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ABSTRACT 34 

Objective:  A traditional goal of neural recording with extracellular electrodes is to isolate action 35 

potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been 36 

recognized that threshold crossing events of the voltage waveform also convey rich information. To 37 

date, the threshold for detecting threshold crossings has been selected to preserve single-neuron 38 

isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal 39 

threshold for information extraction.  Here we introduce a procedure to determine the best threshold 40 

for extracting information from extracellular recordings. We apply this procedure in two distinct 41 

contexts: the encoding of kinematic parameters from neural activity in primary motor cortical (M1), and 42 

visual stimulus parameters from neural activity in primary visual cortical (V1).  43 

Approach:  We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys.  44 

Then, we systematically sweep the voltage detection threshold and quantify the information conveyed 45 

by the corresponding threshold crossings.     46 

Main Results:  The optimal threshold depends on the desired information.  In M1, velocity is optimally 47 

encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are 48 

typically used in BCI applications.  In V1, information about the orientation of a visual stimulus is 49 

optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results 50 

as a consequence of cortical topography. 51 

Significance:  How neural signals are processed impacts the information that can be extracted from 52 

them. Both the type and quality of information contained in threshold crossings depend on the 53 

threshold setting.  There is more information available in these signals than is typically extracted.  54 

Adjusting the detection threshold to the parameter of interest in a BCI context should improve our 55 

ability to decode motor intent, and thus enhance BCI control.  Further, by sweeping the detection 56 

threshold, one can gain insights into the topographic organization of the nearby neural tissue.   57 

  58 
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INTRODUCTION 59 

Brain-Computer Interfaces (BCIs) extract information about motor intentions from recordings of 60 

neural signals to control an external device, with the goal of assisting patients with paralysis or other 61 

sensory-motor deficits.  The recorded signals have taken the form of EEG, MEG, and intracortical signals 62 

(Schwartz et al., 2006).  A promising class of BCIs extracts information directly from action potentials, or 63 

“spikes,” identified from the voltage traces recorded from chronically implanted extracellular 64 

electrodes.  To identify these spikes, the voltage trace is typically band-pass filtered, thresholded to 65 

identify transients in the voltage signal, and then sorted based on the shape of the transient waveform 66 

into clusters corresponding to individual neurons.  This final pre-processing step, “spike sorting”, has 67 

received considerable attention because it is time consuming, prone to inaccuracies, and difficult to 68 

perform in clinical settings (Lewicki, 1998; Rey, 2015).  Fortunately, it appears that accurate spike sorting 69 

may not be necessary for good BCI performance (Ventura, 2008; Fraser et al., 2009; Chestek et al., 2011; 70 

Malik et al., 2014). Rather, a threshold can be set, and all voltage transients that exceed that threshold 71 

(that is, “threshold crossings”) can be counted, regardless of the waveform shape. Evidence is 72 

accumulating that there is information in such non-spike signals recorded from microelectrodes.   In one 73 

example, Stark and Abeles (2007) used a multiunit activity signal, processed by computing the root 74 

mean square of the voltage signal in the 300 - 6000 Hz frequency band, to predict reach direction and 75 

grasp with better accuracy than either spike activity or local field potentials.   With this knowledge, some 76 

researchers have investigated the possibility of moving away from using sorted units as inputs to BCI 77 

decoders and instead using threshold crossings (Fraser et al., 2009).  Many studies agree that BCI 78 

performance is substantially degraded when the non-spike parts of the signal are discarded (Todorova et 79 

al., 2014; Kloosterman et al., 2014; Deng et al., 2015), raising the intriguing possibility that the threshold 80 

could be adjusted to maximize BCI performance. 81 

Here we assess how the voltage detection threshold setting (“threshold”) affects the encoding 82 

of movement parameters in primary motor cortex (M1). We then assess the generality of this approach 83 

by using it to examine the information present in recordings from primary visual cortex (V1).  To 84 

interpret our observations, we reason that the choice of threshold impacts the effective sampling radius 85 

of the electrode.  For example, choosing a more permissive threshold presumably enlarges the effective 86 

sampling radius of the electrode and, thus increases the number of neurons contributing to the 87 

threshold crossing signal (Martinez et al., 2009, Pedreira et al., 2012).  At high detection thresholds, 88 

threshold crossings comprise the spikes from individual neurons close to the electrode.  At low 89 

detection thresholds, threshold crossings comprise multi-unit activity from smaller neurons or neurons 90 

farther from the electrode.  How the detection threshold is chosen impacts the neural contributions to 91 

the signal, and potentially, what information is contained in the signal. 92 

Traditionally, thresholds have been chosen to maximize spike-sorting performance.  However, 93 

the optimal threshold for single-neuron identification is not necessarily the optimal threshold for 94 

information extraction.  We hypothesized that the optimal threshold would depend on the parameter of 95 

interest.  We assessed the impact of the detection threshold by systematically sweeping the detection 96 

threshold and evaluating the information content of threshold crossings about two different parameters 97 

of interest, velocity and speed, recorded from primary motor cortex (M1).  We find that the type of 98 
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information encoded by threshold crossings depends strongly on threshold, and the optimal threshold 99 

depends on the parameter of interest.   In particular, we find that velocity, a directional parameter, is 100 

better represented at higher thresholds, whereas speed, a scalar quantity, is better represented at 101 

lower thresholds.    Additionally, we show that optimal thresholds are surprisingly low, considerably 102 

below the thresholds commonly used in closed-loop BCI studies.  This means that the optimal thresholds 103 

for extracting information are not typically the best thresholds for isolating single neurons. 104 

We can understand these results in the context of the topographical representation of speed 105 

and velocity in M1.  The scale of the topographic organization and the homogeneity of a parameter’s 106 

representation across cortical tissue influence the optimal threshold.  This observation could generalize 107 

to other areas of cortex, such that knowledge of the topographic representation of different parameters 108 

should predict the choice of threshold for maximizing the information available in neural recordings. We 109 

tested this hypothesis with recordings from V1, a cortical area with a distinctly different topographical 110 

representation of its relevant parameters. By applying our method of sweeping the threshold, we were 111 

able to predict the relative optimal thresholds for the parameters orientation and contrast of a visual 112 

stimulus.  We conclude that the type and quality of information that can be extracted from extracellular 113 

signals depends on the threshold setting; there is more information present in extracellular voltage 114 

recordings than is typically extracted.   115 

METHODS 116 

All animal procedures complied with the National Institutes of Health Guide for Care and Use of 117 

