
Journal of Neural Engineering      

PAPER • OPEN ACCESS

Electrophysiology-based detection of emergency
braking intention in real-world driving
To cite this article: Stefan Haufe et al 2014 J. Neural Eng. 11 056011

 

View the article online for updates and enhancements.

You may also like
A multimodal approach to estimating
vigilance using EEG and forehead EOG
Wei-Long Zheng and Bao-Liang Lu

-

Studying the effects of metallic
components of PET-insert on PET and
MRI performance due to gradient
switching
Narjes Moghadam, Romain Espagnet,
Jonathan Bouchard et al.

-

Unsupervised classification of operator
workload from brain signals
Matthias Schultze-Kraft, Sven Dähne,
Manfred Gugler et al.

-

This content was downloaded from IP address 18.118.150.80 on 03/05/2024 at 01:59

https://doi.org/10.1088/1741-2560/11/5/056011
/article/10.1088/1741-2552/aa5a98
/article/10.1088/1741-2552/aa5a98
/article/10.1088/1361-6560/ab0291
/article/10.1088/1361-6560/ab0291
/article/10.1088/1361-6560/ab0291
/article/10.1088/1361-6560/ab0291
/article/10.1088/1741-2560/13/3/036008
/article/10.1088/1741-2560/13/3/036008
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuy-s8q_ZBGJp83XJZBCulNkNtGAwzvVGhRyKBGTSAtK8xio6785cq7sTVSHIkNe8GfAmv4KTHVcLG52vWAUkfFJHDusur2VCrMrkHaKsuyi90OfUOwk-uFPZRltjHgsn1voIqV9Fm-GGv79F7q7dATzZO6_IWY3tSf3w3hOW4Z-mLm5ucYa-dsSuyAZnjWPaRKh69V8DwMc2vja78Iq8_sue9DM_saAXK8wmu6WH85x8LRKYNjuecNTM9lgI3DaNwEitKyK0vGeilgNMqhY-dXC8P7UqychDbjt2Catd-YJgj4HqhsD-M5KJBBSu4l_aTGscJPV9-IkBz-OgZGAofKpAX6ig&sig=Cg0ArKJSzK4302YuCjWI&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Electrophysiology-based detection of
emergency braking intention in real-world
driving

Stefan Haufe1,2,3, Jeong-Woo Kim4, Il-Hwa Kim4, Andreas Sonnleitner5,6,
Michael Schrauf5,6, Gabriel Curio7 and Benjamin Blankertz2,8

1 Fachgebiet Maschinelles Lernen, Technische Universität Berlin, Germany
2Bernstein Focus: Neurotechnology, Berlin, Germany
3Department of Biomedical Engineering, The City College of New York, USA
4Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
5Daimler AG, Germany
6Heinrich Heine University Düsseldorf, Germany
7Neurophysics Group, Charité University Medicine Berlin, Germany
8 Fachgebiet Neurotechnologie, Technische Universität Berlin, Germany

E-mail: stefan.haufe@tu-berlin.de

Received 28 October 2013, revised 9 May 2014
Accepted for publication 25 June 2014
Published 11 August 2014

Abstract
Objective. The fact that all human action is preceded by brain processes partially observable
through neuroimaging devices such as electroencephalography (EEG) is currently being
explored in a number of applications. A recent study by Haufe et al (2011 J. Neural Eng. 8
056001) demonstrates the possibility of performing fast detection of forced emergency brakings
during driving based on EEG and electromyography, and discusses the use of such
neurotechnology for braking assistance systems. Since the study was conducted in a driving
simulator, its significance regarding real-world applicability needs to be assessed. Approach.
Here, we replicate that experimental paradigm in a real car on a non-public test track. Main
results. Our results resemble those of the simulator study, both qualitatively (in terms of the
neurophysiological phenomena observed and utilized) and quantitatively (in terms of the
predictive improvement achievable using electrophysiology in addition to behavioral measures).
Moreover, our findings are robust with respect to a temporary secondary auditory task
mimicking verbal input from a fellow passenger. Significance. Our study serves as a real-world
verification of the feasibility of electrophysiology-based detection of emergency braking
intention as proposed in Haufe et al (2011 J. Neural Eng. 8 056001).

