Journal of Neural Engineering

ACCEPTED MANUSCRIPT « OPEN ACCESS

An SSVEP-based BCI with 112 targets using frequency spatial
multiplexing

To cite this article before publication: Yaru Liu et al 2024 J. Neural Eng. in press https://doi.org/10.1088/1741-2552/ad4091

Manuscript version: Accepted Manuscript
Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted

Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2024 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 3.128.94.171 on 06/05/2024 at 07:27



https://doi.org/10.1088/1741-2552/ad4091
https://creativecommons.org/licences/by/4.0
https://doi.org/10.1088/1741-2552/ad4091

Page 1 of 28 AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

1

2

3

4

5

6

7

8

o An SSVEP-based BCI with 112 Targets Using

o Frequency Spatial Multiplexing

13

14 Yaru Liu', Wei Dai!, Yadong Liu', Dewen Hu', Banghua Yang?>
15 1.5 o

16 and Zongtan Zhou"

17 I College of Intelligence Science and Technology, National University of Defense

18 Technology, Changsha 410000, People’s Republic of China

19 2 Department of Automation, School of Mechatrdnies Engineering and Automation,
20 Key Laboratory of Power Station Automation</Technology;«Shanghai University,

21 Shanghai 200072, People’s Republic of China

;g * Corresponding author

24 E-mail: narcz@nudt.edu.cn .

25

26 November 2023

27

28 Abstract. Objective. Brain-computertinterface (BCI) systems with large directly
29 accessible instruction sets.are one ‘of the difficulties in BCI research. Research to
30 achieve high target resolution (Z3100) has not yet entered a rapid development
31 stage, which contradicts the application requirements. Steady-state visual evoked
32 potential (SSVEP) based BCIs have an advantage in terms of the number of targets,
2431 but the competitive mechanism between the target stimulus and its neighboring
35 stimuli is a key challenge that prevents the target resolution from being improved
36 significantly. Approach. In this paper, we reverse the competitive mechanism and
37 propose a frequency spatialimultiplexing method to produce more targets with limited
38 frequencies. In thé proposed paradigm, we replicated each flicker stimulus as a 2x2
39 matrix_and arrange the matrices of all frequencies in a tiled fashion to form the
40 interaction interfacel’ With different arrangements, we designed and tested three
41 example paradigms with different layouts. Further we designed a graph neural network
42 that/distinguishes between targets of the same frequency by recognizing the different
43 elgetroencephalography (EEG) response distribution patterns evoked by each target
44 and-itsyneighboring targets. Main results. Extensive experiment studies employing
45 eleven subjects have been performed to verify the validity of the proposed method.
2? The average classification accuracies in the offline validation experiments for the three
48 paradigms are 89.16%, 91.38%, and 87.90%, with information transfer rates (ITR)
49 0f51.66, 53.96, and 50.55 bits/min, respectively. Significance. This study utilized
50 the positional relationship between stimuli and did not circumvent the competing
51 response problem. Therefore, other state-of-the-art methods focusing on enhancing
52 the efficiency of SSVEP detection can be used as a basis for the present method to
53 achieve very promising improvements.

54

55
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58 Keywords:  brain—computer interface (BCI), steady-state visual evoked potential
59 (SSVEP), electroencephalogram (EEG), frequency spatial multiplexing, graph neural
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networks (GNN)

Nomenclature

H,. Hy; ), H., Hidden layer features of nodes of G,,, N'(v,), and Ge.
R,  Reference template for the k-th stimulus frequency.
S; 1sp-th subband filtered EEG signal.

T Temporal embedding layer parameter in G,,. ~

sb

W, Edge weights of attention aggregators.
X, X)), Xe, Features of G, N(v),) and G..
Y. Predicted output of DSGAT.

Gm, G. Intermediate and minimum graphs.

N (v*) The 1-step neighbors of node v

W, Softmax normalized W,,. S

Ok FBCCA score at frequency f.

Cij J-th minimum cell in M;.

k Index of attention aggregator groups.

l Index of DSGAT layers.

L;;  L-shaped region of ¢;;.

M;, My, i-th intermediate cell and,target intermediate cell detected by FBCCA.
P Index of sub-networks.

A S

1. Introduction

The researche on improving brain-computer interface (BCI) performance mainly takes
two strategies: enhancing classification algorithms and designing more effective BCI
paradigms. An effective paradigm can maintain more targets while eliciting sufficiently
strong braingesponse activity. The design of a new paradigm seeks to build a larger
instruction set fo improve the efficiency of target selection, but the increase in the
target number usually enhances classification difficulty. Therefore BCI systems need
to make a compromise between the number of targets and classification performance
[1, 2JawIn terms of instruction set size, evoked potential-based BCI has an advantage
over spontaneous BCI and thus is often applied to applications that require a large
number of options, such as BCI-based spellers [3] or scenarios that require more refined
intentions [4]. Steady-state visual evoked potential (SSVEP) based BCI usually has
a higher information transfer rate (ITR) and larger instruction set than other BCI
paradigms [5, 6. When the human eye is stimulated by periodic flicker, the occipital
region of the brain generates a modulated signal of the corresponding frequency, which
produces energy enhancement at the frequency or the second or third harmonics [7].

Page 2 of 28



Page 3 of 28

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

An SSVEP-based BCI with 112 Targets 3

The frequency range capable of evoking SSVEP components can be roughly/divided
into three intervals, the low-frequency band (6-12 Hz), the middle-frequency dand (12~
30 Hz), and the high-frequency band (30-60 Hz). The harmonic nature of SSVEP
narrows the range of available frequencies for an SSVEP paradigm. On the other hand,
there is a limit to the minimum difference between neighboring frequencies that can
be discriminated, and the smaller the difference, the greater the difficulty posed to the
classification algorithm. Therefore, the frequency band used for SSVEP-BCI is limited
8]. Dy

SSVEP paradigm innovations in recent years have focused on the design of
mechanisms dedicated to generating more target optionstusing limited stimulation
frequencies. Hwang et al. proposed a dual-frequency stimulatien method in which
the black and white pattern in the checkerboard paradigm is set to flip at two different
frequencies, thus enabling an SSVEP-BCI with 12 gptiens, using four frequencies [9].
Chen et al. used three luminance variation frequencies combined with two color variation
modulation frequencies to evoke an intermodulation frequency response, achieving three
frequencies to produce eight targets [10]. Yosuke et al. devised a new way of encoding
stimuli using binary digits encoding of different frequency sequences to increase the
number of visual stimuli with different charagteristics [11]. Liang et al. proposed a
new dual-frequency and phase modulation paradigm to optimize the combinations of
two frequencies in the checkerboard-likendual-frequency paradigm [12]. Chen et al.
implemented an SSVEP paradigm with 160 targets using the idea of multiple frequency
sequential coding, in which a‘stimulus sequentially flickers at different frequencies [13].

To summarize these appreaches, the main ideas for increasing the number of
targets focus on 1) multiplexing stimulus frequencies, including temporal and spatial
multiplexing, and 2) increasinigsthe heterogeneous properties of same-frequency stimuli.
Time-division multiplexing comes' at the cost of increased time, In contrast, spatial
multiplexing has the potential to further improve efficiency by being able to utilize
different frequency information at one time and is, therefore, an approach worth
exploring.

