurities and effective charge Zq

The impact of impurity ions is two-fold; impurities raise the
effective collisionality which affects the GAM damping and
drive, and impurities raise both the effective charge Z.¢ and the
effective ion mass mg. For warm (kinetic) electrons, increas-
ing Z.g raises wgam While increasing mieg lowers wgam as per
equation (252). However, as m.¢ increases faster than Z.¢ the
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net result is that the GAM frequency tends to decrease. In addi-
tion, impurities generally enhance radiation with commensu-
rate reductions in ion and electron temperatures and thus also
WGAM -

A GAM dispersion relation including impurity ions (single
species) was derived from a kinetic model [248] and shows a
roughly linear decrease in the GAM frequency with increas-
ing effective charge Z.x (due mainly to an increase in the
polarization current carried by the impurity ions), as well as
a significant impact on the GAM damping, which initially
increases with Zg¢ (due to impurity polarization currents) and
then decreases (due mainly to the effect of the curvature drift
of impurity ions). A similar non-monotonic behaviour for the
GAM damping vs ion collision rate v; was obtained with a
GK model including kinetic effects from combined collisions
and impurities [444]. With increasing Z.; the peak damping
rate moves towards lower collision rates. That is, induced col-
lisions tend to decrease the GAM frequency, but can increase
the GAM damping at low v; and decrease the damping at high
v;. These simulation results were consistent with GAM fre-
quency shifts observed in HL-2A during ECR heating induced
impurity releases [351].

The effects of Z. in multi-ion species plasmas have
also been investigated using linear GK equations and non-
Maxwellian ion energy distributions [445]. Both the GAM
frequency (linearly) and the damping rate (nonlinearly) were
found to fall with increasing Zetr = -, iq71j/ > impid,M)»
where b, i refer to bulk and impurity ion respectively, and the
degree of non-Maxwellian-ness of the ion distribution function
(e.g. indicating the presence of energetic tails). The combined
effect of impurity (charge) and toroidal rotation was also ana-
Iytically investigated [446], where it was found that without
rotation, impurities decrease the GAM frequency and increase
the GAM collisionless damping rate (due to polarization cur-
rent). When including toroidal rotation the rate of frequency
and damping change is slower as the rotation increases, partic-
ularly at large impurity concentrations. Generally, trace impu-
rity levels were found to have little effect on the GAM, except
at large toroidal rotations where additional drifts induced by
toroidal rotation begin to play a role.

Experimentally there are three main sets of recent results.
For hydrogen plasmas in (circular) FT-2, radial profiles of the
edge GAM frequency were compared [255] with a simplified
kinetic formula (derived from the work of Guo [248]):

2
- (il +ZTe) .

254
o (254)

2 _
wWeaM —

With m; = my and Z; = 1 for H™ and ~; = 7/4 the formula
over-predicts the experimental values, but if assuming cold
ions T; = 0 then it under-predicts. Only once the O impu-
rity component was taken into account (Zg ~ 3.5) could the
(inner edge) GAM frequency be matched. For comparison
with ECR heated edge GAMs in HL-2A a similar impurity
compensated formula (also derived from Guo) was used [351]:

R 2T,

wWeaM — R vi + 7 —i(Z, — l)fz),

255
2 (255)
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with v, =7/4, 7e = T./Ti, f, = n,/(mi + Z,n,) and m;
(min; + myn,)/(n; + Z,n,) the average ion mass. The impurity
Z, and bulk ions are assumed to have the same temperature.
Only by including a (dominant carbon CT) impurity fraction
of f, = 0.12 could the temporal evolution of the measured
frequency be matched.

Impurities were also found to be important in attempting
to match Tore Supra edge GAM frequencies to models [373].
In Tore Supra the main impurities are carbon and oxygen.
By assuming impurities and bulk ions to have the same tem-
perature, then following [248], a similar equation as (255)
was obtained wZ,y = (2/R3) (viTi/my + Te/my) with effec-
tive mass of ions my = (Mpuk + QimpMimp)/ (1 + Qimp) and
My = Mgtk ANd Qimp = Rimp/Mouik and y; = 7 /4. Although the
GAM frequency dependence on Z. can be significant, with
T; = Te and Zr = 2 = m,/m; it was found that the frequency
downshift was less than 10% which, while important, was still
not enough to account for discrepancies between experiment
and predictions. Agreement would require an unrealistic Z¢
of 4-6, depending on /™.

Overall, the inclusion of impurity effects appears to be
important, but not always sufficient. It should also be noted that
most other experiments have not considered impurity effects in
their reported results. In recent AUG results with an all tung-
sten wall [309], Z.s ~ 1.3 and thus should have only a small
effect. However, earlier AUG results with a partial carbon wall
where Zer > 2.5 [304] may need reevaluating.

76. Plasma shape

Both theory and experiment show a significant impact of
the magnetic configuration on both the GAM frequency and
amplitude. As early as 2005 both AUG [304] and DIII-D
[435] observed a decreasing GAM frequency with increas-
ing vertical cross-sectional elongation x. While the elongation
is by far the most dominant shape parameter, the triangular-
ity 9, inverse aspect ratio € = a/Ry, plasma centre Shafranov
shift A, together with radial gradients s, = (r/x)V,k, mag-
netic shear s, = (r/q)V.q, and A" = VR, are all relevant
parameters. The role of the safety factor ¢ is discussed in
section 7.8.

The GAM theory presented so far has concentrated on the
ideal circular cross-sectional tokamak plasma geometry. How-
ever, as early as 2005 models also began to be extended to more
experimentally relevant non-circular shapes. Some of the first
MHD analytic models [447,448] used a Solov’ev type equilib-
rium with a finite €, an elongation s and an up-down symmetric
triangularity d to obtain a general dispersion description of the

(25)

where E o x describes the elliptic flux surface deformation
and g, and g, are general equilibrium geometric factors of
the order of 1, which vary slightly with the magnetic flux
radius and 6 [447]. Equation (256) essentially has an wgam
V1 + k% dependence.

First global numerical simulations also appeared in 2006
with linear GK PIC GYGLES and nonlinear electrostatic ORBS

28
E?

2
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codes with an elongated D-shape equilibrium matching the
TCV configuration [244]. A little later Angelino, starting with
the Braginskii equation, modelled the role of x on both the
GAM frequency and damping to obtain [243],

2 8

v | 8 1
R% 3 — 2k + 3K2

Weam = (Te + % + (257)

with vr; = (T;/m;)"/?, 4; = 1 and « the local elongation. The
model results compared quite favourably with orB5 GK simu-
lations. The role of elongation on linear damping is discussed
in section 12.

Using an MHD model, Wahlberg [157, 167] obtained for a
non-circular cross section with finite £ and average 9,

rdek

: 2
2dr (238)

1
Weam = W2 {2+;—2(;@—1)—

Also within the framework of an ideal MHD model, Sorokina
et al [449] used a Miller equilibrium with variable J, x and
local € = r/Ry to derive the relation,

(2+
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where ws = ¢;/Rp. This formula has a strong wgam
\/2/(k* + 1) inverse dependence, an inverse parabolic depen-
dence on € and a weak, roughly linear dependence on d. This
formula is qualitatively similar to that of Gao-2008 [450, 451]
derived using a GK approach with cold electrons,

5 T3 2 2 (k2+1) 32 3k2+1\°

WoaM = 7 ap\ Y 0 0 T 1 2 aa)
4R (K2 + 1) 49 24 4 2242

(260)

The model was subsequently extended to include a finite elec-
tron temperature 7. = T, /T; in both zero (shown below) and
large drift orbit limits (small differences in the form and
placement of the s, term), Gao-2011 [122],

2 v, (7 N 2 | ST+ 27
= — —_ T —_— JEE—
GAM TR \4 )\ k21 27+ 47,
o 1_629%;24—3 AR K?
8k2 48 42 + 4

457 + 1
4r% + 4

(23 + 167 + 472) (K> + 1)
2q%(7 + 47.)?

2
+eA’ ]
(261)

with local € = /Ry, Shafranov shift gradient A’ and the radial
derivative of elongation s,, ~ (k — 1)/k. Again, the local  is
used. Gao-2010 [117] also gives expressions for the GAM fre-
quency and damping taking into account the dispersion effects
and elongation.

These analytic formulations together with numerical sim-
ulations, using fluid models with experimentally based Miller
equilibria (but without an X-point) [452] or from the HELENA
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Grad—Shafranov solver [453], or using GK models [245, 246],
have begun to allow detailed comparisons with experimental
results.

Such an experimental example of the inverse dependence
of the GAM frequency on elongation is shown in figure 54
for AUG far edge (p,, > 0.95) continuum GAMs [305]. With
increasing boundary elongation sy, from circular limiter to
strongly elongated diverted (lower X-point) shape, the fre-
quency scaling weakens. The radial dependence of the scale
factor, or normalized frequency, G = wgamRo/cs on K, was
shown in figure 51. Various heuristic models were tested
against the edge data set, but the best tested was a simple model
including only x;, and the inverse aspect ratio ¢, = a/Ry ~ 0.3

_ Eo)

with ¢ given by equation (252)—see figure 14 in [305]. How-
ever, for k, = 1 this reduces to wgam = 2.5¢5/Ry which too
strong to describe the core GAM behaviour.

A more comprehensive study [309] of the GAM frequency
scaling in AUG shaped plasmas, including core and edge
databases with limiter and divertor configurations, undertook
comparisons with Winsor (258), Angelino (257), Conway
(262) and Gao-2011 (261) models. All of the models which
included shape parameters were found to be equally good (or
equally bad), but the Gao model, although under-predicting,
produced the least scatter. The conclusion being that all the
models capture the basic inverse x dependence but equally
miss other dependencies. These models, however, consider
only linear dispersive effects. Nonlinear effects where the
GAM amplitude or drive (possibly also ¢ dependent) are
predicted to pull the GAM frequency, may also be signif-
icant—see section 4. The GAM frequency in AUG being
always larger than Gao’s prediction would be consistent
with nonlinear GK predictions of a positive frequency up-
shift [11, 142], or with nonlinear MHD predictions [454,
455]—which can either give up or down-shifts depending on
relative strength of the turbulence drive to the oscillation stabi-
lization [456]. This is a topic of ongoing research. The effect of
q on the GAM amplitude is discussed more fully in the context
of collisionless damping in section 12.1.2.

The only other machine that has reported a « scan is COM-
PASS on the GAM amplitude dependence [394]. As was
observed in DIII-D [435] and AUG [26], the GAM strength-
ens with increasing ~ in diverted COMPASS plasmas. A fuller
discussion of the amplitude dependence on shape and ¢ param-
eters appears in section 12.1.2 on damping. Nevertheless, sev-
eral machines have attempted to reconcile GAM frequencies
from strongly shaped, fixed «, plasmas with one or more of
the popular analytic models. Here, just the continuum GAM
results are summarized, leaving the more involved ultra-wide
eigenmode GAM behaviour to section 9.3. These results are
listed in the second and third sections of table 10.

Continuing with COMPASS, in strongly shaped xy >
1.8 limiter (continuum like GAM) and diverted configura-
tion (narrow edge eigenmode like with magnetic sideband)
the GAM frequency (r/a ~ 0.88) scales as wgam = ¢s/Ro
[394]—although with some data scatter. A unity scaling also

1
1+ Ky

(262)
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appears for GAMs in the near-edge of JET ohmic discharges in
hydrogen and deuterium with lower-single-null (LSN) diver-
tor configuration [359], and as noted above, in a variety of
upper-single-null (USN) diverted DIII-D plasmas the core
and edge continuum (p = 0.6-0.9) GAM wgam ~ ¢s/Ro [277,
280, 283, 435]. On the other hand, near-edge GAMs in EAST
double-null ohmic/L-mode plasmas scale closer to /2 with
v; = 1 [368]. Based on the published details it is difficult to
say if GAMs in these devices really show no shape dependence
in the near-edge, or if the scaling is just fortuitous.

Where results have been matched against numerical simu-
lations or GK analytic predictions which include shape param-
eters then the agreement appears to be good—such as in TCV
L-mode, limited plasmas, the edge GAM scaling (with signifi-
cant data scatter) as wgam = 1.1¢s/Ry was in close agreement
with orB5 GK simulations [382]. The 1.1 scale factor was
much stronger than the Gao prediction but not so far from
the Angelino prediction. In the Globus-M spherical tokamak
upper single null configurations the edge continuum GAM fre-
quency was significantly lower than the Winsor prediction, but
somewhat closer to the Gao-2011 large drift orbit prediction
for both deuterium and hydrogen [385]. Likewise, in MAST
the edge GAM frequency matches a modified Gao-2010 pre-
diction reasonably well, once rotation corrections had been
applied [374].

The triangularity 0 is a parameter that has not been widely
studied experimentally. GAMs have been measured in strongly
shaped TCV plasmas at high x = 1.4 and § = +0.4 [382],
and more recently a wide § scan was performed to investigate
the frequency dependence, as shown in figure 55 where the
normalized edge GAM frequency foam/cs is plotted against
average 9, while keeping other parameters roughly constant.
The dependence is almost linear, and of particular interest,
continues to decrease with negative triangularity. While some
analytic formulations, such as that of Sorokina, equation (259)
which includes § terms, indicate a weak positive frequency
dependence, a comparison with the MHD formulation of
Wahlberg which also retained x, A and their radial gradients
showed a more reasonable agreement [157]. The sign and mag-
nitude of § was recently found to have a significant impact
on the core turbulence in TCV [457], specifically a reduction
of turbulent electron temperature fluctuations and correlation
lengths with negative § was observed. It would be valuable to
extend these studies towards the edge and to compare with the
respective GAM properties, particularly if the improved con-
finement observed in negative triangularity shapes proves to
be a viable fusion reactor operational scenario [457, 458].

Overall, shape parameters are important for the edge, but
perhaps less so for the core. This needs to be investigated fur-
ther. The ~; dependence on radius and specifically collision-
ality also needs further study. In the next section we address
the impact of the flux surface X-point on GAMs close to the
separatrix.

77, Limiter vs divertor —role of the X-point

The formation of a field null (flux surface X-point) in the
poloidal divertor configuration profoundly impacts the edge
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Figure 54. Measured edge GAM (p,,; > 0.95) frequency vs square-root temperature for increasing boundary elongation rp with limiter and
divertor shapes in AUG. Reproduced from [305]. © IOP Publishing Ltd. All rights reserved.
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Figure 55. Measured edge (p = 0.95) GAM frequency normalized
to ¢ vs edge triangularity J in an up—down symmetric, k = 1.4
ohmic limiter TCV discharge. Reproduced from [157]. @ IOP
Publishing Ltd. All rights reserved.

plasma shape. It changes the up-down symmetry, it gener-
ally raises the flux surface triangularity, as well as creating a
poloidal flow stagnation point. Experimentally the X-point is
seen to have a distinct effect on the edge GAM, its frequency
and amplitude behaviour, its radial extent, and its localiza-
tion compared to limiter configurations. However, the X-point
appears to have less impact on more core localized GAMs
whose behaviour is similar to that in limiter configurations.
There has been little theoretical work on the X-point impact
on the GAM.

A series of studies have been made in AUG comparing
limiter and divertor configurations [26, 305, 309]. In AUG
divertor configurations the edge density profile forms a dis-
tinct pedestal, while the temperatures retain typical L-mode
linear profiles. For high 1.4 < x, < 1.75the GAM is observed
only within this steepened density gradient region, 0.95 <
Ppot < 1.0, between the pedestal top and the separatrix [304,
305]. In low ky limiter configurations the pedestal is weak
and the density profile is more parabolic. Here, the GAM now
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reaches deep into the plasma. For AUG conditions this can
be as far as p,, ~ 0.75, limited only by the g profile. This is
similar to COMPASS where the GAM appears further in for
limiter configurations but is more edge localized for divertor
configurations [394].

To the outside the GAM generally reaches to the LCFS in
AUG limiter configurations, while in divertor configurations
there is a tendency for the GAM to be suppressed just inside of
the separatrix [26]. Likewise, in DIII-D [435] and JET [358]
GAMs are not observed close to the separatrix. This may be
due to a weakened drive as the kinetic profiles flatten towards
the base of the pedestal, or a combined effect of enhanced
mean E; x B flow shear around the separatrix, or stronger col-
lisionless damping due to the enhanced g values close to the
separatrix.

In AUG divertor configurations the GAM frequency is
generally higher compared to limiter plasmas with the same
rkp—cf figure 7 in [309]. In limiter configuration the GAM
amplitude decreased with increasing elongation, but less so in
divertor configurations [26]. A detailed example is shown in
figure 12 of [309]. The GAM damping rates appear to be lower
in divertor compared to limiter, and are generally dominated by
collisional damping—i.e. the GAM is generally stronger—see
section 12.

Current analytic models are not well suited to X-point equi-
libria. For edge GAM modelling in asymmetric shapes only
numerical simulations with fine-grain magnetic equilibria of
realistic experimental conditions have been tried. Some exam-
ples include a two-fluid model with a special algorithm to gen-
erate smooth local equilibria from course-grained experimen-
tal cLISTE solver [452]. Although the X-point could only be
approximated, a reasonable prediction of the GAM frequency
in diverted AUG plasmas was obtained. To simulate the ITER
shape and conditions an MHD equilibrium was used with the
ORB5 GK code, where it was observed that GAMs are likely to
be weak due to strong damping in ITER [246].

Figure 56 shows a particularly fine example of a successful
simulation of an near-edge GAM in a strongly shaped, small
aspect ratio, double-null (i.e. up—down symmetric) MAST
configuration. The figure compares potential fluctuation spec-
tra from an low-field-side (LFS) LP 4 cm inside LCFES of an
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ohmic plasma with matched numerical simulations from the
global toroidal, two-fluid, EM turbulence code CENTORI [103].
Unfortunately, the simulation grid could only extend up to 95%
of the flux surface due to numerical limitations and thus could
not fully resolve the X-points and separatrix. Nevertheless,
performing Ry scans the code showed the GAM diminish-
ing with increasing Ry, as well as recovering radial step-like
frequency plateaus [103, 375].

7.8. Safety factor q and the ion sound wave

Both fluid and GK theory predict a coupling of the GAM to
the parallel ion SW, which appears as a correction to the GAM
frequency of the form (1 4 1/2¢%)"/>—cf sections 2.2 and 2.5,
which results in a weak inverse frequency dependence on the
local g. Since the safety factor is usually ¢ > 2 in the tokamak
edge this term is often neglected. Nevertheless, experiments
do show a significant frequency variation with g.

Early DIII-D measurements showed an inverse frequency
dependence consistent with the g correction, although with a
somewhat stronger dependence than g2 [435]. In Tore Supra
radial profiles the edge GAM frequency were also found to fit
better to a ¢s/Ry scaling with the inclusion of a (1 + 1/2¢%)
correction [372].

However, parameter scans from AUG show an opposite
trend with the edge GAM frequency increasing with the local
g, as shown in figure 57 where the normalized GAM frequency
G = & = wgamRo/cs is plotted vs the normalized g/gq5 for a
range of gy5 and selected «y, [305]. At high boundary elonga-
tion Ky, ~ 1.6 the G sensitivity to g is weak, but with decreasing
Ky the sensitivity increases, following an overall behaviour of
G o (2.5 — 3.0) x (q/qos)*/ k2. Part of the apparent flat sen-
sitivity at high x, maybe due to the strong variation of local
+ with radius which compensates the local ¢ radial varia-
tion—cf figures 4 and 11 in [305], suggesting a stronger role
of the s, and s, radial derivatives. For example, large  and s,
which are particularly relevant to the far-edge, are expected to
enhance the parallel dynamics, while a large s, makes the ion
response more adiabatic [453].

In summary, there is good progress in matching experimen-
tal measurements and analytic predictions for a wide range
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Normalized g/qqy5

Figure 57. Normalized measured edge GAM frequency

G = & = weamRo/cs Vs q/qqs with experimental ¢2 = (T, + T;)/my
for AUG circular limiter x, =~ 1.1 and elongated divertor x, ~ 1.6
plasmas. Reproduced from [305]. © IOP Publishing Ltd. All rights
reserved.

of plasma conditions. Nevertheless, there remain several unre-
solved issues; the expected V2 frequency scale factor for cir-
cular plasma is not universally observed. A more detailed
cross-machine validation would help to resolve possible A’,
q and e effects in these cases. In addition, strong frequency
deviations close to the LCFS maybe result from ion adiabatic
index +y; variations with collisionality. In theory, large ¢ should
reduce wgam, but its impact also appears to have a « depen-
dence. In particular s, and s,. dependencies need further atten-
tion. The strongest shape factors are elongation, aspect ratio
and Shafranov shift which act to reduce the GAM frequency,
while triangularity acts to increase it. Experimentally, elonga-
tion has been well studied, triangularity less so, but untested so
far is the aspect ratio dependence. Heating beams and ICRF
can induce significant pressure anisotropy x = p, / p) which
also changes ;. Isotope purity affects the effective mass mgr,
while high Z impurities also affect the effective charge Z.
There is much experimental work to be done here. Various
parameters have been investigated individually, or in combi-
nations, but there lacks a comprehensive cross-checking of
results and theory. Here, it would be most instructive to build a
proper multi-parameter, cross-machine database to test against
current model predictions. The good agreement of experiments
with numerical modelling is encouraging, but analytic models
including X-points need to be developed.

8. GAM modal structure and sidebands

In axisymmetric magnetic configurations theory predicts (see
table 2) that the flow/E; oscillation should have a toroidal n =
0 and poloidal m = 0 mode structure while the pressure side-
band should have a standing-wave n = 0,m = 1 (or higher)
structure with 77, &« —V - v, in a non-rotating plasma. Con-
firmation of the mode structure is a principle means of iden-
tifying the GAM in experiments and numerical simulations.
Sections 8.1 and 8.2 review the modal evidence. In addition
to flow/potential and density measurements, GAMs have also
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been observed in other plasma parameters, including electron
temperature and magnetic field. Generally the 7. oscillation
is the dominant component of the pressure sideband, while a
T, oscillation appears as a sub-dominant component—these
measurements are reviewed together with simultaneous
multi-field measurements in section 8.3. In the simple fluid
picture the GAM is purely electrostatic. However, inclusion
of the J x B term leads to B-field coupling and the creation
of an m = 2 magnetic sideband signature. Experimentally this
becomes particularly evident with plasma shaping and finite
plasma pressure (5. These effects are addressed in section 8.4.
The issue of a magnetic sideband, however, is complicated by
the coupling between the GAM and MHD islands—this topic
is discussed in a latter section 16.1. Theoretically the GAM is
expected to exist only on closed flux surfaces, as is generally
observed. However, recent evidence suggests possible field
coupling across the separatrix into the open field-line region
of the scrape-off-layer (SOL). This is discussed in section 8.5.

8.1. Toroidal and poloidal mode structure

The GAM E; x B flow and potential perturbations should have
an m = n = 0 mode structure, while the pressure sideband
should have an m = 1,n = 0O structure in circular geometry.
Using multi-point measurements with poloidal and toroidal
separations can give the mode amplitude and phase distri-
bution via correlation techniques. For example, a LRC mea-
sured on the same flux surface but not field-line, with a zero
phase shift at the GAM frequency, would imply anm = n =0
structure.

The potential mode structure was measured in T-10 using
multiple correlation reflectometers (CR) with various poloidal
separations (LFS and HFS), together with LP arrays. The
high poloidal cross-correlation and corresponding cross-phase
shifts close to zero indicate an m ~ 0 [292]. Similar LRC
between HIBP and LP arrays at the GAM frequency were
reported [303]. Pairs of Doppler reflectometers have also been
used on several devices; HL-2A [345, 430], AUG [43], DIII-
D [282], EAST [42], with both toroidal and poloidal separa-
tions showing LRC in the GAM flow perturbation with zero
cross-phase shift, consistent with an m = n = 0 structure.

Similar results were obtained using a range of other diag-
nostic techniques: HIBP on JFT-2M [318], BES on DIII-D
[435], paired poloidal CR antennas on TEXTOR [337] and
between CR at the machine top and Li-beam at the mid-plane
[343] (here the slight phase-shifts could be attributed to radial
mismatches—consistent with predicted linear phase shift as
function of minor radius [277, 318]), also using floating poten-
tial from LP arrays on HT-7 [285], J-TEXT [390] and SINP
[395].

The density component of the pressure sideband oscillation
is predicted to have a sin # dependence related to the potential
as [53]:

NGAM € pcam
n

€

= —V2kpi ( ) sin(f), (263)

where k; is the GAM radial wavenumber, p; the ion gyrora-
dius and ¢gam the GAM potential. This relation was locally
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confirmed in JFT-2M [317]. Overall, the density perturba-
tion is generally reported as being significantly smaller than
the potential perturbation. In JET the GAM potential to den-
sity ratio was around 10, roughly consistent with expectations
[357], while in ISTTOK the potential was 5 times larger than
density just inside the LCFES [361]. In JIPPT-IIU, where the
GAM 6o < 200 V was strongest in the core, the dn was neg-
ligible [36]. Likewise, in T-10 while the GAM potential was
significant (up to d¢» = 100 V for ohmic, increasing by a factor
of 2 with ECRH) the density oscillations were smaller [292].

The poloidal distribution of the density sideband has been
measured in TEXTOR with CR showing the GAM density
perturbation is larger at the machine top compared to the mid-
plane, consistent with an m = %1 structure [337]. The m = 1
structure was also confirmed by a 7/2 cross-phase between
Li-beam density perturbations at the machine bottom and CR
flow perturbations at the top [343]. A notable set of mode
measurements were obtained in circular HL-2A using two-
point correlation analysis of toroidally (37.5°) and poloidally
(2.7°) separated LP array data around the outer mid-plane. As
shown by the joint spectra in figure 58, a clear m/n ~ 1/0
mode for I and m/n = 0/0 mode for V; fluctuations was
obtained for the f = 9.8 kHz edge GAM [349]. With flux sur-
face shaping, and in particular with field-null X-points, GAM
harmonic and satellite spectral peaks have been observed con-
sistent with (theory predicted) higher m modes for the pressure.
X-points may also reduce the m = 1 mode amplitude in the
edge by spreading the energy to the higher orders via up—down
symmetry breaking.

8.2. Poloidal asymmetries

While the GAM flow oscillation has a poloidally symmetric
m = 0 mode structure, the magnitude of the oscillation is not
expected to be constant on a flux surface. Firstly, the turbulence
amplitude and structure size (correlation length) have a strong
poloidal dependence, notably an in—out asymmetry due to
unfavourable field-line curvature. This asymmetry is reduced
during L-H confinement mode transitions with a preferen-
tial E; x B shear suppression on the LFS. Secondly, the mean
E, x Bvelocity, and its shearing rate wg.p = Ov, /Or vary sig-
nificantly with poloidal angle due, primarily, to equilibrium
effects such as flux surface expansion, which in divertor con-
figurations can lead to velocity stagnation close to a separatrix
X-point. Consequently the turbulence driven ZFs will follow
the RS dependence. In nonlinear GK simulations of ITG-like
turbulence in circular flux surface the mean zonal shearing dis-
played significant poloidal dependence, being much stronger
on the LFS compared to the high-field-side (HFS), i.e. turbu-
lence ballooning leads to ballooning of RS, with a commensu-
rate reduction of the local turbulence radial correlation lengths
[459].

Turbulence structure effects were suspected in recent
E; x B flow measurements from circular Tore Supra plasmas
where poloidal asymmetries in the flow were greatly in excess
of equilibrium (flux surface expansion) effects [460]. Here, the
formation of poloidal convective cells (PCC) was suggested as
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q9s ~ 3.5 plasma. Reproduced courtesy of IAEA. Figure from
[349]. Copyright (2009) IAEA.

a possible contributor. This was investigated using GK mod-
elling which included convective cells, ZFs and GAMs. It
was found that PCCs could be generated due to the compres-
sional effects of ZF and poloidal asymmetries in RS due to the
turbulence ballooning [461].

Although several devices have reported the GAM magnetic
sideband distribution using poloidal arrays of magnetic coils
(see section 8.4), measurements of the GAM flow magnitude
as function of poloidal angle are scarce due to restricted diag-
nostic access, especially from the tokamak HFS. Nevertheless,
the GAM spectra has been measured using correlation reflec-
tometry at the LFS mid-plane and at the top of TEXTOR. As
seen in figure 59, in the density fluctuation the GAM only
appears at the top, consistent with an m = 1 mode structure,
while the velocity fluctuation spectral peaks are stronger at the
mid-plane, suggesting the flow oscillation is not a rigid body
motion but experiences perpendicular compressibility.

Top and LFS mid-plane GAM measurements were also
made in the circular Tore Supra using two poloidally displaced
Doppler reflectometers. Here, the GAM behaviour was more
subtle. When the mid to top mean v, flow asymmetry was
particularly strong (a factor of 3) then the GAM peak mag-
nitudes were similar while the background flow fluctuations

74

6 i i H 3 2
_ o\CIDerety DG, e ]
< .
21,
0
04T (b) Flow - Midplane " T T
2 0.3f - ] TN . 425, SR BRI |

(d)Flow-Top  : byt b

e
o

15 30
Frequency (kHz)

Figure 59. Density d¢ (a) and (¢) and flow Jv (b) and (d) spectra
from the mid-plane (a) and (b) and top (c¢) and (d) of TEXTOR edge
showing no GAM in density at the mid-plane and a stronger GAM
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f < foam were larger at the mid-plane. When the asymmetry
was weak (factor of 1.5) then the GAM was stronger at the
top, while the background fluctuations were similar [462]. In
ISTTOK the GAM potential amplitude 6V was ~20% larger
at the mid-plane compared to the top [361].

Flux surface variations in the GAM flow magnitude will
consequently impact the effective GAM shearing rate, enhanc-
ing or diminishing poloidal asymmetries in the (mean/zonal)
E x B shearing rate. Overall, its impact on the turbulence and
on GAM driven radial particle fluxes, and consequent drive of
poloidal rotation, will have a poloidal dependence.

The measurement of GAM poloidal asymmetries in
shaped/diverted plasmas needs further investigation, as well as
modelling of such plasmas. Discrepancies in correlation and v
cross-phase measurements in DIII-D using multiple DR chan-
nels separated toroidally and polidally (above and below the
LFS mid-plane) have been noted, which suggest that the GAM
radial wavenumber k. has a poloidal dependence—which
could be expected in an elongated and up—down asymmet-
ric plasma [282]. This is also a fruitful topic for future
research.

8.3. Temperature and multi-field measurements

Although theory predicts a GAM pressure sideband, there was
an early presumption that this was dominated by a density
fluctuation component. Nevertheless, two devices, DIII-D and
TCV, report measurable TC values. Using a horizontal corre-
lation ECE (CECE) diagnostic the GAM Te (long wavelength
k, <1 cm™") was found to be rather weak in DIII-D ohmic
plasmas with a poor signal-to-noise ratio. However, in NBI
heated L-modes T, became significant. Magnitude-wise the
GAM T. /T ~ e /ne, or even larger, as shown in figure 67
[283]. Combining the CECE diagnostic with a reflectometer
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also provided a measure of the density—temperature 72e—7
cross phase angle a,,; ~ 140° at the GAM frequency. This
confirms that the GAM pressure perturbation is not solely due
to n. Since the pressure sideband should have an m = 1 struc-
ture with up—down anti-nodes this would suggest that either
the GAM n, or T, perturbation should be minimal, or out of
phase at the tokamak LFS mid-plane. Unfortunately poloidal
measurements of T, or a7 are currently not available to con-
firm the expected mode structure. This could be addressed,
perhaps, using a vertical CECE/reflectometer diagnostic or
SXR cameras to measure the GAM Te and 7, at the top of
the machine.

CECE was also used on TCV for T4, in combination with
TPCI for n., DR for Ugy«p and an extensive set of Mirnov
coils for By [380-383]. Airy-like radial profiles of Trad /Trad
(of which ~ 80% was due to Te and the rest due to 72.) show
the broad eigenmode GAM peaking near the edge with a rela-
tive magnitude of 0.6%, then decaying slowly towards the core
[381]. The coherent GAM was clearly identified in all diagnos-
tics, but some discrepancies were noted in the measured radial
wavenumber: 1.7-2.1 cm™! from TPCI, while 0.9 cm™~' from
CECE.

Minor disagreements were also noted between simultane-
ous GAM measurements in DIII-D where, in addition to the
CECE and reflectometers, flow measurement using DBS/DR,
long wavelength n. from BES at the LFS mid-plane, as well
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as By from Mirnov coil array at machine wall were avail-
able. All diagnostics showed a GAM peak, but not necessarily
maximum at the same radial location [283].

Globus-M has also deployed a range of diagnostics for
GAM measurements in ohmic divertor configuration plasmas;
E; from poloidal DR and mid-plane LPA, n. from LPA, By
from Mirnov coil array, and multi-chord D, spectrometers as
a proxy for n. (T. dependence in the D, was expected to
be weak). All diagnostics showed a clear GAM peak. The
poloidal structure of the D, signal was consistent with an
m/n = 1/0 mode [386] (although m = 0 quoted in [387]),
while velocity fluctuations from poloidal correlation Doppler
reflectometry confirm and m = 0 flow structure.

Many of the smaller, low power tokamaks have also
employed extensive arrays of LPs (and ball-pen probes in
COMPASS [394]) for simultaneous n. and T. measure-
ments—results of which are presented elsewhere.

8.4. Magnetic signature (electromagnetic component)

In the fluid picture the GAM is electrostatic with no signif-
icant magnetic signature. Indeed, the absence of a magnetic
signature (measured at the tokamak mid-plane using Mirnov
coils) was presented as evidence that early GAM measure-
ments where not simply low-order MHD modes, cf [304, 339].
However, as discussed in the theory section 2.12 on EM effects
the inclusion of the J x B term leads to B-field coupling and
the creation of a magnetic signature, which should become par-
ticularly evident with plasma shaping and increasing plasma
pressure 3.

Experimentally, the magnetic component has been mea-
sured in several devices. Using an HIBP diagnostic in CHS
an oscillatory core zonal magnetic field around 50 kHz at
r/a ~ 0.6 was observed [407]. Unfortunately with this sin-
gle point measurement no information on the mode structure
could be obtained. Generally, the term zonal field refers to the
magnetic component localized to the GAM location within the
plasma, while the term halo field is the tail that may extend out-
ward to the plasma edge, and thus be observable with external
Mirnov coils.

Correlation analysis of toroidal and poloidal arrays of
Mirnov coil signals in EAST show, in figure 60, a clear By
magnetic halo component with m ~ 2 (sin 26) standing wave
and n = 0 structure during 0.8-2 MW RF heated L-mode
plasmas [463]. The coherence (between an LFS DR v, and
poloidal array of Mirnov coils) goes to zero near the upper and
lower divertors (8 = £90°) and mid-planes (8 = 0, 180°) with
corresponding cross-phase jumps. Nevertheless, the D-shaped
plasma cross-section distorts the ideal structure with possible
m = 4 and m = 5 Fourier components, as per [ 167]. The stand-
ing wave structure is consistent with theory [171, 173], and
has similarities with TCV [382] and with EGAM measure-
ments in JET [12]. The By amplitude was 10~ T, somewhat
smaller than the predicted value of 107> T, possibly due to
the vacuum distance between the coils and the plasma. Also
observed in EAST, NBI driven core localized 0.5 < p < 0.8
EGAMs display a standing wave with m = 2 plus an m = 4
side-lobe [433]. The mode is not poloidally anti-symmetric but



Nucl. Fusion 62 (2022) 013001

Review

has a 0By o< sin2(0 — 0,) + €¢f (0, 0,) dependence where 6 is
poloidal angle and € (0, 6,) the effect of poloidal asymmetry
and elongation. The parameter 6, is a function of the ion beam
pitch-angle and energy.

TCV is equipped with an extensive set of By magnetic
coils mounted between the carbon tiles. Three sets of toroidal
arrays, at, above, and below the HFS mid-plane, confirms the
n = 0 structure. From the poloidal coil set a clear |m| =2
standing wave structure is observed for limiter L-mode dis-
charges [382]. A comparison of the poloidal structure was
made with theory [166] for circular cross-section:

By o sin(wgam?) sin(26). (264)

Although this is a simplified approximation for the real TCV
plasma geometry which had pronounced edge triangularity it,
nevertheless, gave reasonably good structure agreement. This
result complements the pure m = 2 magnetic structure for core
localized EGAMs observed in JT-60U [370].