S Online supplementary data available from stacks.iop.org/jne/11/056011/mmedia

Keywords: emergency braking intention detection, real-world driving, electroencephalography,
electromyography, mental state monitoring

1. Introduction

Due to advances in measurement technology and algorithm
development, the use of neurophysiological measurements
has recently been extended from basic neuroscience and
clinical practice to what is called ‘neurotechnology’. Besides
work on brain–computer interfaces (BCIs) aiming to assist
severely handicapped (e.g., tetraplegic) persons in managing
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everyday communication (see, e.g., Wolpaw and Wolpaw
(2012), Naci et al (2012), Riccio et al (2012)), non-medical
applications are increasingly explored (see, e.g., Blankertz
et al 2010 for a review). One goal pursued here is to com-
plement behavioral data with information derived from brain
signals based on the consideration that any behavioral action
is preceded by mental preparation. Along these lines, the use
of neurotechnology in driving assistance systems has recently
gained considerable interest. Kohlmorgen et al (2007) and
Dijksterhuis et al (2013) study electroencephalography (EEG)
correlates of mental workload during (real-world and simu-
lated, respectively) driving, while Kecklund and Åkerstedt
(1993), Schmidt et al (2007), Papadelis et al (2007), Schmidt
et al (2009), Simon et al (2011) and Sonnleitner et al (2012)
study fatigue and attention during monotonous real-world
driving. Other authors demonstrated the feasibility of brain-
operated real-world driving using conventional BCIs para-
digms (Göhring et al 2013), and the feasibility of predicting
steering timings using EEG (Gheorghe et al 2013). Another
line of research is the detection of anticipatory brain reactions
to particular traffic events (Haufe et al 2011, Khaliliardali
et al 2012, Kim et al 2014). Haufe et al (2011) investigated
the use of event-related brain potentials (ERP) in driving/
braking assistance systems. The authors showed that the ERP
signature characterizing emergency situations is highly
informative with respect to distinguishing these situations
from normal driving periods in a simulated driving setting. In
combination with electromyographic (EMG) signals measur-
ing the muscle tension at the right lower leg, these potentials
predicted emergency brakings about 130 ms earlier than
corresponding behavioral measures such as gas and brake
pedal deflections, which amounts to a reduction in braking
distance of 3.6 m at a speed of −100 km h 1.

The study of Haufe et al (2011) was conducted in a
simulated driving environment, offering a limited degree of
realism. Real driving, in contrast, is characterized by a higher
diversity of driving situations. Moreover, artifacts and noise
are expected to degrade the quality of the measured brain
signals in real-world driving settings. To verify the feasibility
of electrophysiology (EEG and EMG) based emergency
braking intention detection under realistic conditions, it is
necessary to conduct additional studies in a more natural
environment. Kim et al (2014) benchmark the results of
Haufe et al (2011) with respect to the diversification of
driving situations by performing a simulation study, in which
the participants were exposed to a rich variety of critical and
non-critical traffic situations, and are able to distinguish three
different types of emergencies from other traffic situations.
Here, we intend to evaluate the robustness of the findings of
Haufe et al with respect to artifacts and other adverse effects
occuring in real driving. To this end, we conducted a study (N
= 20) replicating the experimental design of Haufe et al
(2011) in a real car on a non-public test track. The main
question we wanted to answer with this study was ‘can
electrophysiology improve the prediction of emergency
situations during real-world driving to a similar degree as
during simulated driving?’

2. Methods

The experiment was designed to largely reproduce the pro-
tocol used in Haufe et al (2011) with the exception that a
secondary task was introduced, which had to be performed
half of the time. Sonnleitner et al (2013) analyze the rela-
tionship between EEG alpha spindles and brake reaction
times on these data in the presence or absence of the sec-
ondary task. While we describe the experimental and data
recording procedures relevant to the current study, additional
details are therefore found in Sonnleitner et al (2013).

