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Computing local sensitivity and tolerances for stellarator physics properties using
shape gradients

Matt Landreman∗ and Elizabeth Paul
Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, MD, 20742, USA

(Dated: April 23, 2018)

Tight tolerances have been a leading driver of cost in recent stellarator experiments, so improved
definition and control of tolerances can have significant impact on progress in the field. Here we
relate tolerances to the shape gradient representation that has been useful for shape optimization
in industry, used for example to determine which regions of a car or aerofoil most affect drag, and
we demonstrate how the shape gradient can be computed for physics properties of toroidal plasmas.
The shape gradient gives the local differential contribution to some scalar figure of merit (shape
functional) caused by normal displacement of the shape. In contrast to derivatives with respect to
quantities parameterizing a shape (e.g. Fourier amplitudes), which have been used previously for
optimizing plasma and coil shapes, the shape gradient gives spatially local information and so is
more easily related to engineering constraints. We present a method to determine the shape gra-
dient for any figure of merit using the parameter derivatives that are already routinely computed
for stellarator optimization, by solving a small linear system relating shape parameter changes to
normal displacement. Examples of shape gradients for plasma and electromagnetic coil shapes are
given. We also derive and present examples of an analogous representation of the local sensitivity
to magnetic field errors; this magnetic sensitivity can be rapidly computed from the shape gradient.
The shape gradient and magnetic sensitivity can both be converted into local tolerances, which
inform how accurately the coils should be built and positioned, where trim coils and structural sup-
ports for coils should be placed, and where magnetic material and current leads can best be located.
Both sensitivity measures provide insight into shape optimization, enable systematic calculation of
tolerances, and connect physics optimization to engineering criteria that are more easily specified
in real space than in Fourier space.
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I. INTRODUCTION

Optimization of shapes – both the shapes of plasmas and of electromagnetic coils – is central to the modern
stellarator fusion concept. In the limit of low plasma β (= plasma pressure / magnetic pressure), the shape of an
outer flux surface completely determines the magnetic field inside up to an overall scale factor, and so this boundary
shape represents a primary channel for controlling the confinement physics. The shapes of electromagnetic coils
are equally significant, for the design of a stellarator ultimately comes down to the selection of these coil shapes.
Moreover, derivatives of various quantities with respect to the plasma shape and coil shape are critical, for several
reasons. These derivatives are used by gradient-based optimization algorithms for design, and these derivatives also
encode the tolerances to which the device must be built, tolerances which are a significant driver for the cost of
experiments ([1, 2], ‘Lesson 1’ in [3]). Indeed, an analysis of the cost overruns for the NCSX stellarator concluded
‘The largest driver of the project cost growth were the accuracy requirements’ [1]. Derivatives with respect to coil
shape also are informative for determining how rigid the coils must be and for designing the coils’ support structure,
so deformations of the coils under various loads do not detract from plasma performance.

There are a number of approaches to represent derivatives with respect to shape. The approach that has been used
nearly exclusively to date for stellarators is to represent sensitivity using the derivatives ∂f/∂pj , where f is some scalar
figure of merit (i.e. a functional of the shape) like the rotational transform or neoclassical confinement on a particular
flux surface, and pj is a set of numbers that parameterize the shape, often Fourier amplitudes. We will call this first
method the ‘parameterization approach’. However, in other fields such as aircraft and automotive design, a different
representation of shape sensitivity – based on integrals of a ‘shape gradient’ over surfaces – has proved to be useful.
This second method, which we will call the ‘shape gradient approach’, has been described in several references [4–15],
and it has a number of advantages over the parameterization approach. First, in contrast to the parameterization
approach, the shape gradient approach provides sensitivity information that is spatially local. This difference is
important because engineering constraints and tolerances are typically specified in real space rather than in Fourier
space. Moreover, spatially local sensitivity information can inform how and where coils are connected to their support
structure, so motion of the coils is minimized in high sensitivity regions. Second, in the parameterization approach,
there is typically a degeneracy in the sense that certain changes to the parameters move the surface tangent to itself
and hence leave the shape unchanged; this degeneracy is absent in the shape gradient approach. Third, in contrast to
the parameterization approach, the shape gradient approach provides coordinate-independent information, so one can
be less concerned with whether the parameterization chosen is an optimal one. Motivated by these advantages, our
goal in this paper is to introduce the shape gradient representation to the stellarator community, and to demonstrate
an algorithm by which shape gradients can be computed using existing physics codes.

To more precisely define and contrast the parameterization and shape gradient approaches, we begin with the
former, and consider a particular figure of merit f , the rotational transform on the magnetic axis, ι0. In the widely
used VMEC MHD equilibrium code [16, 17], the plasma boundary shape is parameterized by the quantities {pj} ={
Rsm,n, R

c
m,n, Z

s
m,n, Z

c
m,n

}
, which define the shape via

R(θ, ζ) =
∑
m,n

[
Rsm,n sin(mθ − nζ) +Rcm,n cos(mθ − nζ)

]
, (1)

Z(θ, ζ) =
∑
m,n

[
Zsm,n sin(mθ − nζ) + Zcm,n cos(mθ − nζ)

]
.

Here, (R, ζ, Z) are standard cylindrical coordinates, and θ is any poloidal angle. Thus, in the parameterization ap-
proach, the variation of ι0 with plasma shape is represented by the quantities ∂ι0/∂R

c
m,n, ∂ι0/∂Z

s
m,n, etc. (Other

possible choices for pj exist, such as the Garabedian ∆m,n coefficients [18].) Similarly, coil shapes have been parame-

terized [19] using {pj} =
{
Xs
k,m, X

c
k,m, Y

s
k,m, Y

c
k,m, Z

s
k,m, Z

c
k,m

}
, where

Xk(ϑ) = Xc
k,0 +

mmax∑
m=1

[
Xc
k,m cos(mϑ) +Xs

k,m sin(mϑ)
]
, (2)

with analogous expressions for X → Y and X → Z. Here, (X,Y, Z) are Cartesian coordinates, k indexes the
various coils, and ϑ ∈ [0, 2π). (Here and throughout, we approximate coils as infinitesimally thin curves.) Then in the
parameterization approach, variation of ι0 with coil shape is represented by the quantities ∂ι0/∂X

c
k,m, ∂ι0/∂X

s
k,m, etc.

While these parameter derivatives have been used successfully for gradient-based optimization of plasma [20, 21] and
coil [19] shapes, this representation of sensitivity does have the aforementioned downsides. For instance, ∂ι0/∂R

c
m,n,

∂ι0/∂X
c
k,m, etc. do not directly give local information about which part of the plasma or coil ι0 is most sensitive

to. It is not clear how to convert these derivatives into a local tolerance, or how to display these derivatives in a
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3

three-dimensional representation of the plasma or coil shape. Also, ∂ι0/∂R
c
m,n, ∂ι0/∂X

c
k,m, etc. are not unique, as

they depend on the arbitrary choice of how θ and ϑ are defined.
These shortcomings are absent in the shape gradient approach, which we can now define precisely. Let f be any

scalar figure of merit that depends implicitly on the shape of the plasma boundary surface or on the shapes of the
coils. We then imagine the boundary surface or coil shapes are changed by a small amount δr, causing a perturbation
δf to f . For shape functionals of the plasma boundary, δf is expressed in the form

δf =

∫
d2a S δr · n, (3)

where d2a is an area integral, n is the unit vector normal to the surface, and S is the shape gradient. (While the
term shape gradient is used by some authors [11, 15, 22–24], other authors use the name ‘density gradient’ [6, 13] or
‘sensitivity map’ [12, 14] for S, while others do not give it a name [4, 5, 10].) For shape functionals of the coils, δf is
expressed in a similar way:

δf =
∑
k

∫
d` Sk · δr, (4)

where ` is the arclength along a coil, k indexes the coils, the shape gradient Sk is now a vector, and Sk has vanishing
component tangent to the curve. In both the surface and coil cases, the shape gradient represents the contribution to
a differential change in the figure of merit due to local normal displacement of the shape. The fact that perturbations
can be expressed in the forms (3)-(4) for many f has been addressed with great rigor elsewhere [6, 13]; we will motivate
these expressions in section II and provide a practical test for these expressions’ validity in section IV. The shape
gradients S and Sk provide spatially local information, and they are independent of the particular parameterization
chosen for the shapes. As shown in figure 1, the shape gradient provides a very illuminating visualization of which
parts of a shape are critical for determining f . This insight provided by the shape gradient is valuable for human
designers as they interact with optimization codes, as described for automotive shape design on page 11 of [14].
Furthermore, the inverse of the magnitude of the shape gradient provides a local tolerance, in a sense that will be
made precise in section V. Importantly, the forms (3)-(4) imply that a shape error of given |δr| has an effect scaling
with the area or length of the perturbation, so the tolerance for global shape errors is smaller than the tolerance for
localized errors.