Laboratory Animals, and were approved by the University of Pittsburgh’s Animal Care and Use 118 

Committee.  To assess the generality of our predictions, we analyzed data collected from two different 119 

cortical areas in two monkeys each, and in the context of two different behaviors.  120 

 M1 Task and Recordings 121 

 Two male monkeys (Macaca mulatta, 11.6 and 7.3 kg) were trained to perform an 8-target 122 

center-out reach task (Figure 1(a)).  The position of an LED marker attached to the fingertip of the 123 

reaching hand was tracked at 120 Hz (<1 mm resolution; Phasespace Inc., San Leandro, CA).  The 124 

position of the marker was visible to the monkey as a cursor on a frontoparallel screen.  The hand was 125 

not visible to the monkey, because it moved in the space behind the screen. At the start of each trial, 126 

the monkey had to move the cursor to a central target and hold for 200-400 ms.  Then, one of eight 127 

peripheral targets (arranged at 45° intervals and spaced 9 cm from the center) appeared, and he had 128 

~800 ms to acquire it with the cursor. After holding the cursor on the peripheral target for 200-500 ms 129 

(randomized) he received a liquid reward.  A failure at any point caused the trial to terminate without 130 

reward, and there was a 1.5 second timeout before the next trial began.   131 

When the monkey was proficient at the task, we implanted a 96-electrode array (Blackrock 132 

Microsystems) in the arm area of M1 (as determined intraoperatively via cortical landmarks) 133 

contralateral to the reaching hand (Figure 1(a)). 134 

  135 
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 136 

Figure 1. Schematic of tasks and neural recordings.  (a) During the M1 recordings, a monkey performed an 8-137 

target center-out reaching task.  An LED marker (red) was attached to the monkey’s finger tip to track his 138 

movements, which were displayed as a cursor on the screen (blue). The monkey made reaches from the center of 139 

the screen to one (green) of eight peripheral targets (gray).  The array placement in M1 is shown by the green 140 

square.  (b)  During the V1 recordings, a monkey fixated on a central spot (white) while drifting Gabor patches 141 

were presented peripherally.  The array placement in V1 is shown by the blue square.   (c) Voltage trace from M1 142 

during a single reach trial with detection threshold settings from θ = 10 to -10θσorange) is permissive, 143 

capturing low voltage transients.  θσ(light blue) is more restrictive, capturing only high voltage transients 144 

which likely correspond to spikes from a single neuron.  (d) Waveform snippets for threshold crossings of 1, 3, 145 

and 5 in D.  As the threshold becomes more permissive (1, orange) there are more threshold crossings.  As the 146 

threshold becomes more selective (5, light blue) the waveform becomes more consistent.  (e)  Using the 147 

exclusive window categorization method, threshold crossings for the channel are identified when the voltage trace 148 

passes into and out of the window defined by a particular threshold without passing into higher-threshold 149 

windows.  A 1 window (orange) and a 3 window (yellow) are shown in this example.  If the voltage trace crosses 150 
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the 1 threshold but not the 3 threshold, it is classified as a 1 crossing.  As indicated with the black circles, we 151 

can successfully select the larger voltage fluctuations with the exclusive θ = 3 and we capture the smaller 152 

fluctuations with the exclusive θ= 1.       153 

As the monkey performed the task we recorded neural data from M1 using a Tucker-Davis 154 

Technologies RZ2 system.  During each recording session, we streamed the filtered broadband signal 155 

(700-3000Hz band-pass, Kaiser window) from 4-10 different channels directly to disk at a 24 kHz 156 

sampling rate.  In some cases we streamed an unfiltered broadband signal at a 24 kHz sampling rate and 157 

applied a 700-3000Hz bandpass filter offline.  Because of system limitations, we could not record 158 

broadband signals from all 96 channels each day.  In total, we recorded 20 unique channels over 5 159 

experimental sessions from monkey J (26 months post-implant) and 53 unique channels over 9 160 

experimental sessions from monkey L (2 weeks to 9 months post-implant). 161 

In this data set, we analyzed the representation of two kinematic parameters -velocity and 162 

speed - which are known to correlate well with neural firing in M1 (Moran and Schwartz, 1999; 163 

Churchland and Shenoy, 2007; Golub et al., 2014). 164 

V1 Stimuli and Recordings 165 

 Two different male monkeys (Macaca mulatta, 9.25 and 8.0 kg) were trained to fixate on a 166 

central spot while visual stimuli were presented peripherally (Figure 1(b)). The animals had been trained 167 

to perform an orientation change detection task over the course of several months and were able to 168 

stably maintain fixation for 3 - 5 seconds. Before electrophysiological recording, the animals were 169 

implanted with a custom titanium head post, and a 96-electrode array (Blackrock Microsystems) in V1 170 

(as determined by cortical landmarks, Figure 1(b)).   Eye position was monitored using an infrared optical 171 

recording system (Eyelink, SR Research) sampling at 1 kHz.  172 

To begin each trial, the monkey would acquire fixation on a central spot. After 200-400ms of 173 

stable fixation within a 1 degree window, stimulus presentation began. A total of seven stimuli were 174 

flashed for 200 ms each with an interstimulus interval of 100ms. If the animal maintained fixation for 175 

the duration of the stimulus presentations, he was rewarded with a drop of juice. If the animal's eye 176 

position left the fixation window during stimulus presentation, the trial was aborted and no reward was 177 

given. Stimuli were presented on a mean gray luminance screen (1024 x 768; 27.9 pixels/degree; 120Hz 178 

refresh rate) placed 635mm in front of the animal. The stimuli were drifting oriented Gabor patches that 179 

varied in contrast (contrast values = 0.06, 0.12, 0.25, 0.5, 1) or orientation (orientation values ranged 180 

from 0 o to 330 o in 30o intervals).  When orientation was varied, contrast = 1.  When contrast was varied, 181 

orientation = 90o for monkey B and 180o for monkey G.  The receptive fields of the V1 neurons recorded 182 

on the array were located approximately 3.5o eccentric from fixation, in the lower right visual field, and 183 

they spanned approximately 2 degrees of visual angle. Spatial dimensions of the stimuli were selected to 184 

envelop the receptive fields of all V1 neurons recorded by the array.  In the initial frame of each 185 

stimulus, the grating had odd spatial symmetry. The phase velocity of the stimulus was selected so that 186 

upon presentation of the final frame, the stimulus had drifted one complete cycle. 187 
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 Electrophysiological recordings were performed 2.5 months (monkey B) and 2 weeks (monkey 188 