2.1. Participants

In total, 25 individuals participated in this study. Five of the
resulting datasets had to be excluded from further analysis
due to technical problems. Therefore, the sample consisted of
20 participants (22–53 years, mean: 29.0 years, five females).
Subjects were recruited from an in-house database, in which
volunteers for experiments are listed. Every subject had
normal or corrected-to-normal vision, reported normal hear-
ing and had no history of psychiatric or neurological diseases.
Participation was voluntary and occurred during working
hours. All experimental procedures were conducted in
accordance with the ethic guidelines of the declaration of
Helsinki. Data were collected anonymously. Informed con-
sent was obtained after the task had been explained. Partici-
pants were informed they had the option to end participation
in the experiment at any time without any type of penalty.
Participants received a gift worth approximately 20 EUR for
their participation.

2.2. Experimental setup

The study was conducted on a non-public test track in an
unused military training area in Münsingen, Germany.

Car-following task (primary). The primary task was to
drive in accordance with official traffic regulations. Partici-
pants had to drive three rounds on the test track, one round
being 37 km long with distinct variations in road curvature
and altitude. The setup consisted of two Mercedes-Benz S-
class cars: the lead car was navigated by an investigator and
the following car was driven by the participant. Participants
were instructed to follow the lead car at a constant distance of
approximately 20 m at a maximum speed of −60 km h 1. In
order to obtain a reference for the required distance, the
participantʼs car was parked 20 m behind the lead car before
the start of the experiment. The investigator initiated emer-
gency braking with an interstimulus interval of 42.5 s–57.5 s
(M = 50 s, uniformly distributed jitter) after receiving an
acoustic trigger from a laptop, provided that the lead car had a
constant velocity of −60 km h 1 and adequate separation to the
trailing vehicle. Given the lead carʼs abrupt braking from

−60 km h 1 to −40 km h 1, the participant was instructed also to
brake immediately as soon as the brake light of the lead car
flashed, irrespective of the actual distance between cars. After
every emergency braking, the investigator accelerated back to

−60 km h 1 using cruise control.
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Auditory task (secondary). As a temporary secondary
task, participants listened to parts of an audio book. They
were instructed to alternately detect two frequent German
words by pressing a button that was attached to their left
index finger with their thumb. The primary car-following task
had to be prioritized over the auditory secondary task at all
times.

Structure of the experiment. Participants had to drive
three rounds on the test track, with short breaks between each
round, which occurred after about 40 and 80 min of driving.
The experiment consisted of 16 blocks, superimposed on the
continuous driving task. In every block, participants drove for
3 min without performing the auditory secondary task and for
3 min with secondary task (see figure 1). The beginning and
the end of every 3 min interval was announced verbally. For
the whole study, participants had to drive a total of 48 min in
both conditions (driving only, driving with auditory second-
ary task).

2.3. Acquisition of electrophysiological and behavioral data

After agreeing to the study, participants were fitted with a 32-
electrode-cap (actiCAP, Brain Products GmbH, Munich). A
set of 25 EEG electrodes (F3, Fz, F4, P7, P8, T8, FC3, FC4,
C3, Cz, C4, T7, CP3, CP4, FC5, P3, Pz, P4, FC6, O1, O2,
Oz, CPz, PO4, PO3) was positioned according to the inter-
national 10–20 system. EEG data were recorded relative to
FCz, and all impedances were maintained less than 10 k Ω.
Muscle activity from the right foot was measured with two
electromyography (EMG) electrodes, positioned at the right
musculus tibialis anterior and on the right thigh. All data were
digitized at 250 Hz with a bandpass filter (low: 0.53 Hz, high:
100 Hz), and a 50 Hz notch filter was applied to remove
power line interference.

Gas and brake pedal deflections as well as other technical
parameters such as the timings of brakelight flashes were
acquired with a sampling rate of 50 Hz through the controller
area network bus units of both vehicles, and were synchro-
nized with the EEG and EMG data. The time between the lead
carʼs brake lights flashing and the brake pedal response signal
from the trailing car was defined as the brake reaction time.

