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Abstract
Objective. Reliability is a desirable characteristic of brain–computer interface (BCI) systems
when they are intended to be used under non-experimental operating conditions. In addition,
their overall usability is influenced by the complex and frequent procedures that are required
for configuration and calibration. Earlier studies examined the issue of asynchronous control
in P300-based BCIs, introducing dynamic stopping and automatic control suspension features.
This report proposes and evaluates an algorithm for the automatic recalibration of the
classifier’s parameters using unsupervised data. Approach. Ten healthy subjects participated in
five P300-based BCI sessions throughout a single day. First, we examined whether continuous
adaptation of control parameters improved the accuracy of the asynchronous system over time.
Then, we assessed the performance of the self-calibration algorithm with respect to the
no-recalibration and supervised calibration conditions with regard to system accuracy and
communication efficiency. Main results. Offline tests demonstrated that continuous adaptation
of the control parameters significantly increased the communication efficiency of
asynchronous P300-based BCIs. The self-calibration algorithm correctly assigned labels to
unsupervised data with 95% accuracy, effecting communication efficiency that was
comparable with that of supervised repeated calibration. Significance. Although additional
online tests that involve end-users under non-experimental conditions are needed, these
preliminary results are encouraging, from which we conclude that the self-calibration
algorithm is a promising solution to improve P300-based BCI usability and reliability.

Keywords: brain–computer interface (BCI), asynchronous control, self-calibration algorithm,
unsupervised calibration, P300 event-related potential

1. Introduction

Brain–computer interface (BCI) systems allow users to
communicate with the environment and control electrical
devices without using muscles and nerves [1]. One of the
principal aims of BCI technology is to restore communication
and interaction with the external world in people with
severe motor disabilities [2], and other applications of BCI
technology have recently been proposed, such as rehabilitation
[3], additional control channel [4], and games and monitoring
applications [5].

Despite the considerable scientific advancements in recent
years, unresolved issues remain that prevent the widespread
use of these systems as assistive technologies (AT). To
shrink the gap between BCI systems and other augmentative
and alternative communication technologies, BCI systems
should have greater reliability and have simple configuration
and calibration procedures [6]. Moreover, the throughput speed
should be faster, and the operation mode should match daily
life necessities.

Of the physiological signals that are usable as control
features for a BCI, the P300 is an event-related potential (ERP)
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that is widely used for communication and environmental
control, because it allows one to select an item of interest
between a set of available choices with relatively little effort
(e.g. no user training, short calibration sessions, possibility
to display several items at once). ERPs vary widely between
subjects and within the same subject [7, 8]. Further, external
factors, such as light, noise, and stimulation modalities [9, 10],
and ‘internal’ factors, such as attentional level and fatigue, can
affect the morphology of these potentials [11, 12]. As noted
by Thompson et al [13], these factors influence the reliability
of BCI systems, who reported variability in the morphology
of the P300 potential across BCI sessions.

The tuning of parameters that control the system should
be updated frequently to ensure peak performance. However,
frequent explicit recalibration of the system (i.e. supervised
acquisition of data to train the classifier) is time-consuming
and frustrating for users. Thus, classification methods [14–16]
for partial and complete unsupervised learning in P300-based
BCIs and user-friendly solutions [17] have been proposed
to simplify or eliminate the configuration and calibration
processes. However, these approaches were tested in brief
controlled BCI sessions (1–2 h), and inter-session variability
was not assessed.

Moreover, the proposed methods did not address two
important issues to decrease the gap between BCI and AT
input devices: (i) BCIs should implicitly withhold control
when the user is not attending to the interface, even without
an explicit mechanism to enter a pause mode; and (ii) BCIs
should dynamically adapt the speed of selection to the subject’s
skills (dynamic stopping) and provide an appropriate tradeoff
between recognition accuracy and speed, allowing the system
to maintain a high level of communication efficiency. The
asynchronous classifier that was proposed by Aloise et al
[18] resolved these issues, increasing the communication
efficiency of P300-based BCI systems for communication and
environmental control applications [19].

This study (i) determined whether a repeated (automatic)
update of the classifier’s parameters across BCI sessions
increased the system’s performance in terms of accuracy and
communication efficiency and (ii) proposed and evaluated a
self-calibration algorithm to label data that were acquired
in the unsupervised modality. The algorithm will be used to
update the classifier parameters without the need for an explicit
calibration session.

