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Abstract
Objective. At the balanced intersection of human and machine adaptation is found the
optimally functioning brain–computer interface (BCI). In this study, we report a novel
experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space
using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the
performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine
the impact that the operation of a real world device has on subjects’ control in comparison to a
2D virtual cursor task. Approach. Five human subjects were trained to modulate their
sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback
was provided via a forward facing camera on the hull of the drone. Main results. Individual
subjects were able to accurately acquire up to 90.5% of all valid targets presented while
travelling at an average straight-line speed of 0.69 m s−1. Significance. Freely exploring and
interacting with the world around us is a crucial element of autonomy that is lost in the context
of neurodegenerative disease. Brain–computer interfaces are systems that aim to restore or
enhance a user’s ability to interact with the environment via a computer and through the use of
only thought. We demonstrate for the first time the ability to control a flying robot in 3D
physical space using noninvasive scalp recorded EEG in humans. Our work indicates the
potential of noninvasive EEG-based BCI systems for accomplishing complex control in 3D
physical space. The present study may serve as a framework for the investigation of
multidimensional noninvasive BCI control in a physical environment using telepresence
robotics.
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Introduction

Brain–computer interfaces (BCIs) are aimed at restoring
crucial functions to people that are severely disabled by a wide
variety of neuromuscular disorders, and at enhancing functions
in healthy individuals (Wolpaw et al 2002, Vallabhaneni et al
2005, He et al 2013). Significant advances have been
made in the development of BCIs where intracranial
electrophysiological signals are recorded and interpreted to
decode the intent of subjects and control external devices
(Georgopoulos et al 1982, Taylor et al 2002, Musallam et al
2004, Hochberg et al 2006, Santhanam et al 2006, Velliste
et al 2008, Hochberg et al 2012). Noninvasive BCIs have also
long been pursued from scalp recorded noninvasive
electroencephalograms (EEGs). Among such noninvasive
BCIs, sensorimotor rhythm (SMR)-based BCIs have been
developed using a motor imagery paradigm (Pfurtscheller et al
1993, Wolpaw et al 1998, Wolpaw and McFarland 2004, Wang
and He 2004, Wang et al 2004, Qin et al 2004, Kamousi et al
2005, Qin and He 2005, Galán et al 2008, Yuan et al 2008,
2010a, 2010b, McFarland et al 2010, Doud et al 2012).

The development of BCIs is aimed at providing users with
the ability to communicate with the external world through the
modulation of thought. Such a task is achieved through a closed
loop of sensing, processing and actuation. Bioelectric signals
are sensed and digitized before being passed to a computer
system. The computer then interprets fluctuations in the signals
through an understanding of the underlying neurophysiology,
in order to discern user intent from the changing signal. The
final step is the actuation of this intent, in which it is translated
into specific commands for a computer or robotic system to
execute. The user can then receive feedback in order to adjust
his or her thoughts, and then generates new and adapted signals
for the BCI system to interpret.

Patients suffering from amyotrophic lateral sclerosis
(ALS) have often been identified as a population who may
benefit from the use of a BCI (Bai et al 2010). The components
of a satisfactory system were identified in a recent ALS
patient survey as highly accurate command generation, a high
speed of control, and low incidence of unintentional system
suspension, i.e. continuity of control (Huggins et al 2011).
While these needs were reported from a patient population
with ALS, similar if not identical needs are likely identifiable
in a wide variety of other neurodegenerative disorders and
the identification of these needs is a crucial component of
future investigation. However, the efficacy of noninvasive
SMR-based BCIs is supported by research indicating that the
ability to generate SMRs remains present in users with other
neurodegenerative disorders such as muscular dystrophy and
spinal muscular atrophy (Cincotti et al 2008). It is crucial
that researchers developing BCIs keep these identified patient-
relevant parameters in mind when developing new systems.
One limitation of many BCI systems has been the need
for a fixed schedule of events. For patients suffering from
various neuromuscular disorders, a fixed schedule of command
production would limit autonomy (Scherer et al 2008). Our
BCI does not require a fixed schedule of commands, but this
makes using some standard BCI metrics impossible (Kronegg

et al 2005, Yuan et al 2013). In order to maintain consistency
with the common metrics reported, including the metric of
information transfer rate (ITR) (McFarland et al 2003), we
used a modified ITR to fit our experimental protocol. In
addition, we reported ITR values for the two-dimensional (2D)
cursor task that were calculated by BCI2000 using standard
techniques. Using a modified ITR calculation has been recently
suggested in the literature (Yuan et al 2013). Other metrics
include the success and failure rates for the acquisition of
presented targets. Protocols developed for the assessment of
BCIs that allow for asynchronous interaction and exploration
of the subject’s surroundings will be best equipped to aid in the
development of systems with a human focus. Ultimately the
development of these systems may some day help to restore
that which has been undermined by disease.

In previous studies, we have demonstrated the ability of
users to control the flight of a virtual helicopter with 2D control
(Royer et al 2010) and 3D control (Doud et al 2011) by
leveraging a motor imagery paradigm with intelligent control
strategies. In these studies, in which subjects imagined moving
parts of their bodies in a real-time setup, SMRs were extracted
to control the movement of a virtual helicopter.

In the present study, we investigate the ability to control
the flight of a flying object in 3D physical space using SMRs
derived from noninvasive EEG in a group of human subjects.
Subjects received feedback while flying from a real time
video stream that was captured from an onboard camera. The
application of telepresence in BCI technology, along with the
employment of a continuous, fast and accurate control system
are crucial elements in the implementation of a BCI system that
has the ability to depart from the immediate surroundings of
the user and enter locations where these systems are needed.
Figure 1 shows a conceptual diagram of the present study
and the potential role of BCI driven telepresence robotics in
the restoration of autonomy to a paralyzed individual. The
bioelectric signal generated from motor imagination of the
hands is represented in the background of the figure. The
control signal decoded from the scalp EEG is sent regularly
via WiFi to the quadcopter to update its movement, while the
quadcopter simultaneously acquires video and sends it back to
the computer workstation. While a quadcopter was chosen
due to its low cost and robust capacity for programmable
actuation, the reader may envision any combination of remote
mobile devices capable of meaningful interaction with the
3D world. Restoration of autonomy and the ability to freely
explore the world through these means are the driving factors
for the present investigation.