2.4. Data preprocessing

Statistical analysis was performed using MATLAB (The
Mathworks). The EEG data were re-referenced offline to
common average. The EMG data were rectified by taking the
absolute values. All continuous data (EEG, EMG, gas pedal
deflection and brake pedal deflection time series) were seg-
mented into target and non-target intervals. Targets were
defined as those situations, in which the braking response was
given no earlier than 300 ms and no later than 1200 ms after
an abrupt braking of the lead vehicle (stimulus onset). A
further requirement for a valid target was that the participant
had the foot on the gas pedal at the moment of brake light
flashing. Targets were obtained by cutting out data from
−300 ms to 1200 ms relative to the stimulus onset in all valid
target situations. Normal driving (non-target) segments were
obtained by collecting all data blocks (1500 ms duration,
500 ms equidistant offset) that were at least 3000 ms apart
from any stimulus. Baseline correction was performed for the
EEG data segment-wise by subtracting the average EEG
amplitude in the first 100 ms of the extracted interval. The
total numbers of target and non-target segments per subject
were = ±N 134 17t and = ±N 5623 615nt on average (±
std), respectively.

Figure 1. Procedure of the car-following task. The participant followed the investigator in the leading car with −60 km h 1 at a distance of
approximately 20 m for three rounds on the test track. Alternatingly, participants drove with or without auditory secondary task. Figure
courtesy of Sonnleitner et al (2013). Reprinted with permission from Elsevier.
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2.5. Multivariate classification of single modalities

We also investigated the performance with which emergency
braking and normal driving situations could be distinguished
based on the single-trial spatio-temporal dynamics of the four
available measurement modalities at each stage of the emer-
gency situation. To this end, we constructed additional sets of
segments with constant length of 1500 ms. The endpoints of
these segments varied in steps of 20 ms from −200 ms to
1180 ms relative to the stimulus onset. Furthermore, separate
datasets were created for the four individual modalities EEG,
EMG, gas and brake. The target and non-target segments
were split into training and test parts, such that the training
sets contained only data from the first half of driving and the
test sets only data from the second half. The following pro-
cedure was performed for each time shift and for each mod-
ality. Ten discriminating time intervals were determined
heuristically (Blankertz et al 2011). EEG electrodes showing
strong artifacts on the training data were discarded (Haufe
et al 2011). For each segment, signals of the remaining
electrodes were averaged within the selected time intervals
and stacked into feature vectors, which were used to train
regularized linear discriminant analysis (RLDA) (Fried-
man 1989, Duda et al 2000) classifiers. For regularization, the
automatic shrinkage technique (Ledoit and Wolf 2004,
Schäfer 2005, Blankertz et al 2011) was adopted. Data from
the first half of driving were used for selecting time intervals
and for training the RLDA classifiers. The trained dis-
criminant functions were applied to the corresponding test
data, and the resulting outputs were used to measure classi-
fication performance. We used the area under the receiver-
operating characteristics curve (AUC, Fawcett 2006) as a
performance measure. Area under the curve (AUC) scores are
normalized to the interval [0, 1] where 1 indicates perfect
classification, 0 indicates perfect misclassification, and 0.5 is
attained for chance-level classification. Grand-average AUC
scores were calculated as the arithmetic mean across subjects.

3. Results

We analyzed the data following the procedures in Haufe et al
(2011). Since certain slight modifications were needed to
ensure full comparability of the results of the two studies, we
also reanalyzed the data presented in Haufe et al (2011).

3.1. Behavioral data and univariate analyses

The grand-average median response time in target situations
was 720 ms, and was thus slightly longer compared to the
laboratory setting of Haufe et al (2011), where it was 665 ms.
This slight increase could be attributed to the additional
workload introduced by the secondary task to be performed
half of the time. The median response time in the driving-only
blocks was 676 ms, while it was 740 ms in the blocks in
which the auditory task had to be performed, including the
announcements. Note that all graphical data presented in this
manuscript comprise both real-world driving conditions

(driving-only and auditory dual task), while separate data is
presented in the supplementary data (section S1), available
from stacks.iop.org/jne/11/056011/mmedia.