For circular limiter plasmas in AUG, the Be from a poloidal
set of Mirnov coils was always strongest at the top and bot-
tom of the vessel [311]. In radially wide continuum GAMs,
double spectral peaks at 15 and 20 kHz were observed in
the Mirnov signals (corresponding to two different radial
GAM peak locations), varying from coil to coil in relative
peak strength depending on the distance between the coil and
plasma edge. In divertor configurations the GAM is radially
narrow showing only one dominant frequency at all poloidal
locations. Magnitude-wise the Be distribution had a strong
HES anti-node. In all cases there was a clear dominant m = 2
poloidal structure, although not with a pure ideal symme-
try—see figure 9.17 in [311]. In particular, the presence of
an X-point appears to introduce additional higher m > 2 har-
monics. A 10 kHz GAM magnetic field was also observed in
I-mode plasmas with a poloidal mode number m = 1 [307],
however, it is not clear if this is purely related to the USN
I-mode configuration or if it could be more generic.

Principally Mirnov coils are most sensitive to GAM fea-
tures which are closest to the plasma edge—and to the coil.
Taking into account the variable radial distance between the
GAM and a poloidal coil array in DIII-D, estimates of B, /By
strength indicated that the GAM was 9 times stronger on
the HFS compared to the LFS mid-plane, suggesting an anti-
ballooning nature for the GAM—which is not fully under-
stood [283].

COMPASS reports similar measurements as AUG and
TCV. Only in divertor configurations was the magnetic com-
ponent (both By and B;) strong enough to measure with Mirnov
coils and saddle loops [394]. There is no clear » = 0 mode in
limiter configurations, but it appears in the divertor configura-
tion. Figure 61 shows the poloidal structure of the amplitude
and phase shift of the By and B; components. The poloidal
m = 2 non-rotating standing-wave structure is evident, but is
more complex with amplitude distortions (from the ideal circu-
lar structure) at the top and bottom HFS with additional phase
jumps. Generally By is an order of magnitude larger than the B,
component. Like in AUG, the GAM has a single narrow spec-
tral peak in divertor configurations but is spectrally broader in
limiter configurations.
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Likewise, in the D-shaped plasmas of Globus-M compact
spherical tokamak the toroidal and poloidal Mirnov coil arrays
showed an distorted poloidal m = 2 standing wave with a
broader HFS span in By [386, 387]. The toroidal structure
was less clear with a strong distortion, termed ‘anti-ballooning
effect’ [387] similar to DIII-D observations.

8.5. Cross separatrix coupling and GAM signatures in the
SOL

In theory the GAM should exist only on closed flux surfaces.
Indeed, nearly every tokamak device has reported the absence
of GAM related flow oscillations in the open field lines of the
SOL outside the last-closed-flux surface (LCFS) of limiter, or
the separatrix of divertor configurations. As one example, in
T-10 limiter discharges there is no sign of GAMs in LP signals
on any flux surface that intersects a plasma facing component
surface [292].

However, recent results from TCV suggest a possible field
coupling of the GAM across the separatrix into the open field-
line SOL region may occur. Observations from LPs close to
the LSN divertor strike points and D,, emission signals show
an oscillation around the GAM frequency in the radial parti-
cle flow [383]. Significant coherence was observed between
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By Mirnov signals and SOL Langmuir Tt signals around
the separatrix, with zero cross-phase. The radial profiles in
figure 62 appear to show the GAM mode power in an LSN
divertor L-mode peaking just outside the outer strike-point
in the common flux region. Errors in the equilibrium strike
point locations were not discussed in the paper, but may be
expected to be of the order of a few mm. Nevertheless, strike
point sweeps show the GAM signature moving from probe
to probe in a fashion consistent with the separatrix posi-
tion. In the example shown, the SOL [y, GAM frequency
matches that of an eigenmode GAM observed in TPCI mea-
surements inside the plasma separatrix. The precise SOL pro-
file behaviour depended strongly on the divertor flux surface
expansion and the dominant heat flux strike point. In addition,
GAM signatures were not observed in SOL regions of limiter
configurations.

Although nonlinear global GK simulations were able to
reproduce some experimental features, there is no clear theory
explanation for the observations, other than a possible cou-
pling of the GAM halo magnetic field to the SOL generating
a particle flux modulation which then travels to the divertor
probes.

In summary, the toroidal and poloidal structure of the GAM
flow and density component of the pressure sideband are con-
firmed by measurement. There are notable poloidal asymme-
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tries in the sideband, reflecting the poloidal distribution of the
turbulence amplitude and the consequent RS drive. There are
direct measurements of a 7. component, as well as sugges-
tive ay,r cross phase angles indicating a significant Te role in
the pressure sideband. Magnetic sidebands with a complex, but
appropriate poloidal structure are observed, and there is a sug-
gestion of possible cross-field coupling of the edge GAM into
the open-field lines of the SOL.

9. GAM radial structure

A fundamental feature of the GAM is its zonal structure. The
zonal ‘ring’ nature of the GAM and its spatial localization is
reflected in its frequency and amplitude radial profiles. The
zones are seen as one or more amplitude peaks, sometimes
accompanied by frequency plateaus. First the GAM localiza-
tion, i.e. core or edge, is discussed section 9.1 and then its
radial/zonal extent in section 9.2. These features are linked
via the pressure VP profile to the GAM drive and the g profile
to the GAM collisionless damping. In many cases the GAM
frequency remains constant over an extended radial region,
forming a series of steps or plateaus. As opposed to the smooth
frequency continuum, these GAM radial structures are often
referred to as global or eigenmode GAMs. However, note there
is varying usage of the eigenmode and global terminology,
particularly between experimental and theory reports, and
possible confusion with the global GGAM associated with an
off-axis maxima in the continuum GAM frequency.
Eigenmode-like structures predicted to arise from a vari-
ety of mechanisms, kinetic and EM, as discussed in the
theory sections 2.11, 2.12 and 3.5. These mechanisms are
summarized in table 5. The experimental observations of
eigenmode GAMs and their transition to and from continuum
GAMs are reviewed in section 9.3, with multiple eigen-
mode GAMs in section 9.4, and the ultra-wide GGAMs in
section 9.5. Unlike the stationary ZF, theory predicts that the
GAM can propagate radially, and even accelerate. This is
discussed in section 9.6.

9.1. Radial localisation

With few exceptions, the turbulence driven GAM is observed
in the plasma edge region of tokamak devices with the last
closed flux surface, or separatrix for divertor configurations,
defining the outer boundary. The GAM is often found to be
suppressed just inside the separatrix in higher density and
heated L-mode discharges—which may be due to stronger col-
lisional damping [282, 304, 435]. The presence of an X-point
may also play a role in suppressing the GAM just inside the
separatrix.

The GAM inner boundary depends on the shape of the
kinetic profiles which set both the GAM drive and damping.
For the drive the density and temperature gradients are deter-
minant. In AUG divertor configurations the development of a
density pedestal acts as a strong inner barrier [305] where the
reduction in Vr, at the pedestal top essentially limits the drive
scale length (cf [63]). For limiter configurations the n. profile is
more parabolic (weak pedestal) and the GAM extends inward,
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as shown in figure 63. Here, the GAM inner boundary is now
set primarily by the g profile which determines the GAM col-
lisionless Landau damping (see section 12.1.2). The role of
Landau damping is nicely illustrated in the results from Tore
Supra at high and low collisionality v* = v /(€wpe) X qneTe2
with nominally identical drive [373]. Despite the (expected)
overall weaker GAM amplitude at high v* close to the LCFS,
the GAM profile is, nevertheless, wider and extended inward
due to a lower collisonless damping.

An exception to the edge localization is the JIPP T-IIU toka-
mak. Although GAMs are observed in the edge (r/a > 0.7),
they were found to be significantly stronger in the plasma
core [326]. Possible causes were proposed, including the dom-
inance of streamers in the edge which might suggest a tur-
bulence regime effect, or a v* effect. Collisionless damping
is also a good candidate, however, the core GAM preference
was observed for both low density 1 x 10! cm™3, moderate
q ~ 4.3, ohmic heated plasmas with 7. > T; (where the
higher 7. weakens the Landau damping ~ o exp[—(¢®> +
T./T)]), as well as in NBI heated discharges with T; > T,
and DW dominated turbulence plasmas [329]. The explanation
thus remains open.

In stellarators and heliotrons the inverse ¢ = 27/ profile
leads to GAMs being more weakly damped in the plasma
core. This was observed in the CHS stellarator where the
GAM peaks around p ~ 0.3 and weakening towards the edge
p ~ 0.6 [61]. Likewise in the H-1 heliac the strong geodesic
curvature assisted the formation of a core p = 0.5 localized
GAM with moderate heating [37]. However, in the TJ-II heliac
core localized GAMs were only observed with strong Alfvénic
drive [416].

In the few cases of GGAMs observed in some devices
with exceptionally wide structures (discussed in section 9.5)
the amplitude peaking (if any) is also orientated more to the
edge. The exception being EGAMs which are preferentially
driven in the core region of both tokamaks and helical devices,
such as CHS and LHD, due to the concentration of EPs—see
section 13.
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9.2. Radial zonal structure

A defining feature of the GAM is its radial structure, form-
ing one or more well defined zonal (flux surface) rings. These
are usually identified as a clear velocity or E, amplitude varia-
tion with a central peak. Most devices report single symmetric
(Gaussian-like) peaks, although peaking towards the outer-
side of the zonal ring is also observed. An example from AUG
is shown in figure 63 with a series of GAM velocity ampli-
tude Agam radial profiles from L-mode plasmas with various
applied heating levels in limiter and divertor configurations
[26]. For divertor configurations the profiles show single nar-
row radial amplitude GAM peaks constrained to the density
pedestal region with frequencies increasing across the peak
following the continuum behaviour [26, 305]. Here, the GAM
peak full-width-half-maximum (fwhm) is of the order of a few
cm. This is the typical magnitude reported for the GAM exis-
tence width, i.e. visibility, of edge continuum GAMS in many
devices. Table 11 summarizes these results in terms of a phys-
ical A, or normalized flux coordinate A,, which generally
translate to a width range of 1-5 cm. There are some excep-
tions of wider GAMs but these correspond to conditions with
shallower temperature gradients. In terms of machine size the
various widths correspond to a modest A/a ~ 2%—15%.

As well as the observed gradient dependency [305], a shape
dependence has also been reported from AUG. In limiter
configurations the GAM A, (fwhm) decreased with increas-
ing elongation from ~4 cm at Kk ~ 1.1 to 1 cm at Kk > 1.4,
while with divertor configurations A, never exceeded 2 cm
[310, 311]. An isotope dependence was also noted in ISTTOK
where A(1/e) ~12.4 mm for hydrogen and ~13.5 mm for
deuterium [440].

The GAM visibility range should, theoretically, be deter-
mined by the drive and damping profiles, i.e. the VP, g, etc.
However, for the individual zonal rings there is no clear predic-
tion, but are expected to have widths ranging from a few tens of
ion gyro-radii p; to mesoscales [53]. The so-called mesoscale
length, \/ap; or \/Lyp;, bridges between the turbulence scale
p; and the machine scale a or the kinetic profile gradient length
L, where x is density or temperature [53, 61]. The concept of
a mesoscale comes from transport considerations where ZFs
may have system size scales in the poloidal/toroidal direction
but lengths as short as the turbulence scale in the radial direc-
tion [53]. For typical plasmas conditions this mesoscale is a
few cm, i.e. several tens of ion gyro-radii—consistent with the
reported magnitude of experimental zonal widths.

The low cm range is also the magnitude measured in sev-
eral devices for the GAM coherence length Lgam or its radial
wavelength A;. On T-10, for example the GAM \; ~ 3-5 cm
[292], while in JET the \; ~ 2.4 cm was found to be similar to
the GAM existence width [358]. In DIII-D a (1/e) radial cor-
relation length of Lgam ~ 2-3 cm [29] and in AUG the GAM
Ar, obtained from radial cross-correlation DR measurements,
was found to be typically twice that of the GAM width [310,
311]. Likewise for FT-2 where A\, ~ 2—4 c¢cm was a factor of
2 larger than the A; ~ 1.2-1.9 cm. In TEXTOR a range of
lengths were reported: a A, = 4 cm wide peak using Li-beam
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Table 11. Experimental values for GAM radial existence or visibility width A, (or
A, in italic) for various devices. The categories refer to experimental radial structure
of continuum, eigenmode or global extent. The A /a indicates approximate widths as

percentages of the device minor radius a.

Device Type A(em)  A/a (%) Notes

AUG Cont. 1-5 2-10 DR edge (fwhm) [26, 310, 311]
AUG Eigen 2-5 4-10 DR edge, stairs [305, 315]
CHS Cont. 1-2 5-10 HIBP edge [398]
COMPASS Eigen 2-3 10-15 LP edge [394]

DIII-D Cont. 8-9 14 BES edge [435]

DIII-D Eigen 0.08-0.2 8-20 DR edge [282, 283]
DIII-D Global? 0.4 40 DR core, double GAM [247, 283]
EAST Cont. 0.07 7 DR, eigen in H-mode 3% [42]
FT-2 Cont. 1.2-1.9 15-23 UHRS, \; = 2-4 cm [250, 255]
HL-2A Cont. 3-4 8-10 DR edge [430, 464]

HT-7 Cont. <2 2.5 LP [285]

ISTTOK Cont. 0.5-1.0 6-15 LP [363 364]

JET Eigen 2-4 2-3 DR edge. A, ~ )\ [358, 360]
JFT-2M Eigen 4-5 14 HIBP edge (fwhm) [317, 325]
JIPPT-1TU Cont. 3-5 13-20 HIBP stairs over edge/core [36]
JIPPT-IIU Global? 21 >90 HIBP, NBI [331]

TCV Cont. 0.15 15 TPCI edge [380]

TCV Eigen 0.15-0.2 15-20 TPCI [380, 382, 383]
TEXTOR Cont. 5-7 10-15 CR [339], LP [342], LiB [343]
TEXTOR Eigen 8-13 16-27 CR, satellites [339]
TUMAN-3M Cont. 2 8-9 DR [335]

Tore Supra Cont. 0.08-021 8-21 DR [372, 373]

T-10 Cont. 0.1-0.25 10-25 HIBP, CR, LP [292]

T-10 Global? 19-20 ~70 HIBP 296, 298, 301]

[343],a A; ~ 9-13 cm using LPs [342, 465], and a radial cor-
relation length Lgam = 11 mm using CR [339]. Nevertheless,
all the measured values exceed wavelength predictions of the
order of p, [217, 219]. Generally the GAM decays radially
before completing a wavelength.

9.3. Radial eigenmodes and staircases

Single-fluid MHD models describe the GAM as a singu-
lar radially narrow mode with a frequency that scales with
local parameters creating a continuum of frequencies over the
GAM’s radial extent. This is the conventional picture most
commonly reported in early experiments with ohmic or low
power L-mode heating. However, as noted in section 2.4,
the inclusion of factors such as FOW effects due to particle
radial drifts, or FLR effects due to finite temperature leads to
GAM dispersion effects. This introduces two new phenom-
ena; the formation of an extended radial (non-local) eigenmode
structure, and radial propagation of the GAM.

The FLR/FOW effects together with a finite temperature
gradient lead to phase-mixing (PM), which distorts the radial
structure of the continuum GAM leading to local frequency
locking and flattening of the wgam profile. As discussed in
section 2.11 the GAM dispersion relation can be written in
the form of an eigenmode equation (107) with an Airy func-
tion solution for the potential ¢(r) = Ai((rg — r)/Aa;) where
the Airy scale Ay = plz/ YL with L, = |Vwé am/weaml ~
Ly the scale length of the GAM continuum frequency spec-
trum [108, 155, 156]. From this model the GAM is should
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propagate down the temperature, or GAM frequency gra-
dient with a radial dimension that scales with L,. Theory
also suggests that non-local effects should be weak for small
p« = pi/a < \/T;/(|B|a) [217]. Table 11 indicates that GAMs
identified as having an eigenmode-like radial structure are
more prevalent in the larger machines with, despite the larger
a and By, higher ohmic /, and additional heating. While this
is suggestive, unfortunately current published results do not
allow more than a cursory statement. To properly establish a
p; or a p, dependency requires a more detailed multi-device
analysis.

Figure 63 shows a GAM Agawm radial profile for an AUG
L-mode plasma in a circular limiter configurations [26]. The
lack of a strong pedestal and shallower gradients allow the
GAM to extend inward displaying a secondary peak and a
(modulus) Airy function profile—but, contrary to the model
above, reversed in radius. Tore Supra also report reversed Airy-
like amplitude profiles [372]. Likewise for TEXTOR where
the amplitude profile peaks towards edge with a tail extend-
ing inward. The GAM peak was also seen to move inward
with decreasing mean density [339]. Interestingly, a radial shift
in the profile between mid-plane and top was reported, being
more inward at the mid-plane [341]. In all cases, across each
of the amplitude peaks the GAM frequency remains constant,
forming a series of steps or a staircase-like structure.

On FT-2 the GAM radial wavelength was compared with
corresponding experimental Airy scale lengths. Using a dual-
channel UHR scattering diagnostic the GAM \; = 2.4 cm was
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Figure 64. Measured GAM \; vs model A\g = 4\a; wavelength
using experimental Ly and p; for various isotopes and plasma
currents in FT-2. The symbols refer to plasma isotope and plasma /,,
in kKA. Adapted from [466]. CC BY 3.0.

substantially larger than its measured Lgam = 0.7 cm corre-
lation length [255]. As shown in figure 64 for various plasma
isotope, the wavelength is also significantly larger than a wave-
length A\g = 4\, derived from the Airy length at the GAM
peak [466, 467]. In TUMAN-3M the measured A, ~ 0.5 cm
(fwhm) was closer to the Airy length A\x; = 0.38 cm, but still
larger [335].

The measured zonal widths for identifiable eigenmode
structured GAMs from various devices are also summarized
in table 11. As for the continuum GAMs, there is some spread
in the reported values across device size and plasma condi-
tions, but overall the eigenmodes appear consistently wider
with A /a ~ 15%-25%. These values match surprisingly well
results from ion fluid ITG simulations, cf figure 26 [102]
where the eigenmode A,/a scales with ,/p. over the range
10%-30%—cf figure 3 in [217]. Here, the eigenmode GAM
frequency is constrained between the respective continuum
foam and fsw (harmonic) branches, as shown in figure 26. A
similar picture of GAM frequency steps in radius appears in
the modelling of Hallatschek where the GAM coupling to the
parallel SW leads to frequency jumps as the GAM continuum
frequency crosses the successive SW branches with decreasing
q—cf figure 5 [14].

Sometimes a single edge eigenmode is observed, such as
the 5 cm wide eigenmode shown in figure 65 for JFT-2M,
or the 2-3 cm eigenmode in COMPASS [394], the 5 cm
eigenmode inside the pedestal radius in AUG [315], or, as
in figure 66 for TCV, it is combined with regions of contin-
uum behaviour [468]. Eigenmode GAMs are common in TCV,
peaking at the edge but extending inwards to a significant por-
tion of the plasma radius [382, 383, 468]. The eigenmode fgam
scales very closely as ¢s/Ry at the Agam peak location [380].
During go5 scans (by ramping /,, at constant Br) in diverted
Kk = 1.52, high triangularity 6 = 0.5-0.6 plasmas, as shown
in figure 66 the GAM was seen to transition from a contin-
uum to an eigenmode as g decreased [383, 468]. Subsequent
I, ramp experiments in TCV also compared fgam with a sim-
plified Gao formula [117] including elongation and ¢ terms,
finding some agreement at the outer GAM boundary where the
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Colours mark different shots. The GAM peak aligns with fgam
crossing the continuum frequency. Adapted from [317]. © IOP
Publishing Ltd. All rights reserved.

GAM amplitude peaked [383]. Local and global nonlinear GK
simulations with the GENE code for continuum and eigenmode
conditions were also performed. Local flux-tube simulations
always produced continuum behaviour independent of input
profiles, while global simulations were found to be fairly con-
sistent with the experiment, reproducing either continuum or
eigenmode as appropriate [257]. The simulations also revealed
that ¢ was not the cause of the transition but a co-incident rise
in the T, and n. profiles [383].

A consistent picture emerges with similar results from a
range of machines, including JFT-2M where in figure 65 the
frequency of a A, ~ 5 cm wide eigenmode crosses the pre-
dicted continuum GAM frequency around the GAM peak
amplitude [317]. Similar for Globus-M where the eigenmode
frequency matches the Gao continuum prediction at the GAM
peak location [384], and for eigenmode GAMs in CHS [398]
and on JET where the eigenmode frequency also matches the
continuum frequency at the GAM peak [358].
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In some cases there are multiple eigenmodes appearing
as a sequence of zonal rings, such as in JIPPT-IIU where a
series of rings, each a few cm wide, cover the whole plasma
cross-section—cf figure 4 in [36]. In both AUG limiter
and divertor configurations multiple frequency plateaus are
observed, increasing in width with decreasing location across
the minor radius (i.e. with an increasing L) [26, 305]. It should
be noted that resolving small staircase steps from a continuum
behaviour is also an issue of diagnostic capability and mea-
surement resolution. Around the zonal boundaries it is com-
mon to observe two spectral GAM peaks (note this is distinct
from GAM spectral peak spitting due to low frequency mod-
ulation (FM), which is discussed in section 15.3) at the same
radial location, suggesting a degree of overlapping GAM zonal
rings [305].

Figure 67 shows fgam and Agam radial profiles from DIII-
D discharges during (@) an NBI/ECR heated phases with dual
eigenmode GAMs at 21 kHz and 24 kHz across the plasma
core region, and (b) lower temperature ohmic phases with a
wide continuum GAM [283]. Overlaid are a series of curves
representing various GAM frequency predictions which are
described in [283]. The continuum GAM follows the simple
fi = ¢s/(2mRy) with ¢? = (T, + T;)/m; rather well. For the
dual eigenmode cases the radii where their frequencies cross
the continuum f; curve again coincide rather closely with the
positions of GAM maxima—marked by the vertical dashed
lines—shown in the corresponding Agam profiles from various
diagnostics. Note /3 corrections are not included. For compar-
ison, curve f4 = (/7 + Ing + 4.41v7;)/(2mgRy) (where v
is ion thermal velocity assuming T; > T.) is that of the eigen-
mode model of Gao [108]. This curve has some agreement
with the 24 kHz case at r/a = 0.65, which s close to the g = 2
rational surface.
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9.4. Multiple GAMs

Multiple or overlapping GAM zones have been reported from
several devices, as in figure 67 for DIII-D [283] as well as AUG
[305], HL-2A [354] and HT-7 [285, 287]. Figure 68 shows an
example using LP arrays in the edge region of a low density
HT-7 ohmic discharge [287] where two eigenmode GAMs,
separated by ~6 kHz, are seen to coexist simultaneously
across the same radial extent. The higher frequency GAM
peaks further in than the low frequency GAM. But in both
cases, the GAM amplitude peaks coincides with the GAM fre-
quency approaching or crossing the continuum frequency pre-
diction, and where the GAM radial wavenumber k. approaches
or crosses zero. The topic of the GAM radial wavenumber
and propagation is discussed in the next section 9.6, however,
the results are consistent with the predictions of the kinetic
description of GAMs where the small physical scales around
the GAM peak leads to conversion of the continuum GAM to
a radially propagating eigenmode via FLR effects [11, 121,
434].

In short, a succession of GAMs are excited different radii
which then propagate radially and are seen to overlap. The
transition from a continuum to an eigenmode appears to occur
when temperatures are sufficiently high that ion FLR and pro-
file gradients become important leading to a coupling across
broad radial regions. The coincidence of the GAM ampli-
tude maximum and the crossing of the eigenmode GAM fre-
quency with the continuum GAM frequency confirms this as
the coupling (drive) location.

9.5. Global GAMs

A few devices have reported ultra-wide eigenmode GAMs
covering almost the whole of the plasma minor radius—see
table 11—and due to their extent are called global eigenmode
GAMs. From the theory side the term GGAMs is well under-
stood—see sections 2.12 and 3.5—and occur near a local off-
axis maxima in the GAM continuum frequency, which can
form due to negative magnetic shear or high core plasma pres-
sure. Here, the global nature results from the crucial coupling
to the non-local EM m = 2 harmonic which has a global char-
acter. GGAMs are generally associated with EGAMs—see
section 13.1. Nevertheless, there are also a few cases where a
global eigenmode structure appears without a clear EP source.
Figure 69(b) shows an ultra-wide global eigenmode stretch-
ing from 0.2 < p < 0.94 in a sequence of low density ohmic
T-10 discharges [296, 298, 301, 469]. Here, the GAM has a
constant (non-chirping) fsam ~ 18 kHz which does not fol-
low the local continuum frequency, but does align with the
continuum frequency prediction at the outer zonal edge. The
frequency was observed to track the edge continuum GAM fre-
quency wgam = /2 Te/m; /Ry with T, taken at p = 0.7 over
a range of I, and 7. discharges. The p = 0.7 corresponds to
the GAM drive location identified from the +7 /2 cross-phase
between the potential and density fluctuations (using HIBP)
at the GAM frequency [296]. There was no indication of a
local GAM continuum frequency maxima, and thus no direct
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Figure 67. (Left) Measured frequency profiles for (a) core eigenmode during NBI/ECH L-modes and (b) continuum GAMs during lower
temperature ohmic phases at same 7ic, I, gos, etc. (Right) Radial profiles of (a) velocity v from DR/DBS, (b) density 1 /n from BES, and
(¢) T/ T, from ECE, plus nT-cross-phase for eigenmode GAM in DIII-D. Adapted from [283], with the permission of AIP Publishing.

link to GGAM theory. However, it was suggested that the
GAM was driven by DW turbulence at the edge with the GAM
propagating radially inward [296]—consistent with standard
eigenmode GAM theory. An intriguing companion to this
eigenmode GAM in T-10 is the observation of GAM °‘satellite’
modes tracking the main GAM with a slightly higher constant
difference frequency. Both modes display an m = 0 poloidal
mode structure [296]. TEXTOR also reports the coexistence
of a continuum GAM and a slightly lower frequency satel-
lite mode with a constant (plateau) frequency with radius—see
figure 4 of [339].

Core continuum/staircase GAMs (r/a ~ 0.2) with intense
broad frequency peaks 20-50 kHz were also reported in low
density ohmic plasmas in JIPP-TIIU using HIBP [330]. When
applying NBI heating with increasing power the GAM con-
verts to weaker, constant frequency GAM centred on 35 kHz,
extending across almost the whole plasma minor radius, as
shown in figure 69(a) [331]. With 0.5 MW NBI heating the
core ion temperature was raised such that 7; > T. which
strengthens the ion Landau damping, and thus weakens the
GAM amplitude compared to the ohmic phase. A link to a
maximum in the GAM continuum frequency was not estab-
lished, but similarities to the simulations of eigenmode GAMs
by Miyato [217] were noted, consistent with a propagating tur-
bulence driven eigenmode. Nevertheless, an EP driven GAM
cannot be ruled out.
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As shown in figure 67, DIII-D also observes exceedingly
wide eigenmode GAMs in several diagnostics as far in as
r/a ~ 0.6 at the LFS mid-plane with high g5 > 5 during NBI
and ECR heating [283]. As with the JIPP-TIIU results, it was
noted that the appearance of the eigenmode GAM occurred at
higher temperatures while the continuum GAM was present
in lower temperature discharges; consistent with theoretical
expectations of finite ion Larmor radius effects. These GAMs
are not identified as GGAMSs, despite their semi-global extent
and strong By EM signatures.

9.6. Radial propagation and acceleration

One of the main differences between stationary ZFs and
GAMs is that ZF are non-dispersive and thus not expected to
propagate radially, while GAMs may [144]. Radial propaga-
tion appears in the GAM dispersion due to several factors,
including FOW and FLR effects. For example, FLR modi-
fies the GAM dispersion relation from w? = w} to a linear
dispersion of the form w? = w(1 + Dk?p?) where wy is the
continuum GAM frequency, D ~ O(1), and k, the GAM radial
wavenumber cf [63, 140]. For k,p; < 1 the GAM linear group
velocity vy, = Ow/ Ok, = Dwop?k,, cf equation (84), which is
typically outward (consistent with the picture of the GAM
continuum from radial temperature profiles). Namely, in the
presence of a VT, the GAM propagates where w < wy and
is evanescent where w > wq [16, 108, 155]. This is discussed
more fully in the theory section 2.7 on dispersion effects.
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wavenumber k; profiles as functions of Ar from the LCFS in HT-7. Reproduced courtesy of TAEA. Figure from [287]. Copyright (2013)

TAEA.

(a)

y(arb.)

Intensit

Figure 69. (a) Fourier spectra of potential fluctuations vs HIBP
sample volumes (channel) covering the minor radius from edge (A1)
to core (A6) from NBI heated JIPP-TIIU low density plasma.
Reproduced courtesy of IAEA. Figure from [331]. Copyright (2012)
IAEA. (b) Radial reconstruction of HIBP potential fluctuation
spectra from T-10 low density 1 x 10'® m~—3 ohmic plasams.
Adapted from [301], with permission from JSPF.

However, a selection rule for the radial propagation direc-
tion has also been derived [145]. By including (DW) turbu-
lence in the GAM dispersion relation (wave-kinetic equation,
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WKE) the GAM radial wave pattern could be varied, forming
either a standing wave or inward or outward propagating waves
depending on the value of the peak turbulence wavenumber.
Related to this are WKE modelling results suggesting large
amplitude GAMs can trap clumps of turbulence, which then
propagate radially with the GAM [470], leading to a deteri-
oration of an edge transport barrier [471]. The GAM propa-
gation has also been linked with the formation of turbulence
avalanches [472]. Here, global orB5 GK simulations of TCV
discharge conditions with a wide eigenmode show radially
inward propagating avalanches with a frequency roughly coin-
ciding with the GAM frequency at its outermost (edge) loca-
tion. A similar linkage was observed in global GK simulations
with EPs where outward radial propagating avalanches were
synchronized to a core EGAM—see figure 93 [271].

The WKE model has recently been extended to a kinetic
description showing that the GAM phase velocity and the WK
advection resonate, creating a radially moving zonostrophic
instability [473]. In [145] the propagation direction is set by
the up—down poloidal asymmetry of the turbulence intensity
(cf also 118, 454, 455, 474]), while in [473] it arises from
the direction of the background E x B shear (related to a
turbulence eddy tilting angle [475]).

Experimentally GAMs are seen to propagate both outward
and inward, although the reports are predominantly of an
outward propagation. These are summarized in table 12 for
the various devices. Generally, radial propagation velocities
range from some hundred m s~! to a few km s~! with cor-
responding radial wavenumbers of the order of 0.3—-3 cm™!.
The sign indicates the direction with positive being outward.
There appears to be some dependency on the measured fluc-
tuation parameter. For example, in TEXTOR figure 70 shows
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Table 12. Experimental values for GAM radial propagation in terms of
k; and v, for various devices. A plus sign indicates outward
propagation. C = continuum, E = eigenmode. Also indicated is the
relative measurement location, inside or outside of the GAM peak.

Device ve(kms™!) ke(cm™) Position

AUG —1.25 —-0.7 In (E) [310, 311]
COMPASS +0.70 +1.7 Out (E) [394]
DIIL-D 1(0.7-1.67)  +(1.93-0.89)  Out (E) [282, 283]
DIII-D +0.72 +1.44 Out (C) [283]
FT-2 +1.2 +2.6 Out [255]
HL-2A +(0.72-1.8) Out [141, 285, 476]
HL-2A —0.3/4-0.7 In/out [354, 430]
HT-7 —0.7/4+1.0 In/out [285, 287]
ISTTOK +1.5 Out 362-364, 440]
JET +2.6 Out [358, 359]
JFT-2M +0.94 Outside [317]
TCV +(1.7-2.1) Out (E) [380, 382, 383]
TCV +0.9 In/out, CECE [380]
TEXTOR 10.6 0.7 Out [342]
T-10 1.2-6 Out, edge [292]
T-10 +2/4+7 Out, edge/core [303]
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Figure 70. Cross-correlation profiles (radial and time-delay) of band-pass filtered 3—15 kHz LP V; reference at r = 46 cm (GAM peak)
showing outward GAM propagation in TEXTOR edge. Adapted from [342]. © IOP Publishing Ltd. All rights reserved.

an outward propagating GAM structure measured across the
GAM peak using cross-correlation of reciprocating LP V. The
structure propagation velocity v; = dr/d7 = +0.6 km s~ ! is
also very close to the measured phase velocity vy, = fgam X
Ar = +0.52 km s~ where the GAM wavelength \; ~ 9 cm
or ky =~ +0.7 cm™' [342]. Also using LPs on COMPASS the
eigenmode GAM propagates outward, away from the GAM
peak, at v, = +0.6-0.8 km s~! (comparable to TEXTOR)
when using potential fluctuations, but was slower for 7. fluc-
tuations. The radial wavenumbers (and thus v, = 27 f Gam/kr)
also depended on the signal used. For plasma potential &k, ~
+1.7 cm™!, but was larger for V; at k; ~ +2.7 cm~! and even
larger for T at k, ~ +5.7 cm™' [394].

The majority of reports are of an outward propagation: in
JET [358], in ISTTOK [440], in DIII-D (where Ap,,. ~ 0.15
or radial correlation length of Lgaym > 6 cm which is signifi-
cantly larger than the turbulence correlation length) [282], and
also in T-10 where the phase-velocity across an eigenmode
falls from +7 km s~ ! in the core to v, ~ +2 £ 0.5 km s~ ! in
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the edge [303]. However, potential—density cross-phase mea-
surements on T-10 also suggest the possibility of a standing-
wave structure for the global eigenmode GAM [296, 298]. In
HL-2A local S(k;, kg, f) spectra were obtained using LP arrays
with poloidal, toroidal and radial separations [141, 285, 476]
from which a ky = kg = 0 and k.p; ~ 0.04-0.09 are obtained
with localized ‘GAM packets’ propagating radially outward
with similar phase and group velocities of ~ +0.25 km s~!
and a roughly linear dispersion relation. A similar &, ~ +0.68
cm ™! was obtained from radially separated DR channels [430].

Most measurements appear to have been made close to
the GAM peak position, although the actual position is is not
always explicitly stated. In fact the position of the measure-
ment relative to the GAM maxima appears to be critical. In
table 12 an attempt has been made to indicate the relative mea-
surement positions as inside of or outside/around the peak.
Where explicit values are not available educated guesses have
been made.

Referring to figure 67 for DIII-D where the radial veloc-
ity was measured at p = 0.78 using correlation DBS. For the
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24 kHz GAM, v, = +1.67 km s~! just outside its radial maxi-
ma, but is lower for the 21 kHz GAM v, = +0.70 km s~ !
inside of its maxima. In both cases the propagation was out-
ward. This is similar to JFT-2M measurements using HIBP
where the propagation is outward at the GAM peak ampli-
tude, while radially inside of the peak the propagation is
weak and somewhat inwards—cf figure 5(c) in [317]. The
radial wavenumbers were of the order of k. = +0.94 4 0.05
ecm™!, or k.p; = 0.201 [318], consistent with theory predic-
tion for ZF k.p; < 1 [277]. Further outside of the GAM peak
the behaviour is more standing wave like rather than prop-
agating—consistent with simulations from Hallatschek [24]
and Miyato [102]. Velocity reversals in JFT-2M were reported
close to the separatrix [325] with reference to the possible role
of reflection at the separatrix boundary creating standing-wave
structures [322, 325].

In the edge region of TCV an outward k; = +2 cm™! was
measured using TPCI for a broad eigenmode GAM [382,
383], but outward and inward propagation was observed at dif-
ferent plasma radii using CECE [380]. From FT-2 there are
mixed reports, in [255] there is an outward propagation of
vy =+1.2+0.1 kms ! and k, ~ +2.6 cm~! away from the
GAM maximal amplitude. While other reports [250, 466, 467]
hint at an inward propagation, in agreement with ELMFIRE GK
simulations, around and inside of the GAM peak. In figure 2
of [467] there are suggestions of a velocity reversal across
the GAM radial maximal. DR correlation measurements in
AUG give an inward propagation of —1 to —2 km s~ ! inside
of the GAM peak location for low x shapes with both broad
eigenmode and continuum GAMs in limiter configurations.
However, with increasing elongation the GAM transitioned to
a narrow single eigenmode with no discernible propagation.
Likewise, no propagation was evident for GAMs in divertor
configurations [311].