Methods

Study overview

The study consisted of training and calibration phases,
an experimental task phase, and an experimental control
phase. In addition, the intrinsic ease of the experimental
task was quantified to serve as a baseline comparison to
better characterize the achievements of the subjects. Prior
to participation in the experimental phase of the study, each
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Figure 1. A conceptual diagram of the potential role of BCI driven telepresence robotics in the restoration of autonomy to a paralyzed
individual. The bioelectric signal generated from motor imaginations of the hands is represented in the background of the figure. The signal
is acquired through the amplifiers in the subject’s workstation where it is then digitized and passed to the computer system. Filtering and
further processing of the signal results in a conversion to a control signal that can determine the movement of the quadcopter. This signal is
sent regularly via WiFi to the quadcopter to update its movement, while the quadcopter simultaneously acquires video and sends it back to
the computer workstation. The subject adjusts control and adapts to the control parameters of the system based on the visual feedback of the
quadcopter’s video on the computer screen. Restoration of autonomy and the ability to freely explore the world are the driving factors for the
development of the system and can be expanded to control of any number of robotic telepresence or replacement systems.

subject had received exposure to 1D and 2D cursor movement
tasks using motor imagery. One of the subjects had also
received training in virtual helicopter control experiments
(Royer et al 2010, Doud et al 2011).

Regardless of training background, subjects were asked
to demonstrate proficiency in 1D and 2D cursor control prior
to progression to the AR Drone quadcopter training. Subjects
who demonstrated the ability to correctly select 70% or more
of valid targets in each of four consecutive 2D cursor trials, or
who achieved an average of 70% or more of valid targets over
ten consecutive 2D trials, were deemed proficiently skilled
in BCI control for participation in the AR Drone quadcopter
study.

During the initial training period, a statistical optimization
of the control signal was performed using the Offline Analysis
toolbox released with the BCI2000 development platform
(Schalk et al 2004). This software allows researchers to
identify the specific electrodes and frequencies that were
most differentially active during the actuation of a given
imagination pair. Spectrograms of the R2 value, a statistical
measure of degree of correlation of temporal components
of the EEG signal with different imagination state pairings,
were created so that the electrode and frequency bin (3 Hz
width) with the highest correlation value to a given imagination
state could be used. In this way, the training period was
crucial in determining an optimal, subject-specific control
signal that prepared each subject for entry into the real-world
task. Figures 2 and 3 show the statistical analysis involved
in selecting a control signal for a representative subject.
The Offline Analysis toolbox produces a feature map of the
R2 value at each frequency and electrode, a topographical
representation at a user-specified frequency, and a single-
electrode representation of the R squared value that varies
with frequency. By evaluating these three figures, a researcher
may quickly identify a subject specific electrode-frequency

configuration that will best serve the subject as a control signal
for a motor imagery-based BCI. Electrode selection for each
subject can be seen in table 3 in the supplementary materials
(available at stacks.iop.org/JNE/10/046003/mmedia).

Experimental subjects

Five human subjects, aged 21–28 (three female and two male),
were included in the study. Each subject provided written
consent in order to participate in a protocol approved by the
Institutional Review Board of the University of Minnesota.
Four of the subjects had not been exposed to BCI before this
study, while the fifth subject had been trained and participated
in the previous virtual helicopter study detailed in Doud et al
(2011).

Subject training

The initial training phase of the study was aimed at achieving
competence in 2D control in the standard BCI 2000 cursor task
in addition to a virtual helicopter simulator program developed
and described in Royer et al (2010). The reductionist control
strategy that was employed in the Royer protocol proved to be
a robust control system that was relatively quick and easy to
learn. Thus, this protocol was chosen for the transition from
virtual to real-world control. Subjects were introduced to and
trained in the 1D cursor task (Yuan et al 2008, Royer and
He 2009) until they achieved a score of 80% or above in four
consecutive 3 min trials, or until they achieved a score of 80%
or more when performance was averaged across ten or more
consecutive trials. In the 1D cursor task, a target appeared on
either the left or right side of the screen and was illuminated
with a yellow colour. The subject was instructed to perform
motor-imagery of left or right hand movement to guide a cursor
to the illuminated target, while avoiding an invisible target,
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(a) (b) (c)

Figure 2. (a), (b) A characteristic subject’s R2 topography for the 12 Hz component of the right and left hand imaginations as compared to
rest. A high R2 value indicates a region in the 12 Hz band that is activated differentially between the imagined motion and the rest state.
Event related desynchronization in the 12 Hz frequency region that is located ipsilateral to the imagined hand is a well-characterized
response to motor imagery. (c) The R2 topography of the 12 Hz component of the imagination of both hands as compared to rest.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Spectral power is shown in the control electrodes as a function of frequency. (a), (b) Comparisons of spectral power in right versus
left hand imaginations. Note that spectral power is diminished in the electrode contralateral to the imagined hand and increased in the
ipsilateral electrode. As a result of the differential synchronization-desynchronization of the electrodes in response to the unilateral motor
task, subtracting the C3 electrode from the C4 electrode results in a more separable signal for left-right control. (c), (d) Comparisons of
spectral power in response to both hands imagined versus rest show increased power in response to the rest state and desynchronization in
response to the imagination of both hands. Both electrodes show desynchronized activity in response to the imaginative state, allowing them
to be summed to produce a separable signal for up-down control. (e), (f) These spectral plots show left versus rest for the same trials as those
constituting the topographies in figure 2.
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which was located on the side of the screen opposite the desired
target. Subjects were given three experimental sessions, each
consisting of at least nine experimental trials (3 min each) to
complete this first phase.

A second dimension was then trained independently of
the first. Subjects were presented with a second cursor task
in which targets appeared at either the top or bottom of the
screen. In this task, subjects were instructed to move the cursor
up by imagining squeezing or curling both hands and to move
the cursor down through the use of a volitional rest. The rest
imagination often consisted of subjects focusing on a non-
muscular part of the body and relaxing. In this task, addition of
the normalized amplitude of the desired frequency components
produced the up-down control signal, whereas the left-right
control signal was generated from the subtraction of these
same frequency components. This allowed for independent
control because simultaneous imagination of the hands cancels
out the subtracted left-right component, while a lateralized
left or right imagination in isolation causes a difference in
signal sign that cancels the additive up-down component.
Rules for progressing from this phase were the same as in
the previous phase, with a limit of three experimental sessions
for completion.