We computed grand-average stimulus-related behavioral
and EMG signals by taking the arithmetic mean of the
extracted target segments of all subjects. The resulting curves
are depicted in figure 2(A) as thick lines. The corresponding
curves obtained in the previous laboratory study are overlaid
as thin curves. Note that, unlike in Haufe et al (2011), the
average of the entire data (not only of data from the second
half of driving) is depicted here. Both curves show a striking
resemblance, indicating that the real-world experiment
induced the same behavioral pattern as the laboratory study.
This pattern is characterized by an initial burst of EMG
activity, a subsequent drop of the gas pedal deflection, and
finally an abrupt increase of the brake pedal deflection.

In analogy to the behavioral and EMG channels, we
computed grand-average event-related potential (ERP) curves.
These are shown in figure 2(B) for a selection of 11 EEG
channels. The corresponding laboratory data are again overlaid
as thin curves. To make both curves comparable, the lab data
were transformed to common-average reference prior to the re-
analysis. Figure 2(C) depicts an alternative representation of
the ERP sequences, where average voltages in five subsequent
time intervals of 160 ms length are shown as a series of
topographical (scalp) maps. Here, the upper panel (thick scalp
outlines) depicts real-world data, while the lower panel (thin
outlines) depicts the laboratory data of Haufe et al (2011).

Figures 2(B) and (C) highlight the similarity of the event-
related potentials elicited by forced emergency brakings in both
studies. That is, we observe a spatio-temporal ERP complex
composed of the identical three subcomponents reported in
Haufe et al (2011): an early symmetric negative deflection in
occipito-temporal areas, a later negativity at central scalp sites
and a late positive deflection in centro-parietal areas. As also
noted in Haufe et al (2011), all of these three ERP components
have a clear functional relevance. The early occipital negativity
(visual-evoked potential, VEP) can be attributed to low-level
processing of the emergency-inducing visual stimulus (the
brakelight flashing). Higher-level (semantic) processing of the
gravity of the emergency situation is reflected in the later
centro-parietal positivity (P300). Finally, the late central
negativity (readiness potential, along with other movement-
related potentials) reflects the preparation and execution of the
braking response performed by the right foot.

3.2. Multivariate classification of single modalities

The grand-average AUC scores attained for single measure-
ment modalities at each stage of emergency braking are
depicted in figure 3(A). AUC curves obtained on the present
real-world data are drawn as thick lines, while the corre-
sponding curves obtained by Haufe et al (2011) in a labora-
tory setting are drawn as thin lines. As the figure shows, both
curves are comparable regarding their shape and timing. For
each time point, corresponding AUC scores of both datasets
were compared using two-sided Wilcoxon rank sum tests.
Note, that the reported results are not corrected for multiple
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Figure 2. Grand–average stimulus-aligned behavioral and physiological responses to forced emergency braking situations during real-world
and laboratory (simulated) driving. The stimulus onset ( =t 0 ms) is the time of brakelight flashing of the lead vehicle. (A) Grand–average
gas and brake pedal deflections, as well as electromyography (EMG) signals recorded at the right lower leg. (B) Grand–average event-related
potential (ERP) curves. (C) Topographical maps of grand–average ERPs in five temporal intervals. In (A) and (B), the distribution of the
pooled braking response times in both studies is indicated by two corresponding box plots showing the 5th, 25th, 50th (median), 75th and
95th percentile. Thick lines represent results of the present real-world driving study, while thin lines represent results obtained in the driving
simulator study of Haufe et al (2011). Similarly, the upper panel of (C) depicts real-world-driving responses, while the lower panel depicts
corresponding laboratory data.
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testing, as we were not interested in an overall result here, but
used the statistical tests here just as a robust quantification of
the predictive value of different measures over time. The gas
and brake modalities generally attained higher grand-average
accuracies in the laboratory setting. This difference was sig-
nificant ( <p 0.05) between 860 ms and 1200 ms post-sti-
mulus for gas and almost in the entire interval between
520 ms and 1160 ms for brake. The EEG and EMG channels
attained higher AUC values in the simulated driving setting
compared to the real-world driving setting in the late stages of
the emergency situations. The difference was significant
almost in the entire interval between 660 ms and 1200 ms
post-stimulus for EEG and between 640 ms and 1200 ms for
EMG. Note in this respect, however, that more EEG channels
were available in the laboratory setting than in the real-world
driving setting (58 compared to 25, see Haufe et al 2011).