2. Materials and methods

2.1. Experimental protocol

Ten healthy subjects participated in this study (five males
and five females, mean age 25 ± 3 years). All subjects
had previous experience with P300-based BCI systems and
had normal or corrected-to-normal vision. Scalp EEG signals
were recorded (g.USBamp, gTec, Austria, 256 Hz) from eight
scalp positions (Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8—
[20]), referenced to the right earlobe and grounded to the left
mastoid. The stimulation interface comprised a 6 × 6 matrix
that contained alphanumeric characters (P300 speller—[21]).

The recordings of stimulation and EEG data were managed by
the BCI2000 framework [22].

Visual stimulation consisted of the pseudorandom
intensification of rows and columns on the interface: target
stimuli comprised the intensification of the row or column that
contained the character that was attended to by the subject,
and non-targets were the intensification of any other row or
column. Each row and column was intensified for 125 ms, and
125 ms elapsed between the end of a stimulus and the onset
of the subsequent one (inter-stimulus interval). A stimulation
sequence consisted of the consecutive intensification of every
row and column on the interface, for a total of 12 stimuli (2
targets and 10 non-targets).

The term trial refers to a set of eight successive repetitions
of the stimulation sequence, relating to the same target
character. A run is an uninterrupted series of six trials, followed
by a pause in EEG acquisition. A session consisted of six
control runs and two no-control runs. During each control run,
6 characters were prompted as the target; within each session,
all 36 characters of the interfaces were prompted exactly once.
During the two no-control runs, EEG data were acquired while
the subject was in a voluntary no-control state: subjects were
required to gaze at a fixed cross in the middle of the interface
and ignore the surrounding stimulation. In one of the two
no-control runs, subjects were also required to solve simple
arithmetic problems that were posed by the experimenter [18].

Each subject underwent five recording sessions in the
same day at 10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM and
6:00 PM. Data for 180 control trials and 60 no-control trials
were collected per subject. The subjects were required to wear
the EEG cap for the entire day. Before each session, the
experimenter checked the correct position of the cap on the
subject’s scalp, the electrode-scalp impedance value (which
was kept below 10 k�) and the quality of the EEG signal. Each
session lasted approximately 1 h, and between consecutive
sessions, the subject could perform daily activities, such as
working, studying, talking with friends and eating.

2.2. EEG pre-processing

The 8-channel EEG signal was segmented into 800 ms epochs,
starting at the onset of each stimulus. The epochs were then
downsampled, replacing each segment of 12 samples with their
mean and then reducing an epoch to 17 samples. The resulting
8 × 17 data arrays were concatenated, creating a 136-element
feature vector vf for each stimulus. The classifier was trained
on the resulting set of feature vectors, each associated with the
label of a target or non-target stimulus. In addition, epochs
that were related to no-control periods were included in the
training set by labeling them as non-target epochs.

Stepwise linear discriminant analysis was performed to
identify the most significant features and estimate the weight
w of the linear classifier (non-significant features were given a
weight wi = 0). The number of maximum iterations of the
algorithm was set to 60. For each iteration, features with
p-value <0.1 were added to the model, whereas those with
p-value >0.15 were removed [23]. The score y for each
stimulus was calculated as the linear combination of the feature
vector multiplied by the classifier’s weight (y = wTvf).
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Figure 1. Flowchart of the self-calibration algorithm.

2.3. Self-calibration algorithm

The self-calibration algorithm performs (online) unsupervised
labeling of data and processes them to automatically update the
classifier weights. The proposed method relies on introducing
two threshold sets in the classifier. The first will be denoted as
the classification threshold (CT), which will permit dynamic
stopping and control-suspending features (section 2.3.1). The
second set of thresholds will be called the labeling threshold
(LT), which will be used to decide the sequences that can
be reliably labeled for continuous updating of the classifier’s
weights (section 2.3.2).

Figure 1 shows a flowchart of the self-calibration
algorithm. At the outset, the classifier’s parameters and
thresholds are defined using data from the previous session
(or from an explicit calibration session for initial use of the
system). Every time a new stimulation sequence is delivered,
the scores for each stimulation class are computed and
compared with CTs. When the CT is exceeded for the row
and column classes (i.e. a character is tentatively selected),
the differences in scores are estimated (see section 2.3.2). If
they also exceed the LT (the epochs that relate to the current
trial), they are labeled per the classification result and stored for
further recalibration. When a predefined number of new epochs
(Nrecalibration) from the online session is stored, the same amount
of the oldest epochs is removed from the training dataset, and
the classifier weights and threshold values are updated. The
Nrecalibration value is set as 5% of the number of epochs in
the recalibration database. Recalibration might be performed
each time a new epoch is added to the recalibration database
(Nrecalibration = 1), if the computational power of the system
allows for it.