If the representation (3) exists (and if the boundary rotational transform is irrational), we will show that an
expression similar to (3) can be written in terms of the magnetic field perturbations on the unperturbed plasma
boundary:

δf = 〈S〉 δV +

∫
d2a SB δB · n, (5)

where 〈. . .〉 denotes a flux surface average, and δV is an optional perturbation to the plasma volume that may
accompany the magnetic perturbation. We will call SB the magnetic sensitivity. Regions where SB is large are good
locations for coils that control the relevant f while having lesser effects on other plasma properties. Similarly to the
case of shape perturbations, (5) indicates that the tolerance for magnetic field errors scales inversely with the surface
area over which the error occurs.

The main ideas of this paper can now be summarized as follows. First, the shape gradients S and Sk exist for
figures of merit f that are of interest for magnetic confinement, as we will show in figures 6 and 8. For any f , the shape
gradient (if it exists) can be computed from the derivatives of f with respect to any shape parameters of the coils or
boundary surface, which are quantities already routinely computed for stellarator optimization. This calculation of
the shape gradient (section IV) is done by recognizing equations (3)-(4) as linear integral equations that can be solved
for S or Sk. Upon discretization, the resulting linear system also can be used to verify whether the shape gradient
representation exists for a given f . For instance, in the case of surfaces, the linear system is generally overdetermined,
and one can check whether the derivatives of f with respect to shape parameters lie in the column space of the matrix
representation of the integral operator. If a shape gradient for the bounding toroidal surface (3) is determined, the
magnetic sensitivity SB can be determined by solving a magnetic differential equation, (36), as shown in figure 11.
Finally, the appropriately scaled inverses of |Sk| and |SB | give spatially local tolerances on errors to coil shape and
magnetic field, (29) and (38), as illustrated in figures 7 and 9.

Previous work on the shape gradient representation, for example in neutral fluid flow problems [12, 14, 25], has
been closely associated with adjoint methods. In that work, analytic manipulation of the relevant partial differential
equation reveals a formula for the shape gradient in terms of the solution of an adjoint equation. While adjoint
methods are a very efficient method for computing the shape gradient, ideally requiring only the cost of about one
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additional forward solve, adjoint methods require non-negligible analytic work and code development, and we will not
explore adjoint methods further here. Instead, we will develop procedures for computing the shape gradient from any
existing ‘forward’ code.

While the shape gradient representation has been used for some time in the realms of neutral fluids and structural
mechanics, the first application to fusion only recently appeared, involving shape optimization for a tokamak divertor
[22–24, 26, 27]. To our knowledge, the shape gradient representation has not been applied previously for stellarator
plasma or coil shapes, aside from our accompanying paper [28]. In [29] it was pointed out that the redundancy in
the parameterization method associated with tangential displacements can be eliminated by considering only normal
displacements, although the shape gradient representation was not displayed. A magnetic sensitivity similar to SB
was discussed in [30, 31], although in that case the magnetic sensitivity was computed by a different method to the
one here, and shape gradients were not discussed. Previous computations of tolerances on coil shapes [32–39] have
mostly been based on the size of magnetic islands as computed from vacuum Poincare plots; little attention has been
paid to the effect of shape and field errors on other physics figures of merit, which we will consider here. With the
exception of [34], earlier coil tolerance calculations have typically been done by perturbing the Fourier amplitudes
of the coil shapes, yielding Fourier-space sensitivity information rather than the spatially local sensitivity we will
compute. The CNT device [33, 35, 36] demonstrated that stellarators can be optimized to have generous tolerances,
and the tolerance expressions we compute here could be included into the objective functions in future ‘risk-averse’
or ‘robust’ optimizations.

Once the shape gradient is computed, it can be used for gradient-based minimization of f : the surface boundary is
displaced by −εSn, or the coil shape is displaced by −εSk, where ε > 0 is a step size that could be determined by a line
search. (The shape Hessian can also be computed for use with optimization algorithms that exploit second derivatives
[10, 25].) The shape gradient typically has lower regularity than the shape itself [14, 24], so smoothing is often applied
to the gradient before the shape update. In practice, the overall objective function for optimization, ftotal, is always a
weighted sum of terms representing multiple criteria, fj . While the shape gradient for ftotal vanishes at an optimum,
the shape gradient for any of the components fj generally do not. Hence, second derivative information (which
we will not consider here) is needed to understand variation in ftotal about an optimum [40], but second derivative
information is not necessary to understand the sensitivity of any individual criterion fj at the optimum.

FIG. 1. (Color online) Shape gradient S for the figure of merit f = total drag, computed by researchers at Volkswagen for
shape optimization of their vehicles. Figure reproduced from [14], licensed under CC BY 2.0; the original has been cropped.

II. EXISTENCE OF A SHAPE GRADIENT

Let us next motivate that the shape gradient representations (3)-(4) can be expected to exist for a large class of
shape functionals f . The central point is that (3)-(4) are essentially the generalization of the standard chain rule to
functions that depend on an infinite number of parameters, i.e. functionals. Consider a simpler 1D problem in which
a scalar function f depends on a discrete number of parameters: f = f(r1, r2, . . . , rn). When the rj parameters are
perturbed, rj → rj + δrj , the function varies f → f + δf according to

δf =
n∑
j=1

∂f

∂rj
δrj . (6)

In the limit n→∞, the rj are replaced with a function r(ϑ), f becomes a functional of r(ϑ), the sum in (6) becomes
an integral, and the finite set of numbers ∂f/∂rj is replaced by some ϑ-dependent function which can be denoted
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δf/δr:

δf =

∫ 2π

0

dϑ
δf

δr
δr. (7)

Here, δf/δr is the ‘functional derivative’ arising in the calculus of variations. The fact that δf can be written in
the form (7) is also [11, 41] an instance of the Riesz representation theorem, which (roughly) states that any linear
operator can be written as an inner product with some element of the appropriate space. In our case, δf is a linear
operator acting on δr, the inner product is integration over ϑ, and the ‘element of the appropriate space’ is δf/δr.
The quantity δf/δr in (7) will become – after straightforward generalization to multiple dimensions and rescaling –
the shape gradient.

Generalizing (7) to the case in which f depends on three functions rX(ϑ), rY (ϑ), and rZ(ϑ),

δf =

∫ 2π

0

dϑ
δf

δrX
δrX +

∫ 2π

0

dϑ
δf

δrY
δrY +

∫ 2π

0

dϑ
δf

δrZ
δrZ . (8)

Defining the position vector r = eXrX +eY rY +eZrZ and S = |dr/dϑ|−1(eXδf/δrX +eY δf/δrY +eZδf/δrZ) where
eX,Y,Z are Cartesian unit vectors, then we obtain the single-coil case of (4): δf =

∫
d` S · δr. If f depends only

on the shape of the curve and not on its particular parameterization, then a perturbation δr parallel to dr/d` must
cause no δf , so S has no tangential component: S · dr/d` = 0. Eq (4) is a straightforward generalization to multiple
curves. Note that for curves confined to a plane, a scalar shape gradient S = S · n can be defined to obtain

δf =

∫
d` S δr · n. (9)

The above analysis is extended to surfaces if we let the rX,Y,Z depend on two independent variables (θ, ζ). Then
(8) becomes

δf =

∫ 2π

0

dθ

∫ 2π

0

dζ
δf

δrX
δrX +

∫ 2π

0

dθ

∫ 2π

0

dζ
δf

δrY
δrY +

∫ 2π

0

dθ

∫ 2π

0

dζ
δf

δrZ
δrZ . (10)

Now defining S = N−1(eXδf/δrX + eY δf/δrY + eZδf/δrZ) where N = |N | and N = ∂r/∂ζ × ∂r/∂θ, we obtain
δf =

∫
d2a S · δr. If f depends only on the shape of the surface and not on its particular parameterization, then a

perturbation δr parallel to any tangent vector must cause no δf . Therefore S has only a normal component: S = nS,
yielding (3).

Note that the shape gradient representation (3) does not exist for any figure of merit f that depends on the specific
coordinates used to parameterize the surface (if f cannot be expressed in a coordinate-independent way). For such
an f , then δf would depend also on the components of δr tangent to the surface, not only the normal component.
Similarly, in the representation (4) for such an f , Sk would have a component tangent to the curve. If f depends
on quantities other than the shape, such as the radial profiles of plasma pressure and current, these other variables
can be understood to be implicit functions of the shape; or, these quantities could be considered to be additional
independent variables, giving rise to additional terms in the expressions for δf .

The conditions for existence of the shape gradient representation have been analyzed with greater mathematical
rigor in section 2.11 of [6] and section 9.3.4 of [13]. The literature contains analytic calculations of the shape gradient
for shape functionals in several problems, such as variants of Poisson’s equation [4], the Navier-Stokes equations
[4, 12, 25], structural mechanics problems [5, 10], and plasma fluid equations [22]. It is beyond the scope of this
paper to give rigorous explicit proofs that the derivatives of figures of merit arising in stellarator optimization can be
represented in the shape gradient form, but in the next section we will give derivations for a few examples. Also, in
section IV we will demonstrate a numerical method that can test whether any particular figure of merit can or cannot
be represented this way.