In additiongwhen a subject focuses on a target flicker, its neighboring stimuli also
evoke SSVEP«components. Therefore, previous studies typically increase the distance
between adjacent stimulirand require subjects to reduce their attention to neighboring
distractors«[{14; 15,46, 17, 18]. In contrast, we reverse the use of the competition
mechanism andgpropose a new method to produce more targets with limited frequencies.

Thispaper/proposed a stimulus frequency spatial multiplexing method to design an
SSVEP-BCI paradigm with 112 targets. The paradigm does not design for individual
stimulus targets, but rather applies the location relationship between different stimuli
to increase the attribute differences of targets with the same frequency. Specifically,
different stimuli of the same frequency are in different locations, and the frequencies of
the stimuli adjacent to them are different. This compound location relationship is used
to encode targets, thus expanding 40 stimulus frequencies into 112 targets.
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2. Methods

2.1. Frequency spatial multiplexing paradigm

2.1.1. Neurological principles SSVEP responses are usually strongest for the stimulus
located in the center of the visual field, with an approximately Gaussian distribution
gradually decaying outward [7]. Fuchs et al. investigated the competitivesneuronal
dynamics in cortical networks of early visual processing in the human brain utilizing
two frequency stimuli. The results showed that during attention'to theitarget stimulus,
competing stimulus proximity (visual angle less than 4.5° —5%)deads to an increase
in the amplitude of the competing frequency response accompanied’ by a significant
enhancement of the intermodulation frequency, but the intensity of the target frequency
response is not diminished because the attentional mechanism releases the inhibitory
effect on the target stimulus [14]. This mechanism (of integrated neuronal processing
of the target and competing stimuli provides the theoretical basis for this study, i.e.,
by designing the visual stimulus layout to match targets,of the same frequency with
different competing neighbors, forming a neighbor encoding where all visual stimuli serve
as targets and competing stimuli for ea¢chrether, thusimaking full use of the available
frequencies.

2.1.2. Paradigm Design A total of 40 frequencies were used, ranging from 8Hz-15.8Hz,
in 0.2Hz steps. Figure 1 illustrates the basic elements of the paradigm interface and
figure 2 presents three interfacerexamples. The minimum cell is a rectangular single-
frequency flickering stimulus, dénotedas c. Each cell is replicated as a 2 x 2 matrix, as an
intermediate cell (noted as M)y ¢;; denotes the j-th corner in M;. The 40 intermediate
cells are arranged in a tiled array of-10 x 16 to form the stimulation interface. The four
minimum cells in an intermediate gell flicker at the same frequency, but the intermediate
cells adjacent to diffexént c;; aredifferentiated. The frequency response evoked by other
intermediate cells in thewicinity of ¢;; is also enhanced when ¢;; is the target, so gazing
at different minimum eells leads to different SSVEP frequency response distributions;
thus, a minimum cell can be located according to the distribution patterns. In this
paper, three example interfaces are designed:

1) Aligned_arrangement (AA) paradigm, 40 intermediate cells in sequential order with
ranks aligned (figure 2a);

2) Nonadjacent arrangement (NA) paradigm, adjust the order of intermediate cells in
the AA_ paradigm so that spatially adjacent intermediate cells are distanced in the
frequengy domain (figure 2b);

3) Row stagger arrangement (SA) paradigm, on the basis of the AA paradigm, the
intermediate cells are arranged in rows misaligned by one minimum cell, and the
minimum cells at the end of the row that is out of the range of Map are filled to the
vacancy at the beginning of the row (figure 2c).

Page 4 of 28
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interface contains 160 minimum stimulus cells, but the cells outside the red
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x are not sufficiently distinguishable due to the lack of neighbors, so they serve as

Therefore, the actual effective

ompeting stimuli to assist in locating the inner cells.
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visible cells are the inner 8 x 14 region, i.e., 112 divisible targets (the red boxed area
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in figure 1). The visual stimuli were presented using luminance sinusoidal variation, and
the phase within the intermediate cells was consistent, with a phase differen¢e of 0.5
between adjacent intermediate cells.

2.2. Target fization method with a regional attention

In this paper, we used a target fixation with a regional attention approach, which gives
selective attention to the neighborhood stimuli while gazing at the target. Taking the AA
paradigm as an example (figure 1 and figure 2a), when gazing @at a target c;;, the eight
nearest neighbors around are the competing stimuli closest, to the visual field center,
which can theoretically evoke stronger SSVEP responses. Among these neighbors, the
stimuli that can distinguish ¢;; from the other three corness (c¢;;, ¢ # j) is the L-shaped
region L;; in the figure. Therefore, the simultaneousstegional attention method is to
give selective attention to L;; while gazing at ¢;;.. Due toa large number of targets
in the paradigm, it is difficult to quickly locate ¢;; mnM; and the corresponding L;j,
and the target cell may even be lost during the'selection process. To assist in locating
the target, the colors of the intermediate cells werg set to alternate between white and
yellow in the experiments, as shown in figure, 2.

2.3. Target classification

The target classification process consists,of two steps: 1) 40 classification: Calculate
the response distribution of the,40 intermediate cells by SSVEP detection algorithm;
2) 112 classification: Identify the'minimum cell target according to the 40 classification
results.
N

2.3.1. SSVEP detection. of dantermediate cells The filter bank canonical correlation
analysis (FBCCA)«algorithm [19] was used. FBCCA is a classical and efficient
classification algorithm in. SSVEP-BCIs, which decomposes the EEG signal into several
sub-band componénts by, frequency bands, calculates the correlation coefficient of each
sub-band separately using CCA, and then classifies the weighted features. The 12-
channel EEGssignals are’divided into subbands by bandpass filters, each with the same
upper cutoff frequency (88 Hz) and a different lower cutoff frequency. For the ig-th
subband «the lower c¢utoff frequency is iy, x 8 Hz, the igy-th subband filtered EEG signal
is S;,. The sinugoidal reference template Ry, € R?M*Ns for the k—th stimulus frequency
is:

sin(2m fit)
cos (2 fit)
sin(2 * 27 fit)
1 2 N
Ry = | cos(2x2nfit) |, LLZF,F,- S (1)

sin( Ny, * 27 fi.t)
| cos(Np, * 27 fi.t) |

Page 6 of 28
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where f; is the k-th frequency, Ny, is the number of harmonics, N; is the signal'length,
t is the current time point, and Fj is the sampling rate.
CCA finds a set of weight vectors a and 3 to maximize the correlation between

a’S;, and BT Ry
E TQ. T
p(S;,,, Ri) = max o S i
“P B[S, ST 0] BT RyRB (2)
iw=12.. Ny k=12 N -

where N, is the number of filter banks and Ny is the number of stimulus frequencies.
The weighted sum of the squared correlation coefficients of all subbands is used as
the correlation characteristic with the k-th frequency, andithe weight of each subband
is
Wi, = isb_a + b, (3)

where the optimal values of a and b have been optimized in the study [19] and set
to 1.25 and 0.25, respectively. The response score of an EEG sample at frequency f is

Ny,
o =Y wih (8, Ri)’. (4)

tgp=1

2.8.2. Minimum target classification algorithm We used a graph neural network (GNN)
to classify the intermediate eell response results further. GNN abstracts irregular
data as nodes, and each nodé establishes a relationship with its neighbor nodes
through edges; thus GNNs can capture the complex structural relationships in graphs
20, 21, 22]. Graph ConvolutienaliNetwork (GCN) is a representative GNN, especially
the spatial-based GCN borrows the idea of the convolutional neural network to define
graph convolution based on.the'spatial relationship of nodes, which is essentially a
process of iteratively aggregating neighborhood information. The key to the minimum
target classification of the proposed paradigm is the SSVEP response distributions of
competing neighbors. Therefore, the properties of GCN neighbor aggregation fit well
with the paradigm design. We designed a dual-scale graph attention network (DSGAT)
for the global 112 classification problem.