Conversely, Nrecalibration might be set to 100% of the
recalibration database’s size—i.e. recalibration is performed
only when a completely fresh dataset is available. An offline
simulation, carried out during a pilot study involving three
healthy subjects, has shown that the 5% value might be

an effective compromise between update frequency and the
computational requirements.

2.3.1. Classification thresholds. The classification
thresholds were defined as described in [18]. Their values
were recomputed when a new set of Nrecalibration epochs was
available.

For each stimulation sequence in the training set,
12 ystim scores were computed: 6 for the rows and 6
for the columns on the interface. Within each trial, the
stimulus scores of the first through eighth sequence seq
were accumulated (summed up), yielding Ystim[seq] =∑seq

i=1 ystim[i], (seq = 1, . . . , 8). For each stimulation
sequence, the maximum score M[seq] = maxstim {Ystim[seq]}
was extracted, and a label that was equal to 1 (target) or 0
(non-target or no-control) was assigned to it. Thus, we defined
a distribution of the maximum scores for each stimulation
sequence.

Each distribution was used to plot a receiver-operating
characteristic (ROC—[24]) curve. To reduce the false positive
rate (FPR) and ensure a high true positive rate (TPR), the
threshold was selected at the intersection between the ROC
curve and the segment that joined the point (0.05, 0.5)
with (0, 1), because the former provides a tradeoff between
FPR (maximum 5%) and TPR (minimum 50%) and the
latter represents the optimal classification (FPR = 0% and
TPR = 100%).

2.3.2. Labeling thresholds. With regard to defining the
labeling thresholds, a different procedure was applied to the
training data to ensure a high level of robustness to false
positives.

Starting from the scores that were accumulated according
to the number of stimulation sequences that was delivered in
each trial, scores that were related to the rows and columns
stimuli were sorted, and the differences between the highest
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Figure 2. Intra-session and inter-sessions cross-validation. Each block represents a run relating to the spelling of six different characters,
except for the two no-control runs, in which the subject was required to divert his attention from the stimulation interface.

and second highest scores were computed for the rows and
columns separately. The differences in scores were labeled 1
or 0 if the highest score was a target or a non-target/no-control
score, respectively. Thus, it was possible to define a distribution
of differences in scores for each stimulation sequence (eight
distributions for rows and eight distributions for columns in
this case).

The distribution of differences in scores was used to plot
16 ROC curves (8 for rows and 8 for columns). The threshold
values corresponded to the point on the ROC curve that ensured
a 0% FPR with the maximum possible TPR value on the
training data. Consequently, considering the testing data, only
trials in which the maximum score differed vastly from the
second highest score exceeded the threshold, ensuring a high
level of robustness compared with false positives.

2.4. Performance assessment

2.4.1. Intra-session and inter-session validation. We first
determined if the accuracy and communication efficiency of
an asynchronous P300-based BCI benefited from continuous
updating of the classifier’s parameters. Two conditions

were investigated through offline cross-validation with the
asynchronous classifier (i.e. dynamic stopping and abstention
features enabled): intra-session and inter-session (figure 2).

In the intra-session condition, the training and testing
datasets belonged to the same session. For each cross-
validation iteration, the training dataset consisted of five
control runs and two no-control runs, and the remaining control
run of the same session was used as the testing dataset. Every
control run was used as the testing dataset once; thus, six
cross-validation iterations were performed for each session.

In the inter-session condition, the training and testing
datasets belonged to different sessions. The cross-validation
design matched the intra-session’s cross-validation design as
closely as possible. For each iteration, the training dataset
consisted of five control runs and two no-control runs that were
extracted from session i, and the testing dataset comprised
one control run from session j—i.e. the run with the index
that corresponded to session i’s run was not included in the
training set. Each pair (i, j) of sessions participated in the
cross-validation. Performance was assessed in terms of correct
classifications, errors and abstentions.

4
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Figure 3. Intra-session and inter-session performance as a function of sessions. Bars denote standard error.

2.4.2. Evaluation of the self-calibration algorithm. We
compared the performance of three conditions: no-
recalibration, intra-session and self-calibration. In the
no-recalibration condition, the classifier’s weights and
classification threshold values were extracted using data from
the first session and applied to the other sessions, because
simulates plausible use of the system during the day. The
intra-session condition was the same as in section 2.4.1.
Even if it was not a realistic condition, we considered
the intra-session condition a reference for the best possible
performance by continuous supervised calibration of the
classifier’s parameters.