III. EXAMPLES

Let us now show explicitly that for certain figures of merit (shape functionals) f , changes caused by perturbations
to curves or surfaces can indeed be expressed in the forms (3)-(4). These examples are valuable since they will be used
to verify the algorithms in section IV, before the algorithms are applied to more complicated functionals for which
analytic expressions for the shape gradient are unavailable.
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A. Volume integrals

Perhaps the simplest example is f = the volume enclosed by a surface. The change in volume associated with a
perturbation δr to the boundary is a sum over the boundary of differential volume elements. Each differential volume
element has an area d2a along the unperturbed surface and height n · δr perpendicular to it. Summing the volume
of these elements, we see δf has the form (3) with shape gradient S = 1. More generally, by the same geometric
reasoning, for the volume integral f =

∫
d3r Q(r) of any quantity Q(r), δf has the form (3) with shape gradient

S = Q.

B. Integrals along a curve

Consider the integral of any quantity Q(r) along a closed curve parameterized by ϑ:

L =

∫
Qd` =

∫ 2π

0

dϑ Q

∣∣∣∣drdϑ
∣∣∣∣ . (11)

Perturbing the curve shape r → r + δr, the associated change to the integral is

δL =

∫ 2π

0

dϑ

(∣∣∣∣drdϑ
∣∣∣∣ δr · ∇Q+Q

∣∣∣∣drdϑ
∣∣∣∣−1

dr

dϑ
· dδr
dϑ

)
. (12)

Integrating by parts to remove the ϑ derivative from δr in the last term,

δL =

∫
d` δr · [(I − tt) · ∇Q−Qκn] , (13)

where I is the identity tensor and t = dr/d` = |dr/dϑ|−1dr/dϑ is the unit tangent vector. Here, the curvature κ (equal
in magnitude to the inverse radius of curvature) and normal vector n are defined by κn = dt/d` = |dr/dϑ|−2(I −
tt) · d2r/dϑ2. Thus, perturbations to the shape indeed cause L to vary according to the form (4) (with a single term
in the sum) with shape gradient

S = (I − tt) · ∇Q−Qκn. (14)

As required, S has vanishing component tangent to the curve. In the case of a plane curve, we can make the
substitution I = tt + nn, causing (13) to reduce to (9) with a scalar shape gradient S = n · ∇Q−Qκ.

For both space curves and plane curves, if we make the choice Q = 1, then L becomes the length of the curve. The
shape gradients then become S = −κn and S = −κ. This result can be understood geometrically, as shown in figure
2. If a curve is given a normal displacement toward a center of curvature, the length decreases.

	δr

			

δL= −2π δr

= −Lκ δr	δr 	δr

	δr

FIG. 2. (Color online) Illustration of (14): normal displacement of a curve in the direction κn = dt/d` causes the length to
decrease.
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C. Area integrals

Consider the area integral over a toroidal surface (defined by r(θ, ζ)) of any quantity Q(r):

A =

∫
d2aQ =

∫ 2π

0

dθ

∫ 2π

0

dζ NQ, (15)

where N = |N |, and

N =
∂r

∂ζ
× ∂r

∂θ
= Nn (16)

is a (non unit length) normal vector. As shown in appendix A, by perturbing r(θ, ζ) in these expressions, we obtain
the form (3) with a shape gradient

S = n · ∇Q− 2QH, (17)

where H is the mean curvature (defined in (A4).) For the choice Q = 1, corresponding to A = the area of the surface,
the shape gradient is just −2H.

This result can be interpreted geometrically, as in the earlier case of the curve (figure 2). If the toroidal surface is
moved outward in a convex region, the area increases, whereas the area decreases if the surface is moved outward in
a concave region. An example is shown in figure 3 for the NCSX stellarator [42]. (The equilibrium LI383 is used.) It
can be seen that the shape gradient is highly localized to the sharp edges of the plasma shape. The concave regions
on the inboard side of the plasma have a shape gradient that is slightly negative, drawn in black in the figures.
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100
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FIG. 3. (Color online) Shape gradient for surface area in NCSX, computed using (17) and (A4).

The results of this section can also be derived by a number of other methods, such as using the appropriate
multidimensional Leibniz rule for differentiating integrals over moving domains. The shape gradient for area integrals
(17) can be found as Lemma 1 on page 87 of [4], and as a simplification of eq (12) in [43]. The above results for the
shape gradient of volume and area integrals can also be found as equations (6.38) and (6.53) in [10], and equations
(9.4.7) and (9.4.17) in [13].

IV. RELATION TO DERIVATIVES WITH RESPECT TO SHAPE PARAMETERS

In contrast to the examples in the previous section, most interesting physics figures of merit f are not obviously
expressible as integrals over the coil shapes, over the plasma volume, or over the plasma boundary surface. Hence it
may be impractical to analytically manipulate the definitions of the figures of merit to reveal the shape gradient, as we
have done in the previous section. Instead, we now show how the shape gradient – if it exists – can be computed from
the derivatives that are routinely computed for stellarator optimization (i.e. the derivatives with respect to shape
parameters.) These derivatives are represented by the vector with elements ∂f/∂pj , denoted ∂f/∂p, where again pj
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denotes the numbers used to parameterize the shape. For the case of surfaces, pj could represent the Rcm,n and Zsm,n
Fourier coefficients, or pj could represent the Garabedian ∆m,n coefficients. For the case of coils, pj could represent
the Fourier coefficients of the Cartesian components of the coil shapes. The method for computing the shape gradient
from these parameter derivatives for coils is slightly different from the method for surfaces, and we will describe the
method for coils first.

A. Coils

To compute the shape gradient for coils, we first note that an equivalent expression to (4) is∫ 2π

0

dϑ

∣∣∣∣drdϑ
∣∣∣∣ ∂r∂pj · S =

∂f

∂pj
(18)

for all j. Here and throughout this section we suppress the coil number k and
∑
k to simplify notation. Our basic

method is to recognize (18) as a linear integral equation for S. This equation can determine S to within some precision
associated with the number of parameters pj . We can discretize (SX , SY , SZ), the Cartesian components of S, in
the same way as (2):

SX(ϑ) = ScX,0 +

mmax∑
m=1

[
ScX,m cos(mϑ) + SsX,m sin(mϑ)

]
, (19)

with analogous expressions for SX → SY and SX → SZ . If the same maximum mode number mmax is used for the
coil representation (2) as for (19), then the number of discrete degrees of freedom in S is 6mmax + 3, the same as the
number of coil parameters pj . Thus, the linear system corresponding to the discretization of (18) is square. As mmax

is increased, S is recovered with greater accuracy, at the cost of having to evaluate a larger number of parameter
derivatives ∂f/∂pj . Once S is recovered, we can check whether it has a component tangent to the curve. If the
tangential component does not converge towards zero with increasing resolution, then f is evidently not coordinate-
independent and hence not physical. While we have used a Fourier discretization here, the same approach can be
applied to other discretizations such as splines.

This procedure is demonstrated in figure 4, using the type-A modular coil from NCSX. Here, the shape functional
we consider is the curve length L, so from section (III B) we know analytically the true shape gradient is −κn. To test
the procedure described above, we evaluate the derivatives ∂L/∂Xs

m, ∂L/∂Xc
m, ∂L/∂Y sm, etc. using finite differences

in the Fourier amplitudes. (For this f , the derivatives could be computed analytically, but the point here is to
demonstrate a procedure that can be applied when only finite difference derivatives are available.) The system (18)
is then solved for the Cartesian components of S. As shown in figure 4.a, the two approaches give results that are
indistinguishable on the scale of the plot, so we can have confidence applying the procedure to other figures of merit
for which the shape gradient is not available analytically. Figure 4.b displays the shape gradient in three dimensions.
Note that the scale for the shape gradient (arrow lengths) is independent of the scale for the coil itself.

B. Surfaces

The calculation of shape gradient S from parameter derivatives for surfaces is a bit more complicated than the
calculation for coils due to the different number of dimensions involved. To compute the shape gradient for a surface,
we first note that an equivalent expression to (3) is∫

d2a S
∂r

∂pj
· n =

∂f

∂pj
(20)

for all j. Again we recognize (20) as a linear integral equation for S. Upon discretization, (20) becomes a dense linear
system. However this time the matrix for this linear system is generally not square, since the number of degrees of
freedom used to discretize S generally differs from the number of pj . Therefore the right-hand side of (20) need not
be in the column space of the matrix, associated with the fact that the shape gradient representation does not exist
for every f . One can therefore determine if a shape gradient exists for a given f by checking whether the right-hand
side is in the column space of the matrix.