Graph definition, DSGAT involves two scales of graphs with two types of stimulus cells
in thesparadigm as graph nodes, respectively.

(i), Definé intermediate graph G,, = (Wi, E), as shown in Figure 3a, and consider each
imtermediate cell as a node v,, (coarse-grained node, later referred to intermediate
node). V,, is the set of intermediate nodes, |V,,| = N,, is the number of intermediate
nodes, and &,, denotes the set of intermediate node edges. The SSVEP frequency
responses of the intermediate cells are used as the initial node feature set of G,,,
which is denoted as X,,, € RVN»*Ntw and Ny, is the number of feature channels.
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(a) intermediate graph G, (b). minimum graph G,

Figure 3: Local diagram of G,, and G.. The circles denote nodes, squares denote the

minimum cells in the paradigm, and 2 x 2 squares denote intermediate cells. 3a is the

local structure of G,,, including a central intermediate node’and its first-order neighbors.

3b is the local structure of G, including,a central minimum node and its first-order

neighbors

The distributions of SSVEP frequency ‘responses change over time, so SSVEP
detection is performed multiple times for the duration of the stimulation. Therefore,
the feature vector of the i-th, intermediate node v!, denoted as X! € RN7m is a
sequence of FBCCA deteétion scores throughout the stimulation:

Xoo=doi(1), 0i(2),- .. o:(Nr,,)]. (5)

The feature vectors of all intermediate nodes form X,,,. Thus the number of feature
channels Ny of X, is the number of SSVEP detection times during the whole
stimulus progess.

Define minitaum graph G. = (V,, &.), as shown in Figure 3b, with each minimum
cell as node v, (fime-grained node, later referred to minimum node), V, is the set

of minimum nodes, |¥.| = N.. &. denotes the set of minimum node edges. The
featurerset of G¢ is denoted by X, € RNeXNre |

The first-order neighbors of node v" are denoted as A (v*), and the feature matrix

of N(¥") isidenoted as X N(wi)- There is a corresponding relationship between V;,, and

V., consistent with the inclusive relationship of the two types of cells in the paradigm.

Structure of DSGAT model Figure 4 illustrates the architecture of DSGAT, consisting
of an aggregation module, a fully connected layer, and a softmax output layer, where

the aggregation module consists of a temporal embedding layer and a multi-head graph

attention layer. The core idea of DSGAT is summarized in three points.

Page 8 of 28
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X, X3 X+ X5 o XNe Sub-Network
NS N/ 71 1
Ny N/ _ _ _
— /Hadalmard /I,-I/adamtd\ oo ) : o l Temporal Embedding Layer
H,,(1X0) H (XD * Hy, (00 HLOXD - Hy, (1X0) e l l l
Gm -

P RY
Aggregate  Aggregate

N HLOEHD) RINEI

Concatenate

“ Y
Aggregate  Aggregate o

Multi-Head Graph
Attention Layer

Concatenate

| mE 0@+ | B0+ 1) HIERr™
Concatenate (XK Concatenate e L' ~
1H}(1)(l+1) lH:‘;(l)(z+1) (=
FC e FC e LFully Connected Layer ‘

—
. | k///////////’/
L \Softmax / | Softmax Output Layer |

N

ge oWl we o gl

Figure 4: Structure of DSGAT model. The operations,with the same color in the same

sub-network in the figure have the same paramgters .

(i) Operations on the graph are performed sequentially at G,, and G., so that feature
information flows from coarse-grained modes to fine-grained nodes, corresponding
to the refinement process of SSVEPsresponses to global target localization.

(ii) The relationship between the distributions of SSVEP responses to different
competing stimuli and target localization is captured using a multi-head graph
attention mechanism to copenwith the contradiction between repetition and
heterogeneity in the paradigm.

(iii) A temporal embedding layer issadded to handle the imbalance of SSVEP responses
in the time dimension.

The graph structures of the three example interfaces are not identical, and the
network structuresdiere are.exemplified by the AA paradigm (figure 2a).

The network input'is the SSVEP detection results at all frequencies, and the
input features_are first subjected to a neighbor aggregation operation on G,,. For the
AA paradigm, the L-step neighbors of an intermediate node are its 8-neighborhood
intermediate eells as well as itself. Unlike G,,, the nodes in G. have an additional
attribute: the loeation detection of the minimum cell in the intermediate cell, and thus
there are four location attributes. Therefore, X,, is fed into four sub-networks with
thedsame structure but different parameters to distinguish four minimum nodes. The
output of the p-th (p = 1,2,3,4) sub-network is passed to the p-th group of minimum
nodes,ithus allowing the information to flow from the intermediate nodes to the more
numerous minimum nodes.

The SSVEP detection results by FBCCA algorithm have fluctuating amplitudes
over time, and the stimulus duration affects the accuracy of SSVEP detection.
Therefore, a temporal embedding layer is designed before aggregation, which creates
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layer | layer [ + 1

Figure 5: Schematic diagram of the aggregation operation of \G,,..»The edges in four
colors and line types indicate the aggregation operationstef four sub-networks

a learnable temporal embedding matrix T € RW @) xNtgy £ compensate for this
temporal disequilibrium. For the p-th sub-networky, the embedded feature matrix of

node v!, and its 1-step neighbor nodes is y

Hyiy(0)™ = 0 penr Xy, ) (0) 0 TE™ (p)), (6)

where Xy, y € RVEmIXNru i the feature matrix 6f N(v?,), o is the Hadamard product
operation, og.ry is the ReLU activation funetion.

The embedded feature signals are them neighborhood aggregated through the graph
attention layer. There are two types of relationships between the intermediate nodes v’
and v/ € N(v!): frequency relationship and location relationship. When gazing at a
target in SSVEP-BCI, the responses of its competing stimuli are also enhanced in both

)

Ly vl € N(vl) have a regular arrangement

the spatial and frequency/domains.For v
in space and frequency, withdeft-right, up-down, and diagonal neighbors symmetric to
each other and havéequal frequency differences to the target stimulus.

An intermediate node.is related to four minimum nodes, and when a minimum node
is gazed at, the SSVEP responses of neighboring intermediate nodes in the direction of
other minimum‘nodes are also affected; thus, the target localization needs to consider
all 1-step neighbors of the intermediate node. The influence of neighboring intermediate
nodes varies from different minimum nodes so the attention mechanism is applied to
learn thistdifference’adaptively, with different weights on the edges.

The globaldocalization from 40 frequency responses to 112 targets is essentially a 4-
clasgifieation problem. The four feature distributions of the intermediate nodes and their
1-step neighbors determine the classification results of the four minimum nodes. We
used a multi-headed graph attention layer to learn the four distribution patterns (unlike
the standard graph attention layer, DSGAT restricts the attention calculation to 1-step
neighbors, and the aggregation is also varied). Each sub-network uses K, independent
attention mechanisms. The schematic diagram of the aggregation operation on G, is
shown in figure 5.