These results suggest a propagation away from the GAM
peak. Indeed some of the clearest results supporting this come
from HT-7 [287] and HL-2A [354]. Both show dual eigen-
mode GAMs, as in figure 68 for HT-7, where the lower fre-
quency GAM is always stronger than the higher frequency one.
With decreasing minor radius the GAM k; falls from +1 cm ™!
(outward propagation) to —0.7 cm™' (inward propagation).
The respective GAMs radial peaks coincide with locations
where k, =~ 0, consistent with conversion from continuum to
kinetic/eigenmode GAM [11, 78].

It is tempting to conclude that propagation is always away
from the GAM drive (maximum GAM amplitude) but there
remain some measurement inconsistencies that need to be
addressed with further measurements and theory development.
There is also the question of whether the GAM accelerates
radially. Palermo investigated the radial acceleration of GAMs
due to a temperature gradient using GK simulations. Effects
of PM via the continuum frequency spectrum leads to the
GAM radial wavenumber (and thus frequency) to evolve in
time resulting in the radial velocity increasing with time [140].
As yet, there are no experimental measurements of an accel-
eration. This will require simultaneous multi-point correlation
measurements.
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In summary, the GAM spatial peak is localized to regions
of maximum turbulence drive (steep pressure gradient and
weak velocity shearing) and minimal collisional damping (low
density and high temperature) and low collisionless damp-
ing (high g). Radially the GAM displays one or more nested
zonal rings of widths of the order of the mesoscale /ap;. The
zonal rings become broader towards the core with increas-
ing Ly scale length. There are some significant inconsistencies
between measured and predicted wavelengths which require
a more detailed multi-machine database. Both continuum and
eigenmode behaviour are observed. The cause of transitions
from one to another is not fully resolved, but kinetic effects
appear to be primary. For eigenmodes the radial wavevector
changes sign at the GAM radial maxima where the eigenmode
frequency crosses the expected continuum GAM frequency.
This is not entirely consistent with theory and modelling which
suggest the eigenmode should lie inside of the continuum fre-
quency profile. The GAM is thus seen to propagate radially
away from the GAM spatial peak. Radial acceleration is pre-
dicted, but not yet measured. Concerning the nested zonal
rings, an open question is whether the zonal rings oscillate in
phase, and whether the modulation of the GAM amplitude is
radially correlated across the zonal boundaries. The resolution
and sensitivity of the various diagnostics is an important factor
in the ‘visibility” of the GAM. The use of HIBP in JIPP-IIU,
CHS and T-10 for example (see section 6.4) has revealed core
GAM activity, where other diagnostics have failed to reach.
Likewise the diagnostic radial resolution sets the ability to
resolve small eigenmode steps and staircases in an overall con-
tinuum behaviour. It is not clear if there is a hard boundary
between pure continuum and eigenmode step behaviour or a
gradual transition.

10. Plasma rotation effects

The analysis of the GAM behaviour so far has considered
the GAM flow oscillation to be a non-rotating standing wave.
However, the plasma is never truly stationary but has a finite
mean E; x B velocity, which can be several km s~! in the edge
even in ohmic conditions due to pressure gradients or sponta-
neous (turbulence) rotation effects. With applied torque due
to NBI the plasma rotation can become a substantial fraction
of the sound speed. Rotation leads to a poloidal stratification
of the plasma on a magnetic surface, resulting in a shift of
the GAM frequency (from the static value) and a modifica-
tion of the damping. Rotation can also drive marginal GAMs
unstable which would otherwise be stable. With strong NBI
(supra-thermalions) the rotation can exceed a critical threshold
and there is a cross-over from a ‘moderate’ rotational impact
on the turbulence driven GAM to the generation of an EGAM.
The EGAM drive mechanism is discussed in sections 3 and 13.

10.1. Frequency

The effect of toroidal and/or poloidal rotation on the con-
tinuum GAM has been extensively investigated theoretically
using an MHD (electrostatic) framework in the large aspect
ratio, circular plasma geometry. As an example of many,
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Lakhin [165, 268] modelled the toroidal rotation effect with
an ideal single fluid MHD framework in the low [ ~ €2, iso-
dense magnetic surfaces, and large aspect ratio limit to obtain:

2
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wi_ZR% 2+?
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q

(265)

where M = (R /c; is the toroidal Mach number. The effect
of adding rotation to the dispersion relation is to create two
branches of continuum modes. The (+) branch is a rotation-
ally modified (stable) GAM which smoothly links to the usual
GAM at M = 0, while the (—) branch is a new lower fre-
quency (unstable) continuum ZFO ~v_ = w_. At M, = 0 this
branch becomes the zero-frequency SZF. In the case of slow
(sub-sonic) toroidal rotation M? < 1 the equation for the high
frequency GAM reduces to w} = (¢s/Ro)*(2 + 1/q* + 4M}).

Similar expressions for the dispersion relation have also
been derived in [166, 477-482], all of which show the fre-
quency of both modes increasing with the Mach number, as
does the growth rate v_ = |w_| of the lower mode. Figure 71
shows the normalized frequency & = wRy/ ¢ from the Lakhin
model vs toroidal Mach number for both roots for a represen-
tative g = 3 [268].

For a predominant mean poloidal rotation M, =
upB/(Bycs) < 1 a similar dispersion relation form was also
obtained [483], with the exception that three roots are now
obtained: wy and w+. The first branch is the same as for the
stationary case wy = 0 (suggesting that a finite frequency ZFO
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Figure 72. Measured GAM frequency vs toroidal flow Mach
number at R = 1.42 m (r/a = 0.61), ¢ = 6 in ohmic MAST
(points) edge compared with simulation values from the Lahkin
model with Gao corrections for 7. = 70 = 10 eV. Reproduced from
[374]. © IOP Publishing Ltd. All rights reserved.

requires the centrifugal force associated with the toroidal rota-
tion); the low frequency branch w_ appears now as a SW like
mode, while the w_ is a GAM. Very similar conclusions were
reached, also using an MHD model, from the more complex
behaviour with combined toroidal and poloidal rotation [479,
480, 484]. It should be noted that the precise properties of the
various branches, notably the stability and nature, depends
strongly on the tokamak plasma equilibrium; specifically,
adiabatic models give two GAMs, while isothermal gives a
GAM and a ZFO.

Further extensions to the above models include the
addition of finite plasma pressure to give a (3 correction,
Wiy = w3/(1+ B) [165, 485], or kinetic effects with an
isothermal MHD rotating equilibria [482], as well as GGAM
eigenmodes [165] and the global structure of the SZF with
rotation [486].

As well as a frequency up-shift, the rotation creates sine
and cosine components in the density sideband perturbation
resulting in a small propagating wave in the poloidal direction
superimposed on the GAM standing wave—in contrast to the
pure poloidal standing wave in a static plasma [483].

From the experiments, the rotation effect on edge
continuum GAMs in low-density, ohmic L-modes was
investigated in MAST (small aspect ratio) using exter-
nally applied RMPs [374, 375]. Applying RMPs led
to a spin-up of the edge plasma (parallel Mach num-
ber M varied between —0.2 to —0.6 measured with a
reciprocating Gunderstrup probe) and a corresponding up-
shift in the GAM frequency, as shown in figure 72.
A comparison with the Larkin model, equation (265),
provided good agreement, once a correction factor for the finite
aspect ratio and elongation (from Gao [117]) was included, as
shown by the lines in the figure for the measured 7', range.

10.2. Damping and amplitude

The kinetic effects of toroidal rotation on the GAM collision-
less damping were investigated using a GK framework in the
large aspect ratio circular plasma limit by Guo [487, 488].
The GAM dispersion relation including toroidal rotation €,
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to leading terms gives frequency and (collisionless) damping

)+

(266)
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where Dj is imaginary part of the dispersion function. As with
the MHD models there is a significant frequency up-shift with
M = QRy/vr;, and an initial increase followed by a decrease
in the damping when the rotation exceeds a critical value.
The model was used to interpret observations of the GAM
amplitude behaviour in DIII-D and AUG with increasing NBI
power which suggest a qualitative consistency with the model
predictions [487].

Similar investigations using a modified GK equation
showed a dramatic decrease in the Landau damping with rota-
tion, i.e. stronger GAM in rotating plasmas, independent of the
flow orientation [489]. Likewise, the inclusion of an equilib-
rium radial electric field in the GK framework [490] resulted
in multiple branches of zonal eigenmodes, including a GAM,
SW and a ZFO, similar to the fluid model with poloidal mass
flow. Both the GAM frequency and collisionless damping rates
increase with strengthening E; velocity (which was expressed
in terms of a poloidal Mach number), while the ZFO fre-
quency and damping slightly decrease. A tentative compari-
son was also made with AUG experimental results but with
contradictory behaviour to the Guo model above [490].

With combined anisotropic pressure and an equilibrium
radial electric field it was found that when p; was larger than
p, then E; had a stronger effect on the GAM frequency and
damping [90]. But, overall, the pressure anisotropy effect on
wgam and 7y, ; dominated the E, rotation effect. The implica-
tion being that the control of the GAMs maybe achieved via
selective perpendicular heating of the ions, for example using
ICRF.

Concerning the effect of rotation on collisional GAM
damping, a fluid model was used [491] which shows that, while
increasing toroidal rotation can result in a frequency up-shift,
as with other MHD models, it had only a weak (increase) effect
on the collisional damping. A more stronger impact on the
GAM growth rate, however, was found in the MHD model of
[481]. A sequence of studies were performed using the GK
equation for collisional and collisionless damping with either
toroidal or poloidal rotation [492—494]. In a similar vein the
GK equation was also used for a detailed study of the role
of impurities (cf section 7.5) in modifying the toroidal rota-
tion effect on the GAM frequency and damping [446]. This
last study shows a varying effect that depends on the level of
impurity. Trace impurities were found to enhance the rotation
effect (due mainly to additional drifts induced by the toroidal
rotation) on the GAM frequency and damping, particularly for
high rotation; while significant impurity levels weakened the
rotation effect.

In the MAST experiments with RMP modified rotation the
up-shift in the GAM frequency was accompanied by a reduc-
tion in both the GAM amplitude and the GAM bicoherence
(a measure of the GAM nonlinear drive) with a threshold-
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like response [374]. Here, the GAM reduction was thought
to result from a loss of drive due to the GAM interacting
with the RMP imposed field (of sufficient magnitude), which
may form a resonance with the GAM in the rotating plasma
frame when wgam ~ wrmp = nMcs/Ry. For the MAST con-
ditions this occurred when M = 0.6, above which the GAM
was completely suppressed.

In the COMPASS tokamak the direction of the applied
NBI heating appeared to play a role in the GAM ampli-
tude—slightly enhancing it over ohmic conditions when the
injection was in the co-currentdirection, but strongly suppress-
ing the GAM amplitude when in the counter-current direction
[394]. Similar observation ware reported for EGAMs in DIII-
D [44] and JT-60U [370]. Two possible influences were pro-
posed for the effect: the GAM growth rate is influenced by an
interaction with fast (resonant particle) ions depending on the
pitch angle distribution; and an electron current velocity com-
bined with the ion flow increases the GAM growth rate over
the Landau damping. As discussed below, both mechanisms
were found to be plausible.

Figure 73 shows a sequence of poloidal flow spectra from
an L-mode torque-scan in DIII-D where the core rotation was
reduced from vy ~ 300 km s™! to ~ 200 km s~! by stepping
3 MW of NBI from pure co-injection to 3/4-co, 1/4-counter,
and balanced injection [281]. As the central rotation is reduced
the edge GAM shifts up in frequency and is diminished in
amplitude until, with balanced torque, it disappears and is
supplanted by a stronger, broad low-frequency feature. (The
discharge subsequently transitioned to H-mode from which
it was speculated that the lower frequency flow perturbations
were more effective in triggering the L—H transition.) The ini-
tial up-shift of the GAM frequency can be attributed to an
increase in the edge T, but the transition from a coherent
GAM to a spectrally broad ZFO appears to be a rotational
effect on the GAM/ZFO growth rate. With balanced beams the
reduced rotation may actually stabilize the GAM allowing the
turbulence drive to transfer to the unstable ZFO.

10.3. Driven

With moderate NBI energies the ion velocity is typically sub-
thermal, vng; < v7e, due to electron collisions, i.e. a slowed
down ion distribution function. However, with strong NBI
(suprathermal) injection there is a cross-over from a moderate
impact on the turbulence driven edge GAM to the generation
of acore EP EGAM—intrinsically an EP mode—which is dis-
cussed in section 13. In the COMPASS case [394] the NBI did
not generate an EGAM but modified the pre-existing ohmic
GAM. The resulting GAM was weaker with co-injection,
but slightly enhanced with counter-injection NBI compared
to ohmic. This is similar to TEXTOR results where GAMs
were not observed with co-injection tangential NBI, but were
with small counter injection (i.e. deceleration of the toroidal
rotation) [495].

The COMPASS results were interpreted with the aid of two
models. The first is the ideal MHD model of Kolesnichenko
[168] where the GAM dispersion is derived in the presence
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Figure 73. Poloidal flow spectra in USN divertor DIII-D edge

r/a = 0.9 (edge n. ~ 1.5 x 10'°) showing GAM frequency shift
with variation of external NBI drive. Reproduced courtesy of IAEA.
Figure from [281]. Copyright (2009) IAEA.

of energetic ions (coupled to the MHD equations via the cur-
rent) and finite 8 coupling. The dispersion relation has sev-
eral potential modes/branches, but the one of interest here is
the continuum GAM. With a strongly peaked ion beam pitch
angle distribution it was found that energetic ions can signif-
icantly decrease the local GAM frequency, and, that the drive
is strongest with counter-injection. This is qualitatively con-
sistent with the COMPASS observations; but other effects are
also present.

When the beam ions are slowed towards the critical veloc-
ity vo = 5.5 Z;f/f\/Te /m; then pitch-angle scattering due to
ion—ion collisions becomes important. This effect is consid-
ered in the model of Elfimov [206] which uses a full-DKE to
study the effect of an NBI induced parallel electron current
and particle flux on the natural GAM. When the induced elec-
tron current velocity is larger than the GAM sideband phase
velocity, vep > wgamRog then the natural GAM can become
unstable. This is particularly favoured during tokamak cur-
rent ramp-up and with counter-NBI. Again, this flux model
was found to be in qualitative agreement with the COMPASS
measurements where ion and electron fluxes may increase or
decrease the GAM growth rate for counter and co-NBI respec-
tively, as observed experimentally. In a further development
of the model [205] qualitative agreement with the COMPASS
observations was also found, but it was noted that two other
effects could be important. With counter NBI the electron dis-
tribution is shifted in such a way as to make inverse Landau
damping more effective. Also, the NBI driven rotation could
enhance or diminish the GAM growth rate. This can be
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contrasted with the GK model predictions for anisotropic pres-
sure where collisionless Landau damping is reduced with
increasing x = p, /p; [86].

The effects of energetic passing particles (fast ions) on the
GAM was also modelled using a hybrid kinetic-fluid model in
alarge aspect ratio, circular low /3 plasma [496]. Again, as with
the Elfimov model, the dispersion relation gave two branches,
one is the EGAM (stable but resonantly excited by the EPs)
and the other is the natural GAM which can be unstable. The
EPs were found to shift the bulk pressure p, outward across
the flux surfaces leading to poloidal density inhomogeneities.
This modifies the GAM frequency w = wo(1 + x'Y)!/? where
X'~ O() and Y = (p; + p,)/(2yp,). Similar results were
also obtained with a hybrid kinetic-fluid model for oblique
NBI plasma fluxes where the GAM phase resonance can be
important at critical velocity (hot bump-on-tail model) [198].
Again two unstable modes appear: the standard GAM and an
EGAM, as shown in figure 17 and discussed in section 3.
The simulations reproduced the GAM frequency continuum
behaviour in DIII-D.

In summary, the toroidal rotation induced centrifugal force
creates pressure non-uniformities, leading to the formation of
new roots in the GAM dispersion relation: the standard GAM,
and a second lower frequency GAM/ZFO. With poloidal rota-
tion an additional SW branch is formed. In both cases the
rotation up-shifts the mode frequencies. The intrinsic stability
and form of the modes is sensitive to the equilibrium. Sub-
thermal rotation can also drive a normally stable edge GAM
unstable. The effect of rotation on the GAM damping is more
subtle with threshold effects evident. Both theory and experi-
ment show the GAM may be reduced or enhanced by rotation.
For super-thermal particle injection a core localized EGAM is
created.

11. GAM drive

The observed natural GAM amplitude is the result of multi-
ple mechanisms involving the level of (turbulence) drive, the
degree or effectiveness of the coupling to the GAM, the back
reaction of the GAM on the drive (e.g. on turbulence shear-
ing/moderation), the rate of energy transfer out of the GAM
back into the turbulence or non-GAM/ZFO flow fluctuations,
and finally the rate at which energy is lost to collisional or
Landau collisionless damping, dissipation and other mech-
anisms including continuum damping, phase-mixing (PM),
etc. This is a complex story which is addressed in several
sections. Beginning with the GAM drive this section cov-
ers 4 topics from the experimental perspective: (i) RS and
DS drive in section 11.1; (ii) thresholds and gradients in
section 11.2; (iii) MHD interaction in section 11.3—with
further aspects in section 16.1; (iv) external drive mech-
anisms, such as plasma biasing to enhance edge E;, as
well as AC modulation mechanisms to modulate the edge
potential are discussed in section 11.4. The somewhat
simpler GAM damping and dissipation mechanisms fol-
low in section 12, with EPs (both internal born (RF
driven) and NBI injected) driven GAMSs in section 13,
and finally the nonlinear turbulent transfer mechanism in
section 14.
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11.1. Dynamic shearing and Reynolds stress

Even in the absence of collisional and collisionless (linear)
damping, a continuum GAM will still decay due to PM. Thus
to maintain and drive the GAM an external energy source is
needed. As discussed in section 4 there are two different mech-
anisms presented in the literature through which the GAM
may be driven by turbulence. The first is turbulent RS [53]
directly driving the m = O radial current. RS directly enters via
the quasineutrality condition (7). The second is the so-called
DS mechanism. Here, the GAM is excited via a feedback
loop where the GAM flow oscillation ‘dynamically’ shears
the turbulent eddies, which modulates the radial particle flux
I’} (transport) which, due to the inhomogenous magnetic field,
generates up—down asymmetric m = 1 pressure perturbations,
and Stringer—Winsor like torque on the plasma column, that
drives the m = 0 radial current in the GAM [24, 213, 227]. In
the DS formulation the GAM is preferentially excited in high
q regions that satisfy the condition ¢> > ¢ ~ LR, lklg pis!
[213]. More generally, the DS mechanism may be viewed
as a ‘diamagnetic drive’ [24, 227]. The theory behind both
mechanisms is described in detail in section 4.

While Sasaki [456] noted that both RS drive [53] and DS
induced Winsor drive [213] could be important, the evidence
for RS appears, overall, to be convincing. In HL-2A the tur-
bulent RS was measured using LP arrays and rake probes
and was found to be strongly correlated with the formation
of simultaneous multiple shear flows; a ZFO (<5 kHz) and
GAM (f ~ 12-18 kHz) [476]. The radial particle flux was
significantly reduced near the LCES and at the GAM radial
maxima.

For FT-2 conditions the ELMFIRE code was used to simulate
discharges. Here, the nonlinear energy transfer from the tur-
bulence to the flows through the Reynolds force was balanced
by the collisional dissipation. A temporal relationship between
the oscillating flow, Reynolds force 11,y = —(Eﬁg) /B?, and
turbulent particle flux I'; = (Eyit) /B was found to be consis-
tent with the fundamental physics picture of the GAM modu-
lating the turbulent transport on the time scale of the mode. The
experimental results also suggest an anti-correlation between
the GAM amplitude and the turbulent fluctuations [254].

A direct evaluation of the comparative strength of RS and
DS drive was recently made in JFT-2M [325]. In this case the
results indicate that RS dominates over any drive from DS. Fol-
lowing the derivation of Kobayashi [325], the rate of change
in the GAM kinetic energy, Kg = |0« />, is given by

 0Kg
=

VK = YRS + DS — L, (267)
where g is balanced by the RS drive plus DS drive minus the
linear (collisional or collisionless) damping rate ~y; . The var-
ious rates for x are defined as v, = 2\I:”X\|UEX3\’1 cos(OF, —
Opy ), with the forces given by Frg = —r '8,rIl,y and
Fps = ic2 /(472 foamR) r'8.r(I'; /1) respectively.

Using HIBP on JFT-2M to measure ¢ with conditional
averaging triggered by a magnetic signal, the modulational
pattern of RS and T', plus the energy exchange could be eval-
uated. For an ohmic eigenmode GAM of several cm width,
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forces, respectively. Also in (e) over-plotted is the GAM kinetic
energy effective growth rate in JFT-2M. Reprinted figure with
permission from [325], Copyright (2018) by the American Physical
Society.

the peak ypg was found to be small compared to ygg ~ 3 X
10*s~!, as shown in figure 74 [325]. The collisionless and col-
lisional damping rates ., ~ 1 x 10* s7' and 7., ~ 50 s~!
respectively are also slightly smaller than predicted growth
rate.

As a final point, configuration effects, such as mag-
netic shear §, on the RS were discussed in [497] where
simulations showed a strong polidal asymmetry in the RS. The
role of the X-point in breaking poloidal symmetry of 5 was
noted—circular plasmas have up—down asymmetric RS, while
divertor configuration is more complex with high RS in a nar-
row radial strip localized to the X-point. Breaking the poloidal
symmetry of § induces tilting of the turbulent structures (via X-
point resistivity or limiter) which leads to an extra (positive or
negative) contribution to flux surface averaged RS. However,
what this means for the GAM drive remains to be answered.

11.2. Gradients and threshold effects

Several devices report that the GAM amplitude increases in
L-mode with applied heating power [292, 304, 306, 435] with
the implication that the greater heat flux enhances the turbu-
lence magnitude and then via nonlinear coupling drives the
GAM harder. For gradient driven turbulence, such as ITG or
electron drift wave turbulence, the density fluctuation level is
expected to scale with the gradient, e.g. 72/n ~ (k; L,)~" where
L, = |n/(dn/dr)| is the density gradient scale length. In TEX-
TOR the GAM dv and dn fluctuation levels both decreased
with increasing density gradient length L, (shallower gradi-
ents)—cf figure 16 in [339] for a series of low density ohmic
discharges. The GAMs were most pronounced for steep edge
gradients L, < 0.1 m, with long wavelength k, p, < 0.2 drift-
ballooning modes appearing to be the dominant turbulence
mode.
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Atlow collisionalities TEM type turbulence, driven primar-
ily by the (electron) temperature gradient, can be dominant.
Figure 75 shows the mean GAM amplitude (Agam) (aver-
aged over the GAM spatial peak) as a function of temperature
gradient normalized to elongation VT, /+/k for a selection of
low density ohmic and L-mode shots with a restricted xp, =
1.64 +0.05 and gg¢5 ~ 3.9 £ 0.4 divertor configuration [26].
Above a certain onset threshold the GAM amplitude increases
linearly with the gradient right up to the L to H-mode transi-
tion. Due to increasing turbulent transport the stronger GAM is
accompanied by a corresponding decrease in the global energy
confinement time 7g. The GAM onset threshold value also
appears to depend on geometrical and other turbulence param-
eters. For lower k, the threshold also moves to lower VT,
values.

A similar threshold behaviour effect was observed in JET
divertor discharges, as shown in figure 76 of GAM peak ampli-
tude vs pedestal electron pressure P, (used as a proxy for the
pressure gradient) for a range of I, [358]. In this study the
GAM drive was the dominant factor since both /, and 71, were
sufficiently low that collisionless and collisional damping were
small in the edge. Spatially, the GAM amplitude profile is also
seen to follow the 1/Lr and 1/L, inverse scale length profiles
across the edge region. This is similar to AUG divertor shapes
where the radial inside boundary for the GAM aligns with the
density pedestal top, and thus where 1 /L, decreases [305]. The
role of the nonlinear transfer rates are discussed in section 14.

11.3. MHD interaction

The importance of the role of Alfvén eigenmodes to the GAM
was introduced in section 2.12 and the excitation of GAMs by
TAEs was explicitly discussed and modelled by Todo [498]
and by Qiu [224, 499]. Using GK theory, the condition for
the spontaneous excitation of a GAM by TAEs was derived
as w} > v3/(4¢°R}), where wy is the real frequency of the
TAE pump wave and v, the Alfvén speed. If the TAEs (driven
for example by EPs) are of sufficient amplitude then they
can overcome the GAM onset threshold (due to collisionless
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radius in JET. Reproduced courtesy of IAEA. Figure from [358].
©2016 EURATOM.

damping and nonlinear coupling) and stimulate the GAM via
three-wave parametric decay process involving the TAE pump
wave (wy, ko), the TAE lower sideband (wy, ks) and the GAM
(weam, kgam)-

Due to its high rotational transform, GAMSs are not nor-
mally observed in TJ-II. However, in appropriate L-mode
configurations an f ~ 105 kHz, m = 6 global Alfvén eigen-
mode and an f ~ 14 kHz low frequency mode (magnetic) is
observed in the core (p ~ 0.65) together with an ' ~ 20 kHz
flow oscillation lasting some tens of ms. The combination is
highly suggestive of an AE nonlinear mode coupling to a GAM
[417].

In the broader context of MHD modes there are also theory
considerations suggesting that nonlinear interactions between
two unstable neoclassical tearing modes (NTMs) can create
GAM-like flow oscillations. Using numerical simulations of
fully toroidal reduced MHD equations in a circular equilib-
rium with high 8 and electron viscosity [500], two radially
separated NTMs modified the perpendicular flow around the
islands structures creating a GAM-like flow oscillation. Simi-
lar work on the generation of secondary GAMs via non-linear
coupling with beta-induced Alfvén eignemodes induced by
plasma flow around the magnetic island [230]. Here, the GAM
has the same mode structure and frequency as the primary
BAE. A fuller discussion on the interaction of MHD islands
with GAMs appears in section 16.1.

11.4. Externally driven GAMs

In addition to the turbulence and EGAMs, theory suggests
some alternate mechanisms may also be effective in stimu-
lating or enhancing edge GAMSs. As early as 2005, Itoh et al
outlined the various sources for driving GAMs—principally
dynamical poloidal asymmetry [213]. A further development
[501] introduced a framework describing the turbulent plasma
response (and ZF) in space and time to a local source, i.e. force,
perturbation. For a resonant sinusoidal oscillating source the
model predicts modulation of the turbulence envelope, coupled
to a modulated ZF. In principle, the source perturbation could
be generated by an externally controlled perturbation, such as a
localised heat deposition (i.e. pressure gradient modulation, or
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momentum), or a magnetic perturbation (plasma equilibrium),
or even an externally induced E; via probe or limiter biasing.

11.4.1. Modulated external fields. The motivation for exter-
nally driving GAMs is the possibility to control the degree of
localized flow shearing of the turbulence, and thus transport,
and perhaps even trigger a confinement mode transition. Here,
GAMs may be more advantageous than ZFs since they can be
generated without momentum input by exploiting a resonance
with an oscillating perturbation of the plasma equilibrium.

Two approaches have been proposed. The first considers the
possibility of using external magnetic perturbation coils mod-
ulated at the GAM frequency to induce a resonant global (equi-
librium) plasma displacement [502]. Using an MHD model it
was shown that a quadrupole field (m = 2) with up—down and
in—out anti-symmetry would induce a rotation in an elliptical
plasma column. This dynamic perturbation of the equilibrium
acts as a source for the GAM. An estimation of the efficiency
using DIII-D parameters seemed realistic with power require-
ments of P = Egamwcam/Q < 1 kW for a resonance factor
Q ~ 20. Similar estimates were also obtained when consid-
ering ion—ion collisions and continuum damping due to PM
[137]. MHD fluid simulations for large aspect ratio, circular
plasmas were also performed [503]. Applying an oscillation
current at the standard GAM frequency in two external coils
on LFS above and below mid-plane with 90° phasing, cre-
ates a time varying VB = J+ + J_ which induces an E
field and a narrow radial annulus of oscillating poloidal flow
with a maximum around the LFS mid-plane. The amplitude
of the flow oscillation is linearly proportional to the coil cur-
rent. When the frequency is resonant with the standard GAM
then an enhanced zonal ring flow is formed. Experiments were
proposed for DIII-D [502] but results are not reported to date.

The second approach is to excite GAM flows using edge
localised resonant heating (such as ECRH or ICRF) modu-
lated at the expected GAM frequency [503, 504]. Again, MHD
fluid simulations show that applying a localized heating with
a particular resonant configuration—specifically with a posi-
tive half cycle applied to the upper half of the plasma poloidal
plane—produces an m = 1 temperature perturbation which
induces a poloidal flow with an amplitude linearly propor-
tional to the heating power. The required power needs to be
sufficient to overcome the natural GAM damping. Estimates
for typical DIII-D parameters suggests power levels less than
a kW would be required, which is experimentally feasible.
Attempts to drive GAMs have been made in several devices,
including DIII-D, AUG and TCYV, however, to-date there are
no reports of either successful excitation or the enhancement
of edge GAMs.

11.4.2. DC plasma biasing. External DC biasing of the
plasma edge, using limiters or large probes inserted into the
edge, can change the mean E| radial profile and thus enhance
or diminish the E x B sheared flows, as well as inducing tilting
and anisotropization of the turbulent eddies. Both effects may
in turn change the energy transfer from the small to the large
scale turbulence structures [426, 505].

o1

In the case of stationary or low frequency ZFs, several DC
biasing experiments support this picture of (mean and fluc-
tuating) flow shear stretching of eddies. In the TJ-II stellara-
tor the application of DC plasma biasing induced a sponta-
neous edge transition with an amplification in the LRC of LP
floating potential V¢ (proxy for flow) perturbations—which
was interpreted as evidence for the development of low fre-
quency (~ 1-2 kHz) ZFOs [506, 507]—and accompanied by
an increase in low frequency (at the expense of high frequency)
broadband turbulence. Likewise, in the TEXTOR tokamak the
LRC in edge Vy increased (ZFO-like f < 5 kHz—not GAM)
during a biased induced H-mode [344, 431, 465, 508]—which
is interpreted as an enhanced energy transfer from the turbu-
lence into large scale ZF structures. In the HSX stellarator
biasing also led to an increase in the bicoherence of poloidal
electric field fluctuations and an increase in the LRC of probe
floating potential fluctuations [423].

The impact of plasma biasing on the GAM has been less
studied. Nevertheless, there are data from at least three devices.
Negative biasing in ISTTOK using an emissive LaBag elec-
trode, inserted 15 mm inside the limiter radius, significantly
increased the mean edge E x B shear flow, resulting in reduced
ambient turbulence (AT) and a consequent suppression of the
edge GAM [363]. However, positive biasing resulted in only a
modest increase in the mean shear flow, but an increased long-
range-correlation ~ 1 m (ZF-like structures) in probe V¢ fluc-
tuations. For reference, without biasing the GAM shear rate
Yexp = AVi/Ar?B was a factor of 2—3 times smaller than the
mean shear rate, but was comparable to the decorrelation rate
of the fluctuations.

Likewise, in J-TEXT, positive biasing was found to increase
either the GAM or ZFO amplitude (they appear to be in com-
petition) [390]. The radial particle flux I'; (obtained from LPs)
was reduced during biasing and the discharge took on the
appearance of an H-mode with increased density and confine-
ment. In ohmic conditions the E x B shearing rate was less
than the turbulence decorrelation rate, but with biasing the
sum of both the mean and GAM/ZFO shearing rate together
exceeded the turbulence rate and the turbulence was reduced.
A similar effect was also observed in SINP, where a roughly
linear increase in the GAM-like mode amplitude with applied
external electrode positive biasing was found [396].

There is a clear parallel between the role of the edge E;
shear in the H-mode and the reports above where a negative
bias enhanced mean E x B shear results in a reduced GAM
amplitude, and thus GAM oscillatory shearing—i.e. the GAM
plays less of a role in turbulence reduction. However, with pos-
itive bias a modest mean flow shear increase appears to drive
the GAM and thus its flow shear role. This picture is consis-
tent with GK simulations which show that a strong E; (as in the
H-mode tokamak edge pedestal region) substantially enhances
the collisionless decay rate of the GAM [79].

11.4.3. AC plasma biasing. While DC plasma biasing using
limiters or external electrodes can significantly modify the
mean edge E, radial profile resulting in an indirect enhance-
ment or suppression of the GAM, there is also the possibility of
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Figure 77. (a) Radial profiles of GAM frequency filtered normalized
potential fluctuation |V¢| for applied AC bias Vyi,s = 0 and 70 V
(peak)/15 A at 15 kHz GAM frequency, (b) RMS V; and flux I'; at
r —a =5 mm (SOL) vs bias voltage in ISTTOK. Reproduced
courtesy of IAEA. Figure from [364]. © 2017 EURATOM.

directly driving or amplifying the GAM flow oscillation using
modulated bias voltages at the GAM frequency.

Building on modelling work on the effect of GAM sup-
pression of turbulence [428], numerical simulations have been
performed using reduced two-fluid hydrodynamic Braginski
equations, modified to include an external electric field [S09].
The simulations show that an oscillating field close to the toka-
mak wall (i.e. in the plasma SOL) at the GAM frequency, and
of sufficient strength, was cable of suppressing turbulence. The
turbulence cell reduction was not due to shearing but through
a resonant interaction between the GAM and the turbulence
which reduces the turbulence growth rate. There was a critical
field strength for the effect which depends on 7, and n..

So far there is only one successful experimental attempt
reported from the ISTTOK tokamak [364]. With an AC bias-
ing electrode inserted at the GAM maximal radial location
and driven at the natural GAM frequency, the natural GAM
was enhanced by a factor of 7 or more. Figure 77 shows
normalized band-pass filtered V¢ level for natural and stimu-
lated GAMs. The GAM amplitude increases with applied bias,
beyond a threshold, coincident with a factor of 2 enhancement
in the GAM shearing rate and a commensurate decrease in the
cross-field particle flux into the SOL [364].

In summary, there are multiple drive mechanisms for the
GAM. For the turbulence drive both direct drive of three-wave
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turbulence coupling via RS and indirect excitation by DS via
a modulational instability. Experimentally both mechanisms
exist together and may be equally important. In common with
many turbulence effects the GAM displays an onset threshold
with the turbulence amplitude, represented by the kinetic pro-
file radial gradients. Internally the GAM may also be driven
by MHD interactions, while externally there are possibilities to
drive or modify the natural GAM with modulated edge plasma
biasing, magnetic perturbations or localized plasma heating.

12. GAM damping

The GAM amplitude in steady-state is the result of an energy
balance between sources (such as the turbulence or EP drive)
and sinks (such as linear damping and energy transfer back into
the turbulence, as well as non-linear damping effects which act
as amplitude saturation mechanisms). This is summarized in
the following table 13. This section reviews the GAM dissi-
pation, for which there are several linear mechanisms, such as
collisionless parallel and toroidal ion Landau damping, colli-
sional (ion) damping and electron non-adiabatic effects, which
were introduced in section 2.8. In addition, there is continuum
damping due to PM. PM can combine with Landau damp-
ing leading to an enhanced damping rate, which is especially
pronounced in the presence of a temperature gradient.

12.1. Overview of linear damping mechanisms

12.1.1. Continuum damping and phase-mixing. Continuum
damping is intrinsic to the experimental GAM and arises
directly from the radial gradients of the temperatures V,T
which, while providing a drive for the turbulence, also results
in PM as the GAM frequency goes radially out-of-phase over
adjacent flux surfaces. As discussed in section 2.11, PM dis-
torts the radial structure of the GAM leading to a decay in
the GAM amplitude proportional to the local gradient of the
GAM frequency. In the absence of other damping mecha-
nisms—collisional and collisionless—the continuum damp-
ing rate sets the minimum threshold which the GAM drive
must exceed for the GAM to be sustained. It was also shown
that the enhanced damping due to coupling to the continuum
may result in a finite threshold for the EGAM excitation by
EPs [199]. The experimental observation of drive thresholds
was discussed in section 11.2.