There are two variants of the method: S can be discretized using values on grid points in θ and ζ, or S can be
discretized in a finite Fourier expansion. We call these two variants the ‘collocation method’ and ‘Fourier method’
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Section IV.A method:

Section III.B method:

(a)

FIG. 4. (Color online) (a) The shape gradient for length for the NCSX type-A modular coil, calculated two ways. The
thick curves are computed by evaluating the derivatives of length with respect to coil shape parameters (∂L/∂pj) using finite
differences, and then solving the system (18) for S. The thin curves show the result expected from the analytic calculation of
section (III B). The two methods yield indistinguishable results on the scale of the plot for each Cartesian component. (b) The
same shape gradient displayed in 3D.

respectively. (Note that even if S is discretized using a Fourier expansion, it can still be evaluated at any point in θ
and ζ, and so the Fourier method still results in spatially local sensitivity information.) Based on experience so far
with both methods, the Fourier method is somewhat more robust, since the collocation method sometimes requires
tuning of the number of singular values retained in a pseudoinverse, whereas the Fourier method does not require
any tuning. Therefore, we advocate the Fourier method and focus on it here. The collocation method is discussed in
appendix B.

In the Fourier method, we define the matrix D, with matrix elements Djq, by

Djq =

∫ 2π

0

dθ

∫ 2π

0

dζ
∂r

∂pj
·N exp (imqθ − inqζ) , (21)

where a sequence of poloidal and toroidal mode numbers (m,n) has been indexed by q, and N is defined in (16). Any
poloidal and toroidal angles can be used, including angles in which the field lines are not straight; since the fundamental
definition of the shape gradient (3) is coordinate-independent, our procedure will yield results independent of the choice
of θ and ζ (up to discretization error). The central idea of our method can now be stated as follows:

A shape gradient for f exists if and only if ∂f/∂p lies in the column space of D. If the shape gradient S does
exist, then it can be obtained by solving ∑

q

DjqSq =
∂f

∂pj
(22)

for the Fourier coefficients Sq in

S(θ, ζ) =
∑
q

Sq exp (imqθ − inqζ) . (23)

To justify this statement, suppose ∂f/∂p lies in the column space of D, so a solution to the linear system (22) for Sq
exists. We can then form (23) and evaluate∫

d2a S
∂r

∂pj
· n =

∑
q

∫
d2a Sq exp(imqθ − inqζ)

∂r

∂pj
· n =

∑
q

SqDjq =
∂f

∂pj
, (24)

showing that S in (23) satisfies the defining property of a shape gradient, (20). Conversely, suppose the gradient S
exists. Then the Fourier coefficients Sq exist, and (23) can be substituted into (20), yielding (22) and implying that
∂f/∂p lies in the column space of D.
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Stellarator shapes often posses ‘stellarator symmetry’: R(θ, ζ) = R(−θ,−ζ) and Z(θ, ζ) = −Z(−θ,−ζ), implying
Rsm,n = 0 and Zcm,n = 0 for all (m,n). In this case, (21) and (23) can be replaced by

Djq =

∫ 2π

0

dθ

∫ 2π

0

dζ
∂r

∂pj
·N cos (mqθ − nqζ) (25)

and

S(θ, ζ) =
∑
q

Sq cos (mqθ − nqζ) (26)

respectively; (22) and the rest of the reasoning above is unchanged. Stellarators shapes are also typically symmetric
under toroidal rotation by 2π/nfp for some integer nfp (e.g. nfp = 3 for NCSX.) This ‘nfp symmetry’ implies that
only integer multiples of nfp need to be included in the {nq}. Several other technical points related to symmetry are
discussed in appendix C.

In the common (but not mandatory) situation that the same maximum m is used for Rcm,n, Zsm,n, and Sq, and that
the same is true of the maximum n used, then D will have approximately twice as many rows as columns. The ratio
is not exactly 2 since Rcm,n and Sq include a m = n = 0 contribution but Zsmn does not. The fact that D has more
rows than columns (i.e. the system is over-constrained) reflects the fact that a shape gradient does not exist for every
f (in particular, coordinate-dependent f which vary under tangential displacement.)

To make practical use of the results above, we can use either the QR decomposition or singular value decomposition
(SVD) of D. The QR decomposition is D = QR where Q is a square orthogonal matrix (Q−1 = QT ), and R is
upper-triangular with the same dimensions as D (generally rectangular.) Here we are interested in the case in which
D has P rows and M columns with P > M . It follows that ∂f/∂p is in the column space of D if and only if the

vector QT ∂f/∂p is zero for rows > M and for any rows in which R has a nonzero diagonal entry. (For this problem,
D generally has full rank, so all the diagonal entries of R are nonzero.) If ∂f/∂p is in the column space of D, the

solution to (22) is then given by S = R−1
1 QT

1 ∂f/∂p where where S is the vector with elements Sq, R1 is the M ×M
upper sub-matrix of R, and Q1 is the P ×M sub-matrix of Q. (The matrix R−1

1 QT
1 which is applied to ∂f/∂p is

the pseudo-inverse of D in this case.) The SVD approach is similar: the SVD is

D = UΣV T , (27)

where U and V are square orthogonal matrices (U−1 = UT and V −1 = V T ), and Σ is a diagonal matrix with the
same dimensions as D and with non-negative diagonal entries in decreasing order. To tell if ∂f/∂p is in the column

space of D, we form UT ∂f/∂p. The vector elements of UT ∂f/∂p corresponding to vanishing singular values and to
rows > M all are 0 if and only if q is in the column space of D. If so, then equation (22) can be solved by applying
the pseudo-inverse of D:

S = V Σ+UT ∂f

∂p
(28)

where Σ+ is a diagonal rectangular matrix of the same size as ΣT , with diagonal entries given by the reciprocal
of the corresponding diagonal entries of Σ, except that the reciprocal of 0 entries is replaced by 0. The QR and
SVD approaches, if all singular values are retained in the latter, give identical results within roundoff error. The
QR decomposition is faster than the SVD, but the singular value spectrum provided by the latter can provide some
additional insight.

In a real calculation, m and n cannot extend to infinity, and some level of discretization error will be present in
∂f/∂p associated with whichever codes are called to compute it. Therefore, ∂f/∂p will not lie exactly in the column

space of D, but it will be close: the elements in rows > M of QT ∂f/∂p (in the QR approach) and UT ∂f/∂p (in the
SVD approach) will be much smaller in magnitude than the elements in rows ≤M . For the typical case in which D

has approximately twice as many rows as columns, then the second half of the elements of QT ∂f/∂p and UT ∂f/∂p
should be small compared to the first half.

The procedure described above is illustrated in figure 5. Here, we consider f = A = area, considering NCSX
geometry as in section III C (with Q = 1), and the parameter vector pj is taken to consist of the Rcm,n and Zsm,n
coefficients. The derivatives ∂f/∂p are computed by finite differences and are shown in figure 5.a. For this example,
we use the same maximum m for Rcm,n, Zsm,n, and Sq, and the same is true of the maximum n, so D has approximately
twice as many rows (∼ 5000) as columns (∼ 2500). Unusually large values mmax = 60 and nmax = 20 are chosen here to
demonstrate numerical stability at this high resolution, and to resolve the narrow regions of large H; indistinguishable
results can be obtained with smaller or larger values of mmax and nmax. Figure 5.b shows the projection of ∂f/∂p
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onto the left singular vectors of D. The second half of these elements are negligible compared to the first half of the
elements, indicating that ∂f/∂p lies in the column space of D, and so (22) is solvable. Therefore a shape gradient
S exists. The ratio of largest to smallest singular values of D is only 11.0, so the solution is well conditioned even
at this quite high resolution. The solution for S is then displayed in figure 5.c. The result is nearly indistinguishable
from figure 3.a, verifying that the procedure produces the correct result.
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FIG. 5. (Color online) Verification of the procedure for computing the shape gradient from parameter derivatives, using f =
surface area in NCSX. (a) Derivatives of the area with respect to the Fourier harmonics of the plasma boundary shape, ∂f/∂p,
computed using finite differences. (b) Projection of ∂f/∂p onto the left singular vectors of D. The second half of the vector
elements are negligible, confirming that changes to the surface area depend only on the normal component of displacement,
not on the tangential component. (c) The shape gradient for area computed using the method of section (IV). The result is
nearly indistinguishable from figure 3.a.

In [28], figure 9 displays shape gradients computed using the method described here. That figure shows the error
in producing a desired plasma shape is highly sensitive to the plasma-coil distance near concave regions of the plasma
boundary, as is the complexity of the coil shapes needed to produce the desired plasma shape.

