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Abstract. Objective. Brain-computer interface (BCI) systems with large directly

accessible instruction sets are one of the difficulties in BCI research. Research to

achieve high target resolution (≥ 100) has not yet entered a rapid development

stage, which contradicts the application requirements. Steady-state visual evoked

potential (SSVEP) based BCIs have an advantage in terms of the number of targets,

but the competitive mechanism between the target stimulus and its neighboring

stimuli is a key challenge that prevents the target resolution from being improved

significantly. Approach. In this paper, we reverse the competitive mechanism and

propose a frequency spatial multiplexing method to produce more targets with limited

frequencies. In the proposed paradigm, we replicated each flicker stimulus as a 2×2

matrix and arrange the matrices of all frequencies in a tiled fashion to form the

interaction interface. With different arrangements, we designed and tested three

example paradigms with different layouts. Further we designed a graph neural network

that distinguishes between targets of the same frequency by recognizing the different

electroencephalography (EEG) response distribution patterns evoked by each target

and its neighboring targets. Main results. Extensive experiment studies employing

eleven subjects have been performed to verify the validity of the proposed method.

The average classification accuracies in the offline validation experiments for the three

paradigms are 89.16%, 91.38%, and 87.90%, with information transfer rates (ITR)

of 51.66, 53.96, and 50.55 bits/min, respectively. Significance. This study utilized

the positional relationship between stimuli and did not circumvent the competing

response problem. Therefore, other state-of-the-art methods focusing on enhancing

the efficiency of SSVEP detection can be used as a basis for the present method to

achieve very promising improvements.

Keywords: brain–computer interface (BCI), steady-state visual evoked potential

(SSVEP), electroencephalogram (EEG), frequency spatial multiplexing, graph neural
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An SSVEP-based BCI with 112 Targets 2

networks (GNN)

Nomenclature

Hm, HN (vim), Hc, Hidden layer features of nodes of Gm, N (vim), and Gc.
Rk Reference template for the k-th stimulus frequency.

Sisb isb-th subband filtered EEG signal.

T emb
m Temporal embedding layer parameter in Gm.

Wα Edge weights of attention aggregators.

Xm, XN (vim), Xc, Features of Gm, N (vim) and Gc.
Yc Predicted output of DSGAT.

Gm, Gc Intermediate and minimum graphs.

N (vi) The 1-step neighbors of node vi

W̃α Softmax normalized Wα.

%k FBCCA score at frequency fk.

cij j-th minimum cell in Mi.

k Index of attention aggregator groups.

l Index of DSGAT layers.

Lij L-shaped region of cij.

Mi, Mtg i-th intermediate cell and target intermediate cell detected by FBCCA.

p Index of sub-networks.

1. Introduction

The researche on improving brain-computer interface (BCI) performance mainly takes

two strategies: enhancing classification algorithms and designing more effective BCI

paradigms. An effective paradigm can maintain more targets while eliciting sufficiently

strong brain response activity. The design of a new paradigm seeks to build a larger

instruction set to improve the efficiency of target selection, but the increase in the

target number usually enhances classification difficulty. Therefore BCI systems need

to make a compromise between the number of targets and classification performance

[1, 2]. In terms of instruction set size, evoked potential-based BCI has an advantage

over spontaneous BCI and thus is often applied to applications that require a large

number of options, such as BCI-based spellers [3] or scenarios that require more refined

intentions [4]. Steady-state visual evoked potential (SSVEP) based BCI usually has

a higher information transfer rate (ITR) and larger instruction set than other BCI

paradigms [5, 6]. When the human eye is stimulated by periodic flicker, the occipital

region of the brain generates a modulated signal of the corresponding frequency, which

produces energy enhancement at the frequency or the second or third harmonics [7].
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An SSVEP-based BCI with 112 Targets 3

The frequency range capable of evoking SSVEP components can be roughly divided

into three intervals, the low-frequency band (6-12 Hz), the middle-frequency band (12-

30 Hz), and the high-frequency band (30-60 Hz). The harmonic nature of SSVEP

narrows the range of available frequencies for an SSVEP paradigm. On the other hand,

there is a limit to the minimum difference between neighboring frequencies that can

be discriminated, and the smaller the difference, the greater the difficulty posed to the

classification algorithm. Therefore, the frequency band used for SSVEP-BCI is limited

[8].