To determine the performance of the self-calibration
algorithm, we applied the following procedure: at the
beginning the classifier’s weights, the classification thresholds
and the labeling thresholds were extracted using data from
the first session, and the self-calibration algorithm was run
on data from the four sessions that were acquired later.
Particularly, beginning with data from the second session,
performances were sequentially assessed by runs for all
available sessions, updating the database for recalibration
accordingly. The classifier’s parameters and the thresholds
values were updated when 5% of new data (with respect to
the dimension of the starting calibration dataset) were stored.

2.4.3. Evaluation of communication efficiency. To
summarize the system’s performance under the various
conditions, we adopted a metric to quantify its efficiency with
regard to accuracy, error rate and speed. An asynchronous
classifier has three possible classification outputs: (i) correct
classification, when the target item is correctly recognized by
the system; (ii) error, if the item that is selected differs from
the one that is attended by the subject; and (iii) abstention,
when no item reaches the classification threshold at the end of
the trial.

For this reason, metrics that only consider classification
accuracy, such as the written symbol rate (WSR—[25]) and
Wolpaw’s bit-rate [1], yield an incomplete characterization

of asynchronous systems, because they fail to distinguish
incorrect selections from abstentions.

In an earlier study [19], the efficiency metric that was
introduced by Bianchi et al [26, 27] was applied successfully
to assess the communication efficiency of a proposed
asynchronous system. This metric predicts the extent to which
the accuracy of the classification supports communication—
i.e. whether the time that is spent in correcting mistakes is less
than that needed to generate a correct selection. The efficiency
of a system, with regard to the time that is needed to achieve
a classification, is expressed as a function of the number of
stimulation sequences (NumSeq):

Eff = 1

NumSeq ∗ ESC
where ESC is the expected selection cost (ESC), which is
the mean number of selections that is needed to generate a
correct symbol, taking into account the recovery from errors
and abstentions. When the accuracy is lower than 50%, the
time that is needed to correct errors is longer than the time that
is spent for effective communication; thus, ESC approaches
infinity, and Eff is 0.

In this study, we made the following assumptions about
costs: we associated a cost of 1 with abstentions (the user only
needs to repeat the trial to select the desired character) and a
cost of 2 with misclassifications (the user must first delete the
incorrect character and then reselect the desired one). Due to
the small size of our datasets, we assumed that the probabilities
of abstention and misclassification were independent of target
character. Additionally, in accordance with the way our target
characters were generated, we used uniform probability for all
characters on the grid when calculating ESC.

3. Results

3.1. Inter-session and intra-session performance

Results on the average performance in terms of correct
classifications, errors and abstentions for test session, for
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Figure 4. Trend of communication efficiency across sessions for intra-session and inter-session cross-validation conditions.

Table 1. Communication efficiency for each cross-validation condition: values on the main diagonal (in bold) correspond to the intra-session
condition, entries outside the main diagonal refer to inter-session condition.

Testing session

Sess1 Sess2 Sess3 Sess4 Sess5

Training session Sess1 0.33 ± 0.15 0.32 ± 0.14 0.26 ± 0.18 0.14 ± 0.14 0.10 ± 0.11
Sess2 0.29 ± 0.15 0.35 ± 0.12 0.27 ± 0.12 0.18 ± 0.14 0.14 ± 0.13
Sess3 0.29 ± 0.13 0.30 ± 0.13 0.30 ± 0.15 0.22 ± 0.12 0.15 ± 0.13
Sess4 0.28 ± 0.13 0.28 ± 0.14 0.26 ± 0.13 0.27 ± 0.14 0.16 ± 0.13
Sess5 0.26 ± 0.12 0.27 ± 0.08 0.24 ± 0.11 0.21 ± 0.11 0.26 ± 0.11

the intra-session and inter-session conditions are reported in
figure 3. One-way repeated measures ANOVA was performed
three times using the cross-validation conditions as the factor
(intra-session versus inter-session) and correct classifications
per test session, errors per test session and abstentions per test
session as dependent variables. The intra-session condition
effected a significantly higher correct classification rate versus
the inter-session condition (F(4, 1192) = 17.232, p < 0.01),
a difference that was compensated by a significantly lower
error rate in the former (F(4, 1192) = 15.85, p < 0.01).
No significant differences were observed in the percentage
of abstentions between conditions (F(4, 1192) = 1.49, p =
0.20).

