
To cite this article: Boris Revechkis et al 2015 J. Neural Eng. 12 019601

View the article online for updates and enhancements.

Boris Revechekis¹, Tyson N S Aflalo¹, Spencer Kellis¹, Nader Pouratian² and Richard A Andersen¹

¹ Division of Biology and Biological Engineering, MC 216-76, 1200 E California Blvd, Pasadena, CA 91125, USA
² Department of Neurosurgery, David Geffen School of Medicine at UCLA, 10945 Le Conte Ave Suite 2120, Los Angeles, CA 90095, USA

E-mail: boris@vis.caltech.edu

Received 17 December 2014
Accepted for publication 17 December 2014
Published 14 January 2015

On pages 8 and 9 of this article the words ‘trials’ and ‘trial’ were incorrectly published as ‘trails’ and ‘trail’ due to editorial errors.

The corrected sentences are given below.

Page 6:
The fraction of trials that were completed successfully did not significantly differ between Manual and Brain Control blocks (p = 0.75).

Page 8/9:
One possible explanation for this outcome is the increased difficulty and imperfect accuracy of Brain Control, i.e. on trials where cursor control is worse, the subject would need to gaze at the cursor longer to maintain closed-loop control. An alternative explanation is extraneous saccades reduced decode accuracy, and the subject learned to make fewer saccades to maintain cursor control. To distinguish these possibilities, we computed the correlation between numbers of saccades to peripheral targets (as above) in each trial to the TTA across all n = 1718 trials. A correlation of r = −0.12 (p < 10e−7, T test) supports the former account and rules out the latter. Trials with many saccades to locations not occupied by the cursor were amongst the shortest, while the longest trials involved prolonged periods of gazing at the cursor, presumably to accommodate feedback control.