As discussed below there remain significant discrepancies
between experimental observations of the GAM amplitude
behaviour and predictions from individual collisional and col-
lisionless damping models. However, theory suggests that PM
may combine with collisionless Landau damping resulting in
an enhanced (PL) damping mechanism; possibly raising the
effective damping in realistic tokamak conditions by an order
of magnitude [139, 151]. It may also be expected that the GAM
existence will be strongly impacted in the steep edge tem-
perature gradients regions of enhanced confinement regimes,
such as I-mode and H-mode. Indeed, order of magnitude com-
parisons of characteristic drive rates ypg from nonlinear cou-
pling and combined PM-Landau damping rates ~yp; were found
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Table 13. Simplified overview of drive and damping mechanisms: from [53].

Ampl. = drive y—

linear damping —

Collisional v,

Collisionless v, ;.

non-linear damping

Tertiary instabilities (KH)

Scattering & trapping of wave packets
System dynamics, LCO, bursts, etc

to be consistent with experimental observations of GAMs in
L-mode, I-mode and H-mode [139].

12.1.2. Collisionless Landau damping. Landau damping is a
kinetic effect arising from wave particle interactions, which
can occur even in a spatially uniform plasmas, i.e. without
density or temperature gradients. The basic theory of collision-
less damping was reviewed in section 2.8. Several formulas
were derived under various conditions and constraints, start-
ing with the exponential damping rate v o< exp(—g?*) obtained
from the DKE in the large aspect ratio limit with circu-
lar flux surfaces by Lebedev [9], Zonca [5] and Sugama
[75]—so-called zero orbit width models. Further expressions
were obtained for FOW conditions. These are summarized in
table 4.

However, plasma shape introduces additional corrections,
usually via the GAM frequency which, as discussed in
section 7.6, has strong shape dependencies. An example is the
form derived by Angelino (2008) who showed using linear
ORBS5 GK simulations that the damping rate increased with the
plasma elongation x, together with an inverse aspect ratio e.
Also, good agreement (cf figure 14 in [243]) between ORBS
and the kinetic formulation was obtained when the plasma
shape dependence, such as elongation, was included in the real
frequency
i)
R

8 1

woam = (Te + ) 3 2n 132 + pa

Yiin = woam exp(—(waeamgRo/vri)*/2). (268)
Plasma shaping effects were extensively investigated by Gao
in a series of papers. Separating the real and imaginary terms
of equation (86) and reforming one obtains the form proposed
in [108] (Gao-2008)

—V/T vri (Ro waam/vri)® s
2 RO 7/4+Te

Vel =

x exp [—(qRowcam/vri)’] (269)
valid under the assumption of v < w (real) and high ¢q. This
was derived in the limit of small GAM radial wavenumbers,
k. — 0, (termed small ODW in [122]) and leading order terms.
The effect of plasma shape (specifically «) again enters via
wgaMm, Where increasing s lowers the GAM frequency and cor-
respondingly raises the collisionless damping [242]. The inclu-
sion of finite ODW effects, e.g. finite GAM radial k, > 0 may
become important for ¢ > 2 [131, 240]. Sugama and Watan-
abe included FOW effects in their GK approach in circular
shape to obtain equation (88) [75, 76]. Gao also considered
the so-called large ODW limit expansion for shaped plasmas,
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deriving the following analytic formula from the GK equation
[117, 122] (Gao-2010)
(1 +
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where k = k; pi. This form has a qualitatively different
behaviour to that of the low &, limit. In [117] it was claimed that
the difference arises from a change in the resonant mechanism
from a low-order harmonic transit resonance to high-order har-
monic resonance contributions, with the result that the damp-
ing rate becomes independent of ¢g. The two Gao formulas are
popular expressions that have been used by several authors for
experimental comparisons, as discussed below in section 12.2.
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exp 2 1
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4%+ 1
4% 4+ 4

k

)

(270)

12.1.3. Collisional damping. Collisional damping is expected
to become important in the tokamak plasma edge where g > 1
and the collisionless damping becomes less important, that
1S Yool > Yeu- Damping due to the ion—ion collisions occurs
as result of the collisional relaxation of the anisotropy of the
perturbed pressure and, as discussed in section 2.10, is there-
fore amenable to the fluid description within the two-pressure
model. Generally the collisional damping rate scales linearly
with the ion—ion collision frequency, such as in the form
obtained by Novakovskii [8] 7., = —4/7v; equation (96)
where 1; = 4.80 x 1072 /1/2n,In Af/z s~! (for deuterium).
Table 4 gives several expressions for 7., obtained using dif-
ferent collision operators. The forms obtained by Gao (99) and
Li (100) in particular have been tested in experimental compar-
isons. Note that none of the collisional formulas contain any
shape dependence.

12.2. Experimental results

There is substantial evidence from several experimental
devices for the role of both collisionless and collisional damp-
ing. DIII-D [282, 435], AUG [26, 309] and JET [358] all
show an increasing GAM amplitude at low density (low col-
lisionality) with increasing g, consistent with a collisionless
Landau damping effect. This is supported by GK all-order
FOW numerical simulations from the TEMPEST code [78],
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which show, in figure 78, the correlation of a decreasing damp-
ing rate with increasing edge GAM amplitude as gy5 is varied
during I, current ramps in USN divertor, high x = 1.75, DIII-
D discharges. However, at very high gys, see figures 4 and 6 in
[435], the GAM amplitude decreases again—possibly due to
changes in turbulence drive or other shape effects.

With increasing density the edge GAM is suppressed in
AUG, consistent with a now dominant collisional damping
[305]. Likewise, in diverted plasmas in HL-2A during gas-
puffing, collisional damping appears to determine the edge
GAM amplitude [354, 430]. In T-10 the GAM was found to
exist only below a local density of n, ~ 2 x 10" m—3—a clear
indicator of an upper bound for collisional suppression of the
GAM.

Several detailed studies have been undertaken comparing
the GAM amplitude behaviour with various damping models.
The first, from Tore Supra [373], used DR to obtain Agam pro-
files in low and high v;; circular plasmas. These were compared
with simulations from the global full-f flux-driven GK GYSELA
code. An interpretation of the Agam behaviour requires knowl-
edge of both sources and sinks. The source is related to the
turbulence intensity. Lacking good dn/n experimental profiles,
linear growth rates were estimated from local GK GENE code
simulations. The GAM was found to be more intense in the low
v;; case than in the high v;; one, which is consistent with the
estimated source and damping of the mode. The result sug-
gests that the GAM damping was dominated by collisional
effects while Landau damping was negligible. Nevertheless,
the GAM amplitudes in the simulations were weaker than in
the experiments. This was attributed to an underestimation
of the turbulence intensity. A simple evaluation of the GAM
source and damping ratio S/~ (using an energy equilibrium
model: 0A/0t + yA = S), in both experiments and simulation,
confirmed the GAM intensity scales consistently with the local
fluctuation level dn.
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Doppler reflectometry was also used in AUG to investigate
the role of plasma shaping, specifically the boundary elonga-
tion Ky, and g on the GAM amplitude Agam for both limiter
and divertor configurations [26]. Using a database with sim-
ilar VT, /,/ky (to separate the turbulence drive effect) differ-
ent dependencies were found for limiter and divertor config-
urations. In limiter plasmas Agam decreased inversely with
increasing kyp, but not in divertor plasmas at low g. Neverthe-
less, a common behaviour of increasing Agam with increasing
q was observed—consistent with Landau damping.

Behavioural discrepancies where noted in SINP where the
GAM amplitude was independent of g4, = 1.5-6 inlow den-
sity limiter circular plasmas [395]. However, the effect of the
T./T; ratio could be influential here. According to Watari [99]
the GAM damping rate should be smaller if 7. > Tj. This
appears to be the case for SINP and is also supported by JIPP T-
IIU results in ohmic heated low density plasmas (where 7. and
T decoupleand T, > 3T; [36]). Here, very intense core GAMs
and weak ZFO were observed when 1 < T, /T; [329-331].

The AUG study was further extended [309] with detailed
experimental parameter scans and comparisons to various ana-
lytic expressions, including Gao’s collisional model (98), and
collisionless k; — 0 model (269), Sugama’s FOW collisionless
model (88) [75, 76] and Gao’s large ODW model (270). As an
example of the analysis performed figure 79 [309] shows the
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GAM amplitude Agam (with a constant VT, / V/Fv) vs the Gao
collisional 7y, (98) and collisionless v.; (269) damping rates
using local experimental values for limiter and divertor shapes
with various boundary xy,. For the divertor data-points there is
a clear decrease in Agam with increasing ., while the limiter
points are more flat at high collisionality. Against collisionless
damping there is also a general decreasing tend, but the spread
in the divertor points is much greater.

The collisional damping rates are generally orders of mag-
nitude larger than the collisionless values, however, as shown
in figure 80 [309] the collisionless «.; vary enormously
depending on the model and radial position. Using experi-
mental values for the data-set of figure 79, collisional -y,
was found to dominate over the k. — O collisionless ~,; in
the outer plasma edge. Towards the core the collisionless . |
rose to became comparable, or greater than the collisional
Yeo1- Overall, including finite ODW effects raises the collision-
less 7., making it more important towards the core for both
limiter and divertor cases. The role of the GAM k, appears
more significant in divertor configurations where the GAM
radial extent is generally narrower. Decreasing &, brings both
FOW 7., (88) and (270) towards the small ODW ~_; (269) in
the edge. The conclusion was that collisional damping plays
a dominant role for divertor configurations at high ¢ in the
plasma edge, while collisional and collisionless damping play
equal roles for limiter configurations at low ¢ towards the
plasma core.

Similar studies on JET also used DR to build a database
of GAM amplitude dependencies on line averaged plasma
density 7, plasma current I, and divertor target geometry in
ohmic hydrogen and deuterium plasmas [358, 359]. At high
I, the GAM amplitude Agawm increases with 7.—essentially
steepening edge Vn. and thus turbulence drive—up to a
point where collisional damping becomes effective and Agam
falls. With decreasing I, < 1/qys the roll-over point moves
to lower 71, due to enhanced collisionless damping, until
the GAM is extinguished. Holding 7. constant reveals an

95

initial rise then suppression of the GAM with increas-
ing I,. Comparing the measurements against the (NEC)
collisional v, of Li equation (100) and the collision-
less small OWD (269) and large ODW (270) ~v.; mod-
els of Gao reveals discrepancies [359]. The collisional
was predicted to be universally dominant in the edge, but
in the experiments it was only found to be effective at
low I, and high 7i.. The collisionless damping behaviour
is complicated by the interrelated drive dependencies,
nevertheless, the observed GAM suppression at high I, is in
agreement with collisionless models, although the estimated
damping rates appeared to be too small to explain the measure-
ments. In JET the GAM radial wavenumber was estimated at
ke ~ 2.6 cm™! suggesting large ODW effects should be impor-
tant. The observed discrepancy in predicted v maybe due to
fact that in the JET edge vi < wp = vri/gR,, implying that
the collisionless formulas may not be applicable.

In another experimental approach [255, 510] a Lorenzian
profile was fitted to the GAM spectral peak Pg in FT-2, assum-
ing a dissipative oscillator driven by a random force (such as
RS):

Alzurb

P =
(w — weam)? +72

(271)

to obtain a radial profile of the GAM ~, experimental damping
rate of the order of 20-30 ms~'. Reasonable agreement was
found with a damping profile using the sum of a collisional
Yeol ~ 4v;/7 and a Landau 7., ~ wgam exp(—q®) damping
rate (including impurities with Z.¢ ~ 3.5 [248]), except at the
tokamak edge where it was speculated that the ., was a fac-
tor of 2 too small due to the neglect of significant ion-neutral
collisions in the edge. Similarly, in DIII-D the GAM spectral
peak widths were measured at ~ 200-300 Hz, giving A f / f ~
1%-2%. Assuming an exponential Landau damping form
this translates to an upper bound for ygay < 100-150 Hz
(i.e. 6-10 ms~1) [282].

In summary, collisional damping appears to dominate at the
plasma edge, but collisional and collisionless damping appear
to be equally important away from the edge. The collision rate
affects not only the GAM damping but also reduces the GAM
frequency as well as changing the ion adiabatic index ~y; depen-
dency. The GAM visibility is, nevertheless, still a question of
the balance between damping and drive.

13. Energetic particle GAMs

As reviewed in section 3, EPs can also be a source of drive for
the GAM. A GAM-like instability with a toroidal mode num-
ber n = 0 was first observed in the core region of ion cyclotron
resonance heated (ICRH) plasmas in JET [12, 13], as shown in
figure 81. Unlike the turbulence driven GAM, the mode had a
significant magnetic component from which the toroidal mode
number of zero was confirmed by a toroidal array of Mirnov
coils. The GAM had chirping frequencies which suggest that
the mode is driven by fast ions. Since the GAM was observed
around a local maximum of the GAM continuum induced by
the reversed magnetic shear where the safety factor profile has
alocal minimum, the GAM was interpreted as a GGAM driven
by fast ions.
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Figure 81. Toroidal mode analysis and spectrogram of magnetic
fluctuations in the JET tokamak. Reproduced courtesy of IAEA.
Figure from [12]. Copyright (2006) IAEA.

Core, n = 0 chirping modes were also observed in NBI
heated plasmas in DIII-D. However, the experiment clearly
displayed mode frequencies significantly lower than the
expected standard GAM frequency by a factor of approxi-
mately 2 [44]. The frequency discrepancy was explained when
taking the EPs into account, and was thus termed an EGAM
[45] as described in section 3. Subsequently EGAMs were
widely observed in NBI plasmas in LHD [266, 409, 410],
JT-60U [370], HL-2A [231], AUG [313], and EAST [433].
Table 14 summarizes the main features of the EGAMs reported
from various devices. Several where observed in reversed
magnetic shear conditions, but the JET case is clearly linked
with a GGAM structure and with frequencies above the con-
tinuum. In the following subsections the driving mechanism
and characteristics of the EGAM and EP driven GGAM are
reviewed.

13.1. Driving mechanisms

Fast ions with parallel velocities close to the GAM phase
velocity can resonate with the GAM. Numerical simulations,
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Figure 82. (a) Initial EP distribution function in (A, E) space used
in a numerical simulation, where A = pB/E with 1 the adiabatic
invariant, and E the ion energy. Dashed curves mark constant .

(b) Resultant simulated energy transfer rate from EGAM to fast
ions. Reprinted figure with permission from [512], Copyright (2013)
by the American Physical Society.

taking into account kinetic fast ions, show that the fast ions lose
energy in the region where the gradient of the energy distribu-
tion is positive along curves on which the adiabatic invariant
is constant, as shown in figure 82 [512].

In LHD a similar behaviour in the energy distribution was
observed with a neutral particle analyzer [513]. As shown in
figure 83, the ions in the higher energy region (150-170 keV,
where the energy of the neutral beam is 175 keV) decrease
and those in the lower energy region (110-150 keV) increase.
That is, the fast ions lose energy during the growth of the
EGAM, thus implying an energy transfer from the fast ions to
the EGAM. As noted in section 3 and summarized in table 6,
theoretical analysis [195] also suggests the possibility of a dis-
sipative EGAM excitation due to the negative energy mode
instability (with the positive energy loss) and the EP distribu-
tion decreasing with the energy.

In HL-2A an EP driven GAM was observed in ohmic plas-
mas in which no fast ions existed [231, 511], but there were
energetic electrons generated by magnetic re-connection dur-
ing TM activity. An important feature of these observations
is the presence of an m = 2 mode detected in Mirnov coils
which was well correlated with n = 0 and m = 2 EGAM activ-
ity, figure 84, thus pointing to a global nature for the EGAM
in this case. This unconventional EGAM is accompanied by
TMs and BAEs, showing nonlinear three wave coupling inter-
actions between the EGAM, TM and BAE, as demonstrated
in figure 85; with fecam = fear2 — fim» fecam = faer +
fTMa and fEGAM = fBAEI + fBAEZ- Similar EGAM/Alfvén-like
n = £1 modes with frequency splitting were reported from
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Table 14. Reported observations of EGAM/EP-GGAMs by experiment. fgam is the expected
continuum GAM frequency, f; the EP transit frequency, eigen = eigenmode structure.

Device  Source Features
AUG NBI Chirp fy ~ f, m = 2 EM [313]
DII-D NBI Chirp f < foam, m = 2 EM, rev. shear [44]
EAST NBI No-chirp f < fgam, core eigen, m = 2 & 4 EM [433]
HL-2A Ohmic  No-chirp f < fgam, eigen, m = 2 EM. Fast elec., TM + BAEs [231, 511]
JET ICRF Chirp f > fcam. Rev. shear, GGAM, m = 2 EM [12, 13]
JT-60U NBI f < foawm, eigen, m = 2 EM, rev. shear [370]
LHD NBI Chirp f 2 foam, eigen, cnt-NBI [410]
LHD NBI No-chirp, rev./weak shear [266, 409]
TJ-II ECH Chirp f < fcam, core eigen, n = 1, candidate EGAM [418]
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Figure 83. Variation in energy distribution measured by neutral
particle analyzer during EGAM burst in LHD. Reproduced with
permission from [513].

ICRF heated TEXTOR plasmas in the presence of large 2/1
TMs or external magnetic perturbations [514].

It was suggested that the EGAMs in the HL-2A case were
generated by the energetic electrons at the passing-trapped
boundary, as a result of passing electron scattering into the
trapped region due to the anomalous Doppler instability. This
picture is supported by ECE and SXR signals during periods
of sawtooth activity [231]. It is also consistent with theoretical
analysis [125] indicating that marginally trapped electrons pro-
duce the largest contribution. Another destabilization mecha-
nism for such modes may be related to the direct contribution
of the electron current generated by the TM activity [202, 205,
206]. Potentially, three wave coupling may also play a role in
the mode generation.

The mechanism of the EGAM drive has also been con-
firmed by numerical simulations [512] and expanded by tak-
ing into account the GAM continuum [156], as well as the
effects of finite ion Larmor radius and guiding-centre drift orbit
width [199, 515], and also a bump-on-tail velocity distribution
function [194, 195, 197, 496].

EGAMs are generally observed in low density plasmas
(typically 1 x 10" m~2 or less). Since the anisotropy in the
velocity space of the EP is more easily sustained in low density
and collisionless plasmas, the observation of the GAM in low
density plasmas is consistent with an EP driving mechanism.

13.2. Frequency chirping

One of the common features of the EP driven GAM is a fre-
quency up-chirping, as shown in the example from JET in
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Figure 84. Cross-power spectra, correlation coefficient and mode
numbers from (top) toroidal Mirnov signals of TM (n = —1), BAE1
(n=1), BAE2 (n = —1) and EGAM (n = 0), and (bottom) poloidal
Mirnov signal of TM (m = —2), BAE1 (m = 2), BAE2 (m = —2)
and EGAM (m = 2) in HL-2A. Reproduced courtesy of IAEA.
Figure from [231]. Copyright (2013) IAEA.

figure 81—see also table 14. As described in [180, 516] the
frequency chirping corresponds to the nonlinear evolution of
the velocity distribution via a wave—particle interaction, which
is described by the hole—clump creation model of Berk and
Breizman [517]. The hole—clump creation has been observed
in various experiments during the excitation of the EGAM, cf
figure 83 [513] from LHD, and in numerical simulations, such
as those shown in figure 82(b) [512].

According to the hole—clump creation model, which is
described more fully in section 3, since the initial frequency
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Figure 85. Discharge evolution of (a) plasma current I, & core
density, (b) poloidal Mirnov signal, and (c) spectrogram in HL-2A.
Reprinted from [511], Copyright (2013), with permission from
Elsevier.

of the chirping mode reflects the linear characteristics of the
instability, the observed initial EGAM frequency is expected
to coincide with the standard GAM frequency [1, 54]. How-
ever, the frequency of the EGAM observed in DIII-D was
significantly lower than that of the expected standard GAM
[44]. Similar results have been observed in other devices; JET
[13], LHD [410],JT-60U [370], HL-2A [231] and AUG [313].
This frequency discrepancy can be explained when taking into
account the form of the distribution function of the EPs [45,
156, 192, 194, 197, 496, 512]. As described in section 3, EPs
can either modify a natural GAM or destabilize a new branch
of the GAM dispersion relation. In both cases the destabilized
EGAM has a frequency lower than the standard GAM when
the velocity distribution function of the EPs has the form of a
slowing-down distribution, cf figure 14 in section 3.

On the other hand, it is also observed experimentally that
the frequency of the EGAM can become higher than the stan-
dard GAM frequency, as shown for example in figure 86 [410].
In these cases the higher frequency can be explained if one con-
siders a non-slowing-down velocity distribution function with
a significant beam component, e.g. a bump-on-tail [197, 263,
410], as shown in figures 87 and 15, where it is shown that
the frequency can be reached by the transit frequency of the
passing EPs.

Although the frequency chirping is a predominant feature,
there are also cases where the frequency does not chirp. Such
cases have been observed in reversed or weak magnetic shear
configurations in LHD [266, 409] and in ohmic plasmas in
HL-2A [231]. In both cases other MHD modes or Alfvén
eigenmodes existed simultaneously, and thus additional mode
coupling may affect the behaviour of the EGAM.

13.8. Spatial structure

The EGAM usually exists close to the plasma central region
[12,13,44,266, 313, 409] unlike the turbulence-driven GAMs
which tend to be excited near the edge region in tokamaks.
The mode width extends to a few tens of percent of the plasma
minor radius. In JET, cross-correlation analysis between SXR
signals and a Mirnov coil indicates that the GAM is localized
near the plasma core (figure 88). The structure is associated
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with a minimum in the g profile leading to a local maximum in
the GAM continuum, thus the GAM is interpreted as a GGAM,
as described in section 9, induced by EPs [12, 13]. Likewise, in
DIII-D, BES shows that the electron density fluctuation asso-
ciated with the GAM also exists in the core region (figure 89).
Similar to JET, the GAM extends across the reversed mag-
netic shear region. However, the predicted GAM continuum
from the Nova code is monotonic, suggesting the observed
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GAM profile is not be determined entirely by the local maxi-
mum of the GAM continuum [44], but may reflect the radial
distribution of the fast ions [45].

In addition, in the LHD heliotron the rms amplitude of
the electric potential fluctuation associated with the EGAM
can reach several hundreds of volts with peak values of a
few kV—more than the mean core potential—which is much
larger than for the turbulence-driven GAMs [410]. The large
amplitude is attributed to the high energy of the fastions. Asso-
ciated with the core EGAM, an abrupt GAM has also recently
been reported with a magnitude exceeding that of the seeding
EGAM [518].

The spatial structure of the EGAM has been investigated in
detail. Since the EGAM has a significant magnetic component
its mode numbers have been easily confirmed by analysis of
the phase delay between signals of toroidal and poloidal arrays

of Mirnov coils. The observed poloidal mode number of the
magnetic halo field fluctuation is m = 2 [231, 313, 370, 433],
which agrees with theoretical predictions [171].

Although it is not easy to measure the mode structures of
the density and electric potential perturbations near the central
region of high temperature plasmas, radial profiles have been

(black) with observed GAM frequency range (red band). Reprinted
figure with permission from [44], Copyright (2008) by the American

Physical Society.

obtained using BES on DIII-D [44] as well as HIBP on LHD
[410]. They agree with the structures of the standard GAM:
m = 1 for the density fluctuation and m = 0 for the electric
potential fluctuation. For example, from LHD figure 90 shows
the spatial structures of the electric potential and density fluc-
tuations. The electric potential structure is up—down symmet-
ric, and the density fluctuation is up—down anti-symmetric,
thus in agreement with poloidal mode numbers m = 0 and
m = 1 respectively.

Although the poloidal structures of the EGAMs are usually
up—down symmetric, the symmetry can be broken [413, 433].
In LHD the amplitudes of density fluctuations associated with
the EGAMs sometimes become up—down asymmetric [413].
In EAST the observed poloidal magnetic field fluctuation is
tilted (i.e. the m mode structure not up—down but rotated in
the poloidal plane) with a mode amplitude that is asymmetric
or varies in the poloidal direction [433]. The tilting and asym-
metry of the amplitude are determined by the pitch angle and
energy of the energetic ions. In addition, the co-existing lower
frequency mode with the poloidal mode number of m =2
causes the asymmetry in the amplitude of the EGAM.

In ASDEX Upgrade the temporal evolution of the radial
structure of the chirping EGAM has been studied using SXR
measurements [313]. The radial profile of the EGAM shrinks
during the chirping. The shrinkage can be explained by the
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changing resonance condition in the velocity space of fast ions
as follows: during the chirp-up, the energy range in which
fast ions resonate with the EGAM increases. Since the mag-
netic moment is conserved, the pitch angle of the resonant
fast ion decreases. Thus, the passing particles having narrower
drift orbit width drive the EGAM. Since the mode structure of
EGAMs is sensitive to the EP distribution, the narrower orbit
width of the interacting fast ions leads to the shrinkage of the
mode structure.

Most of the theories take into account the resonance
between the transit motion of the fast ions and the EGAM,
i.e. wgam ~ wy (hump). In addition, the EGAM can resonate
with the magnetic drift of the fastions wgam ~ wp > wy, [50].
The resonance causes poloidal asymmetry of the density fluc-
tuation and the electric potential fluctuation. The asymmetry
depends on the radial wave number of the EGAM and the
direction of magnetic drift of the EPs, and, as a result of the res-
onance, humps in the poloidal structures appear. This poloidal
asymmetry leads to an increase in the parallel wave number,
which in turn may enhance the Landau damping of the GAM
by the bulk ions.

13.4. Influence on particle and heat transport

In principle GAMs, including EGAMs, do not directly induce
the fluctuation-driven radial particle flux (I';) = (7 x 0,) =
(i x E,/B,) in the main order, as they do not possess a poloidal
electric field fluctuation. But they can impact affect particle
and heat transport via other routes.

In DIII-D an enhancement of fast ion losses [519]
is observed during the EGAM excitation, as shown in
figures 91(a) and (b). Trajectory calculations based on the
pitch angles and gyroradii of the lost ions, measured by a lost
ion probe, reveals that confined counter-passing ions become
unconfined trapped particles because of their interaction with
the EGAM is accompanied with a change in their pitch angles
(see figure 91(c)).

A drop in the neutron emission at the EGAM burst is also
observed in DIII-D, as shown in figure 92(). This result is
interpreted as a loss of the fast ions induced by the EGAM
[44]. Thus a deterioration in the performance of future fusion
reactors may result from an EGAM induced loss of fast ions,
which otherwise should contribute to self-heating of the fusion
plasma.

The influence of the EGAM on turbulent transport has been
investigated theoretically. GK simulations using the GYSELA
code indicate that the EGAM transports packets of turbulence
in the radial direction, even across a transport barrier, as shown
in the two simulation phases in figure 93 [271].

Analytic investigations of the interaction between DW type
turbulence and the EGAM in the phase space also indicates
that the turbulence can be trapped at the local maximum of
the radial electric field associated with the EGAM, as shown
in figure 94 [470, 471]. Note that whether the turbulence is
trapped at the local maximum or the local minimum depends
on the dispersion relation of the turbulence. In the case that the
EGAM propagates in the radial direction, the trapped DW tur-
bulence is transported by the EGAM ballistically. The EGAM
having a semi-macro scale can transport the micro turbulence
to places where the turbulence is originally stable, and thus
contribute to the formation of spatial structures in the plasma
by modifying the turbulent heat and particle transport as a
non-local effect.

From the point of view of energy transport the EGAM may
contribute to bulk ion heating, in a manner similar to alpha par-
ticle channelling [520]. At first sight this process does not seem
to be straightforward. The EGAM is excited through inverse
Landau damping of fast ions. Thus its phase velocity is com-
parable to the velocity of the EPs, but much faster than the
velocity of the bulk ions. Hence the energy exchange between
the EGAM and the bulk ions is not efficient. Nonetheless, since
the amplitude of the EGAM is large (~ kV) the ion Landau
damping can still contribute to ion heating [269]. In addition,
the generation of higher harmonic fzgam EGAM resonances,
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Jeeam = !+ fupuk, may take place, where fipux is the tran-
sit frequency of the bulk ions and [ is an integer. According
to numerical simulations [265] the energy transfer from the
EGAM to the bulk ions via the sideband resonance with [ = 2
is visible.

Another possibility for energy channelling from the EGAM
to the bulk ions is an enhancement of the ion Landau damping.
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Figure 93. Temperature gradient Ry/Lr oscillation due to
modulation of turbulent transport by the EGAM during two
simulation phases. Reprinted figure with permission from [271],
Copyright (2013) by the American Physical Society.

Itis predicted that the resonance between the EGAM and mag-
netic drift of fast ions produces an asymmetry in the poloidal
structure of the electric potential fluctuations associated with
the EGAM [50]. As a result the parallel wavenumber of the
EGAM increases and the ion Landau damping is significantly
enhanced. See also [521].

Although the energy transfer from the EGAM to bulk ions
has not yet been confirmed in experiments, an increase in the
ion temperature has been observed during the EGAM exci-
tation [513] which may indicate such an energy channel. In
future fusion reactors o-particle heating by energetic fusion
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Figure 94. Conceptual view of turbulence trapping by the EGAM,
Reproduced from [471]. CC BY 4.0.

products is expected to be a dominant heating method. How-
ever, it will mainly heat the electrons and the bulk ions are only
indirectly heated via collision with the electrons. The energy
channelling from the fast ions to the bulk ions via the EGAM
may, however, contribute to an efficient ion heating in fusion
reactors, and thus should be verified experimentally.

As noted above the EGAM can also resonate with the mag-
netic drift of the fast ions leading to poloidal asymmetries in
the density and potential fluctuations [50]. In quasi-linear the-
ory this breaking of the up—down anti-symmetry of the EGAM
poloidal eigenfunction allows for a finite toroidal momen-
tum flux. That is, the formation toroidal momentum transport
from the fast ions to the bulk ions via the EGAM—the so-
called GAM momentum channelling [51]. The magnitude of
the EGAM induced momentum flux can be significant, com-
pared to external momentum input sources or turbulent resid-
ual stress (intrinsic rotation). This channelling effect is yet to
be confirmed experimentally, but it does suggest the possibil-
ity that EGAMSs could be used as a mechanism for controlling
toroidal rotation.

13.5. Fractional resonance and sub-critical instability

The amplitude of the fluctuations associated with the EGAM
can in some cases become very large, at which point the
EGAM may induce some interesting nonlinear phenomena.
One phenomenon is when the frequency of the chirping
EGAM reaches twice that of the standard GAM frequency,
and, if the EGAM amplitude is sufficiently large, then a second
GAM is excited at the standard GAM frequency (which is the
half frequency of the chirping EGAM) [264, 414, 518, 522].
The transit frequency of the fast ions is the same as the EGAM
frequency in the initial phase. Further, when the electric field
amplitude associated with the EGAM rises sufficiently then the
drift orbits of the fast ions become significantly perturbed by
the EGAM with the result that the fast ions can resonate with a
GAM at half the unperturbed transit frequency. Thus the frac-
tional frequency resonance excites the GAM nonlinearly [264,
522], indicating a new energy path between EPs and the GAM
through nonlinear processes.

In addition, the secondary excited GAM can have a larger
amplitude than the initially excited EGAM [414, 518]. In this
phenomenon the growth rate of the secondary excited GAM
suddenly increases when the amplitude of the initial GAM
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exceeds a certain threshold. This phenomenon is interpreted as
the excitation of a sub-critical instability, i.e. a GAM triggered
by the EGAM [415, 523, 524]. Sub-critical instabilities are
a working hypothesis to explain the onset of abrupt phenom-
ena such as sawteeth oscillations and disruptions in laboratory
plasmas, as well as solar flares in astrophysical plasmas [525].
The study of the abrupt excitation of the GAM shows not only
new energy channel between EPs and the GAM but also an
experimental path for exploring the trigger problem of abrupt
phenomena.

In summary, it is seen that GAMs can be excited by EPs.
The features of this EGAM, such as its frequency and spa-
tial structure, are similar to those of the natural GAM, but
are modified by the presence of EPs. It has been demon-
strated that EGAMSs can deteriorate the confinement of EPs
via wave—particle interactions. In addition, the EGAM is pre-
dicted to affect the transport of bulk plasma via its influence on
the turbulence and via direct heating and toroidal momentum
input. Thus EGAMs may significantly affect the performance
of fusion reactors and hence a deeper understanding of the
EGAM will be an important task from the viewpoint of fusion
reactor development. In addition, the behaviour of the EGAM
reflects nonlinear dynamics in the phase space. New phenom-
ena such as fractional resonances and sub-critical instabilities
have been found. Hence the study of wave—particle interac-
tion during the EGAM excitation may provide opportunities
to further explore nonlinear science.

14. Nonlinear turbulence energy transfer

Of particular importance is the relationship between the GAM
and plasma confinement. There are two aspects here; a demon-
stration that the GAM gives or receives energy from the turbu-
lence, discussed in this section, and secondly that the GAM
directly impacts the turbulent transport, which is discussed in
the next section 15.

14.1. Nonlinear interactions in experiments

The principle excitation mechanism for the standard or nat-
ural GAM is by nonlinear turbulence interactions, such as
via the radial gradient in the turbulent RS V, (¢,7y) which
can nonlinearly couple energy from the background, or ambi-
ent, high wavenumber turbulent fluctuations to low (ky ~ 0)
poloidal wavenumber ZFs [18, 274, 526, 527]. Calculation of
RS requires multi vector field measurements, which are not
always accessible. In the absence of direct RS measurements
an alternative approach is to measure the bicoherence between
high frequency density fluctuations and low frequency
electrostatic potential or velocity fluctuations [47, 277]. Bis-
pectral analysis is a third-order spectral technique where the
signal energy is decomposed, not into a one-dimensional fre-
quency spectrum P(f), but into a two-dimensional spectrum
B(f1, f>) involving a triplet of three related frequencies f; +
> = f3 [528]. Regions of common B(f1, f>) spectral inten-
sity then indicate three-wave couplings within the turbulence
[529, 530].
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Typically the normalized squared auto and cross-
bicoherence spectra bivz( f1, f») are used, with xyz indicating
the signal triplet, together with the partial summed bicoher-
ence bzz( f3) as an indicator of the interaction strength of a
certain frequency—for example the GAM frequency—with
all other fluctuation frequencies, and the total summed bico-
herence b% as a measure of the total nonlinear activity in the
spectrum. Definitions and further details of the method are
provided in appendix B.1.

The technique has been widely applied to plasma turbu-
lence studies. For example early 1993 bicoherence analysis of
probe potential fluctuations in ohmic TEXT plasmas [39] iden-
tified a quasi-coherent (QC) 20 kHz (low m) plasma potential
mode inside the edge velocity shear layer (r/a = 0.95) cou-
pling to small-scale broad-band fluctuations f > 40 kHz. The
mode was not identified as a GAM, but could be a possible
candidate, considering later TEXT observations [30].

Specifically in the context of ZFs, as early as 2002 a clear
coupling between an edge GAM and broad-band fluctuations
was demonstrated in HT-7 using cross-bicoherence analysis of
poloidal velocity, radial velocity and floating potential fluc-
tuations from LP arrays [27]. The choice of <’Dr'l~)()‘~/f> was
made on the assumption that the ZF results from DW induced
momentum transport. In the HT-7 data an inverse cascade
was measured which suggests the GAM was driven by the
turbulence.

A series of detailed bicoherence studies of edge GAM/ZFs
were performed in JFT-2M using reciprocating LPs [316, 319,
320, 531]. Figure 95 shows an example JFT-2M squared auto-
bicoherence b*(fi, f) spectra of floating potential fluctuations
Vi [319]. The GAM coupling to the high frequency broad-
band turbulence >20 kHz appears as narrow ridges at f; =
i + f» = £fcam (10 kHz) extending above the GAM fre-
quency—confirming the three-wave coupling basis. The auto-
biphase spectrum also shows distinct ridges at f3 = fgam. The
biphase at the GAM frequency f3 = fgam is roughly con-
stant, consistent with all the turbulent modes experiencing the
same E; of the GAM, but is otherwise random at the back-
ground fluctuation frequencies [319, 320]. Similar biphase
results were obtained from LP \7f in HT-7 [285] and from
HIBP ¢ in T-10 [300].