Suppose the input feature vector of the central node v at I-th layer is H? (I) and
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the weight coefficient of the neighbor node vJ, to v is a;;, then the parametersof layer
[ are

W (p)(1) = [cur(p) (1), aa(p) (1), . - . >Oéi|N(vin)\(p)(l)]- (7)

For the k-th (k = 1,...K,) group of attention aggregators, the edge weights are
softmax normalized, and the new coefficients are

Wa(p)(1)(k) = softmaz(Wa(p)(D)(K)). (8)

. ~
The new feature vector of node v;,, is obtained by weighted summation of neighbors:

an(P)(l + 1)(k) = oLRerv Z &ij(p)(l)(k)H%(p)(l) ) (9)
v EN(vE,)
orrerv 18 the LeakyReLU activation function. The K, group outputs are combined
by the concatenation operation into an aggregated,feature vector of the p-th group of
minimum nodes: IS

H9(p) (1 4+ 1) = || Ho@) (04 (k). (10)

k=1
where || is the concatenation operation. Toavoidiover-smooth, the new feature vector of
minimum nodes are obtained by skip.concatenating the pre-aggregation and aggregation
feature vectors:

H.(p)(L+1) = Hulp) ()| H:(p) (I + 1) (11)

After the information is propagated from the intermediate nodes to the minimum
nodes, the subsequent computation is performed on G.. The features of the aggregation
operation are fed to a fully corQected layer and a final softmax output layer. The final
predicted output is:

Y, =806 ftmaz (o ey (H.W; + b)), (12)

where H, € RWWVOPAT Sgdthe feature matrix of ag., N}C is the number of feature
channels after aggregation, and Wy and b are the fully connected layer parameters.
The aggregation,opération in DSGAT is consistent for all nodes, but the nodes
located at the outermost circle of the paradigm lack sufficient neighbors. For this case,
borrowing.from the/padding method in convolutional neural networks, virtual nodes
are constructedsto fill the missing neighbors. Suppose a virtual node used for padding
is vP%¢ ‘and the initial feature vector is X2 € RN%m. The t-th value of X?% is the

minimum value of the ¢-th channel of X,,.

3. Experiments

3.1. Subjects

Eleven healthy subjects participated in the experiment, including six males, aged 23-32
years old, mean aged of 26.6 years, and all participants had normal or corrected normal



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

An SSVEP-based BCI with 112 Targets 12

Algorithm 1 Dural scal graph attention networks (DSGAT)

Input: The SSVEP response scores calculated by FBCCA is used as the feature. matrix
X, € RN»Ntw of G
Output: Prediction results Y, of each node of G,
1: forp=1:4do

2: HN(U%)(p)emb = UReLU(XN(v’;'n)(p) © Trfzmb(p))

33 fori=1:N,, do

4: fork=1:K,do o

5 DKk = softmaz;(ay(p) (1)(k)

6: H! (p)(l+1)(k) = 0LRrerv j % | &ij(P)(l)(k)Hg@(P)(lO
end for e

. end for .

00 H,9(p)(+1) = ,ﬂal H,,,(p)(I + 1)(k)

10: H.(p)(l +1) = Hy(p) (DI H 9 (p) (1 + 1) y

11: end for

12: Y, = softmazx (Orerv(H-W; + by))

vision. Two subjects had experiencerwith SSVEP-BCI experiments, and the others
did not. This study was performed in aceordance with the Declaration of Helsinki.
This human study was approvedsby The Ethics Committee of the Xiangya Hospital
of Central South University £ approval: 2021111249. All adult participants provided
written informed consent to pa{ticipate in this study.

3.2. Data acquisition

EEG signals acquisition, utilized a BrainAmp Amplifier (Brain Products GmbH,
Germany) through 12 electrodes placed at Oz, O1, 02, POz, PO3, PO4, PO7, POS8, P1,
P2, P5, and P6,@eferenced to TP10 and grounded to Fpz, according to the International
10/20 system¢ The signal sampling rate is 500 Hz. Before data recording, the electrode
impedances were kept below 20k(2.

3.3. Experiment process

The visual paradigm was presented on a 27 inch LCD monitor with a 240 Hz refresh rate
and a 1920pxr x 1080pzx resolution. Frequency stimulus presentation was implemented
using thePsychoPy toolkit [23], with 40 frequencies set to 8-15.8 Hz at 0.2 Hz intervals.
The experimental procedure was controlled using the BCI2000 platform [24]. Subjects
seated at a distance of 60cm from the monitor, with the horizontal viewpoint at the
monitor center. The single minimum cell spanned 2.81° horizontally and 2.53° vertically
and was separated from adjacent cells by approximately 0.65° and 0.59° in horizontal
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and vertical viewing angles, satisfying the competing stimulus condition.

Each subject performed at least one training experiment before the. formal
experiments to understand the experimental process and adapt to the new paradigm.
In the formal experiments, each subject performed three sessions of experiments
corresponding to the three paradigms. Each session consists of two groups, with 112
trials in each group, i.e., one data collection for each target in the effective areas 112 trials
were divided into 12 blocks, each block containing ten trials (the last group contained
two trials). The rest period between groups was determined by the subjects themselves
according to their status. Each trial consisted of a visual cue and a, stimuli flicker phase.
In the target cue phase, all stimuli were presented at maximum luminance, and the
target to be selected was covered by a red square for 2 s. Duringithe flicker phase, all
stimuli started to flicker for 6.5 s. The target cue turned from a solid square to a red
wireframe during the stimulus phase. To improve the/subjeets™attention level and their
sense of control over the experiment, we used a real<time feedback mechanism. Since the
global classification parameters had not been trained yet, and the FBCCA algorithm
for SSVEP detection is an unsupervised method, the cuirent detected 40 classification
results were fed back in real-time during the flicker phase. SSVEP detection is performed
every 0.2 s. The intermediate cell corresponding to the maximum value of each FBCCA
score is marked with a red dot. To avoid the effect of experimental sequence, each
subject performed a session within one'day, and the order of trials was arranged in a
randomized form. Before the formal experiment, subjects were asked to perform several
practice trials to familiarize themselves withr the paradigm, the gaze method, and the
experimental process. During the eueing phase in the practice experiment, the target
minimum cell was marked by a red square and its adjacent L-shaped area was framed
by a red wireframe, indicatingsthe area to which the subject needed to pay attention
simultaneously while gazing at the target. The target cue turned to a red box during
the flicker phase, and the attention cue disappeared.

For DSGAT training, the data collected for one trial is one sample, and the data of
a subject is divided into, training and test sets in the ratio of 8:2. The network model
uses two attention operations (K, = 2) for each sub-network and contains a 1-layer
aggregation module.»The model is trained with an Adam optimization algorithm to
minimize the cress-efitropy on the training data for 100 epochs. The initial learning
rate is 0.Lwith a decay rate of 0.7 after every 20 epochs. The batch size is 128.

In faddition, we used two baselines for comparison with DSGAT, using global
classification acecuracy as the evaluation metric.

baseline 1 | An unsupervised method to locate the minimum cell in the intermediate
cell based on the SSVEP detection results. For an EEG sample, the intermediate cell
detected by FBCCA at ¢ is

M, (t) = ’?er[% mj\efmx} ok (1). (13)
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For ¢;; in M,,, the sum of the SSVEP response scores of ¢;; and its L-shapé region
neighbors at moment ¢ is taken as the new feature value of ¢;;. The minimundcell with
the highest number of maximum feature values over a period is taken as‘the final global
target.

baseline 2 Logistic Regression (LR) algorithm is used to classify thed6ur minimum cells
in M;,. The SSVEP score vectors of M, and its 1-step neighbors in G,,, are concatenated
as the feature vector XN(MW)LR e RWMew)xNtp, - and the sequence\number of the
minimum cell in the intermediate cell is used as the 4-classification'label. The training
data were screened before training because wrong M, localization could interfere with
the LR algorithm training. A data sample is considered valid if'the intermediate cell
containing the true target gets the highest FBCCA score for,the most times in a period
of time, and conversely, the sample is rejected in training.