G) post-implant.  Data were collected with a Grapevine system (Ripple, Inc.).  Broadband signals were 189 

recorded on all 96 channels on one day.  Each channel was sampled at 30kHz and raw signals were 190 

bandpass filtered (Highpass filter: 0.3Hz; Lowpass filter: 7.5kHz, 3rd Order Butterworth) and streamed to 191 

disc.  The saved signals were subsequently filtered offline in the same way that the M1 signals were, 192 

using a Kaiser window with a 700-3000Hz passband. 193 

 In this task, we analyzed the neural representation of the orientation and contrast of the drifting 194 

Gabor patch stimulus.  Both of these parameters are known to drive neural firing in V1 (Hubel and 195 

Wiesel, 1959).   196 

Threshold crossings 197 

Our central analysis assesses the information content present in neural recordings at varying 198 

voltage thresholds.  To do this, we systematically swept the level of the voltage detection threshold to 199 

extract threshold crossings (Figure 1(c)).  At each threshold we evaluated the signal-to-noise ratio of the 200 

information about movement or stimulus parameters encoded by the corresponding threshold 201 

crossings.  We defined threshold settings with respect to the standard deviation of the filtered signal (σ), 202 

computed as the average standard deviation of the recording over 100-200 trials.  We considered 203 

threshold settings ranging from 0 (mean) to -10σ for the M1 data and -6σ for the V1 data, at intervals of 204 

0.5σ.  These negative threshold settings correspond with the depolarizing phase of the action potential.  205 

Results from positive-going thresholds were comparable, and thus we use only the negative thresholds 206 

in our analyses.  We defined a threshold crossing as the time at which the recorded signal crossed the 207 

threshold voltage in a negative-going direction, with 100 µs resolution.  For clarity, figures and the 208 

following text will refer to the absolute value of the multiplier of the threshold setting (e.g. 3σ).   209 

Quantifying information content with Signal-to-Noise Ratio 210 

We use the signal-to-noise ratio (SNR) to quantify the information content conveyed by the 211 

threshold crossings.  Intuitively, SNR can be thought of as the ratio of useful information to irrelevant 212 

information.  Formally, “signal” is defined as the variance in the data that is explained by a parameter of 213 

interest (e.g. velocity, speed, orientation or contrast), and “noise” is defined as the residual, unexplained 214 

variance after accounting for that parameter.  Here, our recorded data, Yθ, is the number of threshold 215 

crossings recorded at a particular threshold θ.  We can decompose the variance in our data, Var[Yθ], into 216 

a component explained by a stimulus X and a component remaining after accounting for X.  This 217 

decomposition is exact, and is given by the Law of Total Variance: 218 

 Var[Yθ] = Var(E[Yθ|X]) + E(Var[Yθ|X]), (1) 219 

where Var(E[Yθ|X]) is the variance of the expected value of Yθ conditioned on X, and E(Var[Yθ|X]) is the 220 

expected value of the variance of Yθ conditioned on X.  The first term quantifies the variation in Yθ that is 221 

explained by X (i.e., the signal variance); the second quantifies the residual variation in Yθ that remains 222 

after accounting for X (i.e., the noise variance).  The SNR is the ratio of these two quantities: 223 
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 𝑆𝑁𝑅𝜃 ≡
𝑉𝑎𝑟(𝐸[𝑌𝜃|𝑋])

𝐸[𝑉𝑎𝑟(𝑌𝜃|𝑋)]
. (2) 224 

For the M1 studies, the parameters of interest are velocity and speed, which both vary in a 225 

continuous fashion over the range of natural reaching movements.  To compute the SNR in this case, we 226 

first fit linear tuning curves by regressing neural activity against kinematics, and then quantified how 227 

well these linear fits accounted for the variance of the threshold crossings with the SNR.  We considered 228 

a separate encoding model for velocity (Eq. 3) and speed (Eq. 4), and fit an ordinary linear regression at 229 

each threshold setting: 230 

 yθ(t) = b0 + bxvx(t) + byvy(t) + v(t) (3) 231 

 yθ (t) = b0 + bss(t) + s(t) (4) 232 

where yθ(t) is the number of threshold crossings for a given threshold in a 100 ms bin centered at time t, 233 

vx(t) and vy(t) are the x- and y-components of the velocity of the cursor averaged over a 100 ms bin, s(t) 234 

is the speed of the cursor averaged over a 100 ms bin, and (t) is an error term that captures deviations 235 

from the model. These models can be fit at varying temporal offsets between the neural and kinematic 236 

data.  We used a 100 ms offset (neural activity leading kinematics) because we have found this offset 237 

yields the best correlation with behavior for the data sets analyzed here (Perel et al., 2015).  For each 238 

encoding model, we used the model estimates to compute the signal variance and the residuals of the 239 

regression to compute the noise variance.  As an example, for speed the signal variance is the variance 240 

of b0+bss(t) over all recorded speeds, and the noise variance is the variance of s(t).  Graphical depictions 241 

of these quantities are provided in figure 2(c).     242 

For the V1 studies, the parameters of interest are orientation and contrast.  Each of these varied 243 

over discrete levels in our experiments, and firing rates were measured for multiple repetitions of each 244 

particular orientation or contrast.  In this case E[Yθ|X] and Var[Yθ|X] can be measured directly from the 245 

data (as depicted in figure 8(a)), without the need for linear regression.  246 

Although SNR is not a common metric in either M1 or V1 studies, it provides a simple, intuitive 247 

metric of information content, it is relatively straightforward to compute, and it allows for relatively 248 

direct comparisons across brain areas even when the parameters of interest are quite different.  A more 249 

common metric of goodness of fit in motor neurophysiology is the coefficient of determination (R2) (e.g., 250 

Georgopoulos et al., 1982), which is a statistical measure of how well a model approximates the data.  251 