Much pioneering work has also been performed on HL-
2A [347, 348] where a general scaling of the summed auto-
bicoherence bz( fcam) at the GAM frequency with the rel-
ative GAM amplitude ¢GAM / ¢r was observed in some dis-
charges (consistent with JFT-2M observations [319] and with
theory predictions of DW turbulence [53, 532]), but not in
others. In these later cases there may have been a particu-
lar sensitivity to the auto-correlation time of the turbulence.
This is discussed later in section 15.2. Other work from
the Hefei/SWIP groups includes radial profiles of b%(fGam)
[354], I-phase and bispectrum [356, 533], as well as many
papers by Zhao [345, 353, 476, 534, 535] and others [346].

Bicoherence coupling of GAMs has now been observed
in many devices. DIII-D [277], and JIPPT-IIU where wavelet
cross-bicoherence (potential and density from HIBP) show
broad turbulence coupling to the core GAM [329], as well
as auto-bicoherence of flow perturbations %, from Doppler
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Figure 95. Auto-bicoherence b’ vs frequencies f; and f from LP
floating potential fluctuations from edge region of JFT-2M.
Reproduced from [319]. © IOP Publishing Ltd. All rights reserved.

reflectometry on EAST [368], AUG [315] and likewise on
T-10 [299] (only for edge GAM) and also on TUMAN-3M
(although there are no clear stripes in b*(fi, ) due to the
bursty nature of GAM, the summed bicoherence b2 5(f3) dis-
plays a peak at the GAM frequency) [335]. Using LP arrays
on TEXTOR a stronger auto-bicoherence b* was found in V¢
than in I, as might be expected at the tokamak mid-plane,
but was comparable to the cross-bicoherence bV‘ Vit [340]. In
COMPASS wavelet bicoherence of LP floating potential and
ball-pen probe plasma potential signals also showed broad-
band 100-500 kHz high frequency turbulence nonlinear cou-
pling to the GAM. However, the bicoherence was stronger
in the floating potential V¢ than in the plasma potential ¢,
suggesting a non-negligible contribution from the temperature
component [394]. Also from LP Vein HT-7, a significant non-
linear coupling between coexisting multiple edge GAMs at
different frequencies was observed, particularly between two
close GAMs and a low frequency ZFO [287].
Cross-bicoherence of Doppler reflectometer signals in
Globus-M, together with diagnostic modelling, suggests the
bicoherence arises from an amplitude modulation (AM) of the
backscattered signal (primarily low-k density fluctuations) at
the GAM frequency. These were similar to auto-bicoherence
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results of n, fluctuations from normal incidence reflectometry
on FT-2 [388].

An intriguing set of observations from T-10 ohmic dis-
charges using HIBP shows the interaction of an edge localized
QC mode (70—120 kHz) and a radially broad GGAM (17 kHz)
[300]. Both density b;,,, and potential b7, ; auto-bicoherences
as well as the potential-density cross-bicoherence b7, show
coupling to the GAM over non-contiguous bands of high fre-
quency fluctuations. As shown in figure 96 the frequency range
of the reduced b* coupling to the GAM coincides with the QC
frequency band, implying that the QC mode interferes with
the nonlinear coupling process. The actual mechanism is not
yet clear but it is highly suggestive that the effect (possibly
EM) is not in the spatial but in the wavenumber domain. On
the topic of EM effects, the auto-bicoherence of HIBP toroidal
deflection ¢ (o< Bpe1) shows no three-wave coupling, although
cross-bicoherences involving ¢, e.g. bi,m, do show weak cou-
pling. For low 3 conditions the magnetic sideband of the GAM
is not expected to be measurable, and indeed there was no
GAM observable in either the HIBP ( or Mirnov coil signals,
nevertheless, the bi,m coupling points towards an EM link with
the edge turbulence [300].

The bicoherence measurements reported are generally
made at the radial maxima of the GAM. In the recent study
of inter-GAM nonlinear couplings it was suggested that the
intensity of the respective couplings may depend strongly on
the driving GAM amplitude [287, 351]. Recent Doppler reflec-
tometry measurements on AUG show an alignment in the
radial profiles of the flow auto-bicoherence l72E (feam) (GAM
coupling) and the GAM amplitude Agam, both peaking at the
same radial position [315]. Together with flow-density cross-
phase measurements, which reverse across the GAM spatial
peak (see also JFT-2M results [317]), this suggests that the
GAM is driven at a the location of maximum turbulence and
nonlinear coupling and then spreads inward and outward as the
GAM propagates towards the zonal boundaries. It was noted
earlier that as the GAM weakens towards the core in AUG, the
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broad-band flow (rms) fluctuation level increases [305]. This is
now seen to also follow an increasing total b%, nonlinear activ-
ity, even while the density fluctuation level falls towards the
core [315].

All of the above results are from L-mode conditions. In
contrast, during edge limiter biasing experiments in the HSX
stellarator, enhanced (compared to ohmic) cross and auto-
bicoherence in Ey and E, fluctuations from LPs were found
at low frequencies [423]. However, there was no evidence of
GAM oscillations. These results are similar to the diffuse low-
frequency enhanced b* observed in CCT, PBX-M and DIII-
D devices during H-mode transition experiments [527] in a
region of enhanced edge E,—again consistent with turbulent
RS driven edge shear flow.

14.2. Energy transfer

Although the bicoherence indicates the strength of the non-
linear couplings between the GAM and the background tur-
bulence it does not give the direction of the energy trans-
fer, namely, from the turbulence to the GAM (drive) or from
the GAM back to the turbulence (dissipation). For this other
techniques have been employed, these include: (i) the power
transfer function (PTF) technique developed by Ritz [536] and
refined by Kim [537] which produces a 2D map—similar to
the bispectrum—of the energy transfer rate Ty (k;, k») (mag-
nitude) and its direction (sign) between different scales. The
method essentially computes 2nd and 3rd order moments to
derive linear and quadratic transfer functions between two
fields. The method can also be extended to two vector fields,
e.g. the radial and poloidal components of E [538, 539].
(i) The kinetic energy transfer (KET) method of Holland
[279] is a multi-field vector technique which also computes
an energy transfer rate T5(f', f) using 3rd order moments of
the density n, velocity v, and density gradient V,n fluctua-
tions, where y is the poloidal direction. (iii) In the amplitude
correlation technique (ACT) [540] a time-delayed correlation
is computed between two frequency bands of a single field.
With suitable choice of filter frequency bands this can indi-
cate the magnitude (from the peak correlation) and direction
(from the sign of peak time delay) of energy movement within
the spectrum. (iv) The amplitude envelope analysis. Here, the
cross-phase angle (or correlation time lag) between the GAM
flow oscillation and the envelope of the high frequency den-
sity (or flow) turbulence is computed. This popular technique
is discussed further in section 15 on transport. Fuller details of
the techniques are given in appendix B.2.

All of these techniques have been widely applied to both ZF
and GAM studies, with the general conclusion that the direc-
tion of the energy flow is from the high frequency density tur-
bulence f > fgam into the lower frequency flow fluctuations.

Using LPs in the H-1 heliac the spectral energy transfer
in probe V; fluctuations was calculated using the single-field
Ritz/Kim PTF method showing a clear energy gain at low fre-
quencies and a corresponding energy loss at the high frequen-
cies, i.e. an inverse energy cascade [541, 542]. Further, the
generation of ZFs was correlated with the energy input and
confinement mode [543]. Consistent with the PFT estimation,
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Figure 97. Nonlinear energy flow in mode-number (top) and
frequency (bottom) domain for potential and density using HIBP in
JIPPT-IIU core, showing energy moving from turbulence >50 kHz
to the GAM. Reproduced courtesy of IAEA. Figure from [329].
Copyright (2010) IAEA.

the ACT method also showed significant correlation (nonlinear
coupling magnitude) and negative time delay (direction), indi-
cating the low frequency band < 15 kHz (ZF/GAM) received
energy from the high frequencies 20-50 kHz (turbulence).
The same PTF method (with wavelet cross-bicoherence) was
applied to potential and density fluctuations from HIBP in
JIPPT-TIU low density ohmic plasmas. A broad turbulence
coupling to the core GAM was observed with energy flow, as
shown in figure 97, from high frequency f > 50 kHz, high
m potential fluctuations to the low frequency (m = 0) GAM
[329].

In HL-2A the KET method was applied to LP data to study
RS and turbulence energy (TE) behaviour in ohmic and ECR
heated plasmas. A net frequency-resolved energy transfer was
obtained by integrating the 2D T;- map over selected GAM
and ZF areas, from which it was observed that high frequency
turbulence transfers to both the low frequency ZF and GAM.
When raising the applied heating power the net normalized
T,/ (%) for both the GAM and ZF were observed to initially
increase, but the GAM T / (% ) then saturates and decreases
[544].

In the broader turbulence picture, similar behaviour was
reported from the LMD-U linear device where the PTE method
also showed an inverse cascade with energy flow from high
to low fluctuation frequencies [539]. Likewise for LP poloidal
array data from the TJ-K torsatron. Further, the spectral trans-
fer was also seen to decrease with increasing collisionality
[545].

An apparent exception to this trend appears in the orig-
inal Holland paper [279]. With his KET method applied to
BES data from the DIII-D edge, the 2D plot in figure 98
was obtained for the nonlinear energy transfer rate 73(f’, f)
which shows two ridges at f = f’ & fgam. Both the upper
and lower ridges indicate that high frequency 7.(f > 40 kHz)
fluctuations gain energy from the low frequency Vn.(f <
fcam) fluctuations mediated by the fay = 18 kHz GAM.

TY(F'0) = =Re(n*(f)V,(1-1)9,n(f) (au)

B
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Figure 98. Nonlinear energy transfer rate T, (f, f) for edge density
fluctuations f and poloidal gradient of density fluctuations at f’
using BES on DIII-D, showing high frequency n(f > 40 kHz) gain
energy from low frequency Vn(f < f foam) mediated by the 18 kHz
GAM. Reprinted from [279], with the permission of AIP Publishing.

The roughly equal magnitude of the two ridges implies that
the GAM (velocity) convection drives a forward turbulent
energy transfer from frequencies below the GAM to frequen-
cies above the GAM. Such an energy transfer effect from a
GAM to the turbulence via the poloidally asymmetric pres-
sure perturbations was identified in Landau-fluid simulations
[102, 216]. However, Hamada [329] also compared the Hol-
land KET method to the Ritz/Kim PTF method and likewise
observed two *f5,m ridges in the density—potential cross-
bispectrum (nen.¢*)). With the KET method the ridges have
opposite polarity (which was interpreted by Holland as den-
sity fluctuation energy moving back and forth between n. and
gradient fluctuation through the interaction with the GAM)
while the PTF method had the same polarity. The difference
was attributed to the use of velocity (by Holland) and potential
(by Hamada) [329].

In order to test Holland’s energy transfer direction inter-
pretation, a KET T?(f, f») analysis was performed on model
ne, Ogne and vy broadband fluctuation signals with additional
simulated AM or phase/FM at the GAM frequency [141]. As
discussed below (section 15.2), based on the modulational
instability model an AM of the density turbulence (direct reg-
ulation effect) is expected to result during the GAM growth
cf [233]. On the other hand, the velocity shearing action of
the GAM would result in a FM of the turbulence, cf [277].
What the simulations indicate is that the only mechanism
for energy to transfer from low to high frequencies is via
GAM velocity shearing induced FM, while the GAM may
gain energy via three-wave interactions induced by AM dur-
ing the GAM generation/growth [141]. As noted below, which
mechanism appears to dominate depends on the measurement
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location. At the GAM radial peak (energy injection radius)
the GAM is growing (AM) with energy from the turbulence,
but away from the peak the GAM is shearing (FM) the tur-
bulence and thus moving energy from low frequencies (long
wavelengths/large structures) back to high frequencies (short
wavelengths/small structures).

In summary, bispectral and energy transfer analysis
techniques confirm the three-wave coupling of high-
frequency/short-wavelength turbulence to the low frequency
m = 0 GAM flow oscillation. The degree of nonlinear cou-
pling (b*) scales with the GAM magnitude with respective
radial profiles that are aligned. Frequency resolved energy
transfer measurements confirm high frequency (density) tur-
bulence drives the GAM/ZFO flow. Radial measurements of
density-flow cross-phase, however, indicate that the spectral
energy flow direction varies across the GAM spatial peak. The
GAM gains energy at the radial peak, but then redistributes
the energy from low frequency density fluctuations back to
high frequencies via GAM velocity shearing. This topic is
discussed further in the following section 15 on transport.

15. GAM impact on transport

Due to their m = n = 0 structure GAMs (and ZFs in general)
cannot extract energy directly from the equilibrium profile gra-
dients and thus do not contribute directly to radial (energy or
particle) transport. Nevertheless, GAMs can impact transport
in several ways. The oscillatory flow shearing action of the
GAM can help to break-up or inhibit the formation of large
radial turbulent structures; the GAM can also act as an energy
sink via Landau damping and dissipation; and it can modulate
and even moderate the cross field transport via the pressure
fluctuations. The theory models concerning transport impact
can be summarized as follows—cf [53]

e Non-linear energy transfer via RS and three-wave cou-
pling leads to DW turbulence mediation—see section 4.2.
e GAM perpendicular velocity shearing (with spatial and
temporal pattern) of turbulence eddies moves turbu-
lence energy to higher k, where it is dissipated—see
section 15.1.
GAMs scatter DW packets into the stable high k. domain
[53, 63].
GAMs are involved in the modulation of radial transport
T}, and also of sources, via the modulational/parametric
instability—see sections 4.5 and 15.2.
EGAMs change pitch angle scattering of fast EPs.
EGAMs may also transport turbulence packets radially
via trapping, as well as modify bulk ion energy and
momentum via channelling—see section 13.4.

15.1. Shear flow suppression

The basic theory of E x B shear flow suppression proposed
in the early 1990s [546] was extended to include the effect
of time-varying flows [46]. Using a one-field fluid model an
effective shearing rate weg = wg))H was derived where wg)) is
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the stationary E X B shearing rate (wg without oscillation) and
H is an oscillatory reduction factor

(L4 3F)? +4F3)1*
(I +PVIT4F

(272)

with F = w?/Aw? the squared ratio of fluctuating flow fre-
quency to the turbulence decorrelation rate. The argument
being that the fast time-varying velocity shear of a GAM is
less effective in regulating DW turbulence since they have sim-
ilar frequency ranges, i.e. a smaller effective velocity shear,
because the flow changes before the turbulent eddies become
distorted enough to reduce their correlation properties. Nev-
ertheless, the effective shearing action is still non-negligible.
Indeed, it has also been claimed that due to the broader turbu-
lence spectrum and the lower c; in the tokamak edge, compared
to the core, that the GAMs are just as effective in shearing as
the stationary ZFs [14].

A similar argument was given by Kim and Diamond [547]
in demonstrating the importance of random ZF shear (as
opposed to a coherent oscillatory shear) on the turbulence
reduction. Noting that a random ZF has a finite correlation time
Tzr Which enhances the decorrelation of nearby fluid elements
(although less efficiently than a mean shear flow) resulting in
a turbulent decorrelation time 7p = (7,,/726Q2,0)"/?, where T,
is the turbulent scattering time and €2, the rms shear rate). It
was further argued that the spatial structure of the flow pattern
is as important as its frequency spectrum. That is, the GAM
can impose a complex spatial-temporal pattern on the turbu-
lence and transport through the shearing mechanism with the
result that the comparison of a linear growth rate and a shearing
rate becomes non-trivial [254].

In general, the GAM/ZFO shear does not exist alone but
together with an equilibrium mean shear. Hahm [46] suggested
the calculation of an effective shearing rate that combines the
mean and temporally varying components, while discounting
the impact of the latter. Ignoring the spatial complexity of the
shear flow, the condition turbulence moderation thus becomes
[388]

Weff = ‘('DQH + @s‘ >, (273)

where W, and w; are the mean and fluctuating components of
the shear rate ws = (r/¢gB)d:((q/r)0:¢) and H the oscillatory
shear reduction factor of equation (272) with F = (wgam/ v)?
where +y is the turbulence growth rate or inverse correlation
time. This effective shearing formula was applied to edge
GAMs in ohmic FT-2 plasmas. With H ~ 0.5 — we ~ 271 £
50 kHz this is close to the predicted turbulence growth rate, as
well as to growth rates from matched ELMFIRE GK simulations
[254, 388].

As noted in section 7.2, equivalent GAM shearing rates
have been estimated in several other devices, either directly
from the radial gradient of the GAM rms velocity wgxp =
Ovy/Or, or indirectly from the GAM spectral width or radial
wavenumber, Yexp = ke/ (vgay)- Not all have applied a
reduction factor, for example in DIII-D an effective GAM
shearing rate w, = dvg/dr = 0.3 x 10° s~! was measured
with a turbulence decorrelation rate of 1/7. ~ 1 x 10° s~'—
comparable and thus relevant for turbulence moderation [277].
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Likewise for later DIII-D results [282]. In AUG the mean and
GAM (without correction) shear rate of 10° s~ was found to
be comparable, within a factor of 2—3, to the turbulence decor-
relation rate 1 /7. [306]. Similar results were obtained for IST-
TOK [363] and JET [357]. In TEXTOR a correction factor was
calculated and applied to the GAM, but the resulting effective
shearing rate was still found to be significant [337]. Only in
HL-2A was the GAM wgyp = kvpcam (With frequency cor-
rection applied, but without mean shear) found to be smaller
than the turbulence growth rate: wer ~ 3 x 10* < v ~ 7.1
1 x 10° s7' [141, 347].

As a final comment, numerical simulations suggest that,
while time-varying and stationary flow shears alone can gen-
erate similar turbulence suppression effects, when coexist-
ing they may become mutually exclusive if their magnitudes
become comparable [548]. For certain parameter ranges it
appeared that the dominant component could diminish the
other.

~

15.2. Turbulence modulation

According to the parametric or modulational theory of ZF gen-
eration [221] the GAM should be accompanied by a mod-
ulation of the turbulence amplitude envelope (the so-called
envelope formalism) at the GAM frequency [53]. This offers
two diagnostic opportunities: firstly the measurement of such
a modulation would demonstrate that the GAM impacts the
turbulence, and secondly (and inversely) the envelope of the
density fluctuations can be used for detecting the GAM even
when the density fluctuation itself shows no direct oscilla-
tion at the GAM frequency [233, 307]. The envelope detec-
tion technique has been successfully employed for GAM stud-
ies on several devices. The favoured analysis approach is to
apply a Hilbert transform to the band-pass or high-pass fil-
tered (f > foam) turbulent signal to create the analytic signal,
the modulus of which is the amplitude envelope Env[A](r) =
|A(r) + iH[A(?)]]. If a complex amplitude fluctuation signal
(real and imaginary parts) is available from the diagnostic then
the envelope modulus can be formed directly.

One of the first applications was on DIII-D using BES
measurements of high frequency (100 < f < 200 kHz) den-
sity turbulence. Envelope modulation depths of the order of
|1|lcam/n ~ 10% at the GAM frequency were measured [277].
For lower band filter frequencies the modulation was less clear,
indicating that the oscillatory flow shear has more effect on tur-
bulence frequencies above the GAM frequency, cf [46]. Simi-
lar results have been obtained from JFT-2M [317] using HIBP,
[233, 319, 320] and on T-10 [292], HT-7 [286-288], HL-2A
[141, 476, 534, 535] and TEXTOR [340] using LPs, on LHD
[266] using HIBP, and on TUMAN-3M [335] and AUG [314,
315] using reflectometry.

Further, the turbulence envelope can then be cross-
correlated with the E; flow fluctuations. Here, a high coherence
would indicate a modulation of the turbulence by the GAM, or
vice versa. Together with the sign of their relative cross-phase
this elucidates the nature of the non-linear interaction and the
direction of the energy transfer.
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Figure 99. (a) Coherence (f) and () cross-phase a(f) spectra
between E, and Env(E,) for band-pass range 300—350 kHz; (c)
coherency 7 and (d) & at GAM frequency as a function of envelope
Env(E,) filter frequency (centre) with fixed 50 kHz bandwidth in
HL-2A. Reprinted from [141], with the permission of AIP
Publishing.

Using arrays of LP V¢ and [ signals from HL-2A a sig-
nificant GAM coherence of v ~ 0.7 between E; (flow) and
Env(E;) (turb.) signals with a cross-phase of o ~ —7 radi-
ans (i.e. the flow turbulence delays the GAM) was observed,
as shown in figures 99(a) and (b). Similar phase values were
obtained for Env(E;) and ¢ signals, but for E; and the probe
Env(/;) (density), the coherence was low and o was closer to
—m/2 [141]. Scanning the envelope filter range, figures 99(c)
and (d), confirms it is the very high turbulence frequen-
cies which satisfy the three-wave coupling criteria f, — f; =
| foam|. Similar results were also obtained for V; signals with
strong coherence at ZFO and GAM peaks [535].

The temporal correlation between the turbulence enve-
lope and the flow can be used to determine which of them
is the ‘drive’. On DIII-D a multi-field cross correlation
Vo2 (F) = [T (O RN/ (DHP) ([R2(H]?) was applied
to BES edge data [279]. In the frame of a predator-prey (PP)
type oscillation a finite coherence between the velocity and
turbulence intensity 72> is expected. The cross-phase o f) indi-
cates which is the predator (leads) and which is the prey (lags).
For DIII-D a significant v ~ 0.3 at the GAM frequency was
observed with a cross-phase close to v = +7/2 indicating that
the edge GAM velocity oscillation leads the turbulence inten-
sity oscillation—which was opposite to that expected from an
analytic PP model and from GYro GK simulations [279]. It has
been suggested that the 7 /2 cross-phase with the GAM lead-
ing could be due to nonlinear damping of the GAM [421]. In
the same DIII-D paper [279], using an energy transfer analysis
the GAM was found to modulate both the turbulence intensity
and to drive a forward transfer of fluctuation energy from the
low (<40 kHz) to the high (> 105 kHz) frequencies (see pre-
vious section 14.2). It was concluded from this that the GAM
shearing may be a relevant saturation mechanism for the edge
turbulence.

Although this subsection was introduced with the modula-
tional instability, there are in fact two candidates for explaining
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the turbulence envelope observations. Both involve the GAM
E x B velocity [266]. Either the measured frequency spec-
trum can be distorted (broadened) by the Doppler shift due
to GAM velocity oscillation [29], or there is dynamic shear-
ing (DS) of the turbulence (cf [213]) by the GAM induced
E x Bvelocity [233, 317]. To test the GAM modulation expla-
nations synthetic model E\ signals with variable amplitude and
phase modulation indexes were employed [141, 354]. The tests
indicate that a pure AM—such as would be expected from
DS—results in a cross-phase between E; and Env(E;) of &« = 0
or £+, while for a pure phase modulation or FM, i.e. Doppler
modulation, the cross-phase is £7/2. A complex mixture AM
and FM results in a phase somewhere in-between, but tending
to 7 radians.

The HL-2A bispectral and envelope modulation measure-
ments of & ~ 7 point towards the GAM mainly gaining energy
from the high-frequency ambient turbulence (AT) through
amplitude (envelope) modulation at the GAM generating loca-
tion (i.e. at the radial peak), but as the GAM propagates radi-
ally the cross-phase shifts to & —m /2, consistent with velocity
shearing and a reduction of the AT [354]. Likewise, in JFT-
2M radial profiles of the E; and Env(n) s~eoxn, coherence and
cross-phase show the phase decreasing from +7/2 towards
0 at the GAM spatial maxima [317]. A similar « = 0 was
obtained in Globus-M using DR flow and amplitude signals,
indicating (moderate-k) turbulence modulated at the GAM fre-
quency [386]. In AUG the E; and Env(A) cross-phase varied
linearly with radius over £7 across the GAM spatial peak
[315]. On the other hand, a cross-phase shift between E, and
the Env(dn) using collective scattering in HT-7 is close to /2,
indicating phase shift is caused by phase modulation by the
GAM—i.e. velocity shearing of the turbulence by the GAM
[288]. Although it should be noted that the radial localiza-
tion of the measurement was poor with a scattering volume
of r/a ~ 0.45-0.75, i.e. including GAM peak and wings.

15.3. GAM modulation and intermittency

Even in steady plasma conditions the GAM is rarely con-
tiguous and stable. Multiple devices report a slow (few tens
to hundreds of Hz) modulation of both the GAM amplitude
and frequency. Figure 100 shows an example frequency—time
spectrogram of plasma potential fluctuations in T-10 using
HIBP [292]. Here, the 22 kHz edge GAM appears as a train
of quasi-regular 2—4 ms long peaks with a repetition or mod-
ulation frequency of 0.2—1 kHz. The modulation of the GAM
frequency by some +2 kHz is also particularly evident. How-
ever, the GAM does not disappear entirely between the peaks
but is simply modulated by some 50% in amplitude.

Similar behaviour was seen in AUG with a 50% GAM
amplitude Agam temporal modulation at fi,,g = 0.2—0.5 kHz.
With an average GAM spectral peak two orders of mag-
nitude above the background the GAM is indeed far from
being suppressed entirely. Compared to T-10 the modulation
in AUG was more regular and sinusoidal, as if the GAM was
‘breathing’ [304]. Likewise in Tore Supra the GAM was con-
tinuously modulated in both Agam and fgam, cf figure 11 in
[372] (using the double-MUSIC analysis method), at some
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Figure 100. Power spectrogram of plasma potential from HIBP in
T-10 showing edge GAM amplitude/FM with ~2-4 ms long
intermittent bursts. Intensity modulation is ~50%. Reproduced from
[292]. © IOP Publishing Ltd. All rights reserved.

100 Hz. As with T-10, the fgam modulation depth was sev-
eral kHz. In some devices the modulation can be particularly
strong, as in HL-2A where the GAM amplitude modulation
approached 100% [549].

In many devices the GAM appears more as a sequence of
well defined short bursts of a few GAM cycles with lengthy
gaps between, as in JIPP T-IIU low density ohmic plasmas
using HIBP and wavelet analysis where the 50 kHz core GAM
potential bursts grow and die in some 250 ps aligned with
shorter bursts (<100 us) of high frequency density fluctua-
tions [327]. ISTTOK reports strong edge GAM intermittence
with a ~ 100 us burst lifetime (in both potential and toroidal
LRC) [361, 363]. In TUMAN-3M the disparity between
the quasi-periodic burst length 0.2—0.4 ms and the 200 Hz
(5 ms) repetition is notably pronounced [335]. Other exam-
ples of GAM bursts are shown in figures 121 (HL-2A) and
119 (TUMAN-3M).

Table 15 lists reported (and deduced) values for a range
of GAM modulation and intermittency parameters from var-
ious devices. Overall the GAM burst lifetime ranges from
i > 100 ps to a few milliseconds (scaling with the machine
size) and is generally consistent with the inverse of the GAM
spectral peak fwhm width A f; (see below). Nevertheless, cat-
egorizing the modulation vs bursting behaviour is not always
clear-cut.

Possible diagnostic effects for the GAM intensity modu-
lation, such as radial movement in the measurement position
relative to the GAM peak due to density or equilibrium vari-
ations, or temperature variations could be discounted in most
cases. This leaves a plausible explanation that the GAM inten-
sity envelope is being time modulated by a low frequency
ZF. Such an interpretation is supported by an extensive set of
measurements.

The modulation of the GAM amplitude, the GAM fre-
quency and the flow and density turbulence levels appear to
be interrelated. Figure 101 [315] shows an example flow spec-
trogram and time traces of the frequency-integrated spectral
power over the GAM spectral peak (12-18 kHz) P, Gam)
and the high frequency (f > 18 kHz) incoherent fluctuations
P ur) from alow density, ohmic AUG shot. The GAM inten-
sity, GAM frequency and the ambient flow and density tur-
bulence are all modulated at a dominant f .4, = 47 Hz while
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Table 15. GAM modulation: type, GAM frequency (kHz), spectral peak fwhm A f (kHz), burst
lifetime #;; (ms), burst repetition or modulation frequency fioq (Hz), AM depth (%), short 75 and long

71, auto-correlation times (ms).

Device Type  foam A fox f (ms)  fmoa (Hz) AM Ts 7L (ms)
AUG [304, 315] Mod. 14-20 0.3-0.5 — 40-100  >50  0.19 1.3
CHS [33, 398] Burst  16.5 ~1 ~0.5 >200 @— @ — —
DIII-D [282] Cont. ~15 0.3-0.5 — — — <0.06 0.2-0.9
Globus-M [385,387] Burst 23-28  2-6  02-04 200 - - 0.2
HL-2A [349] Mod. 9.8 ~4 0.25 > 2500 >60 — —
HL-2A [25] Mod. 85 ~3 — ~500 0 — — 0.7
ISTTOK [361, 363] Burst 20 <10 ~0.1 5000 >50 — —
JET [357] Mod. 4 2 1.5 250 10 — 1.3
JET [358] Mod. 10 <0.3 —  400-800 >50 @ — 5
JFT-2M [316, 318] Mod. 10.5 <1 — 800 — — —
JIPP-TIIU [327] Burst  ~45 >5 0.2 >3000 >50 @ — —
SINP [395] Burst 20.5 2.5 — — — — 0.34
T-10 [292] Mod.  ~20 3-4 2-4 170 ~50 0 — —
Tore Supra [372] Mod. 812 ~3 — ~100 >50 — —
Tore Supra [373] Mod. 12-15 1-2 — — — — 0.1-0.3
TUMAN-3M [335] Burst ~32 <2 0.2-0.4 200 >50 — ~0.1
20F @ T v y T HF¢ 0.8 [357], as well as in DR flow perturbations in TUMAN-3M
NigF [335], FT-2 [466]. In Globus-M the GAM intensity modula-
< [ 0.6 tionin E, from DR was in anti-phase with By and 7. from D,
5'1 6 :__.___ S T e emission, with two characteristic time scales; a 0.4 ms (quasi-
§ 14 = G AI:/I 04 periodic bursts with a ZFO like 2.5 kHz) and a slower 3 ms
S b 0.2 (equilibrium time scale 300 Hz) oscillation [385, 387].
i 12 E Ll;f The envelope analysis technique has also been employed on
10— L b L : several devices for studying the interaction of GAMs and tur-
4:(b) Procam) In Out bulence. Figure 102 shows a particularly clear example from
= F (d) HL-2A of the envelope of LP V¢ fluctuations filtered around
% 2r the GAM peak (10-12 kHz) being modulated in-phase with
g I P (HF) 3 a low frequency ZFO (<2 kHz) while the envelope of the HF
2 (2) ] — - (>200kHz) V; turbulence (not shown) is out of phase with the
g H(c) PpoFy - 10 100 1k ZFO and the GAM envelope [25, 349]. Earlier reports from
:V"\J\/\\/\/\/\J\M,‘/w 12) JFT-2M show a similar low FM of the GAM, but also demon-
?.82I ) JTIS 4' ) JTISEIS I+1.£38I ) TQOI ) '1_92 strate the ZF nature and structure of the modulating mode
Time (s) [316]. In CHS the intermittent coupling between the broad-

Figure 101. (a) Spectrogram of fj, flow fluctuations showing GAM
behaviour with AM and FM, (b) frequency integrated spectral power
for fp between 12—18 kHz (green) and 18—80 kHz (purple), (c) A
(red), and (d) corresponding spectra at GAM radial maxima from
AUG ohmic shot. Adapted from [315]. CC BY 3.0

the ambient density fluctuations P, ur) also show significant
higher harmonics. Generally the GAM flow intensity P, Gam)
is in anti-phase with the incoherent flow fluctuations Py, ) at
the main f, 4, while the GAM flow and ambient density fluc-
tuations P4, ur) are in-phase correlated at the main modulation
frequency but phase-shifted at other frequencies. That is to
say, when the GAM peak is reduced the broad-band flow spec-
trum is enhanced, suggesting that the turbulence energy moves
within the flow spectrum. However, as should be expected, the
GAM intensity follows the density turbulence level.

Similar anti-phase behaviour between GAM and broadband
LP V; fluctuations is observed in ISTTOK [362] and JET
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band turbulence (50 kHz) and the GAM (19 kHz) was seen
to be moderated by the phase of the <1.5 kHz ZFO [405].
Using wavelet spectra and conditionally averaged bicoherence
(triggered on the ZFO phase) the strongest b at f; + f» =
+0.5 kHz lines were observed when the ZFO phase was at
a minimum, i.e. when the ZF was opposing the bulk flow
rotation.

As noted in table 15 the GAM amplitude varies from prac-
tically continuous (as in DIII-D), to moderate AM depths of
some 50% or so, to extreme modulation where the GAM
appears as distinct intermittent bursts. It is notable that the
majority of intermittent burst reports come from the small
machines with low ohmic plasma currents /,, while clear con-
tinuous GAM modulation appears to be the province of the
larger L-mode heated machines. Intermittency is usually an
indication of nearness to a critical condition, in this case,
nearness to the GAM excitation threshold, cf [146]. Thus, the
GAM bursting may simply reflect a lower GAM drive in the
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Figure 102. Time traces of edge GAM amplitude envelope

(10-12 kHz) and ZFO (<2 kHz) showing a continuous GAM with
AM 250% in HL-2M. Reprinted figure with permission from [25],
Copyright (2009) by the American Physical Society.

smaller, low power devices. Another factor may be the struc-
ture of the underlying AT, that is the turbulence radial corre-
lation length relative to the GAM radial extent—i.e. shearing
rates—in the various devices. This possible correlation has yet
to be studied.

To quantify the GAM temporal behaviour the auto-
correlation of the flow, potential or E; fluctuation, which
has been filtered around the GAM frequency, has been
used. Figure 103 [282] shows an example time-delayed auto-
correlation and corresponding probability distribution func-
tion of velocity fluctuations (from DR) band-pass filtered for
a 15 = 5 kHz GAM in DIII-D. Generally the auto-correlation
shows a fast initial decay (within a single GAM cycle), defined
here as 7 (short), followed by a slower (long) exponential-like
decay p = A exp(—|At|/7L). In some reported cases the cor-
relation takes a more Gaussian shape, in which case only the
T is quoted.

The initial fast drop comes primarily from uncorrelated
background fluctuations and noise, which is minimized by
band-pass filtering the signal. The short decay is particularly
noticeable for weak GAMs or with an insufficiently narrow
filter bandwidth. Fitting to a range of AUG L-mode data
shows for a single dominant GAM, 7¢ RN facam, but this can
decrease by a factor of 2 or more 7g '« fcam 1n the pres-
ence of two close frequency GAMs creating frequency beat-
ing—for example at the GAM zonal edges [315]. From the
reciprocality of the temporal correlation and Fourier spectrum,
the secondary slower (long) decay should be inversely related
to the width of the GAM spectral peak. For the reported AUG
shots the fwhm of the GAM power spectral peak was found to
scale as A fyx = 0.5 /7L As seen from table 15 this behaviour
appears to hold for many devices.

Essentially the GAM spectral width reflects the temporal
dynamics of the GAM and may arise from either a slow FM of
the GAM (mean) frequency—as might be expected from ZF
interaction, or from the intrinsic decay (lifetime) of the GAM
itself [372]. For the two JET cases in table 15 with 71, = 1.5 ms
(corresponding to roughly 6 GAM periods) [357], and 5 ms
(50 GAM periods) [358], both decays are significantly longer
than the AT decay time 7p ~ 10 ps. (Which incidentally
highlights the need to perform temporal averages over suffi-
cient time periods.) Such slow decays suggest that the GAM
damping dominates over the turbulence dynamics.
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Figure 103. (a) Autocorrelation and (b) probability distribution of
band-pass filtered (fgam £ 5 kHz) velocity fluctuations for strongly
coherent 15 kHz GAM in a gy5 ~ 4.5, high density, 4.4 MW NBI,
limiter, L-mode DIII-D shot #142121. Adapted from [282], with the
permission of AIP Publishing.