4. Results

4.1. Qualitative relsults of SSVEP responses

We first verified whether the frequency response cemponents of the target and competing
stimuli could be evoked simultaneously in the. EEG signal by time-frequency analysis.

Figure 6b shows example spectraiof four'data samples using Fast Fourier Transform
(FFT) on a typical subject (S1) under the,AA paradigm (figure 2a). The spectrum in
each subplot is the average of all.channels of the EEG signal. The targets of the four
samples belong to the same intérmediate cell with a stimulus frequency of 11.6 Hz, noted
as €191, C19,2, C19.3 and g4 (11.6 Hz is the 19th frequency), and the mean spectra of all
signal channels for each data sﬁlple is shown in the figure.

For ease of observation, the paradigm is simplified to a schematic diagram with only
the intermediate cells; as shownin figure 6a. It is clearly observed from every subplot
that the 11.6 Hz peak isrevoked, while amplitude peaks at competing and harmonic
frequencies are also observed. For ¢, the spectra show amplitude peaks at the target
stimulus frequeney11.6 Hz, the 2nd harmonic frequency of 23.2 Hz, and the competing
stimulus frequency of 9.8 Hz. The 9.8 Hz stimuli located in the neighboring L-shaped
region L9, wheéreas the amplitudes of competing frequencies farther away do not show
a signifieant inerease. Similarly, for the target cj92, an amplitude peak occurs at 10.4
Hz in the L9 Tegion, while the neighboring competing stimulus responses for ¢9 3 and
c19 4Show peaks at 13.2 Hz and 13.4 Hz, respectively.

In addition, the spectra of cig; and cj9 2 also show amplitude peaks at frequencies
such as 20'Hz (c191) and 19 Hz (c192). These peaks may be the intermodulation and
harmonic components of competing stimulus frequencies. The 20 Hz peak in ¢19; may
be the 2nd harmonic of the 10 Hz stimulus, or intermodulations of different frequencies,
such as the sum of 10.2 Hz and 9.8 Hz, or the sum of 8.6 Hz and 11.4 Hz. The 19 Hz
peak in cjg may be caused by the complex intermodulations, such as the sum of 8.8
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ean FFT spectra across all electrodes

Hz and
These results suggest that the competing response enhancement has different

dis ti en different minimum cells in the same intermediate cell are targeted,
which initially verifies the validity of the proposed paradigm. The enhancement is not

limi -step neighbors; the 2-step neighbors in this example also show different

ees of amplitude increase, such as 9.6 Hz and 10.4 Hz. This phenomenon may be

sed by a combination of frequency, spatial distance, and subjects’ selective attention.
Further, we use the FBCCA scores to analyze the time-frequency pattern, still

ing the four examples above, and the results are shown in figure 7. The upper panels
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show the FBCCA scores of each frequency at different time points. The scores for all
frequencies at the beginning phase are higher than those afterward (overfitting due to
the short signal length [25]), resulting in unintuitive visualization of the stabilization
phase later. Thus the figure shows the normalization results of all frequency scores at
each moment. we randomly selected the FBCCA detection results at 4.G3s as an example
for visualization, as shown in the lower panels, which display the seores aecording to
the arrangement of intermediate cells.

It can be seen that all plots have the strongest response at 14.6 Hz; and the SSVEP
responses are gradually ordered from about 1 second onwards. Two?requencies, 11.4
Hz and 11.8 Hz, also show higher response enhancement ¢han the other frequencies
because they are closest to the target 11.6 Hz in both frequency and spatial distances.
This dual effect of space and frequency is not limited to 11:4 Hz and 11.8 Hz, as the 2-
step neighbors with a 0.4 Hz frequency difference also'havedifferent degrees of response
enhancement. In addition, the neighbors located onithe left and right sides are slightly
different from each other, and intuitively the résponseron the side of the minimum
cell is slightly higher than the other side. Other competiﬁg stimuli also have response
enhancement, and the degree of enhancément and the spacial distance to the target
minimum cell showed correlations, such as 9.8 Hz, 10 Hz, 10.2 Hz for ci9; and cj9 2, and
13.2 Hz, 13.4 Hz for ci93 and c194. These competing responses lag slightly compared
to the target frequency and fluctuate overstime; which is related to the fixation method
with regional attention, with selective attentional wandering leading to instability of
competing neighbor responses.

To summarize the time-frequeney analysis, the target frequency evokes the strongest
SSVEP response, and the l-step neighboring intermediate cells could elicit higher
responses than other stimuliy especially in the direction of the minimum target cell.
Enhanced responses are also obseryed for 2-step neighbor stimuli, but are generally lower
than for 1-step neighbors.” This subsection is just a qualitative analysis of the SSVEP
response of the intermediate cells through an example to visualize the feasibility of the
method. The performance of the proposed method needs to be statistically analyzed
further.

4.2. Statistical results of SSVEP detection

Figure 8 shows the intermediate cell classification accuracy-data length curves for each
subject, with aecuracy calculated every 0.2 s for 224 trials in each paradigm. This
metrie reflectsthe performance of the first step of signal processing. A higher accuracy
result only represents a more accurate identification of the intermediate cell containing
the targets and does not reflect the responses to the competing frequencies. Overall, for
three paradigms, the accuracy tends to increase with data length. In the beginning, the
accuracy increases rapidly and basically stabilizes.

In terms of accuracy, most of the subjects were able to achieve high accuracy, with
some subjects achieving a maximum accuracy close to 100%. There are also individual
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Figure 8: Accuracy-data length curvesifor the classification of 40 intermediate cells per
subject. Red, blue and green curves regpresent AA, NA and SA paradigms, respectively.

subjects, such as S8 /with am average classification accuracy of only 67.97% for the
40 intermediate cells. “Im, terms of response speed, there were individual differences
between subjects/but basically they all stabilized from about 2 s. Thus reliable SSVEP
detection results were obtained most of the time throughout the stimulation, providing
a data base for subsequent global classification. It can also be observed in the resuls
of some subjects that theyaccuracy shows a slight decrease in the later stage. This
phenomenon was,particularly obvious for S6, which shows a decreasing trend after the
accuracy reachéd the highest point. The reason may be that, on the one hand, the
proximity of the stimuli and their mutual influence make detection difficult, but the
main reason should be the subjects’ selective attention operation, which indicates that
the'method of accompanying attentional fixation puts requirements on the subjects. It
is potentially possible for the subjects to further enhance the efficiency of the method
in thisistudy by training and mastering the skill.