The method described here for computing shape gradient for surfaces can also be applied to coils, as an alternative to
the method of section IV A. Instead of considering all three components of S as unknowns, we write S = S1v1 +S2v2

where v1 and v2 are two vectors defined at each point along the coil that span the plane normal to the curve. For
instance, one could take v1 and v2 to be the Frenet-Serret normal and binormal vectors, or one could take v1 to be
eζ × t, the cylindrical azimuthal direction crossed with the tangent vector, and v2 = t × v1. Expanding S1 and S2

in Fourier series analogous to (19), the vector of Fourier amplitudes Scoil = (Sc1,m, S
s
1,m, S

c
2,m, S

s
2,m)T becomes the

unknown we seek. The discretized system (18) then has 3/2 as many equations as unknowns. The remaining steps
of the calculation are the same as for the surface case. For all the examples of coil shape gradients in this paper,
it was verified that this alternative procedure gave identical results to the procedure of section IV A, within a small
discretization error.
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V. COIL TOLERANCES

Once the shape gradient for coils has been computed, practical tolerances on the coil shapes can be derived as
follows. First, an acceptable variation in the figure of merit is identified, ∆f , which is positive. Then a local tolerance
Tk(`) for each coil k can be computed from

Tk(`) =
wk(`) ∆f∑

k′

∫
d`′ wk′(`′)|Sk′(`′)|

, (29)

where ` denotes distance along the coil, and wk(`) is a weighting function that is arbitrary, except it must be non-
negative everywhere and it must have a positive integral on at least one coil. We can then prove that if the magnitude
of the shape perturbation satisfies |δr| ≤ Tk at all points along the coils, the perturbation magnitude |δf | will be
≤ ∆f (in the approximation that variations are linear):

|δf | ≤
∑
k

∫
d`|Sk · δr| ≤

∑
k

∫
d`|Sk||δr| ≤

∑
k

∫
d`|Sk|Tk = ∆f. (30)

The weight wk allows the tolerance to be distributed in different ways among and along the coils. The choice wk = |Sk|
makes the tolerance spatially uniform, Tk = ∆f/

(∑
k′

∫
d`′|Sk′(`′)|

)
. If a design includes both non-planar and planar

coils, it may make sense to choose wk larger on the former than on the latter, allocating a larger fraction of the total
∆f to the more difficult-to-built non-planar coils. The choice wk = |Sk|−α for some α ≥ 0 can be useful, as it results
in a tighter tolerance in the coil regions to which the plasma is most sensitive. For any weight, the tolerance (29)
is conservative in that it provides a limit on the worst possible δf , rather than a limit on the δf expected based on
some distribution of likely errors. The uniform tolerance obtained from wk = 1 could potentially be included in an
optimization objective function, with the goal of obtaining robust stellarator designs that have large tolerances.

VI. EXAMPLE: ROTATIONAL TRANSFORM

Now let us apply the procedures of the previous section to calculate shape gradient for a figure of merit for which
an analytic expression for the shape gradient is unavailable: the rotational transform ι in NCSX at half radius,√
ψ/ψa = 0.5 where 2πψ is the toroidal flux and ψa is the value of ψ at the plasma boundary. We will calculate the

shape gradient for both the plasma boundary shape and coil shapes. Beginning with the former, derivatives of ι with
respect to the Fourier modes of the plasma boundary, dι/dRcm,n and dι/dZsm,n, are computed using finite differences.
To compute these finite differences, the STELLOPT code [20, 21] is used to run the VMEC code [16, 17] (in fixed-
boundary mode) many times for slightly different plasma boundary shapes. (STELLOPT was modified slightly to
evaluate centered rather than one-sided differences.) The resulting derivatives are displayed in figure 6.a. We adopt
the VMEC conventions that m ≥ 0, and for m = 0, Rcmn is nonzero only for n ≥ 0 and Zsmn is nonzero only for n > 0.
We verified that derivatives of ι with respect to Rsm,n and Zcm,n vanish for all m and n, as do derivatives with respect
to Rcm,n and Zsm,n when n is not a multiple of 3, so S has stellarator symmetry and nfp symmetry by the argument
in appendix C.

Using these derivatives, we form the vector ∂f/∂p, and project it onto the left singular vectors of D, yielding
figure 6.b. The second half of the resulting vector elements have negligible magnitude, confirming that perturbations
to ι depend only on the normal displacement and not on tangential displacements, and so a shape gradient can be
constructed. Completing the procedure of section IV B, we obtain the shape gradient S in figures 6.c-d. In these
figures it can be seen that the shape gradient is small in magnitude in the bean cross section (ζ = 0) and the bullet
cross section (ζ = π/3), and is maximum in magnitude in between these cross sections on the inboard side.

The computational cost of assembling and solving (20) given the parameter derivatives (2 seconds in Matlab on a
MacBook laptop) was negligible compared to the cost of computing the parameter derivatives (1 wallclock hour on
256 Intel Xeon E5-2698 processors of the Draco computer at the Max Planck Computing and Data Facility.) However,
for the highly resolved calculation of the shape gradient in this example, parameter derivatives up to m = 15 and
n/nfp = 12 were used, which are each ∼ 3× higher than might typically be used for stellarator optimization.
Furthermore, each VMEC calculation included poloidal and toroidal harmonics exceeding these values and so took
longer than a typical lower-resolution VMEC calculation for conventional optimization.

For the calculations shown here, the nonzero plasma current associated with the β = 4% NCSX target design has
been retained. For simplicity, in this paper we will take the radial profiles of pressure and toroidal current (expressed
as functions of toroidal flux normalized to the boundary toroidal flux) to be fixed as the boundary is deformed.
(More sophisticated options are available: the two profile functions could be understood to depend implicitly on the
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boundary shape via equations for radial transport and the bootstrap current, or terms representing contributions
to δf from independent perturbations to the profile functions could be added to (3).) We have also computed the
shape gradient for ι using the same boundary shape at zero plasma pressure and zero plasma current, and it is nearly
indistinguishable from figures 6.c-d. We have also verified that all results in figure 6 are converged with respect to the
VMEC resolution parameters (number of radial grid points ns, number of poloidal modes mpol, number of toroidal
modes ntor), number of grid points in θ and ζ used for the integrations in section IV B, and the number of poloidal
and toroidal modes used for the procedure of section IV B.
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FIG. 6. (Color online) Computation of the shape gradient for the half-radius rotational transform ι. (a) Derivatives of ι
with respect to the Fourier harmonics of the plasma boundary shape, computed with finite differences using STELLOPT. (b)
Elements of the vector UT ∂f/∂p. The second half of the vector elements are negligible compared to the first half, confirming
that changes to ι depend only on the normal component of displacement, not on the tangential component. (c) The shape
gradient for ι computed using the method of section (IV). (d) The same quantity viewed in three dimensions.

Next, in figure 7 we show the shape gradient S for coils for the same quantity ι. To perform this calculation, we
use STELLOPT to call VMEC many times in free-boundary mode. STELLOPT varies the Fourier amplitudes (2) of
the Cartesian components of the coil shapes, and in each case the magnetic field from the perturbed coil shapes is
calculated using the MAKEGRID code, which is then provided as an input to free-boundary VMEC. The resulting
finite difference derivatives are then used as the right-hand side for the algorithm of section IV A. Since the surface
shape gradient in figure 6.c-d is stellarator-symmetric and nfp-symmetric, we expect the coil shape gradient to have
these same symmetries, and we have verified these symmetries numerically. Specifically, δι when a coil is perturbed
in unison with its stellarator-symmetric partner is exactly twice δι when only one of the pair is perturbed, and δι
when a coil is perturbed in unison with its two nfp-symmetric partners is exactly three times δι when only one of the
triplet is perturbed. These symmetries are quite useful as they mean that VMEC can be run assuming stellarator
symmetry and nfp symmetry, reducing the computational expense.
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The shape gradient, coils, and plasma boundary are shown in figure 7 from two different perspectives: from the Z
axis looking outward, and a bird’s eye view. The shape gradient Sk is displayed using arrows. Note that the scale for
the arrow lengths is independent of the scale for the other objects. Over much of the coils, the shape gradient is small
enough that these arrows do not extend outside the coils, the width of which is chosen for convenient visualization
and differs from the actual coil thickness. It was verified that the shape gradient is orthogonal to the coils, as it should
be. It is apparent that the shape gradient is highly localized to the inboard side of the coils. The shape gradient is
also larger for the type A and B coils (magenta and purple respectively) that are closer to the bean-shaped plasma
cross-section than for the type C coils (blue) that are closer to the bullet-shaped cross section. This localization
is likely due in part to the fact that the coils are closer to the plasma in the regions of large shape gradient, so
displacements of the coils in these regions cause a relatively large change to the magnetic field in the plasma region.
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FIG. 7. (Color online) Arrows show the shape gradient for ι at half-radius for the NCSX coils. Panels (a) and (b) show the
same data from two different angles. The plasma boundary is shown in red. Only one of the six sets of three unique coil shapes
is shown. The region of significant gradient is highly localized to the inboard side. (c) The shape tolerance required to achieve
∆ι ≤ 0.02 computed from the shape gradient using (29), using two different choices for the weight wk.

The coil shape tolerance (29) is displayed in figure 7.c. For this computation, we arbitrarily choose the acceptable
variation in the figure of merit to be ∆ι = 0.02. We also choose the weight wk to be zero on all the planar coils,
effectively focusing only on the contribution to ∆ι from the modular coils. The bottom of figure 7.c shows the uniform
tolerance calculated using (29) with wk = 1. For comparison, the main part of figure 7.c shows a nonuniform tolerance
that gives the same bound on δι, calculated using wk = |Sk|−1/4. By making the weight wk scale inversely with |Sk|
in this way, the tolerance can be relaxed over a majority of the coils if the tolerance is tightened in a few small
regions. The exponent −1/4 was chosen since it gives a reasonable range for the tolerance; any other value is equally
valid mathematically. This nonuniform tolerance is tightest where the shape gradient is largest in magnitude, on
the inboard side, particularly near the bean cross section. Figure 7.c makes it apparent that it is most important to
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rigidly support the coils on the inboard side to minimize variation in this figure of merit.