Communication efficiency was significantly higher in the
intra-session condition than in the inter-session condition,
based on repeated measures ANOVA using cross-validation
condition as the factor (intra-session and inter-session) and
efficiency per test session as the dependent variable (F(4,
1192) = 10.62, p < 0.01). Figure 4 shows the mean efficiency
values for each session over the day in the intra-session and
inter-session conditions. Table 1 reports the average efficiency
values for each cross-validation condition. Specifically, values
on the main diagonal of the matrix correspond to the intra-
session condition, and the entries outside of the main diagonal
refer to the inter-session conditions.

3.2. Self-calibration algorithm assessment

Figure 5 shows the average performance of the system for
all 10 subjects under the three conditions: intra-session, self-
calibration and no-recalibration. Because the data that were
acquired during the first session were used as the training
dataset for all conditions, the performance for session 1
was unavailable. The accuracy fell in the self-calibration and
no-recalibration conditions over sessions, whereas the error
rate increased. However, performance of the self-calibration
algorithm declined versus the no-recalibration condition.

Repeated measures ANOVA was performed three times
using the cross-validation conditions as factor (intra-
session, self-calibration and no-recalibration) and correct
classifications, errors and abstentions per test session as
dependent variables. There were significant differences in
the correct classification rate between conditions (F(6, 477)
= 6.62, p < 0.01), and by Duncan’s post-hoc tests, correct
classification in the intra-session cross-validation condition
were significantly higher (p < 0.05) versus the no-recalibration
condition (all sessions) and self-calibration condition sessions
3, 4 and 5. Moreover, in the latter condition, the correct
classification rate significantly higher (p < 0.01) than in the
no-recalibration condition for sessions 3, 4 and 5. None of the
other comparisons was significant.
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(a) (b)

Figure 5. (a) Average performance across all ten subjects of the asynchronous system in the intra-session, self-calibration and
no-recalibration cross-validation conditions. Bars denote standard error. (b) Mean of stimulation sequences needed to achieve a correct
classification in the intra-session, self-calibration and no-recalibration conditions across all ten subjects.

Figure 6. Mean efficiency values for the no-calibration, intra-session, and self-calibration conditions.

By repeated measures ANOVA, the error rate differed
between conditions (F(6, 477) = 5.78, p < 0.01). By Duncan’s
post-hoc tests, the error rate in the no-recalibration condition
was significantly higher (p < 0.05) compared with the intra-
session (sessions 3, 4, and 5) and self-calibration conditions
(sessions 4 and 5). The error rate in the self-calibration
condition was significantly higher (p < 0.05) than in the intra-
session condition only for session 5. All other comparisons
were insignificant, and no significant differences in abstentions
were observed between the three conditions (F(6, 477) = 1.17,
p = 0.31).

With regard to the robustness to false positives in
the no-control trials, in the self-calibration condition, the
classification threshold was erroneously exceeded by 4.1%
of the no-control trials versus 19.4% in the no-recalibration
condition. Specifically, in the self-calibration conditions, we
detected 0.04, 0.09, 0.11 and 0.16 false positives/minute in
sessions 2, 3, 4 and 5, respectively. In the no-recalibration

condition, there were 0.09, 0.44, 0.53 and 0.88 false
positives/minute in sessions 2, 3, 4 and 5, respectively.

Figure 6 reports the efficiency values for the three
conditions over all sessions. The self-calibration exhibited
efficiency values that approximated those in the intra-session
condition, whereas values for the no-recalibration condition
were significantly lower than in the other two conditions.
By repeated measures ANOVA with the cross-validation
conditions as factors (intra-session, self-calibration and no-
recalibration) and efficiency as a dependent factor, the
differences between groups was not significant (F(6, 477) =
1.80, p = 0.09). By Duncan’s post-hoc test, efficiency was
significantly higher for the intra-session (sessions 4 and 5)
and self-calibration conditions (sessions 3, 4, and 5) compared
with the no-recalibration condition. The efficiency between
the intra-session and self-calibration conditions did not
differ.
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3.3. Unsupervised data labeling

On average, 36 ± 10% of online data exceeded the LT and
thus were stored for recalibration; 95.5 ± 3.8% of stored data
were correctly labeled as target or non-target. For two of ten
subjects, all stored data were labeled with 100% accuracy,
whereas the highest percentage of incorrectly labeled data
over subjects was 12.5%. However, this rate did not affect
performance, because significant differences in efficiency (p <

0.05) between the self-calibration and intra-session conditions
were seen only for session 4, based on Duncan’s post-hoc
test on repeated measures ANOVA using cross-validation
conditions as factors and efficiency as the dependent variable
(F(6, 45) = 4.67, p < 0.01).