The third phase paired the control signals from the first
two phases together in a 2D cursor task with an array of four
targets in positions on the top, bottom, left, and right sides of
the monitor. Subjects progressed to the next phase of training
when they could correctly select 70% or more of valid targets
in four consecutive 2D cursor trials or an average of 70% or
more of valid targets over ten consecutive 2D trials.

After meeting these criteria, subjects progressed to
controlling a virtual helicopter (Royer et al 2010). The
kinetics of this virtual helicopter operated according to a linear
tie of velocity to the normalized amplitude of EEG signal
components. After up to three sessions (for a total average of
about 1 h of flight time) of training to gain familiarity with this
virtual helicopter control protocol, subjects were trained with
an enhanced virtual simulation of the AR Drone quadcopter.
This improved simulator included an updated virtual model
of the AR Drone quadcopter, similar in appearance to the
physical quadcopter subjects would eventually be flying in 3D
real space. The new simulation program also had an improved
control algorithm. It used the same Blender platform physics
simulator that was used in Doud et al (2011), but the new
algorithm employed force actuation of the drone movement
to better approximate the behaviour of the actual AR Drone
in a real physical environment. This new algorithm linked
subjects’ BCI control signal to the acceleration that was
applied to the quadcopter rather than to the velocity of the
quadcopter. By actuating the virtual quadcopter through force,
we excluded from the system some unrealistic movements
that could arise from directly updating the velocity of the
model in coordination with the control signal. While this force
actuation presented a novel challenge to the subjects, it was
an important step in exposing the subjects to the real-world
forces that must be managed in order to successfully control the
AR Drone. More information on the simulator and its control
setup can be found in the supplementary materials (available at

Figure 4. An outline of the subjects’ progression through the
training sequence that was developed to promote a robust 2D motor
imagery-based control. During the first three stages of cursor task
training, the research team performed an optimization of electrode
position and frequency components that contributed to each
subject’s control signal. The virtual helicopter task was used to
familiarize the subjects with the control system for the AR Drone.
The final stage of training was to navigate the AR Drone robotic
quadcopter in a real-world environment.

stacks.iop.org/JNE/10/046003/mmedia). Subject interaction
with this simulation system was qualitatively evaluated with
the major goal being to familiarize the subject with the control
setup, without the pressure of steering an actual robotic drone.

After one to three sessions (consisting of at least nine
3 min experimental trials each) of training with the virtual AR
Drone, subjects started to train with the real AR Drone. The
four subjects that were naı̈ve to BCI prior to this study spent an
average of 5 h and 20 min of virtual training over an average
period of three months before starting to train with the real
AR Drone. This time includes the 1D left versus right, 1D up
versus down, and 2D cursor tasks, in addition to the virtual
helicopter simulation. The order of progression of training can
be seen in the flowchart in figure 4.
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Upon completion of the virtual tasks, subjects were given
an opportunity to calibrate their control signals and familiarize
themselves with the robotic system by way of a novice-pilot
training task. In both the experimental task and the novice-
pilot training task, subjects were asked to pilot the AR Drone
quadcopter safely through suspended-foam rings. However, in
the novice-pilot training task, the rings were spaced further
apart and subjects were instructed to fly back and forth such
that no ring was acquired more than once in a row. The
design of the novice-pilot training task encouraged the user to
explore the control space, and gave the subject an opportunity
to suggest refinements to the sensitivity of each of the BCI
controls. The experimental group spent an average of 84 min
over three weeks on the novice pilot training task. When the
subject felt comfortable with the calibration of the control
signal in the novice-pilot training task, they were moved to the
experimental protocol where speed, accuracy and continuity
of control were assessed with the experimental task described
below.

Data collection and processing

Subjects sat in a comfortable chair, facing a computer
monitor in a standard college gymnasium. The experimental
set-up was such that a solid wall obscured the subject’s
view of the quadcopter. A 64-channel EEG cap was
securely fitted to the head of each subject according to
the international 10–20 system. EEG signals were sampled
at 1000 Hz and filtered from dc 200 Hz by a Neuroscan
Synamps 2 amplifier (Neuroscan Lab, VA) before they
were imported into BCI2000 (Schalk et al 2004) with no
spatial filtering. Details of electrode and frequency selection
can be seen in the supplementary materials (available at
stacks.iop.org/JNE/10/046003/mmedia).

The parameterization of BCI2000 during the AR Drone
task was such that 4 min runs consisting of 6 s trials ran in the
background of the drone control program and communicated
the raw control signal via the UDP packet protocol. The
trials were set to have no inter-trial interval or post feedback
duration. During each BCI2000 trial, the standard cursor
moved through a 2D control space for 6 s before being reset
to the centre of the control space for the next trial. Since
there was no inter-trial interval, this 6 s trial pacing was not
perceptible by the subject, but was performed to ensure that
the system was normalized regularly. Normalization to impose
a zero mean and unit variance was performed online with a
30 s normalization buffer. The output signal during cursor
movement for all target attempts entered the normalization
buffer and was recalculated between trials. The control signal
was extracted as the spectral amplitude of the chosen electrodes
at the selected frequency components. This was accomplished
using BCI2000’s online Autoregressive Filter set with a model
order of 16 operating on a time window of 160 ms for
spectrum calculation. Effectively, this configuration resulted
in continuous output of control signal, pauses for recalculation
of normalization factors imperceptible to the subject.

Subjects attended three days of the experimental protocol
with each daily session consisting of 6–15 trials, lasting up

Figure 5. The layout of the experimental set-up, as well as the
dimensions of the quadcopter control space can be seen. The inner
diameter of the ring target is 2.29 m. A small indentation in the
control space is seen on the bottom wall where the subject was
located during the experiment; thus the quadcopter was not allowed
to enter this area.

to four minutes each. Subjects were visually monitored for
inappropriate eye blinking or muscle activity during each
session and were regularly reminded of the importance of
minimizing movement. However, observed eye blinking and
muscle movement were minimal during all of the experimental
sessions. The time-varying spectral component amplitudes
from the EEG at predetermined subject-specific electrode
locations and frequencies were selected and then integrated
online by BCI2000 to produce a control signal that was
sent every 30 ms via a UDP port to a Java program that
communicated wirelessly with the AR Drone.