VII. EXAMPLE: NEOCLASSICAL TRANSPORT

As a second example, we consider f = the normalized neoclassical transport figure of merit ε
3/2
eff , again evaluated

at half radius in NCSX. Derivatives of ε
3/2
eff with respect to the Fourier amplitudes of the plasma boundary shape are

evaluated using the STELLOPT code. STELLOPT calls VMEC for many slightly different boundary shapes, and in
each case, STELLOPT then calls the BOOZ XFORM code to convert the resulting magnetic equilibrium to Boozer

coordinates, and then calls the NEO code [44] to compute ε
3/2
eff . These derivatives are displayed in figure 8.a. As with

the earlier example, we verified derivatives with respect to Rsm,n and Zcm,n vanish for all m and n, as do derivatives
with respect to Rcm,n and Zsm,n when n is not a multiple of 3, so S has stellarator symmetry and nfp symmetry by
the argument in appendix C.
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FIG. 8. (Color online) Computation of the shape gradient for the half-radius neoclassical transport ε
3/2
eff . (a) Derivatives of

ε
3/2
eff with respect to the Fourier harmonics of the plasma boundary shape, computed with finite differences using STELLOPT.

(b) Projection of ∂ε
3/2
eff/∂p onto the left singular vectors of D. The second half of the elements are small compared to the first,

confirming that changes to ε
3/2
eff depend only on the normal component of displacement, not on the tangential component. (c)

The shape gradient for ε
3/2
eff computed using the method of section (IV). (d) The same quantity viewed in three dimensions.

The remainder of figure 8 shows the calculation of shape gradient with respect to the plasma boundary using the
method of section IV B. In the projection of ∂f/∂p onto the left singular vectors of D, shown in figure 8.b, the

second half of the elements are small compared to the first, consistent with ε
3/2
eff being independent of tangential
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displacements. There are some small nonzero amplitudes that can be attributed to discretization error. The final
shape gradient, displayed in 8.c-d, is evidently most significant at the top and bottom of the bullet cross section.
The reasons for this result would be interesting to explore in future work. We verified the results in figure 8 were
converged with respect to the numerical resolution parameters in the codes involved, and to the number of poloidal
and toroidal Fourier modes retained in the shape gradient.

Next, again considering f = ε
3/2
eff , figure 9 shows the shape gradient for coils. As in section VI, the finite difference

derivatives are obtained by having STELLOPT call MAKEGRID and then free-boundary VMEC, this time followed

by BOOZ XFORM and NEO. As for the ι example, we verified numerically that δε
3/2
eff when a coil is perturbed in

unison with its stellarator-symmetric partner is exactly twice δε
3/2
eff when only one of the pair is perturbed, and δε

3/2
eff

when a coil is perturbed in unison with its two nfp-symmetric partners is exactly three times δε
3/2
eff when only one

of the triplet is perturbed, consistent with the stellarator symmetry and nfp-symmetry in figure 8.c-d. Compared

to the shape gradient for ι, the shape gradient for ε
3/2
eff again has a large magnitude on the inboard side where the

coil-plasma distance is small. However, this time there is also a significant magnitude on the outboard side of the
type C coil, consistent with the large magnitude of shape gradient near this toroidal angle (π/3) in figure 8.c-d.
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FIG. 9. (Color online) Arrows show the shape gradient for ε
3/2
eff at half-radius for the NCSX coils. Panels (a)-(c) show the

same data from different angles. The plasma boundary is shown in red. Only one of the six sets of three unique coil shapes is

shown. (d) The shape tolerance required to achieve ∆ε
3/2
eff/ε

3/2
eff ≤ 1/2 computed from the shape gradient using (29), for two

different choices of the weight wk.

The coil shape tolerance (29) is displayed in figure 9.d. The acceptable variation is chosen to be ∆ε
3/2
eff = ε

3/2
eff/2,

and again only the modular coils are considered. In the main part of figure 9.d, a weight wk scaling inversely with
|Sk| is used to focus the tight-tolerance regions to areas in which the shape and position of the coils is most critical.

Also shown on the same color scale is the uniform tolerance that gives the same bound on δε
3/2
eff , resulting from the
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choice wk = 1.

VIII. CASES IN WHICH THE SHAPE GRADIENT DOES NOT EXIST

Now consider a quantity f that is not coordinate independent, that is, f depends on the particular choice of
coordinates used to parameterize the plasma boundary shape. This f will change under perturbations of r(θ, ζ) that
are tangential rather than normal to the surface, and hence perturbations to f cannot be expressed in the form (3).
If one attempts to compute a shape gradient for f using the machinery of section IV, one will find that ∂f/∂p will

not be in the column space of D, even approximately. Equivalently, the last half of the elements of UT ∂f/∂p or

QT ∂f/∂p will have a substantial amplitude. In this way, the method of section IV can detect whether or not a shape
gradient exists, given the derivatives ∂f/∂pj computed by STELLOPT or some other method.

As an example, consider the following quantity, an averaged major radius:

R0 =
1

(2π)2

∫ 2π

0

dθ

∫ 2π

0

dζ R = Rcm=0,n=0. (31)

A given surface can have different values of R0 depending on the choice of θ used to parameterize the surface, and
so no shape gradient for R0 exists. Figure 10 shows the elements of UT ∂f/∂p computed for this figure of merit for
NCSX (using VMEC’s θ). For this example, poloidal and toroidal mode numbers up to 12 were retained in pj ; other

choices yield qualitatively similar results. The second half of the entries of UT ∂f/∂p are not all small compared to
the first half of the entries, indicating that ∂f/∂p is not in the column space of D, and hence the representation (3)
is not valid for R0.

0 100 200 300 400 500 600

-0.3

-0.2

-0.1

0

0.1

0.2

UT  f/  p for f = R
0

FIG. 10. (Color online) Elements of the (dimensionless) vector UT ∂R0/∂p, where R0 is defined in (31). The second half of
the vector elements are not all negligible compared to the first half of the elements, indicating that a shape gradient for R0

does not exist.

A shape gradient does however exist for any alternative effective major radius that is coordinate-independent, such
as Reff = A−1

∫
d2a R.

IX. MAGNETIC SENSITIVITY

By relating the displacement of the surface to magnetic field perturbations, the magnetic sensitivity SB in (5) can
be computed from the shape gradient S. The magnetic sensitivity can inform where coils should be placed to control
a particular figure of merit, and to what extent errors in the magnetic field can be tolerated.

To derive the magnetic sensitivity representation, we first write the total magnetic field as B = B0 + δB where
B0 is the field of the unperturbed configuration. Similarly, we write ψ = ψ0 + δψ, where ψ is any flux surface label
coordinate for the perturbed state, and ψ0 is the analogous quantity for the unperturbed configuration. The first-order
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terms in B · ∇ψ = 0 then give

B0 · ∇δψ + δB · ∇ψ0 = 0. (32)

Next, observe

0 = dψ = δψ + δr · ∇ψ0, (33)

where dψ is the Lagrangian change in ψ along the plasma boundary as it is deformed. Combining (32)-(33),

B0 · ∇(δr · ∇ψ0) = δB · ∇ψ0. (34)

From this result, we observe that the component of δB tangent to the unperturbed surface causes no displacement;
only the normal component matters. Also note that if the rotational transform ι on the surface is irrational, the
magnetic differential equation (34) has a solvability condition 〈δB · ∇ψ0〉 = 0 where angle brackets denote a flux

surface average: 〈Q〉 = (1/V ′)
∫ 2π

0
dθ
∫ 2π

0
dζ
√
gQ where V ′ =

∫ 2π

0
dθ
∫ 2π

0
dζ
√
g for any quantity Q, and

√
g =

∂r

∂ψ0
· ∂r
∂θ
× ∂r

∂ζ
(35)

is the Jacobian. It can be shown that this solvability condition is always satisfied due to the absence of magnetic
monopoles. If on the other hand ι is rational, the solvability condition is obtained by integrating (34) over a closed
field line rather than a surface, and a resonant magnetic field perturbation can violate this solvability condition,
associated with the fact that ψ cannot be defined if the perturbed boundary becomes a magnetic island. We will
not consider this resonant situation further. Also note that for a given δB, (34) only determines δr · ∇ψ0 up to a
constant. This constant homogeneous solution exists because different magnetic surfaces could be identified as the
boundary surface.

Equation (34) can also be derived from ideal magnetohydrodynamics (MHD). In this plasma model, the linearized
induction equation is δB = ∇ × (δr × B0). Applying ·∇ψ0, the right-hand side can be manipulated using vector
identities to yield (34).