4. Discussion

This report describes and validates an algorithm for the
automatic adaptation of a classifier’s parameters, designed to
be used during online sessions. First, we examined whether
updating the parameters increased system accuracy. Contrary
to what was reported in [28], recalibration of the system with
data that were acquired in the same session ensures greater
reliability and efficiency versus recalibration that is performed
with data from a different session.

Moreover, in this study, the phenomenon of performance
variability was examined only in BCI sessions that were
acquired on the same day and with young and healthy
subjects. With regard to these aspects, several factors should
be considered

(i) overall performance declined in the afternoon sessions
compared with morning, even in the intra-session
condition, which might be due to fatigue and decreased
motivation after repeat sessions;

(ii) this study reports results data that were acquired under
controlled experimental conditions, whereas a test that
involves end-users in real life contexts would provide
more realistic results;

(iii) the authors in [29] demonstrated that potential end-
users had wider variability in performance in terms of
stimulation sequences that were needed to select the
desired item compared with young healthy subjects; thus,
the inter-session/intra-session difference might be greater
in end-users in the evaluation;

(iv) we are interested in measuring the variability in
performance over repeated sessions on different days to
determine if the decrease in PM is always present or due
primarily to the strict pace of the experimental protocol.

The performance of the self-calibration algorithm was
between two conditions: intra-session, which represents the
reference condition, and no-recalibration, in which the user
was assumed to calibrate the system once and continue to
use the same parameters for the entire day. Although the
correct classification rate of the self-calibration algorithm
was significantly lower than the intra-session condition, it
significantly exceeded that of the no-recalibration condition;
moreover, the latter had a higher error rate than the other
two conditions. The lower error rate, the high correct

classification rate and the lower number of stimulation
sequences that were needed to exceed the classification in
the self-calibration algorithm were reflected in the efficiency
values—the communication efficiency that was observed with
the self-calibration algorithms did not differ from the intra-
session condition.

Finally, the self-calibration algorithm was reliable in
labeling data; less than 5% of the data that were stored for
recalibration were incorrectly labeled. However, additional
tests that involve end users in non-experimental conditions
with on-line implementation of the proposed algorithm are
needed to confirm the promising results in healthy subjects by
offline speculation.

5. Conclusion

In this paper, an algorithm for automatic and continuous
adaptation of a classifier’s parameters in an asynchronous
P300-based BCI system has been described and validated
by offline analysis. Continuous recalibration of classifier
parameters can enhance the system’s performance over
several sessions in a single day, and the proposed algorithm
can recalibrate the system using unlabeled data from
online sessions and ensure performance stability. After an
initial supervised calibration session, the entire recalibration
procedure becomes hidden to the user, which is a significant
property that increases the usability of BCI systems as assistive
technology. Although they are not conclusive, these results are
promising, and further online tests that involve end users for
multiple sessions over several days should be performed to
determine the efficacy and reliability of the proposed algorithm
in non-experimental conditions.
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Spelling is just a click away—a user-centered
brain–computer interface including auto-calibration and
predictive text entry Front. Neurosci. 6 72
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and Cincotti F 2012 Control or no-control? Reducing the
gap between brain-computer interface and classical
input devices Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012
pp 1815–8

[20] Krusienski D J, Sellers E W, McFarland D J, Vaughan T M
and Wolpaw J R 2008 Toward enhanced P300
speller performance J. Neurosci. Methods
167 15–21

[21] Farwell L A and Donchin E 1988 Talking off the top of your
head: toward a mental prosthesis utilizing event-related
brain potentials Electroencephalogr. Clin. Neurophysiol.
70 510–23

[22] Schalk G, McFarland D J, Hinterberger T, Birbaumer N
and Wolpaw J R 2004 BCI2000: a general-purpose
brain–computer interface (BCI) system IEEE Trans.
Biomed. Eng. 51 1034–43

[23] Krusienski D J, Sellers E W, Cabestaing F, Bayoudh S,
McFarland D J, Vaughan T M and Wolpaw J R 2006 A
comparison of classification techniques for the P300 speller
J. Neural Eng. 3 299–305

[24] Zweig M H and Campbell G 1993 Receiver-operating
characteristic (ROC) plots: a fundamental evaluation tool in
clinical medicine Clin. Chem. 39 561–77

[25] Furdea A, Halder S, Krusienski D J, Bross D, Nijboer F,
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