Control environment and quadcopter

The quadcopter flight environment was set up in a standard
college gymnasium. Figure 5 illustrates the experimental
setup of the flight environment, and the quadcopter’s starting
position relative to the two ring-shaped targets. These targets
were made of lightweight foam and were suspended so that the
internal edge of the bottom of the ring was approximately 1 m
above the ground. Each ring had an outer diameter of 2.7 m
and an inner diameter of 2.29 m. Subjects were situated to be
facing a solid wall on the side of the gymnasium to ensure
safety and to obstruct the subject’s view of the AR Drone
quadcopter. Thus, subjects did not directly see the quadcopter,
but watched a computer monitor with a first person view from
a camera that was mounted on the hull of the quadcopter.

The AR Drone 1.0 quadcopter (Parrot SA, Paris, France)
in the described control space was chosen for the experiments
because it provides strong onboard stabilization while allowing
for a wide range of programmable speeds and a smooth range
of motion. It is a relatively low-cost option for robust control
in 3D space with extensive open source support. In addition,
the AR Drone provided access to two onboard cameras, and
the accelerometer, altitude, and battery data were all reported
to the control software and recorded in real time.
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(a) (b)

Figure 6. Actuation of the drone is represented by the coloured arrows. The motor imaginations corresponding to each control are seen in
the legend on the right. Separable control of each dimension was attained by imagining clenching of the left hand for left turns, right hand
for right turns, both hands for an increase in altitude, and no hands for a decrease in altitude. The strength of each control could be
independently controlled by weighting coefficients.

Experimental paradigm

The experimental protocol consisted of three experimental
sessions for each subject, with 6–15 trials per session and
a maximum flight time of 4 min per trial. Each trial began with
the AR Drone quadcopter 0.8 m off the ground. Imagining
use of the right hand turned the quadcopter right, while
imagination of the left hand turned it left. Imagining both
hands together caused the helicopter to rise, while intentionally
imagining nothing caused it to fall. A constant forward signal
was sent to the quadcopter such that the linear velocity was
measured to be 0.69 ± 0.02 m s−1 in the absence of rotational
movement. Figure 6 displays the actuations of the quadcopter
that correspond to the subjects’ motor imaginations. Turning
the quadcopter attenuated its forward velocity significantly.
This is an example of a real-world control parameter that
was absent in virtual simulations. An example of this
attenuation can be seen in supplementary video 3 (available
at stacks.iop.org/JNE/10/046003/mmedia). Subjects were
allowed to pass through the rings in any order, on the condition
that no event (i.e. ring collision or target acquisition) occurred
within 5 s of the previous event. A demonstration of two
short, yet separable, acquisitions can be seen in supplementary
video 4 (available at stacks.iop.org/JNE/10/046003/mmedia).
This time requirement prevented multiple successes from a
single target attempt.

In comparison to the novice-pilot training task, the
experimental protocol allowed subjects to expand their
strategies, while still ensuring that no two events came from the
same intentional act. In the experimental task, the rings were
positioned such that each ring was 4.6 m from the take-off
location of the drone.

In order to maximize control, subjects were given a system
of actuation that is commonly used for remote control vehicles.
This was accomplished by using a nonlinear transformation
of the EEG signal before the control signal was sent to
the quadcopter. A graph of this transformation can be seen
in figure 7. The signal used a threshold to remove minor
signals that were not likely to have originated from intentional
control. Beyond this threshold, the signal was transformed by
a quadratic function so that the subjects were able to alter
the strength of imagined actions to either achieve fine control
for acquiring rings or to make large turns for general steering
purposes and obstacle avoidance.

If a subject successfully navigated the quadcopter to pass
through a ring, a ‘target hit’ was awarded; however, if the
subject only collided with the ring, a ‘ring collision’ was
awarded. If the quadcopter collided with a ring, and then passed
through that same ring within 5 s, a target hit but not a ring
collision was awarded. Finally, if the quadcopter went outside
of the boundaries of the control space, the trial was ended and
the subject was assigned a ‘wall collision’.

Trials that lasted for less than four minutes ended
because the quadcopter either prematurely exited the bounds
of the control space (i.e. a wall collision) or a drone
malfunction occurred; malfunctions consisted of occasional
wireless network failures or mechanical errors that were
outside of the users control. These occasional malfunctions
due to mechanical errors or the loss of wireless signal caused
a small subset of trials to end early. The data from these trials
were analyzed prior to the malfunction, but no wall collision
was assigned to the subject’s performance log, as the error was
not within their control.

Experimental control

A control was performed using an experimental protocol
in which one naı̈ve subject and two experimental subjects
controlled the flight of the quadcopter using keyboard control
instead of a BCI. In this protocol, the quadcopter was given the
same constant forward velocity, as well as maximum altitude
gains and turning speeds that were equivalent to the average
of all trained subjects. This protocol allowed for a comparison
between a standardized method of control and BCI control. The
keyboard control had one advantage in that a ‘total zero’ signal
could easily be maintained such that no left/right or up/down
actuation occurred. This allowed for easier achievement of
straight-line flight in the control experiments. Although it can
be argued that a joystick or a remote control box would be
a more nuanced method of controlling the quadcopter, this
control paradigm employed the discrete keyboard actuation
to ensure that the actuated control was the fastest possible
within the constrained parameters. In the keyboard control
task, subjects were given the same instructions with regards to
the manner in which the rings were to be acquired.

In addition, the intrinsic ease of the experimental task was
assessed. It is common practice in the field of BCI to propose
a new and novel task for a BCI to perform. When such a task
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Figure 7. Control of the AR Drone is shown in terms of the amount of yaw, forward pitch, and altitude acceleration of the drone with 1
being a maximum forward/right/upwards signal, and −1 being a maximum backwards/left/downwards actuation. The constant forward
signal was set to correspond to 15% maximum forward tilt and indirectly to a percent of the drone’s maximum forward speed. For the UD
signal, maximum actuation would cause the helicopter to supply the maximum amount of lift or to slow its engines in the presence of a
negative signal. For the LR signal, maximum actuation refers to the generation of maximum rotational force about the helicopters z-axis.
On the x-axis, the BCI2000 generated control signal is the cumulative amplitude of the temporal component of interest for a given electrode.
Near the mean signal of zero, a threshold was used to assign a value of zero to small, erroneous signals from randomly generated noise being
sent to the drone in the absence of subject intention. The signals could be adjusted by weighting factors for each subject. The relevant
equations are shown in the supplementary data (available in stacks.iop.org/JNE/10/046003/mmedia). This graph displays the weighted
signal used by subject 1 in the second protocol.