Next, we define SB as the solution of

B0 · ∇SB = 〈S〉 − S, (36)

where again we assume the boundary ι is irrational. This equation only determines SB up to a constant, and we will
show later that this constant is unimportant. We then substitute (36) into (3), using the fact that area integrals can

be written
∫
d2a(. . .) =

∫ 2π

0
dθ
∫ 2π

0
dζ|√g||∇ψ0|(. . .), obtaining

δf = 〈S〉
∫
d2a δr · n−

∫ 2π

0

dθ

∫ 2π

0

dζ|√g| (δr · ∇ψ0)B0 · ∇SB . (37)

Integrating the last term by parts, and substituting (34), we obtain (5), where δV =
∫
d2a δr · n is the perturbation

to the volume. Aside from the 〈S〉 term, this result resembles the shape gradient form (3) but with the displacement
δr replaced by the magnetic perturbation δB. However, as noted following (35), a given δB does not determine the
constant part of δr ·n, and hence the 〈S〉 term in (5) is necessary. Also note that if we had not included 〈S〉 in (36),
the solvability condition of (36) would generally not be satisfied.

Note that shifting SB by a constant does not alter δf in (5), since
∫
d2a δB · n = 0 by the absence of magnetic

monopoles. Hence, the homogeneous solution of (36) is unimportant. For results shown below, we choose the constant
so 〈SB〉 = 0.

In summary, any time a shape gradient S exists and the boundary ι is irrational, the magnetic sensitivity represen-
tation (5) also exists, and the magnetic sensitivity SB can be computed from S by (36).

Note that δB throughout this analysis is a sum of contributions from currents outside the plasma plus any response
from currents inside the plasma. In the limit of small plasma β, the plasma response can be neglected, so then δB
can be identified with the external perturbation.

Figure 11 shows the magnetic sensitivity computed for the examples considered previously. To produce these
figures, equation (36) is solved in Fourier space using straight-field-line (PEST) coordinates. The regions in these
figures where the magnitude of sensitivity is large would be ideal locations for coils that control the relevant figure of
merit while having less effect on other physics properties.

Just as a tolerance for shape deformations was derived from the shape gradient in section V, a local tolerance for
magnetic field errors can be derived from the magnetic sensitivity. This local magnetic tolerance can be useful for
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FIG. 11. (Color online) Magnetic sensitivity, computed using the methods of section IX.

identifying if potential sources of error fields, such as small amounts of magnetic material or current leads, can be
tolerated, and where they should be located. First, for any chosen figure of merit f , an acceptable overall ∆f > 0 is
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identified. Then we define the local magnetic tolerance TB at each point on the plasma boundary by

TB(θ, ζ) =
W (θ, ζ) ∆f∫

d2a′W (θ′, ζ ′)|SB(θ′, ζ ′)|
, (38)

where W is any non-negative weight. If the normal component of magnetic field error is everywhere smaller than TB ,
i.e. |δB · n| ≤ TB , then δf can be guaranteed to be no larger in magnitude than ∆f :

|δf | ≤
∫
d2a|SB ||δB · n| ≤

∫
d2a|SB |TB ≤ ∆f. (39)

In the line above we have set δV = 0 in (5), i.e. we choose to define the perturbed plasma boundary to be the
perturbed flux surface with equal volume to the unperturbed case. The choice W = 1 makes the tolerance spatially
uniform, TB = ∆f/

(∫
d2a′|SB(θ′, ζ ′)|

)
. Or, if the weight W is chosen to scale inversely with |SB | in some way, such

as W = |SB |−α for some α ≥ 0, the tolerance can be relaxed over a majority of the plasma surface in exchange for a
tighter tolerance in a few selected locations where the plasma is particularly sensitive. Other choices for W could be
made to allocate more of the tolerance to specified regions, which might be useful if a source of magnetic field error is
known to be localized. As with the coil shape tolerance (29), (38) is conservative in the sense that it is a limit on the
largest possible |δf |, rather than a limit on the expectation value of |δf | from some anticipated distribution of errors.

Figure 12 shows the magnetic tolerances computed by applying (38) to the magnetic sensitivities shown in figure
11.c-f. The allowable variations are the same as for the coil tolerances in figures 7.c and 9.d: ∆ι = 0.02 and

∆ε
3/2
eff = ε

3/2
eff/2. In the 3D part of the figures, the weight is chosen to be W = 1/|SB |, yielding a ‘tolerance map’

that highlights the regions where the plasma is most sensitive. The uniform tolerance obtained using W = 1 is also
displayed, and it is between the upper and lower bounds of the nonuniform tolerance.

FIG. 12. (Color online) The magnetic tolerance (38) for (a) the half-radius rotational transform and (b) the half-radius

neoclassical transport, computed using acceptable variations ∆ι = 0.02 and ∆ε
3/2
eff = ε

3/2
eff/2. In the 3D figures, a nonuniform

spatial weighting is used to highlight the regions that are most sensitive, while the uniform tolerance that yields the same
bound on ∆f is shown below on the same color scale.

X. CONCLUSIONS

In this paper we have pointed out that derivatives of many figures of merit f with respect to the shape of a plasma or
coil can be represented not only by the parameter derivatives ∂f/∂pj , but also by the shape gradient representations
(3)-(4), and the shape gradient representations have several advantages. These representations provide information
that is spatially local, which is important for engineering considerations, and the shape gradients are also independent
of whichever parameterization is chosen for the shape. Most existing stellarator physics codes do not provide derivative
information, but we have demonstrated how the shape gradients can nonetheless be computed from any ‘forward code’
such as those in the STELLOPT code suite. First, the parameter derivatives ∂f/∂pj can be computed from the forward
code using finite differences, and then the shape gradient can be computed from the parameter derivatives by solving
the linear system (18) for coils or (20) for surfaces. Using this procedure, shape gradients for several interesting

Page 20 of 25AUTHOR SUBMITTED MANUSCRIPT - NF-102383.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

stellarator figures of merit have been illustrated in figures 6-9. These shape gradients are more illuminating in
several ways than the equivalent parameter derivatives in figures 6.a and 8.a. Once the shape gradient is found for
a toroidal surface, the magnetic sensitivity SB can be computed by solving (36), enabling variations with respect to
local magnetic field perturbations to be represented in the form (5). The magnetic sensitivity, as shown in figure
11, can help inform where to locate trim coils. Both the shape gradient for coils and the magnetic sensitivity for
surfaces can be converted into local tolerances using (29) and (38). The shape tolerance, as shown in figures 7.c
and 9.d, informs how accurately the coils must be built and positioned, and where the coils should be most rigidly
supported. The magnetic tolerance, as shown in figure 12, indicates the extent to which stray field from magnetic
material and current leads is permissible, and where these sources of error fields could best be located. The shape
gradient representation has been used previously for shape optimization of objects interacting with neutral fluids,
such as components of aircraft or automobiles, and has been used to optimize the shapes of tokamak divertors. Going
forward, we expect this shape gradient representation will also be a powerful tool for optimizing plasma and coil
shapes, and for understanding their tolerances.
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Appendix A: Shape gradient for area integrals

Here we give a derivation of (17). Perturbing r(θ, ζ) in (15)-(16), we find

δA =

∫ 2π

0

dθ

∫ 2π

0

dζ

(
Q
∂δr

∂ζ
· ∂r
∂θ
× n +Q

∂δr

∂θ
· n× ∂r

∂ζ
+Nδr · ∇Q

)
. (A1)

Integrating by parts to remove the θ and ζ derivatives from δr,

δA =

∫
d2a

[
δr · (QT +∇Q) +

1

N
δr × n ·

(
∂r

∂θ

∂Q

∂ζ
− ∂r

∂ζ

∂Q

∂θ

)]
, (A2)

where

T =
1

N

(
∂n

∂ζ
× ∂r

∂θ
+
∂r

∂ζ
× ∂n

∂θ

)
. (A3)

One can verify that T · (∂r/∂θ) = 0 and T · (∂r/∂ζ) = 0, so T must be parallel to N and hence T = T · nn.
Expanding n = N−1N in (A3) using (16), one finds

T · n = −LG+ PE − 2MF

EG− F 2
= −2H, (A4)

where E = (∂r/∂θ) · (∂r/∂θ), F = (∂r/∂θ) · (∂r/∂ζ), and G = (∂r/∂ζ) · (∂r/∂ζ) are the coefficients of the first
fundamental form; L = n · (∂2r/∂θ2), M = n · (∂2r/∂θ∂ζ), and P = n · (∂2r/∂ζ2) are the coefficients of the second
fundamental form; and H is the mean curvature. Recognizing the quantity in the last pair of parentheses in (A2) as
N ×∇Q, we finally obtain the form (3) with a shape gradient given by (17).