Qualitatively our M1 results are the same with either measure.  However, since neurons in V1 do not 252 

respond in a linear fashion to stimuli of different orientations, the R2 would have been less appropriate 253 

for those data.  Another possibility would have been to compute the mutual information between 254 

threshold crossings and parameters directly.  However, comparisons of mutual information across 255 

different stimulus sets are difficult to interpret when those sets are not entropy-matched (Golub et al., 256 

2014; Chase and Young, 2008).  For these reasons, we favor the SNR metric for this study.  Finally, we 257 

note that SNR values less than 1 are not uncommon in neural responses, especially when analyzed at 258 

fine temporal resolution, and low SNR values still signal the presence of meaningful information. 259 
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Exclusive windows approach to spike sorting 260 

We reasoned that the small-amplitude fluctuations of the voltage trace might contain 261 

information that was distinct from the information contained in the high-amplitude fluctuations.  To this 262 

end, we performed an “exclusive window” analysis.   In this analysis, a threshold crossing was registered 263 

only if it crossed a defined threshold in the negative direction and re-crossed it in the positive direction 264 

before crossing another more-negative threshold (Figure 1(e)).   With this definition, a given excursion of 265 

the voltage trace is exclusively categorized as crossing only one threshold.  This is in contrast to our basic 266 

threshold analysis in which a threshold crossing that crossed a given threshold was counted at all 267 

smaller thresholds as well.  To differentiate these choices in the text, we refer to exclusive threshold 268 

crossings as xTCs. The exclusive windows can act as a crude approach to spike sorting (Todorova et al., 269 

2014), when large thresholds are selected.  Here we examine two exclusive thresholds: a low threshold 270 

at 1σ to select the small voltage fluctuations, and a high threshold, which captures the large voltage 271 

fluctuations associated with spikes. We considered two possible high thresholds, 3σ or 4.5σ. Using these 272 

xTCs, we repeated the SNR analysis as described above.   273 

 274 

RESULTS 275 

Our central finding is that in extracellular recordings the detection threshold can be tuned to 276 

maximize information about parameters of interest, with different parameters exhibiting different 277 

optimal thresholds.  Further, the threshold setting that maximizes information is usually not the setting 278 

that yields the best spike sorting. We show this in two cortical areas, with two parameters of interest for 279 

each area. Our main focus is on primary motor cortex (M1), where we consider the selection of optimal 280 

thresholds for the neural encoding of velocity or speed. To examine the generality of this approach, we 281 

also apply it to neural recordings from primary visual cortex (V1), where the parameters of interest are 282 

orientation and contrast. In both cases, recordings are collected with 96-electrode arrays. Broadband 283 

data are saved, and analyses are conducted offline. For each recorded channel, we swept the voltage 284 

detection threshold, and measured the number of threshold crossings at each threshold. At each 285 

threshold, we quantified the amount of information about the parameter of interest as a signal-to-noise 286 

ratio (SNR).   287 

Information content depends on threshold 288 

Figure 2(a) shows the density of threshold crossings at a low threshold (θ=1) and a high 289 

threshold (θ=5) during reaches to eight different target directions for an example M1 channel.  It can 290 

be seen that different information is manifested in the tuning at different threshold settings.  At θ = 5σ 291 

(cool color scale), this channel shows velocity tuning, with a preferred direction up and to the right.  At θ 292 

= 1σ (warm color scale), this channel modulates similarly for all 8 reach directions. The velocity tuning is 293 

weak at this threshold, but, instead, the signal reflects speed (gray lines): it is active during the reach 294 

regardless of direction.  This is an exemplary channel which visually highlights our central finding: by 295 

adjusting the threshold setting, we differentially extract information about each parameter (not just 296 

different amounts of information about a given parameter) from the neural signal.  Separately for each  297 

298 
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 299 

Figure 2.  SNR quantifies information content in M1.  (a)  Single channel example of threshold crossing activity as 300 

a function of reach.  Each plot shows the number of threshold crossings in 100ms bins for one of eight reach 301 

directions. The color indicates the number of threshold crossings, where the red scale is for θ = 1 and the blue 302 

scale is for θ= 5.  Each row is a trial.  The top plots are for a permissive threshold (θ = 1 and the bottom plots 303 
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are for a selective threshold (θ= 5.  Average speed profiles for each reach direction are plotted in gray for 304 

reference.  Note the strong directional tuning for θ=5σ (with an upwards preferred direction), and the strong 305 

speed modulation for θ=1σ.  Panels (b)-(f) step through the SNR calculation which we use to quantify this. (b) The 306 

observed number of threshold crossings (gray) is plotted against the corresponding reach speed for a permissive 307 

(left) and selective (right) threshold.  In black, we show the linear regression.    (c) We take the variance of Y (as 308 

described in Equation 4, black in (b)) to be the signal and the variance of the residuals (s as described in Equation 309 

4) to be the noise.  The histograms show the distributions of these measurements from which the variance is 310 

calculated.  The signal (d) and noise (e) arising from these variance calculations vary with threshold.  (f) Combining 311 

signal and noise, velocity and speed SNRs show an inverted-U shaped relationship with threshold with peaks at 312 

different thresholds.  (g) A common metric of tuning in M1 is R2, plotted here for comparison. 313 

threshold setting, we modeled the relationship between threshold crossings and each kinematic 314 

parameter with linear regression. We quantified the information content with the SNR.  As an example, 315 

figure 2(b) shows the linear regressions for speed at θ=1and θ=5.  As defined in Methods, the signal 316 

is the variance of the estimated threshold crossings and the noise is the variance of the residuals, as 317 

shown by the histograms in figure 2(c).  We calculated the signal and noise for each threshold setting 318 

from 0 to 10 in 0.5 increments (figure 2(d) and (e)).  Importantly, the SNR depends on the threshold 319 

setting (figure 2(f)).  Specifically, this channel has more speed information at low thresholds and more 320 

velocity information at high thresholds. Perhaps a more familiar metric of goodness of fit in motor 321 

neurophysiology is the coefficient of determination (R2) (e.g., Georgopoulos et al., 1982).  Figure 2(g) 322 

plots the dependence of R2 on threshold.  Qualitatively, we see the same dependence of information 323 

content on threshold regardless of which measure of goodness of fit we choose.  This reassures us that 324 

quantification of information with SNR is an appropriate measure for neural recordings from M1, and it 325 

has the advantage that it can be applied more broadly to neural recordings from other brain areas.   326 