has not yet been explored by other researchers, it can become
difficult for readers to determine how much of the subject’s
success is attributable to the control system, and how much is
attributable to the inherent characteristics of the task. In a task
that reports that a subject acquires a target 100% of the time, it
is important to also know the target density and how well the
system performs when given random noise. If the system can
still acquire 100% of the targets in the absence of user intent,
the result becomes trivial. To evaluate the intrinsic ease of
the presented experimental task, a naı̈ve subject was shown a
sham video feed of the helicopter moving in the control space.
The subject was instructed to simply observe the screen while
sitting quietly and still. In all other ways the system was set
up in a manner that is identical to the experimental protocol.
The subject wore an EEG cap and signals were acquired that
controlled the action of an AR Drone quadcopter in the control
space. The performance of the AR Drone in the absence of user
intent was measured. This setup was preferred to ensure that
realistic biological signals were used as the input of the system;
thus, poor performance could not be attributed to a choice of
random noise of inappropriate magnitude or characteristics.

Performance analysis

The performance of BCIs has been quantified by various
metrics. Unifying these standard metrics is an important part of
establishing a common ground for assessment within the BCI
community and encouraging progress from a mutual reference
point. In 2003, McFarland et al described a simple, yet elegant
ITR metric based on Shannon’s work (Shannon and Weaver

1964). However, it has been postulated that this metric cannot
be directly applied to asynchronous (self paced) or pointing
device BCIs (Kronegg et al 2005). As it has been postulated
that such BCIs may nevertheless be used to assist clinically
paralyzed patients, the need has arisen for the development of
an analogous assessment for BCI’s that do not require a fixed
schedule of commands. An unfixed schedule of commands
would allow users to choose and perform activities as they
would in a realistic manner (such as picking up a spoon but
thereafter deciding they want to switch to a fork instead). In
one particular study, subjects successfully navigated a 2D maze
using a forward, left, and right command, but the subjects were
limited to a maximum of 15 s to make a choice (Kus et al 2012).
If no choice was made, the movement selection was restarted.
Furthermore, if subjects in the 2D maze test performed a task
incorrectly by moving into a wall, this did not cause the cursor
to move incorrectly or stop the navigation task, which allowed
for continual trials. Recently Yuan et al (2013) discussed the
difficulty in comparing ITR because of the many intricate
differences, including the aforementioned error correction, in
BCI systems. The need for explicitly redefining tasks, even
if there are multiple choices, is a current limiting factor in
the utility of BCIs. However, having an unfixed schedule of
commands to reach a target in a dynamic path requires the
user to re-plan their path to the target in order to account for
mistakes.

In order to create an ITR for an asynchronous BCI system
that does not limit user attempt time, the same mathematical
basis (established by Shannon and Weaver) used by the current
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BCI ITR standard was used to quantify an analogous ITR for
the present study.

It should be noted that with an unfixed trial length and
a large field of operation for the user, the ITR may be lower
than comparable BCI systems due to the fact that a long trial,
regardless of success or failure, lowers the overall average.
This is important in that a BCI system can provide more
autonomy in the real world if the system does not require
the user to be reset to a position or state after a fixed interval of
inactivity. Instead, pursuit of the target should be continuous
until the task is achieved.

Using these requirements and the basic equation for bits
that was developed by Shannon, we were able to create a metric
that would be suitable for an asynchronous real-world BCI
task, in which only the initial and final positions of the user
are required. The following derivation was used. The index
of difficulty (ID) from Fitt’s law in the form of Shannon’s
equation uses units of bits. Therefore, using the ID equation
from Fitt’s law

ID = log2

(
D

W
+ 1

)
,

where D = the distance from the starting point to the centre
of the target, and W = the width of the target, we were able
to calculate bits (Soukoreff and MacKenzie 2004). Dividing
this by the time needed to perform the action of reaching the
target, we attained bits/min. The ITR in bits/min was thus
calculated by

ITR =
log2

(
Net Displacement Traveled to Target

Diameter of Target + 1
)

Time to Reach Target
.

This equation was used to calculate the ITR for the first
event after take-off (with an event defined as either a
target acquisition, ring collision, or wall collision). The
net displacement travelled to the target for this study, as
seen in figure 5, is 4.6 m. An example of a first ring
acquisition can be seen in supplementary video 5 (available
at stacks.iop.org/JNE/10/046003/mmedia). The diameter of
the target, calculated as the inner diameter of the ring, was
2.29 m. It should be noted that a ring collision, although close
to target acquisition, was counted as a failure to transfer any
information. Furthermore, this ITR does not account for the
nuance that the users started each run with a forward velocity,
and without facing the target. However, it does allow for a
simple calculation, taking into account only the initial user
position and target positions. Such strict guidelines enable the
user to give specific instructions throughout the entire time

to target acquisition. As we have pointed out, this metric is a
coarse approximation of ITR, but it has been alluded to in the
BCI field that ITR is often calculated incorrectly when using
the standard metric (McFarland et al 2003, Yuan et al 2013).

Speed of performance was assessed through the use of
two metrics. The average rings per maximum flight (ARMF)
metric reports how many targets a subject can acquire on
average, if the quadcopter were to remain in flight for the
full 4 min trial. In addition, the average ring acquisition time
(ARAT) metric was also used to evaluate the subjects’ speed
of control. Continuity of control was evaluated by using the
average crashes per maximum flight (ACMF) metric, which
reports the average number of crashes that would occur in four
minutes given their average rate of occurrence.

ARMF was calculated by
Number of Target Acquisitions

(Total Flight Time ÷ Four Minutes)
.

ARAT was expressed as
Total Flight Time

Number of Target Acquisitions
.

In addition, ACMF was calculated by
Number of Wall Collisions

(Total Flight Time ÷ Four Minutes)
.

The success rate of the present BCI system was assessed
by three metrics: percent total correct (PTC), percent valid
correct (PVC) and percent partial correct (PPC). If the subject
successfully controlled the quadcopter to pass through a ring,
one target hit was awarded. If the quadcopter collided into a
ring without passing through it, a ring collision was designated.
If the quadcopter collided with a ring and then passed through
that same ring, only the target acquisition was counted and the
ring collision was not awarded. PTC is the number of target
acquisitions divided by the number of attempts (total number
of target acquisitions, ring collisions and wall collision). In
contrast, PVC was calculated as the total number of target
acquisitions divided by the total number of valid attempts
(total number of target hits and wall collisions). A valid attempt
occurred when a definitive positive or negative event occurred.
In addition, PPC was evaluated to demonstrate how many
perfect completions of the tasks were completed versus how
many partial successes were achieved.