Interestingly, electrophysiological measures turned out to be
more predictive in the real-world driving setting than in the
laboratory setting in the early stages of emergency braking.
This was the case ( <p 0.05) between 140 ms and 200 ms for
EEG despite the lower number of electrodes in the real-world
driving setting, and almost in the entire interval between
260 ms and 460 ms for EMG. Significant time points are
marked as square boxes in figure 3(A), where filled boxes
represent intervals, in which higher accuracy was achieved in
the real-world driving setting, while unfilled boxed represent
the opposite case (higher accuracy in the laboratory setting).

3.3. Predictive improvement due to electrophysiology

The main goal of the study was to determine whether infor-
mation contained in electrophysiological channels improves

Figure 3. Grand–average area under the curve (AUC) scores calculated from the outputs of linear classifiers that were optimized to
distinguish normal driving intervals from stimulus-aligned target intervals representing different stages of emergency braking situations.
STIM denotes the onset of braking (brakelight flashing) of the lead vehicle. Thick lines represent results of the present real-world driving
study, while thin lines represent results obtained in the driving simulator study of Haufe et al (2011). The distribution of pooled braking
response times in both datasets is indicated by box plots showing 5th, 25th, 50th (median), 75th and 95th percentile. Classification was based
on (spatio-) temporal features observed prior to the decision points. (A) performance of single measurement modalities. Blue:
electroencephalography (EEG). Cyan: electromyography (EMG) at the right lower leg. Red: gas pedal deflection. Magenta: brake pedal
deflection. Intervals, in which significantly higher accuracy was achieved for the real-world driving data are marked by filled square boxes,
while intervals, in which significantly higher accuracy was achieved for the simulated driving data are marked by empty square boxes. (B)
performance of combinations of modalities. Blue: EEG+EMG+gas+brake (electrophysiological and behavioral channels). Red: gas+brake
(only behavioral channels). The intervals, in which the inclusion of electrophysiological channels significantly improved the classification
accuracy are marked as square boxes (no filling for simulated driving, light gray filling for real-world driving).
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the detection of emergency braking situations in real-world
driving to a similar degree as in simulated driving. To
investigate this, we repeated the classification analysis
described above for the combination of the gas and brake
channels, and for the combination of all four modalities. The
resulting curves are presented in figure 3(B). Using one-sided
paired Wilcoxon signed rank tests, we assessed for every time
point post-stimulus, whether the AUC scores obtained for the
EEG+EMG+gas+brake modality combination were higher
compared to using the only gas+brake. The time intervals, in
which this was the case ( <p 0.05) are marked as square
boxes in figure 3(B), where the boxes related to real-world
driving are filled with light-gray color. The analysis revealed
that the significant intervals were similar for real-world and
simulated driving (180 ms to 1080 ms post-stimulus for real-
world driving and 240 ms to 1060 ms post-stimulus for
simulated driving).

We were also interested in the average time saved by
including electrophysiological channels compared to using
only behavioral channels. To investigate this issue, Haufe
et al (2011) constructed two pseudo-online emergency brak-
ing detectors, and compared their performance in what one
could call a realistic application scenario. They showed that,
at constant detection accuracy, the inclusion of EEG and
EMG channels led to 130 ms faster detections on average.
Here, we took a more straightforward approach to assess this
improvement; namely, we calculated the area of the polygons
spanned by the AUC curves related to the EEG+EMG+gas
+brake and gas+brake modality combinations. This area is
marked in light gray for the real-world driving data in
figure 3(B). The two endpoints of the polygons were given by
the points in which the accuracy scores deviated first and later
merged again. These points were =t 140 ms ( =AUC 0.525)
and =t 1 000 ms ( =AUC 0.983) for the real-world driving
dataset, and ( =t 180 ms, =AUC 0.516) and ( =t 1 180 ms,

=AUC 0.997) for the simulated driving dataset. The polygon
areas were divided by the difference of the AUC scores at the
two polygon endpoints to yield the braking detection time that
could be saved using electrophysiology, integrated over all
achievable detection accuracies. The average improvement
for simulated driving was 200 ms, while for real-world driv-
ing it was 237 ms. The analysis was repeated for the driving-
only test data and the driving-with-secondary-task-only test
data. Notably, the improvement was larger in blocks in which
the secondary task had to be performed, and during
announcements (253 ms compared to 222 ms in driving-only
blocks). See section S1 in the supplementary data for
respective AUC curves.