In the SINP tokamak the decay rate (=5-8 GAM peri-
ods) 7 ~ 0.34 ms > Tp ~ 6—8 us was consistent with GAM
damping rates according to the Guo-2010 prediction where 7.
scaled with ggee [395]. In Tore Supra both 7, and f gy varied
with collisionality in such a way that their product 7, X fgam
scaled roughly with v* [373]. However, in the continuous
GAM case of DIII-D the measured 71, (4—15 GAM periods
and constant across the GAM eigenmode radius) appeared to
be inconsistent with the narrow GAM spectral peak [282]. A
corresponding 7 estimated from the upper bound of the GAM
damping rate in DIII-D was an order of magnitude too large.
However, in this case a narrow spectral peak and a short auto-
correlation time 71, would be consistent with a short coherence
time for the GAM drive and a weak damping for the GAM.

A short, intermittent GAM drive could explain many of
the bursty GAM observations. However, AM alone, whether
exponential growth/decay or 100% pulse modulation, does
not explain the GAM FM. A plausible explanation is that the
train of GAM bursts are not phase-locked in time. Each GAM
pulse is essentially a brand new GAM oscillation with a new
phase. Such FM/phase-modulation is evident in the examples
of figures 100 and 101 and in much of the literature. Matched
numerical simulations of Tore Supra using the GYSELA code
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Figure 104. Radial profiles of (a) the frequency dependent potential F 100
power spectrum density, (b) the GAM amplitude and phase, (c) the [

skewness of GAM amplitude, and (d) the time evolution of the
GAM potential fluctuation and its envelope at r —a ~ —1 cm.
Reprinted figure with permission from [325], Copyright (2018) by
the American Physical Society.

show the phase of the GAM radial propagation experiencing
a sequence of sporadic phase jumps at points of GAM low
intensity—due to variations in the radial gradient of the GAM
frequency—Ileading to a temporal and spatial desynchroniza-
tion of the GAM [373]. A detailed analysis of the GAM time
traces for the published cases from the various devices would
be a useful exercise.

The radial propagation of the GAM also appears to
be an important ingredient in the intermittency story. The
nature of the GAM intermittency was investigated in JFT-2M
using potential measurements from HIBP. The skewness (3rd
moment) of the intermittent GAM amplitude was found to be
close to Sk ~ 0, i.e. a Gaussian distribution, at the radial max-
ima of an eigenmode GAM, but rises Sk > 0 (positive spikes)
towards the inner and outer GAM boundary/edges, as shown in
figure 104 [325]. At the maxima location the Gaussian statis-
tics behaviour aligns with a maximum in the RS force. Away
from the maxima the GAM is no longer driven but purely
propagating, creating the observed eigenmode structure, with
more filament-like behaviour [325]. Again consistent with
an intermittent particle flux behaviour at the edge. In AUG
the GAM spectral peak width A fi varies inversely with the
GAM amplitude [315] with similar behaviour in Tore Supra
where 71 ~ 0.2 & 0.1 ms at the GAM maxima decreases with
the GAM amplitude. In short, as the GAM propagates away
from the injection position it decays and spectrally broadens,
becoming more intermittent in nature.

The experimental evidence thus strongly supports the pre-
dicted interaction between the GAM/ZF and the turbulence
amplitude [550], from modelling results [551], etc. However,
not all modelling results are so supportive. Simulations of the
nonlinear interaction between GAMs and ZFOs using GK the-
ory with FOW effects, predict that, while ‘sub-critical’ GAMs
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Figure 105. (a) Filtered ¢y, (b) 71e /neo for f > 30 kHz and higher
(c) I'; in JFT-2M L-mode edge, (d) distribution function of transport
bursts (e) histogram of burst interval discriminated by pulse height
threshold AT'y,. Reproduced courtesy of IAEA. Figure from [318].
Copyright (2006) IAEA.

could drive ZFs, however, the ZF had a negligible effect on the
GAM dynamics (up to parallel nonlinearity time scales). More
specifically, ZFs are not expected to modulate the GAM [237].
This is clearly an area for further study.

15.4. Particle & energy transport

At first sight the GAM may not appear to have a direct impact
on the turbulent radial particle transport flux I'; = (72.0;)
<fzeE9 /By) since the GAM has no Ejy component. However, the
GAM does have an effect via the density modulation. Using
HIBP in JFT-2M to measure both n. and Ejy, the turbulent
density fluctuations were found to be modulated by the GAM
potential fluctuations, resulting in a bursty or intermittent elec-
trostatic local particle transport I';, as shown in figure 105
[318]. The measured average (I';) was of the same order as
the particle flux derived from an estimated particle confine-
ment time 7, ~ 57g. Also the probability distribution of the
inverse time interval of the intermittent I'; bursts, peaks around
1/15 ms, comparable to the GAM frequency thus indicating
that the flux is also modulated by the GAM. Similar results
were obtained in TEXTOR using LPs where the intermittent
'~ (fsatE(;) histogram also peaked at the GAM frequency
[340].

A clear correlation between the local particle transport and
the magnitude of zonal structures was also evident in the IST-
TOK edge. Figure 106 [361] shows the mean fluctuation driven
particle flux (I'gxp) = Cov, g,(7 = 0) (of intermittent trans-
port events) decreasing with increasing toroidal long-range
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Figure 106. Radial particle flux vs toroidal covariance of V7 at the
GAM peak location (r — a = —1.5 cm) in ISTTOK. Reprinted from
[361], with the permission of AIP Publishing.

covariance of GAM frequency dominated potential fluctua-
tions measured using LPs. The result indicates that the local
radial transport is linked, in anti-phase, with the amplitude of
large scale potential fluctuations (10-25 kHz GAM). Unfor-
tunately due to the short GAM lifetime the radial transport
modulation at the GAM frequency could not be demonstrated,
just a modulation at the intermittency frequency.

The GAM amplitude in HL-2A was also observed to be
in anti-phase with the radial particle flux I'; with an inter-
mittent burst period of 80—120 us, comparable to the GAM
frequency [349]—again indicating that the particle flux was
regulated by the GAM. Similarly, in T-10 using HIBP the par-
ticle flux associated with an f > 100 kHz QC mode can be
seen to in anti-phase with the GAM amplitude [297]. Further,
in HL-2A using forked LPs a 13% reduction in I'; (due to
broad-band 20-100 kHz AT) was measured during intermit-
tent bursts of strong GAM activity, as shown in figure 107,
compared to periods of weak GAM activity [549]. As with IST-
TOK, the I'; was also found to decrease with increasing GAM
strength (measured from Cov(T = 0) between poloidally sep-
arated probe Vy). The flux reduction was correlated with a
factor of three increase in the effective GAM E x B shearing
rate wexp to become comparable with the turbulent decorre-
lation rate wp. The particle flux was calculated from I'.(f) =
(2/Byp)\/|Pn| |PE,| Vg, (f) coOs (cue(f)). A detailed analysis of
the various terms indicates that reductions in the density tur-
bulence level |P,| and the coherence v, both play equally
significant roles, while the electric field/potential fluctuation
level |PE(,\ and their cross-phase o,z are much less significant.
Taken together, the results indicate that the GAM plays a sig-
nificant role in moderating the AT in L-mode conditions. Its
impact is via suppression of the density turbulence and their
correlation—as suggested by numerical simulations [552].

Heat transport is of course interrelated with particle trans-
port [553]. Of particular importance is the GAMs role in sup-
pressing or promoting radial steamers and avalanches which
expel heat and particles [472, 554]. General ballistic events,
as well as wave-trapping of turbulence in the EGAM electric
field leading to turbulence spreading were discussed in rela-
tion to EGAMs in section 13. EGAMSs may also impact heat
transport via bulk ion heating (the GAM channelling effect)
and enhanced Landau damping.
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Figure 107. (a) Radial particle flux I'; spectrum during ‘strong’ and
‘weak’ GAM activity, and (b) total I', vs GAM intensity in HL-2A
L-mode edge r/a ~ 0.95. Reprinted from [549], with the
permission of AIP Publishing.

In summary, the GAM plays a significant role in edge turbu-
lence moderation. This is demonstrated by comparable veloc-
ity shearing and turbulence decorrelation rates, as well as mod-
ulation of AT at the GAM frequency. The GAM appears to gain
energy from the high-k density turbulence at the GAM spatial
maxima, but as it propagates radially it begins to shear and
reduce the low-k turbulence, thus moving energy back to the
high k turbulence. By reducing and decorrelating the density
fluctuations the GAM also moderates the radial particle trans-
port. The GAM displays both AM and FM, consistent with
a low frequency ZF interaction. Strong modulation leads to
intermittency, suggesting closeness to the GAM critical onset
threshold. As the GAM propagates from the injection position
it decays faster and spectrally broadens, becoming more inter-
mittent in nature. In some devices the GAM decay appears
consistent with strong GAM damping, while for others a GAM
drive with short coherence and weak GAM damping seems
appropriate.

16. GAMs in 3D field structures

Ideally the tokamak has an axi-symmetric magnetic
field—and hence an n =0 GAM toroidal structure—but
in practice a number of magnetic field effects, including
toroidal field ripple (due to the finite number of toroidal field
coils), (non)-resonant magnetic field perturbation (RMP)
coils, as well as MHD modes can lead to three dimensional
magnetic field structures. The stellarator of course has the
ultimate 3D field structure.

16.1. MHD islands —GAM drive

The interaction of GAMs with MHD modes (static and rotat-
ing) is multi-fold. An island chain may create a GAM-like
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oscillation, or it may enhance and/or entrain a natural edge
GAM, or it may suppress and destroy the natural GAM.

Early measurements from T-10 report an GAM localized
around the ¢ = 2 surface and to be strongly associated with
the presence of an m/n = 2/1 (m and n are the poloidal and
toroidal mode numbers respectively) MHD island [292]. With
varying plasma current and B, the GAM spatial peak moved
with the ¢ = 2 radius. Across the radial extent of the island
chain the GAM also had a finite structure, while outside the
island region no GAM was observed. It is not stated if the
MHD mode was rotating or static, or if the measurements are
associated with the O or X-point of the island. As will be
shown these are relevant to the observations.

In TEXTOR the dynamic ergodic divertor (DED) was used
to generate and lock large (non-rotating) m/n = 2/1 islands
of some w ~ 8-10 cm width around r/a =~ 0.6, allowing
poloidal CR antenna arrays at the machine top (island O-
point) and mid-plane (island X-point) to observe a strong
GAM across the plasma edge 0.65 < r/a < 0.83, outside of
the island [338]. With the locked island the GAM amplitude
was enhanced by factor of 2 over the no-island case. Close
to the island separatrix/boundary the GAM was diminished
and secondary spectral peaks appeared. Around the island O-
point there was clear evidence of a (poloidally correlated) flow
oscillation consistent with the GAM structure.

The TEXTOR observations appear to be consistent with a
resistive MHD model [555] where a small amount of magnetic
energy is transformed into kinetic energy which can gener-
ate significant oscillating velocity fields at the island sepa-
ratrix of tearing-like modes. In this model, spontaneous ZFs
are generated when the control parameter A'w > 1 exceeds
a critical threshold, where A’ is the step in the logarithmic
gradient of normalized magnetic flux 12)(;’) across the island
separatrix and w the saturated island width. It was suggested
that the formation of the enhanced ZFs (i.e. velocity shearing)
may help to mitigate the cross-field transport due to the island
chain.

Likewise, simulations with the (EM non-Boussinesq two-
fluid turbulence) NLET code show the formation of a GAM
surrounding the island structure due to a modulation of the dia-
magnetic velocity resulting from the temperature profile flat-
tening (across the island) and steepening at the island separa-
trix [556]. However, there was no indication of a ‘micro-GAM’
inside the island structure.

A recent review on the multi-scale interactions between
magnetic islands and turbulence [557] summarizes the
ZF—island interaction as follows. Essentially a ZF is forced to
pass around the island surface creating sheared flows around
the reconnected separatrix due to flow stagnation around the
island O-point. Such sheared flows around static islands have
been observed in several experiments; LHD [558], TJ-1I [559]
and HL-2A [560]. The flow forms corrugations which oscil-
late, creating a GAM-like behaviour (termed a magnetic island
induced GAM) corresponding (although the structure is not
specified) to the standard GAM induced by toroidal geodesic
curvature. Further, the oscillatory flows can back-react on the
magnetic island making it oscillate—the so-called magnetic
island seesaw phenomena [561]. It is also suggested that the
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Figure 108. Relative reflectometer phase (density) fluctuation level
dcam/ bror VS Ipep (RMP strength) in top region of TEXTOR for
natural edge GAM f = 15.5 kHz; 0.380 < r < 0.385 m (red) and
RMP induced GAM f = 19.8 kHz; 0.345 < r < 0.350 m (black).
Reprinted from [563], with permission from JSPF.

rotation of magnetic islands can be regulated by the self-
generated ZF [562]. At the extreme, the velocity shearing asso-
ciated with the GAM can also restrict the island radial structure
and thus limit the growth of the MHD mode.

In another set of TEXTOR experiments a strong spectral
peak in the density fluctuations 7 appeared at the expected
f = 19.8 kHz GAM frequency close to the separatrix O-point
of an RMP induced m/n = 5/2 island. The perturbation grew
with the RMP strength (Ipgp) as shown in figure 108 [563].
However, a comparison of density and velocity spectra only
showed an increase in the 7 peak and not in v, suggesting the
mode structure is more complicated than a simple GAM.

16.2. Islands and GAM entrainment

The flow and turbulence behaviour can be divided into three
distinct spatial regions: inside the island separatrix, around the
island boundary, and spatially (radially) well away from the
island chain.

Inside the island separatrix the turbulence interaction is pre-
dicted to create a coherent vortex flow, represented by low
(m, n) stable modes [557, 564], etc. Indications of a vortex-like
flow rotation have been observed experimentally in TEXTOR
[563].

During a series of experiments in J-TEXT with static
m/n = 3/1and4/1 RMPs the induced islands are located very
close to the plasma edge (a couple of cm inside of the separa-
trix), coinciding with the natural GAM spatial peak. Even with
modest RMP strengths the GAM amplitude was reduced at all
radii across the edge, but particularly inside the island region
[391]. In addition, the E; reverses from negative to positive
across the island (as seen in other experiments, cf figure 110,
[308]), the edge toroidal velocity increases, turbulent RS is
enhanced, leading to increased RS gradients at the island inner
and outer boundary, consistent with reduced broad-band V;
fluctuations (AT) inside the island, but enhanced at the inner
and outer island separatrix [391, 392].
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Figure 109. E, power spectra S(f) from DR at p ~ 0.93 for increasing RMP currents with four RMP phases ® in J-TEXT. Reproduced

courtesy of IAEA. Figure from [393]. Copyright (2019) IAEA.

Identical behaviour was observed in HL-2A with the appli-
cation of m/n =3/1 or 4/1 RMPs where the E; reversed
to positive across the induced island at ¢ = 3 and 4 respec-
tively. The broad band turbulence decreased inside island but
increased at the island boundaries. In addition the mean tur-
bulence wavenumber (ky) increased together with the toroidal
(co-current) velocity, mostly towards the outer island boundary
[565].

In another set of J-TEXT experiments the dominant applied
RMP component resonated at the g = 2 surface exciting an
m/n = 2/1 magnetic island which could be rotated poloidally
by changing the toroidal phase of the RMP field. In this
instance the natural GAM was well outside the island region
but, nevertheless, was affected by the RMP. Figure 109 [393]
shows four E; spectra at the GAM spatial peak p ~ 0.93 with
increasing RMP coil current at four RMP toroidal phases
®. At large RMP coil currents the GAM is completely sup-
pressed—see next section, but for a moderate RMP strengths
the GAM frequency is up-shifted and varies in amplitude with
the RMP @, consistent with the imposed RMP 2/1 field struc-
ture—although in a somewhat complex manner. While the
plasma rotation showed little difference at the island O- and
X-point, the turbulence level was significantly reduced at the
O-point, due presumably to reduced local temperature gradi-
ent. In addition, for certain RMP coil currents the nonlinear
coupling of AT was considerably enhanced at both the island
O and X-point [393].

A similar frequency up-shifting of GAM flow perturba-
tions was observed in MAST using probes [374]—where it
was attributed to an increase in the edge plasma Mach num-
ber, as well as in AUG using DR [308]. Figure 110 [308]
shows the effect of an edge ‘resonant’ n = 2 with dominant
m =~ 12—14 MP on the E; x B flow and 7, fluctuation spectra
at the GAM maximal location (p,, ~ 0.99) in an AUG low
density, ECRH discharge. With increasing RMP (B-coil) cur-
rent Iy the E; well slowly decreases and a magnetic sideband
forming at the GAM frequency in LFS mid-plane Mirnov coil
b, signals (GAMs in AUG generally display no by signature but
often a l;po] component [311].) Once the MP strength exceeds
a certain threshold, the E, well shrinks, and the GAM flow
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peak weakens and up-shifted in frequency from 14.6 kHz to
15.9 kHz with an enhanced magnetic sideband (with con-
stant T.). Overall, the broadband E, falls while the 7, is
enhanced. Spatially, the GAM extends across the negative E;
shear region, rising in frequency with the local temperature in
a staircase fashion with GAM maxima close to the stair inner
edge. With RMPs the mode extends radially deeper, but peaks
further out, closer to the £, minimum.

The entrainment of an edge (m/n = 0/0) natural GAM with
an applied (m/n = 6/2) static RMP magnetic field has been
studied in HL-2A ECR heated L-mode plasmas. Using multi-
ple arrays of multi-pin LPs and magnetic Mirnov coils, a strong
f =~ 10.5 kHz GAM in V; fluctuations was observed, together
with an (m/n = 6/2) potential mode, (so-called meso-scale
electric field fluctuations (MSEFs)), plus an (m/n = 6/2)
magnetic perturbation, all oscillating at the same ‘GAM’ fre-
quency [352, 353]. Toroidally separated LPs confirm the GAM
n=0%40.2 and finite k, = 3.5+ 0.2 cm~! zonal structure
(poloidal m number not given), while cross correlation of
probe Vi (close to the GAM spatial peak) and magnetic sig-
nals from a toroidal array of 10 Mirnov coils show a clear
m/n = 6/2 structure at the ¢ = 3 surface. The implication
being that there were two simultaneous potential modes at
the same frequency with the later being created by the RMP
applied field. The temporal evolution of the MSEFs and the
magnetic fluctuations also show the frequency entrainment and
phase locking between the GAM and the m/n = 6/2 magnetic
fluctuations (but only during the ECRH phase). This result was
interpreted as the GAMs and magnetic fluctuations transfer-
ring energy through nonlinear synchronization. Such a nonlin-
ear synchronization may also contribute to the formation of a
simultaneous low-frequency ZF and a reduction of the turbu-
lence level—as suggested by bispectral analysis. A simultane-
ous core m/n = 4/2 mode at the ¢ = 2 surface did not lock to
the GAM as it was spatially too far away from the natural GAM
radial peak in the edge, even though the mode frequencies are
close.
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16.3. Ergodic & stochastic fields — GAM suppression

With the formation of strong edge MHD modes the GAM,
however, is suppressed. In T-10 the interaction of low m ~
2—-3 MHD modes and GAMs in ohmic plasmas was studied
using HIBP and magnetic probe arrays. The edge GAM (of
d¢ ~ 10-100 V amplitude) was suppressed with the onset of
large MHD (with a d¢ ~ 40 V component and wide radial
extent of 4—-6 cm). The GAM recovered after the MHD
mode decayed [295]. Likewise, in TUMAN-3M the GAM was
strongly damped during bursts of MHD activity [332].

While externally applied magnetic perturbations of moder-
ate magnitude can lead to GAM enhancement and/or entrain-
ment, large perturbation amplitudes have the opposite effect.
Sufficiently strong RMPs cause magnetic field ergodization
which has the effect of destroying the toroidal and poloidal
structure of the GAM. In TEXTOR with an RMP induced
m/n = 6/2 mode the GAM both shrank in radial extent and
decreased in amplitude with increasing DED strength Ipgp
[566]. In another experiment with an m/n = 5/2 RMP, the nat-
ural f = 15.5 kHz edge GAM (around 0.380 < r < 0.384 m)
gradually disappeared with increasing RMP strength—as

115

shown in figure 108—as the ergodic region radially expanded,
reducing the long field-line connection length [563]. However,
at the RMP induced m/n = 5/2 island radius (0.345 < r <
0.350—which was well inside of the natural GAM location),
there was a concurrent increase in the density fluctuations at
the expected f = 19.8 kHz GAM frequency. These fluctua-
tions do not appear to be caused by a change in the turbulence
but are believed to be due to parallel currents on the rational
surface caused by the RMP—i.e. a magnetic island induced
‘GAM’.

Fluid model simulations of GAM oscillations using the
3D atTEMPT code with TEXTOR-like RMP parameters show
the plasma response to the RMP are currents with in-phase
and out-of-phase components (which act to screen out the
RMP field) depending on the collisionality and the plasma
[567, 568]. When switching on the RMP the GAM changes
its character. First it is amplified by the out-of-phase compo-
nent of the induced plasma current coupling to the GAM via
Maxwell stress (resulting in significant modifications to the
GAM amplitude and frequency). But, with increasing RMP
amplitude the GAM is then diminished as the screening effect
breaks-down, particularly at the rational surfaces where the
RMP field is strongest [568].

A series of supporting effects, also reported from
TEXTOR, include a reduction in the RS (from LPA) across
the edge velocity shear region with increasing Ipgp (for
both 6/2 and 3/1 RMP modes resonant at g ~ 3 surface)
[569], a shift from a GAM to a ZFO; decreasing long-range-
correlation (LRC) at the GAM frequency, and a corresponding
increase in the low frequency turbulent flux when the GAM
is suppressed [426]. A similar reduction in the summed
bicoherence ¥h* at the GAM frequency (i.e. the GAM
drive/amplitude)—consistent with the reduced RS—in LP
floating potential V; fluctuations was observed, as shown
in figure 111 for an m/n = 6/2 RMP configuration [340].
Reducing the mode number from m/n = 6/2 to 3/1 also led
to a lowering of the GAM suppression threshold. In these
cases the gradual suppression of the GAM with increasing
Ipep (RMP strength) was attributed to damping of the GAM
by resistivity due to finite k| # 0 and nonzero B, components
[426]. Finally, GAM-like oscillations (global mode) in the
STOR-M tokamak are completely suppressed around the last
closed flux surface (where profiles are strongly steepened
and confinement improves) with the application of a static
(m/n = 2/1) RMP field [397].

16.4. Non-axisymmetric field configurations

There are distinctly fewer experimental observations of
natural GAMs in stellarators and helical devices compared to
tokamaks, however, these measurements appear to show that
the GAMs have similar properties as to those in axisymmet-
ric systems. Early CHS measurements show a core mode fre-
quency scaling consistent with basic fluid GAM predictions
[38, 398, 405, 406], although unfortunately there are no mea-
surements of the mode structure for the GAM, only for a low
frequency zonal flow oscillation (ZFO), which showsann = 0
mode structure. However, for EGAMSs in the LHD an m = 0
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Adapted from [340]. CCBY 3.0

mode structure for the electric potential fluctuation and m = 1
mode structure for the density fluctuation has been measured,
as shown in figure 90 [410].

Prompted by these early results the GAM dispersion rela-
tion was derived from the DKE with a three-dimensional equi-
librium [99, 570, 571] (and later with FOW effects [572])
which is applicable to a broad range of field configurations,
including helical systems with multi-helicity, such as quasi-
toroidal or quasi-helical systems. Starting with the linearized
DKE and expressing the magnetic field in terms of Fourier
components: B> = Y Bi(1 4 0,y cos(mf — ny)), in terms
of the poloidal and toroidal angles, a generalized dispersion
relation of the form

D =w*—u? E Wéﬂ/,l’nFm,n =0

m,n

(274)

is obtained where wg,, is defined as the Fourier compo-
nent of the base GAM frequency wg = vr/Ro and F,, ,, like-
wise the Fourier component sum of the radial driving current.
Equation (274) can be solved easily for the real frequency
Re w? and imaginary growth rate ¥ = —Imw. For practical
purposes, after some approximations the real frequency can
be simplified to,

wGAM R2 Z

where 6,,,(1)) represents the geodesic curvature of the (m, n)
ripple component at the flux surface 1. The term 12 is defined
as radial wavenumber index and can be approx1mated as the
circumferential poloidal flux surface path length.

For a single helicity plasma, e.g. a circular flux surface
cross section tokamak with low [, the magnetic field has
a single dominant Fourier component—the toroidal ripple
(geodesic curvature) d; 9(¢)) ~ 2(r/Ry). Taking I, = 27r, one
obtains the familiar GAM frequency w .y = 2¢2/R3. For
non-circular tokamaks the ellipticity x introduces an (m =
2,n = 0) and the triangularity an (m = 3,n = 0) Fourier com-
ponent. In contrast, a mixed helicity system, such as the CHS
device, has both a toroidal ripple d; o and a helical ripple d, g.

Several interesting points were drawn from the model, for
example the GAM frequency is expected to be higher in helical

m* 0, (V)

= 4(ly, / 271'R0)2 (275)
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Figure 112. Schematic of a single helicity helical system showing
representative flux surface for an M = 2, N = 10 helical system for
one toroidal pitch (0 < ¢ < 27 /N). Density perturbations follow
the lines MO — Ny = 2im + /2, Reprinted from [99], with the
permission of AIP Publishing.

devices compared to tokamaks, and that the damping rate will
be stronger in multi-helicity magnetic configurations. Nev-
ertheless, if 7. > Tj, as in the limiter CHS discharges, then
the damping rates are predicted to be small. Concerning the
sideband structure, in a helical system the density perturbation
is predicted to form maxima and minima along the lines of
(mf — np) = £7/2 respectively, as shown in figure 112 [99].

To specifically study the GAM behaviour in helical mag-
netic configurations numerically the neoclassical transport
code FORTEC-3D (applicable to axi and non-axisymmetric
magnetic geometries), which solves the DKE of the first order
using the 6 f method, was developed [573]. These global sim-
ulations indicate that the GAM couples across neighbouring
flux surfaces due to FOW effects. Using the LHD geometry
(which has a separatrix) the GAM frequency was found to
decrease and its damping rate to increase when the magnetic
axis was shifted inward (the LHD-IS configuration), so as to
increase the sideband Fourier components of magnetic field
and decrease the radial drift of helical ripple trapped particles.
This suggests the possibility of controlling both the neoclas-
sical transport level and the GAM oscillation (or the ZF) in
helical plasmas.

Figure 113 shows an example simulated E; spectrum
against normalized radius for a moderate ¢y /27 = 1/g = 0.34
LHD configuration [573]. Here, the GAM is found to be
strongly damped in the edge region where ¢ < 1, together with
the appearance of a finite low frequency ZFO in the core. Also
in the LHD geometry the GAM appeared to be insensitive to
collisional effects due to the overwhelming enhancement of
collisionless damping by the magnetic field ripple [123]. Sim-
ilar results were obtain in [54, 574, 575] from analytic deriva-
tions for the GAM dispersion together with GK simulations in
a helical system, as presented in section 2.8. It was noted that
the radial drift of particles trapped in the helical ripples impacts
both the residual ZF level and long wavelength ZFOs. Conse-
quently, there are no experimental reports to-date of natural
GAMs appearing in LHD.

The collisionless plasma response to a potential perturba-
tion in general stellarator geometry was treated in [54, 55]
where it was found that the residual ZF does not reach a steady
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Figure 113. Simulated E, power spectrum as a function of radius for
atp/2m = 1/qy = 0.34 LHD case using FORTEC-3D code. The solid
line is analytic wgam = +/7/4vri/Ro. Reproduced courtesy of
IAEA. Figure from [573]. Copyright (2005) IAEA.

level but oscillates with a low frequency due to the radial drift
of the locally trapped particles—a feature particularly preva-
lent in stellarator geometry with strong helical ripples. The
theory was subsequently extended in [57] where the low fre-
quency ZFO (labelled LFO) also undergoes a Landau damping
[54], which is highly sensitive to the magnetic geometry via the
radial drift frequency wq = k.4 (proportional to the geodesic
curvature) of the trapped particles [576]. This LFO frequency
scales as,

wiro = Mo /(A1 + Ao), (276)

where A is the classical polarization, A; a quantity related
to the neoclassical polarization, and A; zanang JT,...
(where a = e, 1) the ZF frequency due to the trapped particle
contribution, defined in [55]. Here, all the A terms essentially
scale with ¢? giving the ZFO mode an acoustic nature.

In general, GAMs (due to passing ion dynamics) and ZFOs
(due to tapped particle drifts) are observed in a variety of GK
simulations in a wide range of W7-X, TJ-II, LHD configura-
tions [57, 576-580], etc. In the comparative studies [57, 576]
using the GENE (flux-tube version) and EUTERPE (global PIC
code using the full stellarator geometry), the ZFO and GAM
behaviour was substantively different between the LHD and
W7-X configurations. The potential oscillations in LHD were
predominantly GAM-like while in W7-X they were predom-
inantly ZFO-like, due principally to the different g, values
and consequent Landau damping rates. Figure 114 [57] shows
an example spectrum of simulated E, fluctuations from the
EUTERPE code for the standard LHD configuration (LHD-SC)
where the GAM dominates over the stationary SZF residual
and the ZFO (LFO). More recent W7-X simulations using the
hybrid cka-EUTERPE MHD/GK PIC code indicate that a core
localized GAM can appear if the ¢ is reduced by the induction
of a plasma current via ECCD at low magnetic shear s < 0.5
[579].

Due to its high rotational transform ¢ and large ripple,
GAMs are normally expected to be heavily damped in TJ-
II. For example, linear global GK simulations (3D EUTERPE
code) predict GAM frequencies f ~ 50 kHz in the standard
(low iota) TJ-II configuration, but with strong collisionless
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Figure 114. Radial electric field E; fluctuation spectrum from the
EUTERPE GK code for an LHD plasma, showing the zero-frequency
SZF residual, a low frequency oscillation LFO and a GAM.
Reproduced from [57]. © IOP Publishing Ltd. All rights reserved.

damping [581]. For this configuration the predicted frequen-
cies were also in reasonable agreement with analytic tokamak
predictions [54, 108]. Discrepancies, nevertheless, appeared at
higher ¢ where fluid and kinetic models are believed to become
inaccurate for non-axisymmetric configurations. As with
corresponding tokamak simulations, non-linear GK EUTERPE
simulations (complemented by cAs3D-K and analytic calcu-
lations) for TJ-II also show fast damped GAMs and longer
lasting ZFOs with a finite RH residual ZF [580, 582]. Per-
forming a multivariate fit to the cas3p-k simulations for
TI-II resulted in wgam oc TO49F01,0:4950.04,08550.13 © \where
kg 1s the geodesic curvature. For the amplitude: Agam o
T—0-60+0.1,0.03£0.06,,046+0.17 Tpeerestingly the amplitude was
found to have a very low dependency on ¢, in contrast to toka-
maks and heliotrons where the damping scales as 1/g. Also
notable is that the ZFO frequency and amplitude have opposite
kg scaling to that of the GAM [582].

While early measurements of potential fluctuations across
the TJ-II edge, with LRC properties, showed no distinctive
GAM peak [584] plus more recent global low frequency flows
[585] (as expected for low g), there are several later reports
of candidate GAMs in the core. For example, low frequency
E, oscillations were triggered by the transition of the core
radial electric field E; during density ramp experiments from
the positive E; (electron-root) to the negative E; (ion-root)
[586]. This transition is unique to non-axisymmetric systems
and arises from the intrinsic nonambipolar nature of the neo-
classical radial particle flux in non-axisymmetic systems. E;
is determined so as to satisfy the ambipolar condition [587].
Because the neoclassical particle flux is a nonlinear function
of E., multiple roots for the ambipolar condition appear under
certain density and temperature conditions. As a result, a sud-
den change in the E; occurs between the roots [588]. Linear
GK simulations of the temporal evolution of the E; transition
using the global, § f, particle-in-cell code EUTERPE revealed
a short-lived GAM oscillation at the positive to negative E;
transition [586].
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In appropriate L-mode conditions an f ~ 105 kHz,
m = 6 global Alfvén eigenmode and an f = 14 kHz low fre-
quency mode (magnetic) has been observed in the TJ-II core
(p = 0.65) together with an f ~ 20 kHz flow oscillation last-
ing some tens of ms. The combination is highly suggestive
of an AE nonlinear mode coupling to a GAM. Alternatively,
the GAM may possibly be sufficiently driven by fast electrons
generated by the ECR heating at low density [417]. A simi-
lar damped > 10 kHz oscillation was observed in low density,
NBI heated discharges with T, > Tj, after a pellet injection
triggered a fast transient in the potential ¢ (measured with
HIBP and DR), as shown in figure 115 [583]. The figure also
shows excellent reproduction by matched GK simulations, cf
also [580]. The results would suggest that natural GAMs can
exist in TJ-II—if they have sufficient drive.

A distinctive GAM-like mode was also observed in the TJ-
II core using HIBP and bolometry during counter NBI heating
with an intermediate magnetic well configuration. The mode
appeared in both the electric potential and density with a fre-
quency f ~ 40 kHz, scaling with the ion sound speed. The
mode is not Alfvénic and has a global structure p ~ 0.8 + 0.2
[418]. The candidate is an EGAM. However, an n = 1 toroidal
structure was deduced from the toroidal correlation of bolome-
ter signals [419], which is different from the usual n =0
toroidal structure obtained in tokamaks. Nevertheless, recent
kinetic-MHD modelling indicates that non-axisymmetric
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n # 0 zonal modes can exist in rotating plasmas [482]. As
with the axisymmetric n = 0 case, the n # 0 ZFs acquire finite
frequencies in rotating plasmas. However, in static plasmas
their electric and magnetic field perturbations are zero and thus
these modes are strictly hydrodynamic.

16.5. RFP configurations

There appears to be an absence of GAMs in RFP devices.
Ideally the RFP magnetic equilibrium is axisymmetric, i.e.
tokamak-like. However, the dynamo process which leads to the
reversed toroidal field at the edge, and the low overall ¢ < 1,
also allows ideal kink and tearing modes (TMs) to form. The
core is dominated by saturated m = 1 kink modes with single
or multiple helicity creating a stellarator-like helical axis [425,
589], while in edge region has strong TM activity, leading to
chaotic field structures. In the RFX-mod device, for example,
long-range-correlationsin © flows (observed in various devices
as a marker of ZF structure) was noted as being absent [426].
It is thought that the presence of ergodic magnetic field lines
and strong TM activity in the edge (as indicated by Poincaré
plots [424]) prevent the formation of the GAM current flow—a
phenomenon also noted in ergodic field experiments in TEX-
TOR and the suppression of GAMs with strong RMPs in other
tokamak experiments where edge magnetic field ergodisation
occurs—see section 16.3.

Nevertheless, a low frequency ZFO (<10 kHz) was
recently reported in the confined edge plasma region of the
Madison Symmetric Torus (MST) RFP device when running
with very low ¢ [427]. The E; fluctuations (from LPs) had an
m/n = 0/0 mode structure and narrow radial extent, however,
it was not identified as a GAM since the peak mode frequency
was below the ion—ion collision frequency of ~3 kHz. GK
simulations for this low edge g configuration predict the strong
excitation of a RHR and ZFOs [590]. But the low ¢ should
be detrimental for GAMs, and thus their absence is at least
consistent.

In summary, moderate amplitude MHD island chains may
induce and enhance GAM-like flow oscillations, or entrain
a natural edge GAM. However, with large MHD modes or
applied magnetic perturbations the GAM is suppressed. For
non-axisymmetric field configurations trapped particle drifts
create a new branch of GAM-like low-frequency oscillations.
In addition n # 0 modes may be supported.

17. GAM and ZFO transitions

No discussion of GAMs can be complete without broach-
ing the topic of zero (SZF) and low frequency ZFO and
their coexistence, competition, and transition to standard high
frequency GAMs. In essence there are two types of ZFs:
(a) the quasi-zero-frequency stationary ZF, here termed SZF
(although in the literature a variety of terms appear, includ-
ing zero-frequency ZFZF, zero-mean-frequency ZMF, low-
frequency LFZF, etc); and (b) the finite frequency GAM. The
difference lies in the plasma response to a flow perturbation
and in the absence or presence of a pressure sideband. The first
section 17.1 therefore begins with a discussion of the plasma
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Table 16. Parameter dependencies for the stationary
zero-frequency zonal flow (SZF) and the GAM. cf [53, 60, 61].
Terms are defined within the text.