Figure 3 shows the SNR dependence on threshold for three representative M1 channels.  The 327 

curves for both speed and velocity show an inverted-U shape with respect to threshold.  The lowest SNR 328 

values occur at θ = 0, when there are so many threshold crossings that the signal does not provide clear 329 

information about the reach kinematics.  Similarly, we see low values of SNR at high values of θ, when 330 

there are not enough threshold crossings to provide a clear relationship between neural events and the 331 

velocity or speed of the reaches.  The peak SNR is between these extremes.     332 

From the SNR dependence on threshold we can extract the optimal threshold for velocity and 333 

speed information.  We computed SNRs for the 73 M1 channels we recorded.  We only included a 334 

channel in subsequent analyses if it exhibited a statistically significant regression (α=0.05) for at least 335 

one threshold setting for at least one of the kinematic parameters.  This resulted in 0 discarded channels 336 

from monkey J and 6 from monkey L, leaving a total of 20 channels from monkey J and 47 channels from 337 

monkey L.  The normalized average SNR relationship with threshold for those 67 channels is plotted in 338 

figure 4(a).  Each channel was normalized to its maximum SNR and then averaged.  Normalization 339 

emphasizes the relative thresholds at which the peaks occur, regardless of differences in the absolute 340 

SNR values across channels.  The deviation of the normalized peak from a value of one reflects the 341 

variability in the peak threshold across the population.  The peak SNR varies for speed and velocity: 342 

speed is optimally encoded at a low threshold setting (θ = 2σ), while velocity is optimally encoded at  343 
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 344 

 Figure 3.  SNR in M1 depends on threshold.  SNR dependence on threshold for three representative M1 channels.   345 

At each threshold, SNR is computed separately for velocity tuning (green) and for speed tuning (black). 346 

347 
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 348 

Figure 4.   Optimal thresholds for a given parameter differ across channels.  (a) Normalized mean ± SE of SNR 349 

dependence on threshold for all 67 M1 channels with significant tuning. Velocity (green), speed (black).  (b) 350 

Optimal thresholds for velocity (green) and speed (black). The arrows point to the channel shown in figure 2.  (c) 351 

The per-channel difference between the optimal thresholds for velocity and speed.  The mean ± SE is indicated by 352 

the dot with the line through it above the histogram.  The mean is significantly different from zero (t-test, p<10-7). 353 

higher thresholds (θ = 2.5σ).  The optimal threshold depends on the information one wishes to extract, 354 

and is often lower than the threshold that is typically applied to isolate the activity of a single neuron.   355 

Optimal SNR thresholds are lower than typically used for recording 356 

In multi-electrode systems where it is possible to adjust the threshold independently for each 357 

channel, even more information can be extracted.  Figure 4(b) shows histograms for the optimal 358 

thresholds for velocity (left) and speed (middle).  The distribution of optimal thresholds for speed is 359 

narrow with relatively low thresholds.  The distribution of optimal thresholds for velocity is broader than 360 

is the distribution of optimal thresholds for speed and it includes channels with higher optimal 361 

thresholds.  The distributions have statistically different means (t-test, p=10-7).  The mean pairwise 362 

difference between the optimal velocity threshold and the optimal speed threshold is 1.28σ ± 0.18σ, and 363 

the distribution is shown in the histogram in figure 4(c).  The optimal velocity threshold is higher than 364 

the optimal speed threshold for 48 of 67 (72%) channels.   365 
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 Using exclusive thresholds to highlight information content of low amplitude fluctuations 366 

It is conceivable that large-voltage “spikes” are the sole source of information in an 367 

extracellularly recorded signal, and lower thresholds are just capturing these spikes with greater 368 

reliability.  Alternatively, the lower amplitude fluctuations which are not readily attributable to the 369 

spiking of nearby neurons may contain information that is distinct from that carried by the high-370 

amplitude events.  We addressed this through an exclusive threshold analysis.  We ask whether single-371 

unit activity and the residual multi-unit hash contribute differently to the speed and velocity encoding 372 

models.  Figure 5 shows how setting two exclusive thresholds can act as simple spike identifier, using the 373 

channel depicted in figure 2 as an example.  The black circles identify exclusive threshold crossings 374 

(xTCs) for thresholds of 1 and 3.  Setting the threshold high has a similar effect as spike sorting, in 375 

that it captures single unit activity, whereas the low threshold captures non-single unit activity that 376 

might typically be discarded under a sorting paradigm, as evidenced by the waveform snippets shown in 377 

figure 5(b).  The SNR for the xTCs from this example channel at θ = 1 shows that there is speed 378 

information contained in the non-single unit activity (figure 5(c)).  The single unit activity captured by θ = 379 

3 shows better velocity encoding.  This supports the idea that low-voltage events contain information 380 

that is distinct from the information present in spiking activity. 381 

The mean exclusive threshold SNR for all channels is shown in figure 6.  On average (figure 6(a), 382 

left), the non-spike parts of the signal represented by the xTCs at θ = 1 encode speed better than the 383 

xTCs at θ = 3.  Velocity is better encoded at more restrictive (higher) thresholds.  To highlight the 384 

impact that the choice of threshold has on the information content of the threshold crossings, we 385 

repeated the exclusive threshold analysis for M1 at θ = 1 and θ = 4.5.  Such a high threshold should 386 

isolate single units and is thought to obtain better encoding of kinematic information.  However, we 387 

found that this threshold is quite restrictive and misses some of the available information (figure 6(b)).  388 

The exclusive window analysis highlights that there is information contained in the low-amplitude 389 

fluctuations of the signal that is often discarded as noise.   390 

Information content in V1 391 

 To test the generality of our finding that the optimal threshold depends on the parameter of 392 

interest, we examined recordings from primary visual cortex (V1).  We selected V1 for comparison in 393 

part because its function is markedly different from M1, and also because the topography of V1 is well-394 

established.  In V1, nearby neurons are tuned similarly to stimulus orientation, with orientation tuning 395 

changing in a systematic way across the cortical surface (Hubel, 1982).  However, all V1 neurons are 396 

tuned similarly to contrast, showing increased firing rates with increasing stimulus contrast (Albrecht 397 

and Hamilton, 1982). The topographic organization of V1 led us to predict that the optimal threshold for 398 

contrast information would be lower than the optimal threshold for orientation information.   399 

We recorded from two monkeys with multi-electrode arrays implanted in V1 while they viewed 400 

drifting gratings, and investigated how information about orientation and contrast depended on  401 
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 402 