PTC was calculated by
Number of Target Acquistions

(Number of Target Acquisitions + Number of Ring Collisions + Number of Wall Collisions)
.

PVC was given by
Number of Target Acquisitions

(Number of Target Acquistions + Number of Wall Collisions)
.

Lastly, PPC was calculated by
(Number of Target Acquisitions + Number of Ring Collisions)

(Number of Target Acqusitions + Number of Ring Collisions + Number of Wall Collisions)
.

9

http://stacks.iop.org/JNE/10/046003/mmedia


J. Neural Eng. 10 (2013) 046003 K LaFleur et al

Table 1. A summary of the average performance during the three sessions during which the subjects performed the experimental task, along
with the group weighted average of performance for the same metrics. Included for comparison purposes are the grouped performance
metrics for keyboard control of the AR Drone by three subjects and an assessment of the baseline ease of the experimental task given input
of a random biological signal.

Paradigm PVC (%) PTC (%) PPC (%) ARAT (s) ARMF (rings/max flight) ACMF (crashes/max flight)

Subject 1 90.5 85.1 91.0 57.8 4.2 0.4
Subject 2 79.4 62.8 83.7 81.4 2.9 0.8
Subject 3 75.0 62.3 79.2 72.1 3.3 1.1
Subject 4 81.4 70.0 84.0 86.2 2.8 0.6
Subject 5 69.1 54.3 75.7 98.8 2.4 1.1
Subjects weighted average 79.2 66.3 82.6 77.3 3.1 0.8
Keyboard control 100.0 100.0 100.0 19.9 12.0 0.0
Baseline ease of task 8.3 8.3 8.3 451.0 0.5 5.9

Results

Subject success rate

The subjects were successful in achieving accurate control
of the quadcopter in 3D real space. Table 1 displays the
performance results. PVC is the subject success rate in all trials
in which a result (either correct or incorrect) was achieved.
The PTC metric was used as a stricter metric to ensure that
each subject made a significant effort towards passing through
the target rather than just reaching it. The PPC metric was
most analogous to previous BCI experiments in which subjects
solely had to reach a target, and not perform the task of passing
through the target in a particular orientation after reaching it.
The group per trial weighted average for PTC was 66.3%. The
PPC weighted average was 82.6%. A summary of these and
all other metrics can be seen in table 1.

Subjects demonstrated the ability to acquire multiple
rings in rapid succession by minimizing turning actuations
of the quadcopter. Some subjects were able to do this
by temporarily minimizing their left/right signal in order
to achieve a more direct path. This is demonstrated in
video 2 (available at stacks.iop.org/JNE/10/046003/mmedia).
Furthermore, subjects were able to achieve fine turn
corrections as they approached the rings in order to rotate the
quadcopter to pass through the target (seen in video 1 available
at stacks.iop.org/JNE/10/046003/mmedia). All subjects were
able to successfully achieve high degrees of accuracy by using
their motor imaginations to approach and pass through the
targets.

Information transfer rate

The five subjects who participated in this protocol displayed
an average ITR of 6.17 bits min−1 over 10 characteristic trials
in a 2D cursor control task in which they were given 6 s to
reach the target, or were otherwise reset to the centre of the
screen and given a new target.

During the AR Drone experimental protocol, the five
subjects performed at an average ITR of 1.16 bits min−1.
Individual subject values can be seen in table 2. While lower
than those reported in the 2D task, these values represent
an important step towards providing BCI users with more
autonomy, by not mandating a fixed schedule of events or

Table 2. A summary of the average ITRs for each of the subjects
along with the values for the keyboard control and ease of
assessment task (random biological signal).

Paradigm Average ITR

Subject 1 1.92
Subject 2 1.42
Subject 3 1.34
Subject 4 0.78
Subject 5 1.53
Group-weighted average 1.16
Keyboard control 5.60
Baseline ease of task 0.14

limiting time. The difference in ITR, while partially due to the
strict enforcement of ITR calculation in the real world, could
represent some challenges in bringing BCI systems to the real
world. While the drop off from 2D cursor is noteworthy, so is
the fact that the subjects’ average ITR was 8.29 times higher
than the ITR from the ease of control assessment task, a good
indication that the subjects were intentionally interacting with
the environment via the BCI system. The ease of control
assessment used a random biological signal to control the
helicopter, and shows that the task could not be completed at
a high success rate without an intentionally modulated signal.

Because of the importance of ITR, it was necessary to
ensure that the system did not artificially transfer information
without user input, or allow the user to inflate the ITR without
using a full range of controls. Therefore, during the period of
flight during which ITR was calculated, the direction of control
of the user was also tracked, and figure 8 shows the comparison
of left to right control together with the comparison to up and
down control. This demonstrates that the users had the ability
to actuate all dimensions of control in order to move the AR
Drone throughout the field to the target.

Subject speed of control

For the purposes of this study, a constant forward command
signal was sent to the quadcopter; however, the subjects were
able to manipulate the speed by rotating and adjusting the
altitude of the quadcopter. It was found that large turns in
a single direction tended to increase the velocity, whereas
temporarily changing directions decreased the forward linear
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Figure 8. Each direction of movement (up, down, left, and right) is
shown as a percentage of the total time spent moving in that
dimension (i.e. time moving left is divided by total time moving
either left or right). This is a characteristic plot taken from all of the
trials used to calculate ITR for subject 1, which reflects the BCI
users use of different directions of control in order to obtain their
targets.

velocity. Individual subject performance and group average
performance for speed of control metrics can be seen in table 1.

The ARMF metric was calculated in order to better
quantify the speed performance for each subject. If a subject
reached the maximum flight time of four minutes, the
quadcopter was automatically landed in order to assure that
the battery life had at most a minimal effect on homogeneity
of control. The group trial weighted average for ARMF was
3.1 rings per maximum flight.