Appendix B: Collocation method for computing the shape gradient

For the method of computing the shape gradient in section IV, S was discretized using a finite Fourier expansion.
Alternatively, S could be represented discretely by its values at the grid points in θ and ζ where (∂r/∂pj) · n is

evaluated. In this ‘collocation’ approach, the matrix D of section IV is replaced by the matrix D̂ with elements

D̂jq = ∆θ∆ζ
∂r

∂pj
·N evaluated at (θq, ζq). (B1)
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As before, q indexes a uniform tensor product grid in θ and ζ with spacing ∆θ and ∆ζ. Also, the vector S with
elements Sq is replaced by Ŝ, with elements Ŝq = S(θq, ζq). The rest of the discussion in section IV then applies.
One can test whether the shape gradient representation exists by checking that ∂f/∂p lies (approximately) in the

column space of D̂, and if it does, then the shape gradient Ŝ can be computing by applying the pseudo-inverse of D̂
to ∂f/∂p.

In contrast to the Fourier approach of section IV, the results of the collocation method are rather sensitive to the
number of points in the (θ, ζ) grid relative to the number of Fourier modes in ∂f/∂pj . Also, if the (θ, ζ) resolution is

sufficiently high compared to the number of Fourier modes in ∂f/∂pj , then D̂ will be rank-deficient, and so its singular
values below some threshold must be treated as if they were zero in the pseudo-inverse. Without a singular value
threshold, the computed shape gradient becomes dominated by numerical noise. Due to these issues, the collocation
approach seems less robust than the Fourier approach. For the examples considered in this paper, we find it works
well to use three times as many grid points in θ as the largest m mode in ∂f/∂pj , use three times as many grid points
in ζ as the largest n mode in ∂f/∂pj , and use a singular value threshold of ∼ 0.05× the largest singular value.

This collocation method for computing the shape gradient is illustrated in figure 13. Here, the rotational transform
example of section VI and figure 6 is considered. Due to stellarator-symmetry and nfp-symmetry, the (θ, ζ) grid need

only extend over half of one field period. Figure 13.a shows UT∂f/∂p, where U is the matrix of left singular vectors of

D̂. Figure 13.b shows the singular values of D̂. It can be seen that the small singular values correspond to negligible
entries in UT∂f/∂p, and so ∂f/∂p does lie in the column space of D̂. Hence a shape gradient does exist. Figure 13.c
shows the final shape gradient. The result is nearly indistinguishable from figure figure 6.d, demonstrating that the

Fourier and collocation methods yield essentially the same results. The same is true for the area and ε
3/2
eff examples.

Appendix C: Symmetries

Stellarator magnetic surfaces often have two discrete symmetries. The first, ‘nfp symmetry’, is a discrete rotational
symmetry: the system is unchanged under toroidal rotation ζ → ζ+2π/nfp. Here, the integer nfp denotes the number
of field periods (5 for W7-X, 3 for NCSX). The second symmetry is stellarator symmetry: R(θ, ζ) = R(−θ,−ζ) and
Z(θ, ζ) = −Z(−θ,−ζ). Perturbations to coils or to the boundary surface that violate nfp symmetry and/or stellarator
symmetry are described by exactly the same equations (3)-(4) as perturbations that preserve these symmetries. The
shape gradient is the same whether or not δr has these symmetries. One is free to consider δr in (3)-(4) to lack or
possess the desired symmetries.

Even if a toroidal surface has nfp symmetry and stellarator symmetry, there is no general rule that the shape gradient
S must have the same symmetries for all shape functionals. For example, consider the functional f =

∫
d3r (X +Z),

where X and Z are Cartesian coordinates. The associated shape gradient, using the result of section III A, is
S = X + Z, which lacks both symmetries. However, for many figures of merit of physical interest, S does posses one
or both symmetries.

In the remainder of this section, we prove that for a stellarator-symmetric surface shape, S is stellarator-symmetric
if and only if ∂f/∂Rsm,n = 0 and ∂f/∂Zcm,n = 0 for all m and n. We also prove that for a nfp-symmetric surface
shape, S is nfp-symmetric if and only if ∂f/∂Rcm,n, ∂f/∂Rsm,n, ∂f/∂Zcm,n, and ∂f/∂Zsm,n all vanish when n is not a
multiple of nfp. In these statements, f can be any shape functional. Using these results, one can determine whether S
has nfp symmetry and/or stellarator symmetry based on the parameter derivatives. If S is found to have one or both
symmetries, the discretized linear systems described in section IV and appendix B can be reduced in size accordingly.

Let (eR, eζ , eZ) be the usual right-handed set of unit vectors for cylindrical coordinates. Using r = ReR + ZeZ ,
deR/dζ = eζ , and (16), then

N = R
∂Z

∂θ
eR +

(
∂R

∂θ

∂Z

∂ζ
− ∂R

∂ζ

∂Z

∂θ

)
eζ −R

∂R

∂θ
eZ . (C1)

We also have

∂r

∂Rcm,n
= cos(mθ − nζ)eR,

∂r

∂Zcm,n
= cos(mθ − nζ)eZ . (C2)
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FIG. 13. (Color online) Computation of the shape gradient for the half-radius rotational transform ι using the collocation

approach of Appendix B. (a) Projection of ∂f/∂p onto the left singular vectors of D̂. (b) Singular values of D̂. The small
singular values are all associated with negligible values in (a), confirming that changes to ι depend only on the normal component
of displacement, not on the tangential component. (c) The resulting shape gradient for ι is nearly indistinguishable from figure
6.c.

The same expressions with cos→ sin hold for ∂r/∂Rsm,n and ∂r/∂Zsm,n. From (3) then

∂f

∂Rsm,n
=

∫ 2π

0

dθ

∫ 2π

0

dζ sin(mθ − nζ)SR
∂Z

∂θ
, (C3)

∂f

∂Rcm,n
=

∫ 2π

0

dθ

∫ 2π

0

dζ cos(mθ − nζ)SR
∂Z

∂θ
, (C4)

∂f

∂Zsm,n
= −

∫ 2π

0

dθ

∫ 2π

0

dζ sin(mθ − nζ)SR
∂R

∂θ
, (C5)

∂f

∂Zcm,n
= −

∫ 2π

0

dθ

∫ 2π

0

dζ cos(mθ − nζ)SR
∂R

∂θ
. (C6)

We can now give the ‘only if’ half of the proofs. Suppose the surface shape and S are stellarator-symmetric. This
symmetry means that under the transformation (θ, ζ) → (−θ,−ζ), the quantities R, ∂Z/∂θ, and S are even, and Z
and ∂R/∂θ are odd. The integrands in (C3) and (C6) are odd, so the integrals vanish. Therefore ∂f/∂Rsm,n = 0 and
∂f/∂Zcm,n = 0 for all m and n.

Suppose the surface shape and S are nfp-symmetric, meaning R, Z, and S only include Fourier mode numbers in
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ζ that are integer multiples of nfp. Then in (C3)-(C6), SR∂Z/∂θ and SR∂R/∂θ have the same property. Therefore,
if n is not a multiple of nfp, the integrals in (C3)-(C6) all vanish. This concludes the ‘only if’ half of the proofs.

Now we give the ‘if’ half of the proofs. Suppose the surface shape is stellarator-symmetric, so R and ∂Z/∂θ are
even and Z and ∂R/∂θ are odd under (θ, ζ) → (−θ,−ζ), but we do not yet know the parity of S. Suppose further
that ∂f/∂Rsm,n = 0 and ∂f/∂Zcm,n = 0 for all m and n. Substituting a Fourier expansion of SR∂Z/∂θ into (C3), one
finds the Fourier components of the odd part of SR∂Z/∂θ all vanish, hence the odd part of SR∂Z/∂θ must vanish
everywhere. Since R is positive, it follows that the odd part of S can be nonzero only where ∂Z/∂θ vanishes. A
similar argument applied to (C6) shows that the odd part of S can be nonzero only where ∂R/∂θ vanishes. Except in
the uninteresting case that the coordinate system is singular, at least one of ∂R/∂θ or ∂Z/∂θ is nonzero everywhere,
so the odd part of S must vanish, i.e. S is stellarator-symmetric.

Finally, suppose the surface shape is nfp-symmetric, so R and Z only include Fourier mode numbers in ζ that
are integer multiples of nfp, but we do not assume this symmetry of S. Suppose further that ∂f/∂Rsm,n = 0,
∂f/∂Rcm,n = 0, ∂f/∂Zsm,n = 0, and ∂f/∂Zcm,n = 0 for all n that are not integer multiples of nfp. Substituting a
Fourier expansion of SR∂Z/∂θ into (C3)-(C4), one finds the Fourier components of SR∂Z/∂θ all vanish when n is not
a multiple of nfp, so SR∂Z/∂θ is nfp-symmetric. As division by an nfp-symmetric function preserves the symmetry,
then S is nfp-symmetric, except perhaps where ∂Z/∂θ = 0. Repeating the same argument using (C5)-(C6), one
concludes S is nfp-symmetric, except perhaps where ∂R/∂θ = 0. Since at least one of ∂R/∂θ or ∂Z/∂θ is nonzero
everywhere for a nonsingular coordinate system, S is nfp-symmetric everywhere. This concludes the ‘if’ half of the
proofs.
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