In terms of the of variability in the performance across the three paradigms, we
record the statistical accuracy for each subject in Table 1 (SSVEP columns). The

Page 18 of 28



Page 19 of 28

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

An SSVEP-based BCI with 112 Targets 19

T TR TR

80

70

60

50

40

30

20

AA paradigm NA paradigm SA paradigm

I 5! [ 52 [ pscar I DsGAT*

Figure 9: Average accuracy histogram of the three paradigms using different algorithms

statistical accuracy was calculated as follows: for each0.5zsecond sample, the sequence
of SSVEP detection results was counted (every 042 s); and if the frequency with the
highest number of occurrences was consistent with.the ground-truth frequency, the
sample result was considered correct. The 1k subjects’ average accuracies for AA,
NA, and SA are 95.01+7.77%, 94.30£9.34%, and 90.80+10.67%, respectively. One-way
repeated measures analysis of variange (RANOVA) was used to test the difference in
the classification performances across paradigms, with a Greenhouse—Geisser correction
and statistical significance defined as p < 0.05. The one-way RANOVA shows that
there is a statistically significant difference in accuracies among the three paradigms
[F(2,20)=4.397, p=0.047]. In the AA and NA paradigm, there are eight competing
stimuli around an intermediate\cell, and in the SA paradigm, the number is six. We
expected that the reducing ¢ompeting stimuli would promote the efficiency of SSVEP
detection, but the experimental-results were contrary to our expectations. We also note
that the accuracy of S9in the SA paradigm has a gap with AA and NA paradigms.
The reason may be that the row stagger design of the SA interfered with the subjects’
observations, thus affecting the SSVEP detection.

4.83. Minimum target classification results

Table 1 records, the minimum target classification accuracy of each subject applying
three paradigms and using different algorithms. The minimum target classification
acguracy for-each subject is a 5-fold cross-validation average. The table shows the
SSVEP detection accuracy, the accuracy results of the DSGAT method, two baselines,
and the/DSGAT without temporal embedding (w/o T™). Figure 9 shows the average
accuracy histogram of the three paradigms using different algorithms.

It can be seen that the DSGAT approach achieves higher accuracy in three
paradigms (AA: DSGAT vs BS1, p < 0.001, DSGAT vs BS2, p < 0.01; NA: DSGAT
vs BS1, p < 0.001, DSGAT vs BS2, p < 0.05; SA: DSGAT vs BS1, p < 0.001, DSGAT
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Table 1: Global localization accuracy of each subject (%)(DSGAT* : DSGAT w /o T<m2)

Subject AA paradigm ‘ NA paradigm ‘ SA/paradigm

SSVEP BS1 BS2 DSGATDSGAT* SSVEP BS1 BS2 DSGAT DSGAT*| SSVEP BS1 BS2 DSGAT DSGAT™

+7.90 +4.07 +4.35 £7.14 +6.63 £4.18/ +3.30 :l:Zl’?. +12.05 +£11.02 +3.57 +5.63

80.87 87.39 94.78 93.48
+5.19 £5.19 +£2.92 £2.66

81.30 86.96\ 99/13 92.17
+3.30 £4.61 +1.94 +2.48

76.09 87.83 96.52 95.65

S11 97.39 +6.15 £3.30 +£3.63 +3.44

96.09 93.48

AVG 95.01 69.25 80.43 89.16 86.60 94.30 7210 80.51 91.38 87.67 90.80 64.06 76.32 87.90 84.44

STD 7.77 11.62 8.01 5.77 6.69 9.34 13.43° 11.61 8.48 7.34 10.67 13.87 8.42 6.00 7.17

s1 99.11 69.13 81.74 84.35 80.43 97.32 80.00 86.52 93.91 89.57 93.75 74.78 77.39 85.65 80.00
M Yg61 4587 £3.23 £2.66 B2 16.03 4£7.28 £2.38  £5.19 5 17.93 4895 £5.67 . £5.63

S92 89.29 54.35 77.83 90.00 87.39 88.39 65.65 75.65 93.48 91.74 89.29 63.91 80.87. 87.39 84.08
29 11054 £9.14 £3.30 +5.63 B39 11024 £4.46 +£2.67  +£3.57 29 1451k dTINESE £3.94

G g3-s 7043 7913 8826 88.69 | o 76.96 82.17 8652 86.96 | .. . 66.52 7826  84.85  83.05
+9.17 +£6.26 +£4.51 +5.63 +9.42 +£5.63 +£3.89 +1.54 +£9.55 +£4.07 £4.96 +4.46

86.96 89.56 96.52 94.35 87.39 9217 96.52  95.22 74.78, 79.56 | 83.48  80.43

54 9820 4554 4641 477  £3.95 ‘ 99-11 " 1583 £330 +1.19 +0.97 ‘ 100,001 708 vba24 £3.05  +3.44

N

65 o904y 6696 6913 7512 7043 | oo 57.83 63.04 68.26 6826 | 4. 5556 G870 76.52  70.00
Al 4700 4641 1482 4587 21 4567 510 +3.64 +3.95 Al G5ss #4836 +7.00 4847

36 08.21 70.00 86.52 92.17 86.52 99.11 80.44 87.83 93.91 87.39 91.96 76.89 84.78 94.35 92.17
2L 4701 1445 £587 4583 M 1563 +8.64 +£4.18  £8.19 9 1576 +2.67 £330 +£3.95

7435 8435 9043 90.87 73.48 8826 96.09 9304 6478 7957 90.87  89.57

ST 9913 4677 4711 4680 4583 ‘ 9870 4711 +5.00 +2.38 4446 1 93:00 14940 +5.67 +6.03 +4.18
. 44.35 63.91 90.00 89.13 . 40.00 55.65 92.17 48435 2013 56.96 93.91  90.43

S8 TSR 4626 4747 L£1.94 £2.66 ‘ 6783 1930 +5.67 +2.43/ +1.82 I 62617 1904 +2583 +519 +4.24
7435 86.96 92.17 87.83 70.87 7870 88,70 84.35 55.22 7217 90.87  83.48

89 9957 4902 4266 4546 £3.30 ‘ 9870 1608 +4.18 £330 ht4.18 { SLT4 1504 +389 +a18  +2.92
s10  org3 7000 7826 86.96 83.48 ‘ oamg 7913 88.70 £96.52 . 0130 ‘ 9015 66:96 7348 83.04  80.00

vs BS2, p < 0.005). For the three paradigms, the average 112 classification accuracies
across all subjects using DSGAT are 89.16%, 91.38%, and 87.90%, indicating that all
three paradigms are feasible and effective. For each subject, at least one paradigm was
able to achieve a classification accuragy.of over 70%, and the highest accuracy of each
subject (using any paradigm an{i approach) reaches an average of 92.84%, with subject
S11 being able to achieve 99.13% using the AA and NA paradigms.

Comparing the three paradigms, it can be concluded from the overall average results
that the NA paradigmyobtains the best performances using different algorithms, the
AA paradigm comes'secondy.and the SA paradigm has the lowest average classification
accuracy. But the one-way RANOVA shows that there is no statistically significant
difference in thesaceuracies among the three paradigms [F(2,20)=2.228, p > 0.05].

Compared te the SSVEP detection accuracies of intermediate cells, the classification
results of the minimum cell by DSGAT do not show obvious correlation with them, with
a Pearson correlation coefficient between the two types of accuracies of -0.206, i.e., the
SSVEP detection accuracy does not directly affect the results of DSGAT. Especially for
S8, the SSVEP detection accuracies under the three paradigms are 73.48%, 67.83%, and
62.61%, while the accuracies obtained by the DSGAT algorithm are 90.00%, 92.17%, and
93.91%yxespectively. This interesting result indicates that DSGAT is able to compensate
for.the detection error of FBCCA. In the case of unsatisfactory SSVEP detections, it is
still possible for the DSGAT algorithm to learn the correct mapping relation from the
intermediate cell response distribution.