Parameter SZF wq GAM w4y
Pol. velocity vy —E./B —E./B
Response Incomp. Comp.
V-vx0 V-v#0
Parallel k| — (gRo)™!
Tor. velocity v, —2qvg cos 0 g g cos 0
Frequency w~0 W~ Wy
p-sideband — m=1
Radial A\, ~ \/aps ~ \J/aps
Radial vel. v, Small ~ Ywkp?
Damping Predom. lin. Lin. + nonlin.

response to a flow perturbation. The SFZ has a zero mean fre-
quency but can be collisionally broadened up to around the
ion—ion collision frequency v;;. However, due to various mech-
anisms the SZF can acquire a finite mean (peak) frequency to
become a low frequency ZFO, (section 17.2) and may eventu-
ally even transition into a GAM. A ZFO and a GAM can also
simultaneously coexist. Section 17.3 considers the ZFO/GAM
competition for the turbulence drive. Finally, this section fin-
ishes with a discussion of the nonlinear interaction of GAMs
and ZFs.

171. SZFs and GAMs

Table 16 summarizes the main parameters expected for the
zero-frequency stationary SZF and the standard high fre-
quency transit-ion GAM. The SZF and the GAM share many
features, but the principle difference is in the plasma response
to a perturbation in the poloidal flow. Since the poloidal rota-
tion is compressible in a toroidal device, there are two ways
to compensate a poloidal flow perturbation: (i) generate a
toroidal (zonal) flow so that the perpendicular flow divergence
can be compensated by the parallel flow gradient, V - v ~
—V v without pressure sidebands being excited. This process
isslow,i.e. 77! ~ vy /€7, where ~ depends on the collisionality
regime—basically RH residual and neoclassical damping that
establishes the neoclassical level of the poloidal flow, poten-
tially modified by the turbulent effects [553]; (ii) however, if
the flow perturbation is fast then V - v, cannot be compen-
sated by the toroidal rotation quick enough and thus poloidally
asymmetric pressure sidebands form, so that Op/dt + pyV -
v, = 0, which causes a radial current, which will be compen-
sated by a polarization current, and hence a GAM. So, if the
perturbation source (e.g. turbulent RS) is fast, one should get
a GAM and not an SZF. In fact it is rather difficult to avoid
GAMs in toroidal systems as one starts to produce a poloidal
ZF with RS or whatever.

In a nutshell, in axisymmetric systems such as a tokamak,
slow sources (turbulent or otherwise) can drive toroidal rota-
tion, while fast sources should drive GAMSs. An alternative
perspective is the GAM as a relaxation process to establish
the poloidal and toroidal rotations in the tokamak. Note, if the
source fluctuates then the system may never become stationary,
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and the resultis GAM pulsations. This is an area that needs fur-
ther study, particularly the connections to neoclassical theory,
e.g. trapped particles.

172. Low frequency ZF oscillations

In earlier sections several mechanisms were introduced where
the GAM/ZF dispersion relation may acquire an additional
low-frequency branch. Modes in these branches are called
ZFO. The mechanisms include: (i) diamagnetic drifts w,; from
temperature gradients (section 2.13), (ii) pressure anisotropy
x=p./ p||» generated by NBI or ICRF heating (section 2.3),
(iii) equilibrium plasma rotation M, = v,/c,, from intrinsic
or external NBI or RMPs (section 10), and (iv) radial drifts
of trapped particle orbits due to toroidal/helical field ripple
(section 16.4). In the first three mechanisms (i)—(iii) the GAM
dispersion relation splits into two branches of finite frequency
continuum modes w , cf equations (119), (20) and (22), where
the upper branch w is a modified standard GAM while the
lower frequency branch w_ is a ZFO mode that bridges to the
stationary SZF when the effect is removed.

All the mechanisms introduce a form of asymmetry,
via the kinetic gradients, an additional velocity or a pres-
sure anisotropy. Each removes the degeneracy of the zero-
frequency SZF mode. There are common themes as well
as differences, for example rotation and drifts are related,
although drift effects require strictly two-fluid theory to model.
Anisotropy is different from rotation, but it does bring in some
inhomogeneity from the equilibrium, similar to drift effects.

Only trapped particle drift effects, case (iv), are some-
what different. The story of trapped particles has been mostly
ignored in GAM theory, but there are important connections,
such as to the damping of poloidal rotation. Indeed, a ZFO
with an acoustic frequency scaling but bounded by the particle
bounce frequency wy, of helically trapped particles is a partic-
ular feature of stellarators—where they are named LFO—see
section 16.4. The magnitude of the drift effect is predicted to
depend greatly on the degree of stellarator configuration opti-
mization. As shown in the simulation example of figure 114
[57], the ZFO/LFO may also simultaneously coexist with the
residual and a standard turbulence driven GAM. In stellarator
simulations the presence of an ambient radial electric field also
appears to have the same effect on the ZFO/LFO frequency as
for the GAM in a poloidally rotating tokamak plasma, but with
enhanced damping [591]. Recent GK simulations [592] have
also addressed the issue of trapped particle (ions) interacting
with a resonant wave in generating a ZFO with a frequency
close to the ion precession frequency. As yet, there are no
experimental reports of a trapped particle ZFO. Also chron-
ically missing are experimental measurements of the pressure
sideband presence and structure in tokamak SZF/ZFO cases.

Table 17 summarizes, in order of increasing frequency, the
relationship of GAMs and ZFOs within the broader hierarchy
of poloidal flows in toroidal devices. A zero-mean-frequency
SZF may become a finite-mean-frequency ZFO with the addi-
tion of one or other form of asymmetry. And, as described in
the previous section, the ZFO, as soon as it acquires a suf-
ficiently large enough frequency w = v;; /€’ should transform
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Table 17. Hierarchy of poloidal flows in toroidal devices in order
of increasing perturbation frequency. w, = ion bounce,

wi ~ (cs/Ro, ¢s/qRy) ion transit, wy g, = fast particle transit
frequencies.

Type Freq. Drive/damping

Mean 0 Neoclassical poloidal damp. v;;/¢”

SZF w0 Coll. broadened, nonlinear RS drive

1

ZFO* wo < wy Drift/anisotropy/rotation. linear drive

1 w < Wy Trapped particle: LFO

GAM Wy ~ Wy Nonlin. turb. RS + DS drive
W~ Wefp Fast particle drive: EGAM

*Note: if ZFO/LFO w_ > v; /€ then the mode is GAM-like, otherwise
ZF-like.
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Figure 116. Poloidal flow spectra at three edge radial locations from
DIII-D, 5 MW NBI heated, gy5 = 6.5, USN, L-mode discharge.
Adapted figure with permission from [278], Copyright (2006) by the
American Physical Society.

to become essentially GAM-like with a pressure sideband, cf
[478]. However, it should be stressed that the boundaries are
far from hard and that experimentally it maybe challenging
to distinguish a ZFO from a GAM in the transition region
when pressure-sidebands and parallel flow/sound-waves are
both acting.

173. Coexistence and transitions

Figure 116 shows a classic example using BES of the
change in the poloidal flow fluctuation spectrum across the
edge region of DIII-D [278]. The spectra at three radial
r/a locations for NBI heated, USN, L-mode discharges at
high gy5 = 6.5, show the amplitude of a low-frequency ZFO
‘peak’ increasing towards the core, while the GAM amplitude
decreases—consistent with the role of the g profile in damping
the edge GAM, but not the more core localized SZF/ZFO. At
some radial position the GAM and ZFO are seen to coexist. A
similar enhanced SZF together with a strong edge GAM was
observed in HL-2A during ECR heating when gq5 was reduced
from 5.5 to 4.5 [430], and lower [535]. Here, the GAM ampli-
tude exceeds that of the SZF in the edge but then weakens as
the SZF strengthens towards the core.

The finite frequency of the ZFO feature in the NBI heated
DIII-D example was noted by Ren who compared the ZFO
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and GAM frequencies with an anisotropic pressure model
(section 2.3) [85]. In this model (with homogeneous aver-
age pressure) the two mode frequencies are linked by w_ =
1/g+/3/14w;. With a ¢ = 3.5 taken from the experiment a
good agreement was obtained with the observed w_ /27 ~ 2
kHz and w4 /27 = 15 kHz values. In this example it was
assumed that the NBI induced a dominant pressure anisotropy
rather than a rotation effect, where the two roots are also
linked, e.g. wi = w?(1 + 24> + 4¢°M?) for M, = 0 [480].
Note that both the rotation and anisotropy formulations give
w_ X w4 and thus an acoustic and geodesic frequency scaling.
The only missing element in this comparison is a confirmation
of the p-sideband nature.

Nevertheless, the effect of plasma rotation is clearly seen in
the DIII-D edge flow spectra in figure 73 which show the disap-
pearance of the GAM with decreasing toroidal torque and the
appearance at the same edge radial location of a broader ZFO.
This case has not yet been modelled. There are also several
other observations (reported in section 18.1) of the GAM being
replaced by a ZFO where the plasma conditions are changing
rapidly as the discharge approaches an L to H-mode transition.

The turbulence type also appears to play a role in the domi-
nance of ZFO over a GAM. In JIPP T-IIU the core flow spectra
transitioned from a GAM to an SZF/ZFO when the dominant
turbulence was apparently changed from TEM to ITG using
either strong gas puffing or heating with ICRF fast wave or
NBI [328]. Here, it was concluded that ITG turbulence is more
effective in generating ZFs.

Table 18 summarizes experimentally reported cases where
more than one spectral feature was evident simultaneously at
the same radial region—not too close to the edge and not
so far in as to be core. Where a clear ZFO peak is observed
together with a GAM (notably a feature of the larger well-
heated machines), its frequency is around a factor of 10 smaller
than the GAM. For the cases where no clear low frequency
peak is observed (mostly small low power machines), the
spectrum continues to rise towards zero-frequency SZF. For
example in HL-2A discharges see figure 2, or figure 2(a) in
[25], or in low ohmic heated HT-7 discharges [287]. However,
HL-2A also report GAM only cases [345]. Note in the case
of the larger machines AUG [31, 304] and JET [358] neither
a ZFO or SZF was evident in the edge. Here, the low fre-
quency spectra are flat below the GAM frequency in the edge,
cf figure 2, or tending to 1/ f-like towards the core.

174. GAM/ZF competition

Since both the GAM and the ZF are driven by turbulence
there is the issue of competition in the nonlinear transfer
leading to the dominance of one or other mode. This GAM
vs SZF/ZFO competition was investigated in strongly ECR
heated L-mode plasmas in HL-2A cf figure 4 of [544]. The
frequency resolved nonlinear turbulent energy transfer was
measured using multi-field (plasma potential and density)
cross-bispectral and energy transfer techniques (RS profiles)
applied to LP array signals. It was observed that the tur-
bulence drives both GAMs (10 kHz) and ZFOs (1-2 kHz).
With increasing heating power both the GAM and ZFO ini-
tially grow, but then the GAM intensity saturates and then
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Table 18. Experimental frequencies (kHz) for a stationary SZF, a low frequency
ZFO (w-) and a high frequency GAM (w..), either coexisting or transitioning.

Device SZF ZFO GAM Notes

CHS <1 16.5 Core coexistence [33]
C-Mod <3 20 I-mode [379]

DIII-D — 2 ~15 Radial location [278, 593]
DIII-D — 2-3  15-19 NBI torque/rotation [281]
EAST 0-4 20 Weak H-mode [42]
HL-2A 0.1-4 10 ECRH, low I, [25, 544]
HL-2A 0.5-3 12—-17 ECRH & ¢ reduction [430, 535]
HT-7 <1 10 ECRH [287]

ISTTOK <6 15-25 Sign of DC bias E; [363]
JIPP TII-U 1/f ~35 Change of turb. with heating [328, 329]
JFT-2M ~1 15 Coexistence [317, 318]
J-TEXT 0.5-2 16.8 Biased H-mode/E; [390]
MAST <1 9-12 RMP application [374]
TEXTOR 1-2 10 DC bias E; [344, 431, 465, 508]
TIJ-I 1-2 ~20 Core, drive and ¢ [417]

decreases while the ZFO continues to grow linearly [544].
This was claimed as being consistent with a shear mode com-
petition model [594] which involves two predators and one
prey model using nonlinear mode competition via coupling
of higher order wave-kinetics to describe the coexistence of
GAMs and ZFO. Note also that the model predicts that as the
input power is increased the energy goes first into a ZFO only
state, and then into a GAM only state, i.e. there is a thresh-
old for the GAM excitation—consistent with AUG and IST-
TOK measurements for a critical VT, below which no GAM
was observed—see figure 75 [26]. The model also suggests a
hysteresis-like behaviour during power ramp-up and down.

175. Nonlinear GAM processes

Related to the issue of coexisting multiple GAMs and/or
simultaneously together with ZFs is the question of the GAM’s
ability to nonlinearly create stationary ZFs or higher GAM har-
monics. The driving of ZFOs is of course of particular interest
since their lower frequencies may have a stronger impact on
turbulent transport.

As discussed in section 4.5 there are conflicting theory and
modelling results on this topic. Early fluid simulations of ITG
turbulence close to a critical threshold show packets of radially
propagating GAMs leading to an accumulation of residual ZF
[146]. Later considerations showed that GAMs are not capa-
ble of generating a ZF via the RS drive [236]. Other models
of nonlinear coupling between GAMs and ZFs in the higher
order show ZFs transiently driven by the self-interaction of
GAMs [143]. One example has two radially counter propa-
gating GAMs, generated by reflection at the plasma boundary,
interacting to transiently excite a stationary SZF mode. Subse-
quent developments extended the model to general conditions
of symmetry breaking with either pairs of GAMs with dif-
ferent phase velocities forming a radial standing wave which
induces a ZFO (in this case the strength of the ZFO grows with
the amplitude of the GAMs), or a standing wave formed by
symmetry breaking of the AT [595].

Models based on GK theory suggest that a stationary ZF
could be generated nonlinearly by a finite amplitude GAM
when crucial first order FOW effects due to magnetic field gra-
dients or curvature drifts where included [237]. See section 4.5
for further comments on the validity of this model. Neverthe-
less, the main implication of this model is that it might be pos-
sible to excite a stationary ZF from a finite-amplitude GAM,
even in conditions (such as the high g edge) where it would
normally be below the threshold for its own spontaneous exci-
tation by turbulence. This work was recently extended to show
that in fact second order FOW effects must also be included
[238]. With some assumptions a simple formula for the ZF
amplitude d¢, as a function of the GAM amplitude d¢ and
k values was derived. A comparison of predicted values and
measurements from HT-7 were of the right order of magnitude.

The nonlinear self-interaction of GAMs may have other
effects as well as exciting ZFs, for example an up-shift in the
GAM frequency as the GAM amplitude increases [143, 220].
Such effects were proposed as possible causes for model dis-
crepancies with experimental results from AUG [309]. This
is a particular area where much work is needed on the fur-
ther validation of models and more specific comparisons with
experimental results. In addition to the nonlinear frequency
pulling effect, models also suggest higher GAM harmonics
may also be excited [220]. Figure 117 shows the derived ana-
lytically amplitudes e¢/T for the GAM and its second har-
monic—which is significantly weaker but still measurable,
and, as shown in the comparison to JFT-2M experimental
results [233] in reasonable agreement.

In summary, rotation, diamagnetic drift and anisotropy can
open up a second low frequency branch in the GAM disper-
sion relation. With increasing strength this may convert a zero-
mean-frequency SZF to a finite-mean-frequency ZFO, which
may further convert to a GAM with a pressure sideband. Both
SZF/ZFO and GAMs can coexist at the same location with
dominance changing with ¢, heating, etc. Further, they are in
competition for the nonlinear turbulence energy transfer which
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Figure 117. (a) Bicoherence spectra at f3 = 14 kHz showing 2nd
GAM harmonic around 30 kHz, in JFT-2M. Adapted from [233].

© IOP Publishing Ltd. All rights reserved. and (b) analytic saturated
fundamental and 2nd harmonic amplitudes e¢ /T vs normalized
GAM width Aw/wgam, With experimental points. Adapted from
[220], with the permission of AIP Publishing.

may lead to the preferential suppression of one or other. Non-
linear GAM self-interaction is predicted to ‘pull’ the GAM
frequency, and may also possibly excite a 2nd harmonic GAM,
or even a stationary SZF. A trapped-ion ZFO is predicted to
exist, but remains to be confirmed experimentally.

18. GAMs and confinement mode transitions

18.1. L—H transition

It is generally understood that the L-mode to H mode con-
finement transition results from a feedback loop involving a
localized enhancement of the edge E, velocity shear which
reduces the local turbulence and thus transport, which in turn
enhances the pressure gradients and hence to stronger shear-
ing [546, 596]. Many studies show that the L—H bifurcation
can be very rapid, occurring on the turbulence decorrelation
time scale. Although there are several mechanisms that could
lead to triggering the L—H transition, cf [531], it is the role of
turbulence driven flows that is of interest here.
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Figure 118. Contour plot of mean bicoherence bZ as a function of
normalized radius p and time relative to L—H transition in TJ-II.
Reproduced courtesy of IAEA. Figure from [531]. Copyright (2013)
TAEA.

While RS driven flows (9,75) seem too small in L-mode
to create a critical shear alone (cf [64]), when combined with
a ‘baseline’ equilibrium mean flow shear, RS flows may take
the role of a trigger. RS is indeed observed to increase prior to
the L—H transition in many experiments. For example, probe
measurements in HT-6M [597] and CHS [408] show a spike
in RS with finite radial extent. Likewise in TEXTOR bias
induced H-modes a clear stretching, tilting and splitting of
turbulent eddies was observed with GPI [598] inside the sep-
aratrix. The consequent increase in RS and E; x B shearing
rate was accompanied by an enhanced ~ 1.3 kHz ZFO and a
weaker GAM. The picture is thus of an close interaction among
sheared flows, eddy structures, RS, and ZFs across the confine-
ment transition [431]. Also using GPI a transient spike in RS
driven ZFs was measured a few mm inside the separatrix of
C-Mod at the L—H transition [599]. Here, the transient flow
preceded the final turbulence suppression and the subsequent
rise in the pressure gradient driven E, shear. Similar results
were obtained in DIII-D using BES [600].

Bispectral analysis has been widely used as a proxy for RS
driven shear flow, as in DIII-D where a spike was observed
in the total b%, equation (B.6), from probes inside the sep-
aratrix just before the L—H transition [526]. In this case the
change came mainly from the SZF frequencies. Figure 118
shows a recent example from TJ-II where a b% peak during
spontaneous and bias induced H-modes is seen to propagate
outwards as the confinement barrier forms [530, 601]. Other
examples include turbulence energy transfer measurements in
EAST [602]. In each case the conclusion drawn was that the
H-mode was triggered via nonlinearly generated shear flow.

18.2. GAM-ZFO role

A recent overview paper [603] compares and summarises
results on the role and occurrence of GAMs and ZFOs in
promoting (or hindering) the H-mode transition. As noted
in section 17 GAMs and ZFOs can coexist, compete and
even suppress one another depending on equilibrium condi-
tions. The changing plasma conditions during the L to H-
mode transition are thus particularly relevant to the GAM/ZFO
evolution.
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As shown in figure 73 a strong L-mode edge GAM in DIII-
D with co-current NBI induced rotation was suppressed and
replaced by a low frequency ZFO when reducing the torque
with counter-current NBI, just before transitioning to H-mode.
Here, it was proposed that the lower frequency of the ZFO was
more effective than the GAM in shearing the turbulence and
thus in triggering the L—H transition [281]. The missing L—H
transitions co-injection NBI were provided later [284]. Again,
at low density the L-mode GAM evolved into ZFO together
with increased long wavelength 7/n in the pedestal region as
the L—H transition approached. However, at higher densities
the GAM was simply diminished leaving a broad flat or 1/ f-
like flow spectrum [284]. There were also notable behaviour
changes with varying B;.

In JFT-2M with NBI heating, approaching the L-H tran-
sition the 15 kHz eigenmode GAM was replaced by a
~1 kHz ZFO. However, with additional ECH power the 10
kHz GAM continued up to the L—H transition [321]. After the
L—H transition only weak, low-frequency broad-band poten-
tial fluctuations <5 kHz were observed. Although this is sug-
gestive of possible ZFs, there was no significant bicoherence
in either potential or density fluctuations during subsequent H-
mode inter-edge localized mode (ELM) phases. Power ramps
in JET using NBI heating at various densities first show the
GAM is maintained up to the L—H transition at fairly low den-
sities, but is reduced (damped) prior to the transition at higher
densities. This was thought to be due to changes in the induced
toroidal plasma rotation due to the NBI torque [360].

Concerning the role of the T, /T; ratio in maintaining the
GAM, or not, up to the L—H transition, Watari [99] predicted
that the GAM damping rate should be smaller for T, > T;.
This appears to be supported by results from JIPP T-IIU in
ohmic heated low density plasmas—a condition where T and
T; decouple and T. > 37; [36]. Similarly they also observe
very intense core GAMs and weak ZFO when | < T./T;
[329-331]. There are similar observations in AUG at low den-
sities with strong ECR electron heating where the GAM con-
tinues through the I-phase (see below) up to L—H transition
[306].

During ohmic and NBI heated discharges in TUMAN-3M
the GAM observed using HIBP in preceding L-mode some-
times continues into the H-mode, only decaying ~ 1 ms after
the L—H transition, as shown in figure 119, with a frequency
dropping from 30 to 20 kHz with a notable anti-correlation
between the GAM amplitude and the higher frequency f >
foam turbulence level. In other similar discharges, however,
the GAM ceased some ~1 ms before the transition [332,
333]. In TUMAN-3M the GAM (4.5 kV m™!) is localized
to just inside separatrix while in FT-2 the GAM appears is
global, extending to the half minor radius with an amplitude
(15kV m’l)—exceeding the mean E; [604]. The L-H transi-
tion in TUMAN-3M was always preceded by an intense series
of GAM bursts (not an I-phase) of short <3 ms duration with
individual GAM bursts of 0.2—1.0 ms, during which the GAM
frequency either falls (HIBP) [333] or remains constant (DR)
but with modulated amplitude [335]. Despite the strong GAM
in FT-2, no self-sustained H-mode could be formed.
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Figure 119. HIBP ¢ spectrogram of GAM evolution across low
density 19 ~ 1.5 x 10" m—>, ohmic L—H transition in
TUMAN-3M. Adapted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Technical
Physics Letters, [333], Copyright 2012.

A simple one-dimensional numerical model of the density
profile evolution with GAM induced radial E; shear, developed
by Askinazi er al [428, 605, 606], suggests that if the GAM
amplitude and burst duration overcome a certain threshold
then the peripheral shear is sufficient to push the plasma into
an H-mode. The model predictions were compared with the
GAM measurements in TUMAN-3M, and, using experimental
values of the GAM wavelength and magnitude the transition
appeared reasonable. The TUMAN-3M and FT-2 experimen-
tal configurations were also modelled using the ELMFIRE GK
code. With the GAM modelled as a time and space-localized
travelling wave an L—H transition occurs in TUMAN-3M
if the GAM amplitude or duration exceeds certain thresh-
olds—which depend on the plasma parameters, principally 7;
[428]. In FT-2 the GAM could not promote an L—H transition,
even with a higher mean E; shear value and double the GAM
amplitude and duration.

18.3. I-phase and LCOs

At heating powers below those normally required for the toka-
mak L—H transition the plasma may enter an intermediate
state, often termed dithering [607], IM-mode [608] or (inter-
mediate) [-phase [306]. Unlike the dynamic L—H transition
the I-phase can be maintained as a non-evolving steady-state
condition with an edge E; well depth between L and H-mode
and enhanced energy confinement times above that of compa-
rable L-modes. At densities associated with the low-density-
branch of the L—-H power threshold, cf figure 3, the I-phase
is characterized by a periodic (few kHz) modulation or bursts
of the edge turbulence and E; shear in the form of a LCO.
Confirmed I-phases have been observed in multiple devices;
TJ-11[609], AUG [306], DIII-D [610], EAST [365, 611, 612],
HL-2A [356, 544, 613], Globus-M [385, 614], JFT-2M [323],
COMPASS [615]. Similar phases were also observed in the
H-1 heliac where the GAM appears to play a role in L-H
transition together with the mean E; [37, 436].

In AUG low density I-phases the GAM appears to play an
role in sustaining the limit-cycle. As shown in figure 120 a
cycle starts with a rising turbulence level crossing a threshold
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Figure 120. (a) Instantaneous E. showing GAM oscillation within
I-phase bursts and (b) smoothed E; and turbulence level Sp showing
(1) rising turbulence, (2) threshold, (3) GAM, and (4) turbulence
suppression in AUG. Adapted figure with permission from [306],
Copyright (2011) by the American Physical Society.

which turns on an intense GAM across the narrow pedestal
region with an enhanced mean E; well. The GAM shearing
begins to suppress the turbulence below a threshold value
turning the GAM off. The LCO repeats with typically 50%
duty cycle. With increasing NBI power the V p driven equilib-
rium velocity shear grows and overtakes the GAM shearing,
at which point the GAM decays [306] and the H-mode edge
barrier forms. The GAM shearing rate within the I-phase LCO
bursts is substantially stronger than the mean LCO E; shear-
ing. With increasing density the LCO frequency and duty cycle
decreases and the bursts acquire a more ELM-like nature [616,
617].

Similarly in Globus-M a QC intermittent L-mode GAM
oscillation transitions to LCOs with gradual increasing GAM
amplitude (up to 100%), followed by sharp amplitude decrease
and disappearance at the H-mode transition [385]. The GAM
oscillations were accompanied by fast changes in D,, emission
which were attributed to density oscillations at the GAM fre-
quency with an m = n = 0 form, and speculated could be due
to fast local suppression of turbulent diffusivity caused by the
GAM flow shear.

In DIII-D with co-injection NBI power close to the L-H
threshold also leads to the formation of an I-phase with a
~2 kHz LCO with a similar structure as in AUG, however, the
~20 kHz GAM observed in the preceding L-mode appears to
be suppressed [610]. Here, it was inferred that it is the zonal-
nature of the LCO (2-3 cm wide radially localized with high
toroidal coherence), or more precisely, the flow shear due to
the action of the LCO that is the important factor.

First reports from HL-2A report the absence of a GAM in
the L—H transition [544, 613, 618] but a possible ZFO dur-
ing the initial LCO (with bicoherence at 2—3 kHz indicating
nonlinear coupling). However, later studies of the GAM/ZF
behaviour through the L-I-H transition, show the GAM
decaying slowly during the I-phase, as seen in figure 121
[356]. Together with bispectral analysis indicating a coupling
of the GAM via the background turbulence to the LCO, this
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Figure 121. (a) Spectrogram of E, fluctuation, (b) E; power
spectrum in L-mode at 537 ms with GAM and (¢) in I-phase at
551 ms with coexistence of GAM and LCO in HL-2A. Reprinted
from [356], with the permission of AIP Publishing.

suggested energy flowing from the GAM to the LCO, which
facilitated the transition!

The LCO behaviour reported in EAST show low frequency
2 kHz flow oscillations prior to the L—H transition at marginal
power and gq5 ~ 3—4 [365, 611]. Although at these low gqgs
values GAMs are not usually observed in EAST. Bicoher-
ence analysis also revealed a direct coupling between the edge
turbulence and E; oscillations below 4 kHz. Reviews of the
LCO/I-phase phenomena [619, 620] conclude that a burst of
E, shear initiates the final I-H transition [620].

In the case of JFT-2M, HIBP measurements show the for-
mation of bursty LCOs (4.5 kHz, m = 0) with NBI heating
(with edge T; ~ T.). Similar to the HL-2A case, the 15 kHz
GAM was reduced during the I-phase prior to the (low density,
low g95 ~ 2.9) H-mode transition [323, 324]. However, inter-
estingly, for JFT-2M the measured RS was smaller than that
required to accelerate the flow during the LCO which suggests
that the LCO flow modulation in JFT-2M is not turbulence
driven.

In an analytic study of the GAM contribution to LCOs it
was proposed that the time varying RS can excite off-resonant
GAMs within the LCO burst—as per AUG observations. The
process of off-resonant excitation of GAMs is where the exci-
tation frequency is far from the natural GAM frequency [621].
From the model the off-resonant GAM oscillates not at the nat-
ural GAM frequency but at the excitation (i.e. LCO) frequency.
For certain conditions the velocity contribution of the GAM
can be amplified, adding to the velocity shear of the LCO.
In the case of the JFT-2M conditions the off-resonant excited
GAM was predicted to be small and thus plays only a limited
role, consistent with observations [324].

In the early 2000s a series of simple 0D predator-prey
(PP) type models were introduced to describe the nonlin-
ear dynamics of coupled (stabilizing) ZFs and (driving) DW
turbulence [622—624]. The models universally display state
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Figure 122. Time traces of D, and Hog plus u flow spectrogram across an L—H transition in EAST, with ny ~ 3 x 10" m—3, qos ~ 5.9
and ~2 MW wave heating. Reproduced courtesy of IAEA. Figure from [42]. Copyright (2018) IAEA.

transitions with critical thresholds in increasing drive, from
stable flow/turbulence oscillation first to a bursty LCO then
to chaotic behaviour. With appropriate parameters the mod-
els could reproduce several DIII-D experimental observations.
They concluded that transient RS driven ZF/GAMs could
trigger the L—H transition [624].

The PP model was subsequently developed and compared
with global Landau-fluid simulations of ITG turbulence, which
showed intermittent transport events associated with radially
propagating GAMs near to critical gradient regimes [146];
and later to study the role of the GAM velocity shear feed-
back-loop in the L—H transition [144]; a 0D model with two-
predators (ZF and GAM shearing actors) led to multiple states
(ZF only, ZF with GAM and GAM only) where coexistence,
mode competition and a sequence of transitions are obtained
[594]. A 1D model with two-predators and one-prey was used
to study the spatial-temporal evolution of the L — I — H-mode
transition [625].

Many experimental results are seen to be consistent with
such PP models with comparative measurements from HL-2A,
DIII-D and EAST with GAMs and LCOs [626] and through
the L—H transition in C-Mod [599]. In the case of C-Mod
measurements of RS using GPI a transfer of nonlinear kinetic
energy from the turbulence into the ZF via RS was obtained,
sufficient to explain the initial turbulence reduction. The time
sequence of the transition was as follows: first a peaking of the
normalized Reynolds power, then a collapse of the turbulence,
and finally a rise of the diamagnetic electric field shear as the
L—H transition occurs. Measurements were compared with a
one-predator, one-prey model which explicitly retains the RS
flow drive [599]. A fast, forced bifurcation of turbulence and
transport in electrostatic nonlinear GK xGc1 simulations [627]
confirmed the underlying assumptions of the PP model, except
that ion-orbit loss mechanisms were also critical to the bifurca-
tion and work together. A synergy between RS and orbit-loss
forces may help to reconcile observations that ascribe the L-H
transition to orbit-loss, or neoclassical effects, or to the role of
turbulent RS.

18.4. H-mode

Until recently there were no reports of GAM observations in
high confinement H-mode conditions. The GAM’s absence is
generally attributed to reduced nonlinear drive and strong sup-
pression of turbulence in the edge E; shear region. However,
it is also known that the edge turbulence can recover in H-
modes to almost L-mode-like levels due to profile steepening,
cf [628]. This effect appears to be supported by recent GAM
observations in natural ELM-free H-mode conditions in the
EAST tokamak.

As shown in figure 122 [42] the GAM initially disappears
just before the spontaneous L—H transition as the turbulence
level collapses—as is generally observed in many devices.
However, in some discharge conditions with dominant RF and
ECH heating the turbulence level recovers in the edge, and,
when exceeding a certain value the GAM reappears with a
higher frequency and a stronger intensity (and larger bico-
herence) than in the preceding L-mode. This is attributed to
the steeper H-mode edge gradients driving the turbulence to
higher levels. In addition the GAM radial structure is seen to
change from a wide continuum to a radially narrow eigenmode
close to the separatrix. During this ELM-free phase the GAM
is accompanied by an edge coherent mode. With the subse-
quent onset of ELMs the GAM is then diminished. There are
hints of residual GAM bursts during the ELMy phase.

Experiments in H-1 [403, 404] report a strong GAM shear
oscillation prior to an L—H transition [436], as well as a ZF
sustaining the transport barrier once in H-mode [629] via
spectral condensation.

H-mode confinement can also be induced with edge DC
biasing. As noted, in section 11.4.2 several devices report the
formation of a ZFO in the near edge region as H-modes form.
In some cases these appear to be transitory, in others they are
more persistent. A particular case is the steady-state ELM-
free H-mode induced by positive biasing in J-TEXT where the
GAM intensity was enhanced around the radial location of the
edge biasing [390]. However, coinciding with the increased
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edge Vn, in the H-mode there is a strong reduction in local
edge turbulence as well as the radial particle flux I'.(f) (over
preceding ohmic levels), particularly around the GAM fre-
quency. In some discharges the GAM was found to take the
dominant role while in others it was replaced by an f < 2 kHz
ZFO. The GAM and ZFO never appeared together with some
form of competition evident. This ZFO vs GAM exclusive-
ness is consistent with observations during L—H transitions in
various devices.

In either case an enhanced ZFO or GAM (via stronger gra-
dients) in the H-mode means enhanced drive via non-linear
coupling with the consequent implication is that it is not the
overall level of edge turbulence per se—particularly the long
wavelength fluctuations which are more closely associated
with radial transport—but the short wavelength turbulence
that is important to the ZFs. The GAM shearing can promote
energy movement to the high & turbulence, as well as impact-
ing the turbulence cross-phases, and thus the transport. This is
an area that requires further investigation.

ELMs are an inherent feature of H-modes with steep edge
pressure gradients and are often linked with the destabiliza-
tion of ideal peeling—ballooning modes. During the repetitive
ELM cycle the edge transport barrier/pedestal collapses back
towards L-mode conditions. During such intra-ELM phases
the formation of edge GAMs might occur. This has not been
studied experimentally, but the role of edge ZF/GAM:s in the
pedestal collapse has been modelled using a non-linear three-
field MHD model in the BouT++- code where bursts of strong
zonal vorticity together with geodesic curvature coupling are
observed to drive GAM oscillations [630]. The model results
suggest that compound ELMs will be accompanied by the
strong excitation of GAM perturbations leading to a sequence
of smaller secondary pedestal crashes.

Finally, in the more general context of transport barriers,
in CHS a causal link was suggested between the amplitude of
a core SZF which increased with the formation of an inter-
nal transport barrier (ITB) and higher frequency E; fluctuation
components which decreased [398].

18.5. I-mode and the weakly coherent mode

The I-mode is an ELM-free improved confinement regime
observed in some tokamaks, notably AUG, Alcator C-Mod,
DIII-D and more recently EAST. When operated with an ion
VB x B drift direction away from the X-point or field null
of the last closed flux surface the H-mode power threshold
is twice that of the favourable direction [631]. The I-mode is
characterized by an H-mode like temperature (energy) barrier
but an L-mode like density (particle) transport barrier. While
ELMs are absent, due to the weaker edge pressure gradient,
they are replaced by a weakly coherent mode (WCM) in the
density and magnetic fluctuations (f ~ 100-300 kHz) located
around the temperature pedestal top—which is thought to
regulate the particle transport [377].

In Alcator C-Mod the GAM appears to be a key component
in the I-mode dynamics. As shown in the example in figure 123
[377], the I-mode forms when the GAM becomes accessible,
i.e. the non-linear drive exceeds the collisional damping, and
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Figure 123. Time trace of (a) non-linear GAM drive (black) and
collisional damping (red), (b) poloidal flow spectrogram and (c) low
k density fluctuation spectrogram over L—1-H transition in C-Mod.
Reprinted from [377], with the permission of AIP Publishing.

terminates when the GAM is either damped-out by a transi-
tion to a high density L-mode, or when the mean velocity shear
becomes sufficient to suppress the long wavelength edge turbu-
lence and promote a transition to H-mode. Similar results were
obtained in AUG I-mode conditions where the preceding (high
density) L-mode phase shows no strong GAM (collisionally
damped or nonlinear drive too weak), but appears when suf-
ficiently driven in the I-mode phase, that is when vy, > 7o
[307].