4. Discussion

In the present study, we transfered the experimental design
used in Haufe et al (2011) to a real-world driving environ-
ment. As a primary result, we could replicate the findings of
Haufe et al (2011). Our univariate analyses of neurophysio-
logical features revealed the same characteristic sequence of
event-related potentials and, importantly, the same

performance in predicting emergency brakings from the dri-
verʼs brain signals was achieved. Thus, the expected
increased presence of artifacts and environmental noise
compared to a laboratory setting was compensated by the data
processing, or it was counterbalanced by stronger brain
responses due to the more realistic situation. However, we
found no evidence for the latter hypothesis, as the amplitudes
of the ERPs are not increased in the real-world setting (see
figures 2(B), (C)). Moreover, behavioral channels achieved
similar class-discriminability in terms of AUC scores.

Note that, as in Haufe et al (2011), we here focused on
ERP features (that is, ‘raw voltages’) as predictors for
emergency braking events. On the other hand, it is well-
known that EEG signals also contain rhythmic activity, which
is not phase-locked to any event. The amplitude of brain
rhythms has been related to numerous cognitive processes,
among them motor preparation and execution. We therefore
also assessed the predictive quality of the amplitude of brain
oscillations in four standard EEG bands. The results of these
analyses, which are presented in section S3 of the supple-
mentary data, indicate that amplitudes of brain rhythms do
show patterns specific to emergency braking situations, which
are of neurophysiological interest. However, their predictive
quality does not come close to the level achieved by ERP or
EMG features. Moreover, no improvement is made by
including them in addition to those other features. Note
however that, using a different way of feature extraction, Kim
et al (2014) do come to the conclusion that spectral event-
related desynchronization features in combination with other
EEG-derived features can improve the detection of emer-
gency braking situations slightly compared to using
only ERPs.

Apart from the main result of reproducability, we would
like to emphasize two points. First, the average time saved
using electrophysiology was even higher for real-world
driving than for simulated driving. This appears to be due to a
prolonged period of mental processing before the actual
braking: while the first EEG and EMG responses triggered by
the brakelight flashing occur at the same time in real-world
and simulated driving or even earlier during real-world
driving (see figures 2(A), (B) and 3(A)), the behavioral
responses in the real-world setting are later on average, pos-
sibly due to increased workload (see response time statistics).
Thus, we conclude that stimulus-related ERP components
such as VEP or P300 contribute considerably to a successful
classification.

The second point we would like to stress is that our
results are robust with respect to the presence of a secondary
task, which in our experiment had to be performed half of the
time in parallel to the car-following task (see also section S1
in the supplementary data for separate analyses of the dual-
task and driving-only conditions). While on one hand
increased response times could be observed while driving
with secondary task (Sonnleitner et al 2013), we also noted
the inclusion of electrophysiological signals leading to a lar-
ger improvement of the detection performance, backing the
above-mentioned hypothesis that early stimulus-related EEG
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components are a main factor enabling the reliable detection
of emergency braking intentions.

5. Conclusion

With this paper, we verified the feasibility of electro-
physiology-based emergency braking intention detection as
proposed by Haufe et al (2011) under real-world driving
conditions. In conjunction with Kim et al (2014), our work
provides further complementary evidence suggesting that an
automatic braking assistance system integrating electro-
physiology could be adopted in practice. Note, however, that
such systems, in order to be practical, may need to adopt a
hybrid detection approach, as postulated in Haufe et al
(2011). Here, physiological and behavioral measures are only
used as additional evidence for a system that also takes into
account external measures such as distances to obstacles/
preceding cars as measured by radar or laser technology.
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