Figure 5.  An exclusive window analysis reveals substantial 

information in small voltage fluctuations. (a) Using the 

exclusive window categorization method, threshold 

crossings for the channel depicted in figure 2 are identified 

when the voltage trace passes into and out of the window 

defined by a particular threshold without passing into 

higher-threshold windows.  A 1 window and a 3 window 

are shown in this example.  If the voltage trace crosses the 

1 threshold but not the 3 threshold, it is classified as a 

1 crossing.  As indicated with the black circles, we can 

successfully select the larger voltage fluctuations with the 

exclusive θ = 3 and we capture the smaller fluctuations 

with the exclusive θ= 1.  (b) Waveform snippets 

corresponding to the xTCs for exclusive thresholds θ = 1 

(left) and θ = 3 (right) for the channel shown in (a).  (c) 

The SNR for velocity and speed at exclusive thresholds θ = 

1 and θ = 3for the channel shown in (a)Note that the 

speed SNR is higher at θ=1 than θ=3 even though those 

waveforms look like noise.    
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 403 

Figure 6.  Distinct information is encoded by small and large voltage fluctuations.  (a) SNR as a function of 404 

exclusive threshold for (mean ± SE). Different information is contained in putative spikes classified with θ = 3 and 405 

in the low voltage fluctuations at θ = 1 (b) The exclusive window SNR for exclusive windows of θ = 1 and θ = 406 

4.5 (a threshold commonly chosen in BCI studies.) It is important to note that because of the exclusive nature of 407 

the thresholds, adjusting the high threshold also impacts the xTCs at the low threshold.  Thus, the SNR at 1σ 408 

changes when the high threshold is different.  This is not true for the inclusive thresholds used in the other 409 

analyses. (Data are from M1, n=67.)  Significant differences are indicated with * for p < 0.01 and ** for p < 10-4. 410 

threshold.  The channels were tuned to different orientations, but all channels showed a similar 411 

response to contrast, wherein the maximal response was for contrast = 1.  Figure 7 plots tuning curves 412 

for contrast and orientation at three thresholds for an example channel.  Each point in the tuning curve 413 

is the number of threshold crossings occurring during a single presentation of a stimulus with a 414 

particular orientation or contrast.  The mean is plotted to help visualize the tuning.   415 

 To test our prediction that orientation and contrast show different optimal thresholds, we 416 

calculated the SNR at each threshold to quantify the information content of the threshold crossings.  We 417 

break down this calculation into its components in figure 8. For orientation, signal is the variance of the 418 

mean number of threshold crossings over each orientation (figure 8(a), orange).  Noise is the mean of 419 

the variance in threshold crossings at each orientation (figure 8(a), black).  As shown for this example 420 

channel in figure 8(c), orientation and contrast SNR depend on threshold, with both curves showing an 421 

inverted-U shape.  For this channel, contrast shows a peak SNR at θ = 2σ, and orientation shows a peak 422 

SNR at θ = 2.5σ.   423 

We calculated how SNR depends on threshold for a population of 49 channels (figure9(a)).  Only 424 

channels which were well-tuned to orientation (SNR > 0.75) were included in this and subsequent 425 

analyses.  Every channel that showed a response to the stimulus demonstrated an SNR greater than 0.75 426 

for contrast, and thus we chose the significant channels conservatively, based on orientation tuning.   427 
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 428 

Figure 7. A single V1 channel example of how contrast and orientation tuning change with threshold.  (a) Each 429 

data point represents the number of threshold crossings from one representative electrode recorded during a 430 

single trial. For visualization purposes, the data points are jittered with respect to orientation angle or contrast, 431 

respectively.  To highlight the tuning, the mean threshold crossings to each orientation are connected and plotted 432 

using the color scheme in figure 2 (orange = 1σ, yellow = 3σ, light blue = 5σ).   These curves are overlaid on the 433 

same plot in (b). Note the log scale on the TC axis. 434 

  435 
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 436 

Figure 8.  SNR quantifies information content in V1.  (a) The 

total number of threshold crossings is plotted against 

orientation angle for a single channel at a threshold of θ=1.  

(For visualization purposes, the data points are jittered 

around the true orientation angle.) Signal is defined as the 

variance of the mean number of threshold crossings across 

each orientation (orange).  Noise is defined as the mean of 

the variance of the number of threshold crossings across 

each orientation (black).    (b) The calculations are performed 

at each threshold for orientation (blue) and contrast (red).  

Signal and noise both vary with threshold setting.  The 

orange dot highlights the values that come from the tuning 

curve in A.  (c) Combining the relationships in B shows that 

SNR exhibits an inverted-U shaped relationship with 

threshold.    
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Like the individual channel example, there is an inverted-U shaped curve with the peak occurring 437 

between the extremes of too many threshold crossings and too few threshold crossings.  The SNR curves 438 

for both orientation and contrast depend on threshold similarly, with contrast optimally represented at 439 

θ = 2σ and orientation optimally represented at θ =2.5σ on average for the population. 440 

The optimal threshold histograms for orientation and contrast are plotted in figure 9(b).  Both 441 

distributions of optimal contrast thresholds and optimal orientation thresholds are narrow with 442 

primarily low thresholds.  However, the optimal threshold for orientation is higher than the optimal 443 

threshold for contrast for 26 of the 49 (53%) channels and the distributions have statistically different 444 

means (t-test, p=0.004).  The mean pairwise difference between the optimal orientation threshold and 445 

optimal contrast threshold is 0.35σ ± 0.11σ (figure 9(c)). 446 

 447 

 448 
Figure 9.  SNR in V1 depends on threshold.  (a) SNR dependence on threshold for orientation (blue) and contrast 449 

(red) for all V1 electrodes with significant tuning, n=49 (normalized mean ± SE).  (b) Optimal thresholds for 450 

encoding orientation and contrast.  (c) The per-channel difference between the optimal thresholds for orientation 451 

and contrast.  The mean ± SE is shown above the histogram.  The mean is significantly different than 0 (t-test, 452 

p=0.004), and significance still holds when the outlier at Δθ=4σ is removed (p=0.0045). 453 

  454 

Page 19 of 27 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  JNE-101005.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