Subject continuity of control

Subjects were given control of the quadcopter in 3D space for
flights of up to 4 min. During this time, subjects were able to
modulate the movements of the quadcopter as they strategized,
in order to acquire the most possible rings. However, if the
subjects were to collide with the boundaries of the field,
then the trial was ended. By calculating the number of
boundary collisions that occurred per maximum length of

flight (4 min), an ACMF metric was developed to compare
subject performance. The group trial weighted average for
ACMF was 0.8 crashes per maximum flight. Subject progress
was tracked over each session and a comparison of subject
performance, including metrics of accuracy, speed, and
continuity, can be seen in figure 9. Subjects demonstrated the
ability to maintain smooth control, while avoiding crashes.
Video 1 (available at stacks.iop.org/JNE/10/046003/mmedia)
demonstrates subject 1 continuously acquiring targets, while
avoiding wall collisions and ring collisions in between, thus
demonstrating a high level of continuous control.

Experimental control results

In the keyboard control paradigm, in which a naı̈ve subject and
two experimental subjects completed the experimental task
using keyboard control instead of BCI, the subjects were able
to achieve a group weighted average of 12.0 rings per 4 min
trial. In contrast, the trained subjects were able to achieve
3.1 rings per 4 min trial using BCI. Thus, our BCI system
demonstrated the ability to acquire 25.8% of the rings that were
acquired via keyboard control, which is a method considered
to be the gold standard in terms of reliability and prevalence
for our current interactions with computer technology.

For the experimental ease of control assessment (in which
a naı̈ve BCI user was given sham feedback), the naı̈ve subject
was able to acquire only one target acquisition and no ring
collisions over a total flight time of about 7.5 min. The reason
for the short flight time, despite a normal session of 12 trials,
was that the subject crashed the quadcopter quickly after take-
off in each trial. The subject had a notably high ACMF of
5.9, indicating the high number of rapid crashes that were
observed.

In summary, the trained subjects were able to acquire an
average of 3.1 rings per maximum flight time compared to only
0.5 rings per maximum flight for the subject with no training or
feedback in the ease of assessment task. The ratios of weighted
average performance metrics for keyboard control as compared

(a) (b) (c)

(d) (e) (f)

Figure 9. Experimental performance metrics are reported over three subject visits (three experimental sessions). The top row, from left to
right, reports PVC (a), PTC (b) and PPC, respectively. These metrics reflect the average accuracy of each subject’s control as calculated
under different criteria for successful task completion. The bottom row reports, from left to right, ARMF (d), ARAT (e) and ACMF (f).
(d) and (e) reflect the speed with which subjects pursued the presented targets, while (e) is a metric of continuity and safety of control.
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(a)

(b)

Figure 10. (a) The ratios of weighted average performance metrics
for keyboard control as compared to BCI control. Note that a
smaller ARAT implies faster ring acquisition and superior
performance. Since keyboard control resulted in no crashes, the
ACMF value was found to be zero in the ratio of keyboard to subject
crashes per max flight. (b) The ratios of weighted average subject
performance metrics to baseline BCI system performance using a
random EEG signal that was generated by a naive subject receiving
no training or task related feedback. Lower ARAT and ACMF
metrics are favourable outcomes and so a low ratio for subject to
baseline performance implies superior performance by the subjects
when compared to the baseline random EEG.

to BCI control, in addition to the ratios of weighted average
performance metrics for BCI control compared to the intrinsic
ease of the experimental task are reported in figure 10.

Discussion

The 3D exploration of a physical environment is an important
step in the creation of BCI devices that are capable of impacting
our physical world. Implementation of helicopter control has
been well established in virtual control environments, but
the challenge of making the transition to a system that will
function in the physical world is significant. The physical
environment in which our robotic system was controlled and
the intrinsic characteristics of the physical robotic system
introduced several technical obstacles that were not present
in prior virtual reality research. Instead of directly influencing
an ideal, simulated physics engine to update the movement of a
virtual model, subjects are now required to modulate the force
of lift that was actuated by the quadcopter. In the absence
of adequate lift, a subject’s down command could become
unexpectedly large, causing acceleration to a speed that was
much faster than intended. Over the course of a long flight,
the magnitude of certain actuated movements could decrease
slightly due to a draining battery, a consideration that was not
reflected in the virtual control studies.

In further contrast to the virtual helicopter control
described in Doud et al (2011), an important difference in
using the AR Drone quadcopter was the obligatory first-person

perspective imposed on the subjects during real-world control.
It was therefore not possible, as it had been in prior work,
for the subject to see the entire quadcopter as navigation
was performed. The field of view was limited to the area
immediately in front of the quadcopter with limited visibility
on either side, a factor that required the subject to rotate
the helicopter and search the field in order to find targets.
This presented additional challenges in obstacle avoidance
and strategic planning of trajectories for flying through the
suspended foam rings. These challenges may have contributed
to more ring collisions in this work when compared to the
virtual helicopter task and the lower ITR results due to the
need for the subjects to search for the ring. Slight lag in
communication between the commands that were given to the
drone and the return of the video stream to the user’s screen
necessitated new strategies that included how to plan ahead for
unforeseen circumstances that arose from a short loss of video
feedback. Having subjects learn to control a physical system
with intrinsic limitations like these, while still demonstrating
the ability to complete the task at hand is an obstacle
that recipients of future neuroprosthetics will undoubtedly
face. Through leveraging the advanced adaptive software
capabilities of brain-technology, together with the enormous
potential for humans to undergo neuroplastic change, these
obstacles are by no means insurmountable. The ability to
train in such an environment and to develop techniques for its
management is, for that reason, fundamental to the progress
of the field. Learning the intrinsic unforeseen obstacles that
are present in a physical control environment will allow for
the creation of more realistic virtual simulations, which will in
turn drive the development of more robust real-world systems.
Despite these technical challenges, the subjects in the present
study mastered the ability to control the path of a robotic
quadcopter to seek out and safely pass through rings in a
physical control space that was the size of a basketball court.
Technical challenges of this physical control environment were
overcome in every metric measured. Despite the described
system obstacles, users controlled the movement of the drone
in a fast, accurate and continuous manner.