Compare the performance of different global localization methods. BS1 is
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an unsupervised method that intuitively reflects the approximate distribution of
competitive stimulus responses. This method obtained the lowest accuracy, indicating
that it is difficult to comprehensively capture the underlying relationships vand
distribution patterns among competing stimuli by analyzing them in a piegemeal fashion.
Some subjects can achieve an accuracy of 80% or 90% or even higher through the
unsupervised method, while some others are much lower; for example; the data of S4
has excellent separability, which directly demonstrates the feasibility of the paradigm.
BS2 has higher accuracy compared to BS1, and a few subjects are'able to achieve results
close to those of DSGAT. Compared to the two baselines, DSGAT is more stable and
has the smallest standard deviation over 5-fold cross-validation, whilehe baselines are
more affected by the data. For example, for S2 and S8, both subjects have very limited
baseline results, but achieve good results with DSGAT.

Comparing the three algorithms, two baseline§ perform 4-classification on the
basis of a single intermediate cell screened by FBECA, and thus global localization
is directly affected by the SSVEP detection. In contrast, DSGAT applies global SSVEP
response information, which makes it possible to analyze s’ubjects’ SSVEP distribution
preferences and thus locate the correct target minimumceell, even if the intermediate cell
is mislocalized. We further analyzed the relationship between the two-step localization
results. For DSGAT and the two baselines, we caleulated the proportion of samples with
correct global localization (7 Pc) ‘amongsthose with correct SSVEP detection results
(T'Pyr), denoted as P(T Po|T'Py), andiamong those with incorrect SSVEP detection
results (T'Nys), denoted as P(L Po|TNyy), respectively. The results are recorded in
table 2. It can be seen that DSGAT can accomplish correct global localization even
in the case of incorrect SSVEP detection, while the baselines must base on the right
intermediate cell. N

Temporal embedding operation was added to the DSGAT network. To verify the
impact of this operation, we removed the temporal embedding layer to perform the
ablation study. The results are presented in table 1. The temporal embedding operation
improved the average accuracy of all subjects by 2.56%, 3.71%, and 3.46% for AA, NA,
and SA paradigms, respectively, demonstrating that the temporal embedding further
exploits the processrinformation of SSVEP detection to optimize the classification
performanceé. DSGAT sfo T outperforms two baselines and can get even higher
accuracy than' DSGAT for some subjects, further demonstrating the superiority of
treating the paradigm as graph data and showing that for the proposed paradigm,
the key to. minimum target classification lies in dealing with the relationship between
competing and target stimuli.

Table 3 lists the average ITRs by different algorithms using the three paradigms.
Since the data length used was the same for all subjects, only the average ITRs
arenreported in the table. The highest average ITRs for the three paradigms are
51.66 £ 5.07 bits/min, 53.96 + 7.33 bits/min, and 50.55 4 5.36 bits/min, respectively.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

An SSVEP-based BCI with 112 Targets

Table 2: Comparison analysis of SSVEP detection and global localization results

22

AA paradigm ‘

NA paradigm ‘

SA paradigm

Subject Sample type
BSI BS2 DSGAT| BSI BS2 DSGAT| BS1 _BS2, DSGAT
81 P(TPc|TPy) 070 082 086 | 0.82 089 094 | 0804 083 0:86
P(TPc|TNyy) 0 0 050 | 0 0 .00 | 0 0 0.56
g0 P(TPc|TPy) 061 087 091 | 074 086 093 [[0.72 091  0.89
P(TPc|TNyy) 0 0 089 | 0 0 0.97471 0 0 0.75
<3 P(TPc|TPy) 075 084 088 | 0.78 083  0.87,40070, 083 084
P(TPc|TNy) 0 0 088 | 0 0 0.7, | 40 0 0.88
gy P@PTPy) 089 091 096 | 088 0934y, 096 [0.75 080 084
P(TPo|TNy) 0 0 100 | o0 0 1004 o 0 1.00
g5 P(@TP|TPy) 068 070 0.76 | 059 o064 068 | 056 069  0.79
P(TPc|TNy) 0 0 0 | o 0 075 | 0 0 0.50
g¢ P(TPc|TPy) 071 088  0.93 | 081 4089w Y094 | 084 092 096
P(TPc|TNy) 0 0 078 | 0 0 067 | 0 0 0.88
. P(TPo|TPy) 075 085  0.91,["0:74 089 096 | 0.70 086  0.93
P(TPc|TNy) 0 0 0.50 |50 0 1oo | 0 0 0.63
58 P(TPo|TPy)  0.60 087 50910059 082 096 | 047 091  0.94
P(TPc|TNy) 0 0 0.89n.] o0 0 085 | 0 0 0.93
g9  P@TPc|TPy) 072 08T, 093 | 072 0.80 090 | 068 088  0.94
P(TPo|TNy) 0 0 0.00 | 0 0 067 | 0 0 0.79
g0 P@PcITPy) 072,080  0.87 | 0.83 094 097 | 068 074 084
P(TPg|TNyy) 0 0 080 | 0 0 092 | 0 0 0.50
gy FPIPc|TPy) o 0830 0.90°  0.95 | 085 090 0989 | 0.81 094  0.98
P(TPg|T Ny 0 0 100 | © 0 .00 | © 0 0.87
Table 3: The average I'TR (bits/min) for the three paradigms using different algorithms
Paradigm BS1 BS2 DSGAT DSGAT*
AA 35.724+8.33  44.2246.37  51.66 £5.07  49.41 +5.65
NA 37.97 £9.52 44.53 +£9.01 53.96 £ 7.33 50.39 £6.15
SA 32.09 £9.06 40.93 4+ 6.42 50.55 £ 5.36 47.57 +6.13

5. Discussion

Frequency spatial multiplexing can also be seen as a segmentation of the intermediate
cell. Then the 112 target classification is achieved merely by relying on the relative

position of the stimuli and the position of the fixation point. Based on the AA paradigm,

the NA paradigm was proposed to decouple the frequency and spatial relationship to
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explore whether the same efficient global classification can be achieved through the
spatial relationship only. NA paradigm keeps similar frequencies as far away from each
other as possible, which helps to improve the SSVEP detection performance, but in tun,
introduces the risk of locating completely off-target areas. SA paradigm was proposed to
increase the distinguishability between adjacent targets. The experimental results show
that the NA paradigm has better performance, but the three paradigms de, not show
significant differences (p > 0.1), demonstrating that all three paradigms{ean achieve
high-resolution target selection and that global classification relies moze on the spatial
relationships of competing stimuli. =

In this study, the minimum target classification used thestrategyof first detecting
the SSVEP response distribution of the intermediate cells and then locating the
minimum target. Therefore, the supervision part of thelocation is essentially a 4-
classification problem. If minimum target classification were performed directly, it
transformed into a 112 classification problem, then a massive amount of data needs
to be collected to ensure each class has enough data.

The classification accuracy of the GCN method ¢an reach a satisfactory level.
Although the paradigm layout is regularjmwe still treated it as graph data because the
properties of each minimum cell are different, determined by its relative position in the
intermediate cell, which is the irregularity of the paradigm. The advantages of DSGAT
are:

1) Spatially-based graph convolutional metwork models perform the same local
convolution for each node, thus require fewer parameters by sharing weights, and
are highly scalable, allowing the paradigm to scale up or down in size freely.