20 
 

DISCUSSION 455 

We assessed the information content of extracellular recordings from M1 and V1 by 456 

systematically sweeping the voltage detection threshold, counting the number of threshold crossing 457 

events at that threshold setting, and evaluating how much information those threshold crossings 458 

provided about external parameters of interest.   We found that optimal threshold depends on the 459 

parameter of interest.  Specifically, directional parameters, like velocity and orientation, have higher 460 

optimal thresholds than scalar parameters, like speed and contrast.  Regardless of the parameter of 461 

interest, the optimal thresholds for information were lower than the thresholds typically used in closed-462 

loop BCI studies in which threshold crossings are used in lieu of spike sorting.  We can make sense of 463 

these observations with a consideration of cortical topography.  These results have pragmatic 464 

implications for the optimal decoding of neural signals. 465 

Cortical topography can explain optimal thresholds 466 

How a stimulus parameter is represented in an extracellular voltage trace will depend in part on 467 

how the topographic scale of tuning to that parameter in the cortex relates to the effective sampling 468 

radius of the electrode, as determined by the detection threshold.  At high detection thresholds, 469 

threshold crossings reflect the tuning of individual neurons.  At low detection thresholds, threshold 470 

crossings comprise multi-unit activity and tuning likely reflects the homogeneity of the tuning of local 471 

neurons.  Modeling studies have suggested that single unit activity arises from neurons within 50 µm of 472 

an extracellular electrode and multi-unit activity arises within 50-140 µm of the electrode (Martinez et 473 

al. 2009; Pedreira et al. 2012).  Thus, it is reasonable to expect that the topographic scale at which a 474 

stimulus parameter is represented impacts threshold crossing tuning, particularly at low thresholds.   475 

Figure 10 schematizes a putative explanation for the effects of threshold selection that we 476 

observed. As the detection threshold of an electrode is moved toward 0, its effective sampling radius 477 

increases (figure 10(a)).  (Note that while the relationship between detection threshold and effective 478 

sampling radius is probably not linear, it is likely to be monotonic).  As the threshold is lowered, the 479 

number of threshold crossings increases, as does the variability in the waveform shapes.  A strict 480 

threshold, like θ = 5σ (blue), yields waveforms that likely originate from a single neuron.  On the other 481 

hand, if we relax the threshold to θ = 1σ (orange), the waveforms are almost certainly not from a single 482 

unit.   483 

A schematic example of parameters with different topographic scales relative to the “listening 484 

sphere” of an electrode is shown in figure 10(b).  Here the black arrows represent a directional 485 

parameter that has a small tuning scale relative to the listening sphere of the electrode, meaning the 486 

correlation in tuning among neurons falls off relatively quickly with distance.  The light and dark gray 487 

regions represent a parameter that has a large tuning scale relative to the listening sphere of the 488 

electrode, meaning the correlation in tuning falls off relatively slowly with distance.  The topographic 489 

scale of the stimulus parameter impacts the information present in the extracellular recording at  490 

  491 
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 492 

different thresholds.  At low detection thresholds, threshold crossings comprise multi-unit activity and 493 

tuning should better reflect those parameters that are homogeneously encoded among the population 494 

of neurons local to the electrode (figure 10(c), gray).   In contrast, we expect parameters that are more 495 

heterogeneously encoded to be better represented at high detection thresholds, where threshold 496 

crossings reflect the tuning of individual neurons (figure 10(c), black).  Accordingly, in M1 we observed 497 

that velocity has a higher optimal threshold than speed. 498 

The influence of topographic scale on information encoding by threshold crossings 499 

We introduce a conceptual model based on the topographic scale of information encoding to 500 

explain our results (figure 10).  If we apply that model to V1’s pinwheel organization of orientation 501 

preference, we should expect a change of <30 degrees for neurons within the putative sampling radius 502 

of our electrode at the lowest detection threshold.  So, the topographic scale of orientation is on the 503 

order of the sampling radius.  The topographic scale of contrast is larger than for orientation: nearly all 504 

V1 neurons increase their firing with increases in contrast.  In accordance with this understanding of V1 505 

topography, we found the optimal orientation threshold to be similar to but slightly larger than the 506 

optimal contrast threshold.  Additionally, the optimal thresholds in V1 were relatively low, suggesting 507 

Figure 10.  Information content depends on the 

voltage detection threshold and the 

topographic scale of the parameter of interest.  

(a) A change in the detection threshold might 

change the effective sampling radius of the 

electrode.  As we decrease the detection 

threshold of an electrode (move from blue to 

yellow to orange), we increase its effective 

sampling radius.  (b) The relationship between 

effective sampling radius and the topographic 

scale of an encoded parameter.  The black 

arrows represent a parameter that is encoded 

on a small scale.  The gray regions represent a 

parameter that is encoded on a larger scale.  The 

color scheme of the sampling radii is the same 

as above.  (c) The information content of a signal 

depends on the threshold setting and the local 

topography such that a parameter encoded on a 

large scale (gray) has a lower optimal threshold 

than a parameter encoded on a small scale 

(black). 
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that including threshold crossings from more neurons provides more information than does a single 508 

neuron.    509 

The heterogeneity of the local M1 preferred direction (PD) map is in stark contrast to the large-510 

scale topography of V1 orientation columns (Schieber and Hibbard, 1993).  However, in an effort to 511 

make sense of the structure of M1, a columnar organization similar to that observed in V1 has been 512 

proposed (Amirikian and Georgopoulos, 2003).  This hypothesized structure of M1 consists of mini-513 

columns of neurons with similar PDs 30 µm in width and repeating every 240 µm (Georgopoulos et al., 514 

2007).  Such structure would lead to a nearly complete set of PDs represented by neurons within the 515 

~200 µm sampling radius of an electrode.  This is a far less homogeneous local structure than that seen 516 

in V1.  Consistent with this model, at high detection thresholds, velocity is encoded well by threshold 517 

crossings.  This recapitulates the well-known preferred direction tuning of individual neurons in M1 518 

(Schwartz et al., 1988).  However, within the larger effective sampling radius specified by a low 519 

threshold, the diversity of PDs of the contributing neurons weakens the measured velocity tuning.  On 520 

the other hand, most M1 neurons tune monotonically to speed (Moran and Schwartz, 1999).  Thus, 521 

speed encoding is strongest at low thresholds, since many neurons contribute to the threshold 522 

crossings.   This can explain our observation of higher optimal thresholds for velocity than for speed.   523 