Non-linear studies using cross-bispectral measurements
show that the GAM is coupled to the WCM with energy mov-
ing from the WCM peak to the GAM [377], and then through
scattering back into lower and higher frequencies, i.e. creat-
ing the broadening of the WCM [307]. The actual origin of
the WCM is, however, currently unknown. It was speculated
[377, 379] that a geodesic Alfvénic mode resulting from cou-
pling of the ZF, not only to the pressure sideband, but to global
Aflvénic modes could be involved, however, this interpretation
is not universal [307].

On EAST a strong GAM is reported in the preceding
L-mode [369] which is then reduced and gradually supplanted
by a low frequency (5—-10 kHz) oscillation during the I-mode.
This oscillation is observed in density, electron temperature,
and indeed in nearly all diagnostics. Although the GAM was
reduced at the WCM peak location, it may still be present
at other radial positions, which were not probed. The low
frequency oscillation did not appear to conform to either a
LCO nor dithering. Bicoherence analysis did show significant
non-linear three-wave coupling between the ambient/
background turbulence and both the low frequency oscillation
and WCM at the WCM location. Together with measurements
of its toroidal symmetry this suggests the low frequency
oscillation could be a ZFO. For the EAST conditions it seems
that this “ZFO’ may replace the function of the GAM in the
C-Mod and AUG I-modes. There are currently no reports of
ZF activity during I-modes in DIII-D, nor has the WCM been
detected [632].
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In summary, the L—H transition is linked with a spatially
localized spike in RS, often accompanied by enhanced GAM
or ZFO activity. The intermediate I-phase which can form
between the L and H-mode conditions is associated with a
LCO involving periodic enhancement of GAM or ZFO veloc-
ity shearing and turbulence suppression. The GAM can briefly
reappear in H-mode as the turbulence rebuilds with steepened
edge pressure gradients. In the high density improved con-
finement [-mode the GAM was linked with a weakly coherent
edge mode and appears in moments when the nonlinear drive
exceeds the collisional damping yni. > Ve

19. Conclusions and outlook

ZFs are an intrinsic consequence of plasma turbulence and
form an indispensable element in the control and mitigation of
turbulent transport in magnetic confinement devices. GAMs
(in all their various guises) are the oscillatory branch of the
ZF phenomena and arise naturally from the geodesic magnetic
curvature and compressability of poloidal flow in toroidal sys-
tems. In tokamak devices GAMs appear in the confined plasma
edge region making them particularly amenable to experimen-
tal investigation by well developed diagnostic techniques. Not
least due to the role of GAMs in mitigating turbulent edge
transport, this has triggered great interest from experiment,
theory and simulations, and indeed has lead to a phenomenal
number of publications in recent years. The topic has reached
a sufficiently mature state to warrant a dedicated and compre-
hensive review of the experimental and theoretical develop-
ments. Since the first major review of ZF and GAM physics
[53] there have been tremendous advances on several fronts,
which are summarized in the following. However, this progress
does not mean that GAMs are now fully understood, nor that
the topic has stagnated—to the contrary the field remains very
active with new results proliferating every month. There is still
much to be investigated. Some of the unresolved issues and
opportunities for future research are also outlined below.

19.1. Summary

19.1.1. Hierarchy. The GAM is part of a broader hierarchy of
flows in toroidal devices, as illustrated in table 17. Both mean
neoclassical and nonlinear turbulence driven stationary (zero-
mean-frequency) zonal flows (SZFs) are subject to strong
poloidal damping with an incompressible plasma response.
For the standard natural w; GAM (also driven by nonlinear
turbulence) the flow resonates with passing/transit ions at a
frequency that elicits a compressible response, and thus a pres-
sure sideband. In between the SZF and the GAM is a branch of
low frequency ZFO generated by various linear mechanisms,
which may have a compressible or incompressible response
depending on their frequency. The GAM is basically a bulk
plasma pressure phenomena. FLR and FOW effects add dis-
persion, positive due to the ions, and negative due to the
electrons, which partially offsets the ion positive dispersion
effects. Dispersion leads to radial propagation of the GAM,
in which the radial profiles of plasma parameters also play
important roles. Adding fast ions initially modifies the natural
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GAM behaviour, but with sufficiently energetic particles (EPs)
a new branch opens to form the EGAM with frequencies that
typically chirp around the standard GAM frequency.

19.1.2. Zonal flow oscillations. In realistic tokamak plasmas
drift effects due to finite diamagnetic gradients will also mod-
ify the GAM dispersion relation. For a density gradient Vn
this adds a frequency correction term wy,, while for a tem-
perature gradient VT the dispersion relation acquires a second
low frequency ZFO root w_. For w, = 0 the ZFO degenerates
into the stationary zero-mean-frequency SZF. Similar low fre-
quency roots are destabilized by pressure anisotropy p, # pj
or by plasma rotation v. In each case an increasing degree of
asymmetry in p, Vp or v, raises the mode frequency of each
root. Trapped ions (typically within toroidal and helical mag-
netic field ripple) can drift radially creating a radial current and
thus also drive a low frequency flow oscillation with an acous-
tic and magnetic configuration scaling dependency. These kind
of ZFOs are predicted and simulated, but not yet (conclusively)
observed experimentally. Experimental validation is eagerly
awaited.

19.1.3. ZFO/GAM transitions. While the zero-frequency SZF
elicits an incompressible response where poloidal flow pertur-
bations are compensated by a toroidal flow, the GAM response
is compressible with a pressure sideband compensating the
flow perturbation. For the ZFO, if its frequency is sufficiently
large, w_ > v;/€7, such as in the core of a well-heated (v; <
1 kHz) or strongly rotating tokamak plasma, then it will
acquire an m = 1 pressure sideband and convert to a GAM,
and thus also be subject to Landau damping. Thus, in realis-
tic fusion plasma conditions it is questionable if a pure SZF
can exist. Although ZFOs have been observed experimentally
there is a critical absence of sideband structure measurements
to confirm its ZF or GAM nature in specific conditions. Here,
more experimental data would be valuable—for example elu-
cidation of the ZF to GAM transition threshold and the onset
of sideband formation with rotation would seem straightfor-
ward. However, around the transition where the response may
be complex with a combination of parallel flow response and
pressure sidebands, it may be challenging to clearly distinguish
between a ZFO and a GAM.

19.14. Localization. The GAM is susceptible to parallel ion
Landau damping, which generally restricts it to the high ¢ toka-
mak edge or the low ¢ stellarator core regions, as well as to
ion—ion collisions which damp it at high densities and/or low
temperatures in the very edge. On the other hand the SZF is
predominantly collisionally damped and thus tends to be core
localized. Nevertheless, there are observations of core GAMs
appearing under conditions where T, /T; is large leading to
reduced Landau damping. EP driven GAMs also tend to be
localized around the EP beam interaction region.

19.1.5. Dependencies. The basic GAM behaviour is well
established by experiment. Its frequency scales acoustically
with wgam = Ges/Ry where G is a shape dependent factor
of O(1). Generally, modelling and simulations are advanced,
drawing from both MHD/fluid and GK models. Here, the
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basic dependencies have been identified and quantitative com-
parisons with experiments made—in several specific cases
(mostly circular, low beta, etc) with good agreement. In more
realistic configurations with shaping the agreement is promis-
ing, but not fully conclusive. For example, current analytic
models and numerical simulations do not fully treat the pres-
ence of a field null (X-point). Numerical simulations using
realistic experimental equilibria have come closest with grids
reaching out to p ~ 0.97, but the GAM behaviour close to the
seperatrix is still not properly resolved. There are also several
other areas requiring further investigation. The sound speed c;
is a function of the ion adiabatic index y; and effective mass
megr. Experiments suggest that y; may vary between 1 (isother-
mal) in the core to 7/4 (dissipation-free adiabatic) in the edge,
depending on plasma conditions, etc. However, the param-
eter variation is not firmly established. Another unknown
is the effect of nonlinear GAM self-interaction where the
GAM amplitude may pull its frequency either up or down by
potentially significant amounts. Current modelling offers con-
tradictory results. Finally, the plasma size impacts several
parameters. The inverse aspect ratio ¢ = a/R enters weakly
in GAM frequency models, while the major radius Ry more
strongly with an inverse wgam X ¢s/Ry scaling. Thus in larger
fusion devices, e.g. ITER and DEMO, this Ry scaling may off-
set the effect of stronger plasma heating. Lowering the GAM
frequency may be seen as desirable due to possible more effec-
tive velocity shearing of turbulence structures. The plasma
minor radius a also enters into the so-called mesoscale which
experimentally appears to set the GAM zonal width A, ~
\/aps. Wider zonal layers may be expected in ITER with con-
sequent wider turbulence shearing regions. To validate such
dependencies requires a comprehensive multi-machine com-
parison from small to medium to large sized machines, and
from low aspect ratios to tight spherical tokamaks. To be use-
ful, such a database will need to be comprehensively populated
with full sets of parameter profiles.

19.1.6. Sidebands. The n =m = 0 flow/potential and the
n=0,m =1 density component of the pressure sideband
structure have been confirmed experimentally. There are also
direct measurements of a 7. component as well as suggestive
a,r fluctuation cross phase angles which indicate a signifi-
cant T, role in the pressure sideband. 7; fluctuations at the
GAM frequency need further investigation. The de-phasing
of figam and Tgam through shearing action may also be an
important factor in the GAM behaviour. Magnetic sidebands
with an appropriate m = 2 dominant poloidal structure have
been observed experimentally. With strongly shaped equilibria
the poloidal structure takes a more complex form with addi-
tional harmonics and poloidal asymmetries/tilting. There are
some indications that strong edge GAMs may couple across
the LCFS or separatrix to the open-field lines of the SOL,
driving parallel particle fluxes at the GAM frequency. The
potential impact on divertor fluxes is important and thus further
investigation and validation is warranted.

19.1.7 Damping. The magnitude of a GAM is essentially set
by the drive and damping rates. There are extensive measure-
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ments and validation studies of the linear collisional and non-
linear Landau damping with sophisticated theory/modelling
predictions. Currently the overall agreement is far from per-
fect. Less studied is the role of continuum damping and phase-
mixing (PM) due to finite temperature gradients. Here, pre-
dictions are advanced but, as yet, no experimental comparison
studies have considered this effect.

19.1.8. Nonlinear turbulence drive. The existence of three-
wave coupling between ambient high-frequency turbulence
and the various low-frequency ZF modes has been demon-
strated via bicoherence analysis of experimental and numer-
ical simulation signals. Experimentally the total (frequency
summed) bicoherence b2, as a measure of the total nonlin-
ear coupling, scales with the GAM amplitude Agam, con-
sistent with Reynold stress (RS) (turbulent structure tilting)
being the dominant drive mechanism. Nevertheless, observa-
tions of modulation of the turbulence strength and radial cross-
field particle transport at the GAM frequency suggest that
dynamic flow shearing (DS) also plays a significant role in the
GAM-—turbulence interaction.

19.1.9. Energy flow. The turbulence energy flow has both
spectral and spatial aspects. Using a variety of data analysis
techniques, experiments support the standard picture of energy
moving from the high-frequency/short-wavelength turbulence
to the low frequency m = 0 ZFO and GAM flow oscillations.
There is also evidence that the GAM and ZFO compete for
the turbulent energy transfer—which one dominates appears
to depend on specific plasma/device conditions. Spatially the
Agam follows the Z72E radial profile with both showing max-
ima aligning with the location of maximum turbulence, i.e.
max V p(r) pressure gradient and minimal mean (equilibrium)
velocity shear Vg, 5. This is supported by measurements of
the flow ¥ and turbulence 72, cross-phase a = 0/, implying
modulation of the GAM amplitude consistent with DS. Thus
the GAM is driven spatially where the turbulence energy is
injected. As the GAM propagates away from the radial max-
ima (both inward and outward—depending on conditions)
the o — 7/2 implying frequency/phase modulation, consis-
tent with GAM velocity shearing, and thus turbulence modera-
tion either side of the GAM peak. Spectrally, the impact of the
ZF/GAM shear flow is to help break up the low-k density tur-
bulence structures and thus move energy back to the higher-k
turbulence region, and dissipation.

19.1.10. Nonlinear GAM self-interaction. ~Several effects aris-
ing from GAM nonlinear self-interaction have been predicted
by theory. These include a frequency pulling effect corre-
lated with the GAM amplitude. Benchmarking studies of
the GAM frequency show unresolved discrepancies between
experiment and theory/model predictions, which at least leave
room for nonlinear effects. More precise studies on the GAM
frequency—amplitude interrelation are required. Another non-
linear RS self-interaction effect is the creation of higher GAM
harmonics and SZFs. These are suggested by theory and
appear at least to be partially supported by experiment. This
opens the possibility of a particularly interesting concept of
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driving SZF/ZFOs, and thus impacting turbulent transport, in
conditions and regions where they would normally be damped.

19.1.11. Total GAM suppression. In plasma regions or con-
ditions with strong damping or weak drive due to below-
excitation threshold gradients, measurements indicate the
coherent GAM oscillation is replaced by an overall enhance-
ment of broad-band incoherent flow perturbations. This is not
inconsistent with theory where, even if the GAM resonance
is lost, the geodesic forcing still occurs at all frequencies.
In such cases the enhanced random velocity shearing might
still be a significant. Another factor is the width of turbulence
wavenumber spectrum. If the turbulence spectrum is narrowed,
i.e. the k-spectra cascade is truncated for whatever reason, then
the three-wave coupling condition may no longer be satisfied
for the GAM, leaving the turbulence energy to go entirely
into a low frequency ZFO. Further, the formation of strong
pressure gradients in the edge or ITB regions lead to strong
mean E x B velocity shearing—which experimentally also
appears to reduce the GAM. Further, corresponding steep edge
temperature gradients will also increase PM and continuum
damping and thus impacting the GAM existence in enhanced
confinement regimes. More detailed studies of the mean and
oscillatory flow shear interdependence in these conditions are
warranted.

19.1.12. Energetic particle GAMs. EGAMs form a direct
energy path from EPs to the turbulence. They cause radial
transport of the EPs, they may affect micro-turbulence by
their shear flow, and in addition they may heat ions directly
through the so-called GAM-channelling. Theory also indi-
cates potentially significant induced toroidal momentum (so-
called GAM momentum channelling)—as yet to be confirmed
experimentally. For fusion reactors, EPs resulting from fusion
products and EGAMs are particularly noteworthy subjects.
Hitherto, EGAMs are observed in low density plasmas where
the anisotropy in the velocity space of the EPs is sustained.
An outstanding question is whether EGAMs can be excited
in fusion reactor conditions at higher densities. Nevertheless,
there are strong indications that they can since the energy of
the fusion products will be much higher than the temperature
of the bulk plasma, and the slowing-down time will be longer
than in present plasmas. Further fusion grade experiments and
numerical simulations are expected.

19.1.13. External drive. While GAMs are primarily associ-
ated with turbulence or EPs, there are other mechanisms that
can also potentially drive GAMs. External drive techniques,
such as modulation of the temperature profile via localized
electron cyclotron resonance heating, or via vertical kicks
to the equilibrium using external magnetic perturbation coils
have been proposed, but as yet have not proven to be effec-
tive in experiments. On the other hand, modulation of the edge
E\/potential via limiter or probe biasing has been shown to be
effective in amplifying GAMs in small machines. An external
control of the GAM magnitude would offer a potential mecha-
nism for influencing the edge transport and confinement, but its
application to fusion grade experiments remains an interesting
challenge.
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19.1.14. Radial propagation. With the inclusion of dispersion
effects the GAM is expected to propagate radially. Early the-
ory predicted an outward propagation, down the T, gradient.
However, experiments as well as numerical simulations show
the GAM to propagate both inward and outward. In conditions
where a clear Agam peak or drive region can be identified,
the GAM appears to propagate away from it. In particular,
observations of the local GAM k, and flow-turbulence cross-
phases reversing sign across the GAM maxima appear conclu-
sive. Nevertheless, the presence of boundaries (separatrix and
pedestals) may also lead to standing-wave structures forming.
In general, the description of the GAM as an eigenmode with
a local k; is expected to be insufficient, in particular in elon-
gated and up—down asymmetric plasma shapes and with large
radial gradients of plasma parameters. A radial acceleration of
the GAM is also predicted, but as yet not measured. Propagat-
ing GAMs have also been indicated as a possible mechanism
for density turbulence spreading and radial propagation via so-
called turbulence trapping effects. These remain fruitful topics
for future research.

19.1.15. Continuum vs eigenmodes. Theory predicts the
GAM may take one of several forms: (i) a radial contin-
uum with wgam o ¢s, described by fluid or kinetic models
as a singular narrow mode with a frequency scaling with the
local parameters; or (ii) a radial eigenmode where w ~ const.
formed by profile gradients with PM, FOW (radial drifting of
orbits) or FLR (temperature) effects and radially propagating
GAM-packets, or (iii) a global eigenmode (GGAM) formed
by the GAM coupling to a non-localized m = 2 magnetic
sideband and/or electrostatic m = 2 modes around an off-axis
maxima in the continuum frequency. Experimentally all three
forms are observed. Generally, with increasing temperature the
continuum breaks into one or more extended rings (staircases)
of frequency plateaus and amplitude peaks. Plateau widths
are in the mesoscale range but scale with the profile scale
lengths Ly. The discrimination of small staircase steps from
a pure continuum is an issue of diagnostic and measurement
resolution. EGAMs always display a global nature, but tur-
bulence driven GGAMs are more rare. Radially overlapping
multiple eigenmode GAMs have also been observed experi-
mentally. In such cases the eigen-frequency matches or crosses
the continuum frequency at the GAM amplitude maxima. The
complex interplay of the GAM generation and sources, profile
effects, such as damping due to propagation, and the formation
of (especially multiple) eigenmodes are not yet well under-
stood. In particular the GAM width is poorly predicted. On the
measurement side the exact mechanism of the GAM genera-
tion and its spatial localization is also not yet established over
the full range of experimental conditions. Much more work is
required here.

19.1.16. Transport. The GAM impact on transport and con-
finement is a critical issue. Primary is the GAM contribution
to the velocity shearing of turbulent radial structures—moving
energy from low-k to high-k—in which the GAM shearing
rate, strength and radial extent are relevant. Spatially the GAM
shearing appears not at the GAM radial maxima, but to either
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side as the GAM propagates. Concerning the cross-field parti-
cle transport flux T', = (Ey7.) /B, the GAM modulates the high
frequency 7. turbulence and the relative turbulent E — n cross-
phase. Transport modulations in turn may drive the GAM
through DS. Much of the radial transport appears in the form of
intermittent bursts, a feature commonly associated with near-
ness to criticality. Criticality is also apparent in the onset Vp
threshold for the GAM drive—observed both experimentally
and theoretically. It has also been noted that zonal structures
may trigger NTMs and radial transport avalanches leading to
intermittent heat flux events. The role of GAMs in promoting
or hindering avalanches and streamers (eigenmode GAMs vs
velocity shearing, and the type of edge turbulence, i.e. ITG vs
TEM-like) requires further investigation. With EGAMs there
are other potential effects including bulk ion heating (GAM
channelling) as well as turbulence wave-trapping and spread-
ing. These also require further experimental investigation.

19.1.17 GAM modulation. A related transport effect is the low
frequency temporal modulation of the GAM intensity and fre-
quency. The larger machines generally show small to moder-
ate (50%) modulation of the GAM amplitude at a few tens
to hundreds of Hz, often synchronized with a modulation or
chirping of the GAM frequency—which is highly suggestive
of modulation by a ZFO. In smaller devices the tendency is
to a more bursty GAM nature with short, intermittent bursts of
GAM activity lasting a few GAM cycles. A particularly salient
observation is that the GAM modulations/bursts become phase
decorrelated in time, that is each burst is a new GAM. Compar-
ing the GAM flow auto-correlation time 7 and spectral width
A fox gives insights in the GAM drive and decay rates (lin-
ear and nonlinear damping). In most cases the GAM dynam-
ics appear to be dominated by the damping rate rather than
the turbulence dynamics. However, the database of observa-
tions is not conclusive. An intermittent turbulence drive on the
other hand would be more consistent with the bursty GAM
observations and the temporal de-phasing.

19.1.18. Confinement modes. A much discussed topic is the
role of the GAM/ZFO velocity shear in assisting the mean
E: x B flow shear to trigger a high confinement H-mode bifur-
cation. The evidence for such a role is compelling. Of less
importance perhaps is whether it is a GAM or a ZFO, since the
predominance of one or the other, their mutual exclusiveness
or competition or transformation from one to another, appears
to be machine or plasma dependent. Once in H-mode the edge
turbulence reduction and strong mean equilibrium velocity
shearing generally reduce the GAM to below detection levels.
Nevertheless, with sufficient drive/suitable conditions GAMs
are observed to reappear in weak, as well as bias induced ELM-
free H-modes. Of particular interest are numerical simulations
showing GAMs forming in the intra-ELM cycle where the
plasma edge momentarily falls back into L-mode with con-
sequent increased edge turbulence. This has yet to be studied
experimentally. The possibility of GAM shearing playing a
role in the ELM cycle (an LCO similar to the I-phase) is a
question of time scales. Nevertheless, an interesting topic for
investigation. For the improved confinement I-mode regime
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the GAM appeared to be critical in some devices in main-
taining the weakly-coherent-mode and the favourable edge
transport conditions. However, not all devices are in agree-
ment. More measurements, particularly of the full edge flow
spectrum, are required to confirm the role of GAMs or ZFOs.

19.1.19. Non-axisymmetric. Innon-axisymmtric field config-
urations, such as stellerators and helical devices, an extra level
of complexity is added to the GAM dispersion relation. Never-
theless, the GAMs observed to-date are qualitatively similar to
those in tokamaks. There are some stellarator specifics, such as
the loss of the up—down asymmetry in the sideband—which
now rotates with the helical pitch. The intrinsic nonambipo-
larity in non-axisymmetric systems leads to electron and ion
roots. The switching of roots changes the E; profile and shear-
ing—and tentatively appears to impact the ZF behaviour.
Toroidal rotation is distinctly slower in stellarators and con-
sequently has a lesser role in the GAM/ZFO behaviour. Not
least is the stronger edge ripple and the formation of trapped
particle driven ZFOs and GAMs. Observations of such modes
and their sideband structure are eagerly awaited, and likewise
for evidence of the predicted n # 0 modes. Still at an early
stage of understanding is the formation of GAMs by magnetic
islands, and GAM entrainment by external magnetic pertur-
bations. Notably missing are 3D measurements of the GAM
mode structure in these conditions.

19.2. Outlook

In the previous section various specific issues, in terms of
missing or desirable new measurements and analytic theory or
numerical simulations, were highlighted. In this section more
general issues concerning future directions in the field of GAM
studies as well as limitations and problems are discussed

e A range of high quality diagnostics have been used in the
study of ZFs, but, often lacking are comprehensive sets of
simultaneous measurements of the flow oscillations, their
structure (as well as their sidebands to confirm the ZFO
or GAM identity), together with high-k measurements of
the ambient flow and density turbulence, its properties
and structure. This is a demanding task experimentally. In
principle these diagnostic capabilities are currently avail-
able for the tokamak edge, but require work to deploy
together.

Improved diagnostic capability, particularly for detect-
ing GAMs in low turbulence core and edge conditions
is always desirable. For the core only HIBP is reliably
deployed. It is possible that significant ZFO/GAM activity
is being missed, as well as under reporting of the GAM’s
radial extent. Finer radial resolution may reveal more
staircase structures. Extending the existing, well devel-
oped edge diagnostic techniques to probing the difficult
transition region between edge and core is demanding,
nevertheless, it is here that the physics of ZFOs may be
advanced.

The GAM/ZFO role in the L to H-mode transition, as
well as a possible role in the ELM cycle was noted
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above. However, future tokamak fusion devices may oper-
ate in alternate ELM-free H-mode scenarios, as well as
so-called ‘advanced’ discharge scenarios with significant
core plasma current drive leading to enhanced ¢ and
steeper kinetic profile gradients, even to the formation of
ITBs. Such conditions maybe rather favorable for GAMs.
GAMs are a multifaceted phenomena which appear in dif-
ferent conditions. Many of the experimental tasks noted
above still require theoretical explanations/understanding.
Although analytical models are instructive and provided
insights on many GAM features and behaviour, they are
limited. The role of comprehensive nonlinear gyro-kinetic
simulations remains paramount.

ZF and GAM theories require better integration. The inter-
action, coupling and transitions between GAMs and ZFs
needs further study. Fundamentally it is all a question
of plasma rotation (poloidal and toroidal) which can be
stationary, stable oscillatory, with some linearly unstable
branches, and can be driven nonlinearly by drift wave
instabilities. The theory needs to address the role of com-
pressibility vs toroidal rotation in ZFs and role of trapped
particles (neoclassical effects) on GAMs.

Real confinement devices have complex geometries, such
as X-points and strong up—down asymmetries. Recently
there is renewed interest in negative triangularity shapes.
These configurations are very difficult to model analyt-
ically, while numerical simulations require particularly
demanding grid resolutions.

The coupling of GAMs into the SOL region is not
well understood theoretically. The impact of possible
GAM driven SOL flows on the divertors may be rather
important.

A related question is whether radially structured
SZF/ZFOs may form just inside the tokamak separatrix
in low collisionality conditions. Such ZFs could signif-
icantly affect the mean equilibrium E; x B flow shear
across the LCFS, with a consequent impact on L-H
transition physics. This is a question for both experiment
and simulations. Nevertheless, careful discrimination
between SZF/ZFOs and (p) diamagnetic flows, which
may result from avalanches, streamers and transport
events that have nothing to do with ZFs [53] is required.
In general, the role of ZFOs vs SZF needs thorough
investigation, both experimentally and numerically, par-
ticularly in conditions, such as strongly rotating core plas-
mas, where the ZFO may play the turbulence control role
mechanism rather than the SZF.

The topic of GAM/EGAM self-interaction, nonlinear and
phase-space structures, saturation and effects on transport
is an underdeveloped area of investigation.

Energetic fusion alpha-particle driven EGAMs are pre-
dicted to be critical features in the next step devices.
Fully understanding the EGAM drive and channelling
capabilities should be a priority topic.

The nature of the GAM eigenmode structure remains
unclear. Theory presents a series of models which are
not fully consistent with experiment. In particular, the
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eigenmode width is not well predicted. Further, there is
a need to understand the difference between ultra-wide
eigenmodes and the theoretical global GGAMs. Are the
structures determined by the drive and damping profiles
alone?

So far the GGAM has only been studied with MHD codes.
Global EM GK capabilities are required to extend these
studies to include, and kinetic effects, etc.

Finally, while many critical results have been obtained
on individual devices, full theory/simulation validations
requires detailed cross-machine comparisons. However,
these are hampered by poor reporting of the general mea-
surement conditions and basic plasma parameter pro-
files. The formation of well documented cross-machine
databases would greatly assist qualified parameter scaling
studies.

The experimental research on ZFs was once characterized
[53] as still in its youth. In the last years, advances in stud-
ies of GAMs as the oscillatory branch of the ZF phenomena
arising in toroidal systems, show that the field has advanced in
years to quite a maturity—but the topic is far from closed with
much to still resolve. GAMs offer many opportunities for basic
turbulence studies as well as nonlinear phenomena in general.
GAMs, both low frequency core (ZFOs) and high frequency
edge will remain relevant in progressing the performance of
current and future magnetic confinement devices.
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Appendix A. GAM as diagnostic

In principle, measurements of the GAM properties might also
be used as a diagnostic for other plasma parameters. Several
possible applications have been suggested, including:

GAM spectroscopy: for continuum GAMs, and at the spa-
tial peak of eigenmode GAMs where k. — 0 is predicted and
the eigen-frequency should align with the local GAM contin-
uum frequency, the GAM frequency may provide a measure
of the local ion sound speed cs. And, when combined with
additional information on the local T;, T. and n. Kkinetic
profiles the sound speed may then provide a measure of the
ion composition, i.e. the effective mass megr. This technique
was termed GAM spectroscopy [256].

Similarly, Alfvén spectroscopy using energetic-particle
driven modes has been adopted by measuring the frequency
and mode numbers of Alfvén eigenmodes, which are deter-
mined by the safety factor and the mass density [633]. For
example, the temporal evolution of the minimum of the safety
factor g,,;, in reversed shear configurations can be deduced
[634]. Since the EGAM is an acoustic wave the parameter
dependence of its frequency is different from that of Alfvén
eigenmodes (with a dependence on the mass density, but a
weak dependence on the safety factor). Thus from the simulta-
neous observation of Alfvén cascades and EGAMs it may be
possible to deduce g,,;,, and the mass density [70].

The caveat of course is the additional requirement of knowl-
edge of the plasma shape, as there are many parameters
that affect the natural GAM frequency in a realistic shaped
plasma. Nevertheless, in fixed geometry conditions, such as
in ITER, where the shape and g will be tightly controlled
parameters, GAM spectroscopy may provide valuable infor-
mation. Although in this case GAM frequency shifts might be
attributed primarily to mass changes, such as isotope ratios,
the role of impurity dilution (in a D, plasma) still needs to be
accounted for. For the EGAM, the influence of the velocity
space distribution of the EPs also needs to be considered.

q profile: in cases where a GAM and an ion acoustic mode
(IAM) exist simultaneously, then from the ratio between the
lowest frequency of the IAM (SW) wsw = ¢s/(gR,) and the
GAM frequency (which is not strongly dependent on g) one
might extract the safety factor of toroidal plasmas [635]. In
such conditions when both a GAM and an IAM may be
excited, for example in the plasma edge of tokamaks (high ¢)
where the IAM is expected to have a slower damping rate than
the ZFO, then bispectral analysis techniques can be used as an
indicator of the coupling behaviour for co-existing modes. In
the case of a coexisting GAM and a low-frequency ZFO (in a
rotating plasma), the respective frequencies are predicted to be
linked, e.g. fzro = 1/g+/3/14fGam [85], thus allowing the ¢
(profile) to be simply extracted from the frequency ratio.

Surface location: the GAM m = n = 0 mode structure and
narrow radial extent can be exploited as a means of identify-
ing the radial location (to an accuracy to a few gyroradii) of a
specific iso-magnetic surface through long-range-correlation
measurements of the flow perturbation [636]. Further, on the
assumption that the GAM exists only on closed flux surfaces
this may also be used as a rough locator for the tokamak last
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closed flux-surface or separatrix position (noting that the GAM
may be suppressed close to the separatrix due to increasing
collisionality) [322].

Appendix B. Data analysis methods

B.1. Bispectral analysis

Bispectral analysis is a well established technique for inves-
tigating nonlinear processes in turbulent systems, cf [528],
and can directly indicate three-wave couplings in plasma drift-
wave type turbulence, cf [529, 530]. Similar to the standard
(second-order correlation) cross power spectrum:

Po(f) = X(HY()

the general cross-bispectrum (i.e. third-order correlation) is
defined as

(B.1)

Bu:(fi, ) = (X(fDY(H)Z'(f3)) (B.2)

where X, Y, Z are the Fourier transforms of time signals x, y
and z with 3 = fi + f», and * the complex conjugate. The
angled brackets indicate ensemble (time) averaging. Note that
three-wave coupling is a wavenumber space phenomena k3 =
ki 4+ k,—when using the frequency space this assumes the k-
matching as a constraint [347, 637]. The squared bicoherence
and biphase spectra are further defined as

b2.(fi. 1) = |Bu:(fis £ (XU Y(f2)) {Z(f3))
(B.3)

exyz(fl ’ f2) - tan_l (Imeyz(fl ’ f2)/Re Bxyz(fl ’ f2)) .
(B.4)

For the auto-bispectra and bicoherence X =Y = Z [27]. In
the cross bispectrum the ordering of the signal triplet is
important. In GAM—turbulence studies common signal com-
binations include b7, (low—flow—density) or b}, , (poten-
tial—density—density). The choice depends on the model being
tested.

Two commonly used indicators of the nonlinear coupling
strength are the f3 normalized summed squared bicoherence
spectrum and the total normalized summed squared bicoher-
ence

br(f) = > B /NG (B.S)
f3=f1+/2

b3 =Y B(fi. ) /Nuaw (B.6)
fi 2

where Z72E (f3) gives a measure of the interaction of the match
frequency f; with all other frequency components, and the
total squared bicoherence b}, summed over all frequencies as
a measure of the total nonlinear activity [347, 530].

B.2. Energy transfer methods

The bispectrum is a real quantity which indicates the strength
of the nonlinear couplings within the turbulence, but not the
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direction of the energy transfer. For this other techniques are
employed.

B.2.1. Power transfer function. This technique developed by
Ritz [536] and modified by Kim [537] gives the nonlinear cou-
pling as well as the direction of the energy transfer between
different spatial scales. The method uses the Hasegawa—Mima
model (single-field turbulence description) [638] to give an
energy flow equation in the form

OP /Ot =~ v Py + ZTk(kl,kz),

ky.ky

(B.7)

where Py = (XiX[) is the spectral power of some signal x(k, t)
at wavenumber k = k| + k,. The equation is reformed and
solved for the fluctuation linear growth/damping rate v, and
the nonlinear energy transfer rate Ty(ki, k;), with the aid of
auto and cross power spectra (2nd-order moments), auto and
cross bispectra (3rd-order moments) and 4th order moments of
xx [537]. The method was first demonstrated on DIII-D data on
ZFs [639].

A similar derivation [538, 539] (assuming three-wave cou-
pling conditions k3 = k| + k; and f3 = f; + f,) was obtained
for the energy transfer function in the frequency domain

F(wi,w2) = [k(wr) + ke(w2)] Im (Eg(f1) Ec(f2) E{(f3))-
(B.8)
Here, (EypE.E}) is essentially the poloidal—radial flow
cross-bispectrum.

B.2.2. Kinetic energy transfer. This multi-field (more than
one vector field) method developed by Holland [279] takes the
continuity equation for an incompressible flow and reformu-
lates it in frequency space to give an expression for the evolu-
tion of the turbulence energy 9 (|fi.(f)|*) /Ot as the sum of a
linear and nonlinear terms involving a coupling parameter

To(f.f)) = —Re (AL()Talf — aite(f).  (B.I)
The parameter T is essentially a cross-bispectrum which
quantifies the rate at which energy is transferred between, in
this case density fluctuations (subscript n), at frequency f and
poloidal or radial (superscript o) density gradient fluctuations
at frequency f’, mediated by the poloidal velocity v,(f —
f") fluctuation at a particular spatial location. Holland also
recast T in terms of the cross-bicoherence and biphase spec-
tra (n.vyVyne) for poloidal (y-direction) velocity and gradient
fluctuations and shows their equivalence (with some nuances)
using experimental and simulation data. In standard bis-
pectral notation, T3(f1, f2) = —Re (n3(f3) vy(f1) Oyne(f2)),
where f3 = f; + f>. Another multi-field method using Fourier
transforms of the electron continuity and momentum equations
to give KET rates in the frequency domain results in a simi-
lar equation as Holland’s [640, 641]. For example, for density
fluctuations the transfer rate is given by

Ty (f3,. /1) = —Re (ni(f3) @.(f2) - V) ne(f1)) . (B.10)
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B.2.3. Amplitude correlation technique. A related method
proposed by Crossley [540] computes the time-delayed cross
correlation

C(r) = (xas, (D) Xap,(t+ 7)) (B.11)

between two frequency bands A f; and A f; of the same sig-
nal (e.g. low and high frequency band-pass ranges below and
above the GAM frequency). The sign of the peak correlation
time delay then gives the direction of energy flow between the
two frequency bands. The PTF and ACT methods have been
compared using LP data of ZFOs in H-1 [542, 543].

B.2.4. Envelope correlation analysis. In another related
multi-field approach the energy transfer direction is implied
from the cross-phase angle (or correlation time lag) between
the flow vector and the envelope of the high frequency fil-
tered turbulence scalar. This method draws on the paramet-
ric model of ZF generation which states that the GAM flow
modulation should also be accompanied by a corresponding
modulation of the driving turbulence amplitude envelope at the
GAM frequency [53, 221], even though the density fluctuation
spectrum itself shows no oscillation at the GAM frequency. A
common approach is to compute a Hilbert transform of a band-
pass or high-pass filtered (f > fgam) scalar turbulent signal
to create the analytic signal, the modulus of which gives the
amplitude envelope Env[A](r) = |A(r) + iH[A(?)]|. The enve-
lope can then be correlated with a flow or potential signal using
standard techniques.
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