2) Although the aggregation eperation is local inductive learning, but the local
aggregation covers thé whole paradigm. Therefore, DSGAT is able to handle 1-
step and 2-step neighberdnformations as well as more distant response informations,
which takes into aceount the global while focusing on the local.

3) DSGAT can adaptively demarcate the competing influence scale. Multi-layer GCNs
are able to obtain a larger perceptual domain. In this study, the aggregation
operation was performed only on G,,, and we have attempted to make a second
aggregation layer on G,, which resulted in training overfitting due to the contradiction
between the parameter increase and the current amount of data. And the single-layer
aggrégation operation was sufficient to verify the paradigm feasibility; thus, finally,
we did not use the multilayer aggregation structure.

Technieally, DSGAT differs from the standard attention mechanism because
classical attention is a shared mechanism, i.e., all neighbors share the same parameters
to calculate the correlation coefficient through the features themselves. In this work,
the meighbor features are determined by the neighborhood relationship, so the shared
attention aggregation can only invert the established node relationships. Therefore,
for the specificity of the paradigm, DSGAT directly takes the edge weights W, as the
learnable parameters.
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Table 4: Characteristics of BCI study focusing on multiple targets

Authors (Year) Number of Number of  Accuracy ITR Method
targets frequencies (%) (bits/min)
Nakanish (2018) [5] 40 40 89.83 325.33 single-frequeney
Chen et al (2014) [26] 45 45 84.1 105 single-frequency
Hwang et al (2013) [9] 12 4 87.23 33.26 frequency spatial
multiplexing
Liang (2020) [12] 40 11 96.06 196.09 frequency spatial
\multiplexing
Yosuke et al (2013) [11] 10 2 81.75 28.90 frequency temporal
multiplexing
Chen et al (2021) [13] 160 40 87.16 78.84 frequency temporal
multiplexing
Benitez et al (2018) [27] 5 4 97.78 not frequency control signals
mentioned superposition
Chen et al (2013) [10] 8 3+2 9383 33.80 other attributes
S frequency modulation
Shi et al (2023) [6] 160 - 95 366.05 broadband code
modulated VEP
This study 112 40 91.38 53.96 frequency spatial
multiplexing

As can be seen from the results, the classification accuracies of the two stages
do not show correlation and have individual differences. The average intermediate
cell classification accuracy of most subjects is higher than the final minimum target
classification accuracy, and there are also some experimental results that the final
accuracies are higher, indigating.the éffectiveness of the algorithm. The reasons for the
lower final classification accuracyfeould be, on the one hand, insufficient data samples
resulting in the algotithm not.fully capturing the pattern features. On the other hand, it
is also necessary to consider the individual data differences, which may be the different
adaptability of subjects to the new paradigm, or the differences in the subjects’ response
patterns to the darget and competing stimuli.

As shown'in table4; we compared the proposed method with representative studies
that increase the target resolution of SSVEP-BCI. The table lists the methods of each
study, themumber of targets, the number of frequencies used, and the performance of the
experiments. Infaddition, a cVEP method is also listed in the table, which illustrates the
ability-of the cVEP method to enhance target resolution, but we believe that SSVEP
BCIs also hold promise for further enhancement and is worth continuing to explore.
Compared,/to other methods, our method does not currently stand out in terms of
number of targets and ITR. But the proposed method has its unique advantages. First
of allpwe use the method of frequency spatial multiplexing, a line of research that is
only attempted with a small number of targets, whereas our method has large number
of targets. On the other hand, the method we proposed does not conflict with other
excellent methods. While other paradigms focus on the design of individual target
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stimuli, this study relies on the positional relationship between the stimuli and does
not circumvent the competing response problem. Therefore, not only thesetmethods;
but also other state-of-the-art methods focusing on enhancing the efficiency of SSVEP
detection can be used as a basis for the present method to achieve yery promising
enhancements to make further contributions.

Some limitations of this study should to be discussed further® 1) Firstly, the
proposed method has only achieved good results in offline experimental ‘evaluations,
in the future, we need to further validate the feasibility under enline conditions. 2) In
addition, there is still a gap in the I'TR with some cutting-edge SSVEP-BCI systems, due
to the long stimulus duration. There is a significant difference between the laboratory
environment and the real-world. For applications in the realsword, methods with
excellent response speed could ensure more robust performance.; And for the SSVEP
BCI study, longer duration of visual stimulation inevitably brought about visual fatigue.
These factors prompted us to further explore more strategies to improve the performance
under short time windows. 3) Considering thatdin seme,practical applications, visual
stimuli may be superimposed on top of the image, but the clirrent large size of the stimuli
will affect the observation of other tasks.Af subjects are required to balance observation
and control, the situation of long-time ‘operation risks aggravating the brain load.
Therefore lower burden interactivity is also an areathat should be further optimized. 4)
Currently our algorithm requires within=subjects training, which puts pressure on data
collection and a relatively heavier burden on the subjects. The next step is to explore
cross-subjects classification methods, employing transfer learning techniques to make
full use of the old data to transferito the new subject data. 5) This work focuses on
validating the effectiveness of the propesed method through three paradigms, and the
next step will be to further@optimize the performance for a specific paradigm.

Next, we aim to addressfhe ¢urrent shortcomings and systematically improve the
performance. In termseof time reduction, according to the time-frequency analysis, the
SSVEP response of competing neighbors has increased in the first half of the stimulation
phase. The next step is,to use graph spatial-temporal networks (GSTN) to study the
real-time globalselassification method. GSTN better captures the temporal variation of
the relationship“and is.suitable for the temporal continuity of SSVEP detection results.
Thus, GSTN is/expécted.to learn the changing pattern of competing stimuli better
to shortensthe stimulus duration. Regarding raising the number of targets, 1) In the
proposed paradigm, a frequency is assigned only to one intermediate cell. Further,
the frequency spatial multiplexing mechanism can be extended to intermediate cells,
i.ef a frequency is assigned to multiple intermediate cells at different locations, further
increasing the number of targets through a richer frequency scheduling relationship. 2)
Combine with other methods to advance research based on better performing SSVEP
BClIs. Finally, the present method has application prospects in the fields of medical
health, computer vision assistance, spatial navigation, complex cognitive decoding, and
human-machine shared control, etc. However, the current research is synchronous,
and in practical asynchronous applications, the spatio-temporal pattern of the SSVEP
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response changes when the subject needs to switch the target, and how to adapt to and
discriminate such a situation is an important aspect that needs to be further eptimized.:

6. Conclusion

This study designed a novel unimodal SSVEP-BCI paradigm with 112wargets based on
frequency spatial multiplexing and neuronal competing mechanism./Insteadf designing
individual visual stimuli, the present work distinguishes the minitmum cells relying on
the location relationship of the stimulus arrangement. Thred specifie interfaces were
designed, namely AA, NA, and SA paradigms. A dual-scale,graph attention network
was constructed as a global localization algorithm based on the SSVEP detection using
FBCCA. Eleven subjects participated in the offline validation experiments and obtained
an average global localization accuracy of 91.38% and TTR, 0f'53.96 bits/min using the
DSGAT algorithm in the NA paradigm. This study is applicable to BCI application
scenarios with a large number of targets and hasthépotential to expand the number of
targets for SSVEP-BCI further. y
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