We have also introduced an ITR metric that can be easily
applied to real world, asynchronous, and non-time limited
BCI tasks. While the values for this task are lower than
those reported in the literature for synchronous, fixed-schedule
tasks, there is solid justification for these differences and
these systems should be judged against others of comparable
asynchronous nature. Notably, the asynchronous task provides
that subjects are given the freedom to move in any direction at
any time in the process of reaching their goal. If subjects were
to incorrectly actuate the AR Drone, such that they actually
moved away from the target, this not only penalizes them by
increasing the time to the target, but necessitates that they
must re-plan their route. This differentiates our system from
previous BCI systems, such as that of Kus et al (2012), in
which subjects that made an incorrect choice were allowed
back onto the correct path to retry the previous task multiple
times. In Kus et al’s (2012) maze task, they reported a group
average ITR of 4.5 bits min−1, and Rong et al (2011) reported
ITRs in the range of 1.82 to 8.69 bits min−1, depending on
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the classifier used. However, it should be noted that these
ITR values are not directly comparable because we use a
new ITR equation that incorporates a different set of primary
assumptions related to the asynchronous nature of our system.
A further variable that must not be forgotten in our system
is the constant forward velocity and subject point of view.
Because the subjects were not initially facing the targets and
had a starting velocity when the trials began, they were initially
moving away from the targets. In full 4 min trials, and because
of the first person view, subjects sometimes reported getting
lost or disoriented in the field, not knowing where they were.
Therefore, before they could get to the target, they had to
actually move around the field just to get the target in view.
While our system transfers a minimal amount of information
from a physiological signal generated in the absence of
meaningful feedback, the 8.29 times greater performance of
BCI subjects to that of the ease of control assessment is
significant. It was shown that the BCI subjects performed
at a rate of 4.83 times less than keyboard control, which
demonstrates a manifest necessity for continual improvement
of BCI systems. However, for subjects who lack all voluntary
motor control, even partial improvement is fruitful, so the
present BCI results are encouraging. Having an able bodied
user perform the task in a normal manner, such as by physical
use of a keyboard, may prove useful in assessment of a wide
variety of BCI systems. It is our hope that by working towards
an appropriate standardization of metrics, the comparative
utility of BCI systems can be demonstrated in a more robust
manner.

Subject engagement will clearly increase when stimulated
with a compelling virtual environment, and this effect is
translated into interacting with a physical object in a real-
world setting. Motivation for a subject’s success in this study
was driven by the engaging and competitive nature of scoring
highly in an exciting game. Beyond that motivation, subjects
were able to see direct consequences of failure much more
clearly than is often possible with a virtual reality study.
Where before a crash may have meant a quick reload to
the centre of the screen, it now meant a loud noise and a
jarring of the camera that was possibly accompanied by a
broken drone and a wait to be reset. It has been postulated
that non-human primates undergoing training for the use of
a robotic arm may experience a sense of embodiment with
respect to the new prosthetic as a part of the learning process
(Velliste et al 2008). Recent developments in the field support
invasive BCI for use in the control of robotic limbs in 3D
space by subjects paralyzed by brainstem lesions (Hochberg
et al 2012). For these subjects, a noninvasive system may
eventually serve a similar role, limiting the risk of infection,
device rejection, or acting as a bridge in therapy in preparation
for implantation. If embodiment does play an important role in
the utilization of a neuroprosthetic device, it stands to reason
that exposure to a noninvasive system early in the evolution of
the disease course and before surgery, may become a viable
option, and could result in better retention of function. Even
with a less anthropomorphic robotic helicopter as the device
of control, subjects still often subjectively experience a similar
phenomenon. Subjects new to the task were quickly reminded

that a slight bowing of the head when narrowly avoiding the
top of a ring would only introduce noise into the system and
not improve control. While such behaviour quickly ended
with training, the fact that seeing the closeness of the ring
produced an urge to slightly duck the head may imply a sense of
embodiment regarding the controlled object. Exploring which
types of avatars elicit the most robust sense of embodiment in
a subject may prove to be a rewarding future pursuit.

This study purposely chose to focus on a telepresence
implementation of drone control. Instead of having subjects
view the physical drone while completing the task, they were
given a video feed from the perspective of the drone. The
intention here was twofold: to ensure that the subject could
maintain a proper understanding of which direction the drone
was facing, a problem often faced by novice remote control
model helicopter pilots, and also to further promote the sense
of embodiment by seeing through the drone’s ‘eyes’ is crucial
in that the subject’s successful control of the drone not be
impacted by his or her proximity to it. None of the feedback
that was relevant to the control task was dependent on the
subject being in the room. The fact that the subject was in the
same room with the drone was for experimental convenience
rather than out of necessity. With minor modifications to
the communication program, a remote user could conceivably
control the drone from a considerable distance using BCI. Such
an implementation may introduce additional obstacles such as
communication lag or suspended communication. However, in
our age of rapid global communication, it is the expectation of
the research team that these challenges would be relatively
simple to overcome. By ensuring the subject’s ability to
control the drone confidently via camera, the implications for
expansion to longer distance exploration become compelling.

Choosing rings as the targets for the experimental protocol
gives the task an element of both target acquisition and of
obstacle avoidance. In a real world situation of brushing one’s
teeth or eating with a fork, close enough is rarely good enough.
Subjects that trained using the drone protocol presented here
were constantly aware that even as target acquisition was
imminent, important obstacle avoidance remained essential
to success.

By a balance of positive and negative motivators, higher
performance in the task, and the real risk of crash, subjects
were compelled to higher levels of performance and remained
engaged in the experimental task. Such a balance will be
crucial in determining the limits of BCI. A well-tuned system
in the absence of subject engagement will fall well short of
its potential. As any BCI is a system of connection between a
human mind and a machine, ensuring optimum performance
of both through system optimization and subject engagement
remains an important design requirement of any successful
BCI system.

Conclusion

In the present study we performed an experimental
investigation to demonstrate the ability for human subjects to
control a robotic quadcopter in a 3D physical space by means of
a motor imagery EEG BCI. Through the use of the BCI system,
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subjects were able to quickly, accurately and continuously
pursue a series of foam ring targets and pass through them in a
real-world environment using only their ‘thoughts’. The study
was implemented with an inexpensive and readily available
AR Drone quadcopter, and provides an affordable framework
for the development of multidimensional BCI control of
telepresence robotics. We also present an ITR metric for
asynchronous real-world BCI systems, and use this metric
to assess our BCI system for the guidance of a robotic
quadcopter in 3D physical space. The ability to interact with
the environment through exploration of the 3D world is an
important component of the autonomy that is lost when one
suffers a paralyzing neurodegenerative disorder, and is one that
can have a dramatic impact on quality of life. Whether it is
with a flying quadcopter or via some other implementation of
telepresence robotics, the framework of this study allows for
expansion and assessment of control from remote distances
with fast and accurate actuation, all qualities that will be
valuable in restoring the autonomy of world exploration to
paralyzed individuals and expand that capacity in healthy
users.
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