The information available at low voltage threshold settings is not just a watered-down version of 524 

the information available at higher thresholds.  Although speed may be thought of as a less specific 525 

version of velocity (speed can be derived from velocity, but velocity is not uniquely specified by speed), 526 

speed and direction are independent quantities, and when we repeat our analyses using movement 527 

direction, we find direction and velocity have similar optimal thresholds (data not shown).  Further, 528 

contrast cannot be derived from orientation, and we find the best threshold for orientation information 529 

is higher than for contrast.  The primary characteristic influencing the optimal threshold of a parameter 530 

is whether it is represented homogeneously by the cortical population, or heterogeneously.  The 531 

directional quantities, velocity and orientation, are heterogeneously represented, while the scalar 532 

parameters, speed and contrast, are homogenously represented. 533 

Our results imply that even single electrodes might be useful for inferring the topography of 534 

tuning properties in brain areas where it is not known.   By sweeping the event detection threshold and 535 

computing the SNR to various parameters of interest, some notion of the relative homogeneity of tuning 536 

to different parameters can be gained.  Parameters that drive neurons in a heterogeneous, uncorrelated 537 

way over short spatial scales should be best represented at relatively high thresholds.  In contrast, 538 

parameters whose tuning correlates over larger spatial extents should be better represented at lower 539 

thresholds.  This knowledge could be critical in designing more effective extracellular recording 540 

experiments to reveal the nature of the information present in a given brain area. 541 

Implications for online decoding 542 

In many successful BCIs to date, information is extracted directly from sorted spikes recorded 543 

from chronically implanted extracellular electrodes.  Although BCIs based on sorted spikes have shown 544 

impressive performance both in the lab (Wessberg et al., 2000; Taylor et al., 2002; Velliste et al., 2008; 545 
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Ethier et al., 2012; Gilja et al., 2012; Ifft et al., 2013) and in controlled clinical trials (Simeral et al., 2011; 546 

Collinger et al., 2013), spike-sorting is widely acknowledged to be time-consuming, and hard to 547 

automate (Lewicki, 1998).  Because of these challenges, the spike-sorting step, once thought to be 548 

critical to BCI performance, may actually inhibit the translation of BCIs from the lab to the clinic.  Here 549 

we add to that perspective by showing that better information extraction might be possible if thresholds 550 

are tuned for the parameter of interest, rather than set as if for spike sorting. The benefits should be 551 

especially salient for electrode channels where no identifiable single neuron is present.  552 

The use of threshold crossings is becoming more prevalent in online decoding studies.  This is 553 

not surprising given that in offline analyses multiunit activity and threshold crossings have yielded 554 

decoding performance and encoding fidelity that is comparable to or better than sorted spikes or local 555 

field potentials (Kloosterman et al., 2014; Stark and Abeles, 2007; Ventura, 2008; Malik et al., 2014; 556 

Todorova et al., 2014; Chestek et al., 2011; Christie et al., 2015; Perel et al., 2015). Recently, we and 557 

others have begun to recognize the need to investigate threshold setting in a principled way.  Christie 558 

and colleagues (Christie et al., 2015) found optimal thresholds for decoding performance to be between 559 

3 - 4.5 times the rms voltage (Vrms).  Importantly, they only considered threshold settings from 3 - 18 x 560 

Vrms; they did not consider threshold crossings at lower threshold settings.  A separate study by our team 561 

included lower voltage fluctuations in their threshold crossings by using an approach similar to the 562 

exclusive windows analysis presented here, and found that threshold crossings at θ = 3σ actually 563 

improved decoding as compared to only well-sorted spikes (Todorova et al., 2014).   This result 564 

corroborates our finding that the low voltage fluctuations are not noise, but rather, they do contain 565 

useful information: speed-related information that is distinct from the velocity information present at 566 

higher thresholds.  For the thresholds and parameters we considered, the optimal thresholds were 567 

lower than typically used in online decoding studies (Gilja et al., 2012; Hochberg et al., 2012; Sadtler et 568 

al., 2014), suggesting that there is information available in extracellular recordings that is being 569 

discarded, and could be useful for improving BCI performance.  Ideally, the detection threshold would 570 

be customized for each channel. In fact, each channel’s signal could be duplicated and thresholded 571 

separately for each parameter used in a BCI. 572 

Notably, the thresholds that we found to be optimal are lower than thresholds typically 573 

reported in published studies.  In M1, particularly for online brain-computer interface experiments using 574 

threshold crossings, a fixed threshold of θ = 4.5σ is commonly chosen (Gilja et al., 2012; Hochberg et al., 575 

2012) presumably because it approximates spike sorting.  Some of the best online BCI control has been 576 

achieved with this commonly chosen threshold.   However, we observed only 14 of 67 (20%) channels 577 

that showed optimal velocity thresholds greater than or equal to θ = 4.5σ.  This was even more apparent 578 

for speed, where only three channels had optimal thresholds at the level commonly chosen. Optimal 579 

thresholds are likely to depend on many factors, including recording quality and the age of the implant.  580 

It stands to reason that even better BCI decoding may be possible if the threshold is chosen with 581 

information content in mind.    582 

  583 
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Conclusions 584 

Historically, neurophysiologists have processed extracellular voltage recordings to extract action 585 

potentials from isolated single neurons, essentially ignoring small amplitude voltage fluctuations.  This 586 

makes sense if the focus is on a careful characterization of the properties of single neurons.  However, if 587 

the goal is to get as much information as possible from a recorded signal, processing can only reduce 588 

available information (Cover and Thomas, 1991).  Accordingly, we have shown that non-spike parts of 589 

the recorded signal, in particular the low voltage fluctuations, include useful information about some 590 

parameters, and should not be discarded as noise. Our results suggest that signal preprocessing in 591 

neurophysiology experiments deserves careful consideration: one approach does not necessarily fit all 592 

applications.  For recordings from a given brain area, it would be advantageous to sweep a range of 593 

thresholds to find the optimal choice for the desired information and planned experiment.  For 594 

applications that do not require real-time processing, there is value in streaming the entire raw voltage 595 

signal to disk for offline analysis, and then considering the information content at different threshold 596 

settings.  The practice of adjusting the detection threshold to the parameter of interest may improve 597 

our ability to determine how the brain is organized to encode sensory information, and it may improve 598 

our ability to accurately decode motor intentions. 599 
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