SSVEP paradigm innovations in recent years have focused on the design of

mechanisms dedicated to generating more target options using limited stimulation

frequencies. Hwang et al. proposed a dual-frequency stimulation method in which

the black and white pattern in the checkerboard paradigm is set to flip at two different

frequencies, thus enabling an SSVEP-BCI with 12 options using four frequencies [9].

Chen et al. used three luminance variation frequencies combined with two color variation

modulation frequencies to evoke an intermodulation frequency response, achieving three

frequencies to produce eight targets [10]. Yosuke et al. devised a new way of encoding

stimuli using binary digits encoding of different frequency sequences to increase the

number of visual stimuli with different characteristics [11]. Liang et al. proposed a

new dual-frequency and phase modulation paradigm to optimize the combinations of

two frequencies in the checkerboard-like dual-frequency paradigm [12]. Chen et al.

implemented an SSVEP paradigm with 160 targets using the idea of multiple frequency

sequential coding, in which a stimulus sequentially flickers at different frequencies [13].

To summarize these approaches, the main ideas for increasing the number of

targets focus on 1) multiplexing stimulus frequencies, including temporal and spatial

multiplexing, and 2) increasing the heterogeneous properties of same-frequency stimuli.

Time-division multiplexing comes at the cost of increased time, In contrast, spatial

multiplexing has the potential to further improve efficiency by being able to utilize

different frequency information at one time and is, therefore, an approach worth

exploring.

In addition, when a subject focuses on a target flicker, its neighboring stimuli also

evoke SSVEP components. Therefore, previous studies typically increase the distance

between adjacent stimuli and require subjects to reduce their attention to neighboring

distractors [14, 15, 16, 17, 18]. In contrast, we reverse the use of the competition

mechanism and propose a new method to produce more targets with limited frequencies.

This paper proposed a stimulus frequency spatial multiplexing method to design an

SSVEP-BCI paradigm with 112 targets. The paradigm does not design for individual

stimulus targets, but rather applies the location relationship between different stimuli

to increase the attribute differences of targets with the same frequency. Specifically,

different stimuli of the same frequency are in different locations, and the frequencies of

the stimuli adjacent to them are different. This compound location relationship is used

to encode targets, thus expanding 40 stimulus frequencies into 112 targets.

Page 3 of 28 AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



An SSVEP-based BCI with 112 Targets 4

2. Methods

2.1. Frequency spatial multiplexing paradigm

2.1.1. Neurological principles SSVEP responses are usually strongest for the stimulus

located in the center of the visual field, with an approximately Gaussian distribution

gradually decaying outward [7]. Fuchs et al. investigated the competitive neuronal

dynamics in cortical networks of early visual processing in the human brain utilizing

two frequency stimuli. The results showed that during attention to the target stimulus,

competing stimulus proximity (visual angle less than 4.5◦ − 5◦) leads to an increase

in the amplitude of the competing frequency response accompanied by a significant

enhancement of the intermodulation frequency, but the intensity of the target frequency

response is not diminished because the attentional mechanism releases the inhibitory

effect on the target stimulus [14]. This mechanism of integrated neuronal processing

of the target and competing stimuli provides the theoretical basis for this study, i.e.,

by designing the visual stimulus layout to match targets of the same frequency with

different competing neighbors, forming a neighbor encoding where all visual stimuli serve

as targets and competing stimuli for each other, thus making full use of the available

frequencies.

2.1.2. Paradigm Design A total of 40 frequencies were used, ranging from 8Hz-15.8Hz,

in 0.2Hz steps. Figure 1 illustrates the basic elements of the paradigm interface and

figure 2 presents three interface examples. The minimum cell is a rectangular single-

frequency flickering stimulus, denoted as c. Each cell is replicated as a 2×2 matrix, as an

intermediate cell (noted as M), cij denotes the j-th corner in Mi. The 40 intermediate

cells are arranged in a tiled array of 10× 16 to form the stimulation interface. The four

minimum cells in an intermediate cell flicker at the same frequency, but the intermediate

cells adjacent to different cij are differentiated. The frequency response evoked by other

intermediate cells in the vicinity of cij is also enhanced when cij is the target, so gazing

at different minimum cells leads to different SSVEP frequency response distributions;

thus, a minimum cell can be located according to the distribution patterns. In this

paper, three example interfaces are designed:

1) Aligned arrangement (AA) paradigm, 40 intermediate cells in sequential order with

ranks aligned (figure 2a);

2) Nonadjacent arrangement (NA) paradigm, adjust the order of intermediate cells in

the AA paradigm so that spatially adjacent intermediate cells are distanced in the

frequency domain (figure 2b);

3) Row stagger arrangement (SA) paradigm, on the basis of the AA paradigm, the

intermediate cells are arranged in rows misaligned by one minimum cell, and the

minimum cells at the end of the row that is out of the range of Map are filled to the

vacancy at the beginning of the row (figure 2c).
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Figure 1: Illustration of elements and concepts of the paradigm design.
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(a) AA paradigm
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(c) SA paradigm

Figure 2: Schematic diagram of the three paradigms interfaces. Stimulus frequencies

and phases marked are not shown in the practical experiments

The interface contains 160 minimum stimulus cells, but the cells outside the red

box are not sufficiently distinguishable due to the lack of neighbors, so they serve as

competing stimuli to assist in locating the inner cells. Therefore, the actual effective

divisible cells are the inner 8× 14 region, i.e., 112 divisible targets (the red boxed area
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An SSVEP-based BCI with 112 Targets 6

in figure 1). The visual stimuli were presented using luminance sinusoidal variation, and

the phase within the intermediate cells was consistent, with a phase difference of 0.5π

between adjacent intermediate cells.

2.2. Target fixation method with a regional attention

In this paper, we used a target fixation with a regional attention approach, which gives

selective attention to the neighborhood stimuli while gazing at the target. Taking the AA

paradigm as an example (figure 1 and figure 2a), when gazing at a target cij, the eight

nearest neighbors around are the competing stimuli closest to the visual field center,

which can theoretically evoke stronger SSVEP responses. Among these neighbors, the

stimuli that can distinguish cij from the other three corners (ciq, q 6= j) is the L-shaped

region Lij in the figure. Therefore, the simultaneous regional attention method is to

give selective attention to Lij while gazing at cij. Due to a large number of targets

in the paradigm, it is difficult to quickly locate cij in Mi and the corresponding Lij,

and the target cell may even be lost during the selection process. To assist in locating

the target, the colors of the intermediate cells were set to alternate between white and

yellow in the experiments, as shown in figure 2.

2.3. Target classification

The target classification process consists of two steps: 1) 40 classification: Calculate

the response distribution of the 40 intermediate cells by SSVEP detection algorithm;

2) 112 classification: Identify the minimum cell target according to the 40 classification

results.

2.3.1. SSVEP detection of intermediate cells The filter bank canonical correlation

analysis (FBCCA) algorithm [19] was used. FBCCA is a classical and efficient

classification algorithm in SSVEP-BCIs, which decomposes the EEG signal into several

sub-band components by frequency bands, calculates the correlation coefficient of each

sub-band separately using CCA, and then classifies the weighted features. The 12-

channel EEG signals are divided into subbands by bandpass filters, each with the same

upper cutoff frequency (88 Hz) and a different lower cutoff frequency. For the isb-th

subband, the lower cutoff frequency is isb× 8 Hz, the isb-th subband filtered EEG signal

is Sib . The sinusoidal reference template Rk ∈ R2Nh×Ns for the k−th stimulus frequency

is:

Rk =



sin(2πfkt)

cos(2πfkt)

sin(2 ∗ 2πfkt)

cos(2 ∗ 2πfkt)

. . .

sin(Nh ∗ 2πfkt)

cos(Nh ∗ 2πfkt)


, t =

1

Fs
,

2

Fs
, . . . ,

Ns

Fs
, (1)
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An SSVEP-based BCI with 112 Targets 7

where fk is the k-th frequency, Nh is the number of harmonics, Ns is the signal length,

t is the current time point, and Fs is the sampling rate.

CCA finds a set of weight vectors α and β to maximize the correlation between

αTSisb and βTRk:

ρ(Sisb ,Rk) = max
α,β

E[αTSisbR
T
kβ]√

E
[
αTSisbS

T
isb
α
]
E[βTRkRT

kβ]

isb = 1, 2, . . . Nsb k = 1, 2, . . . Nf ,

(2)

where Nsb is the number of filter banks and Nf is the number of stimulus frequencies.

The weighted sum of the squared correlation coefficients of all subbands is used as

the correlation characteristic with the k-th frequency, and the weight of each subband

is

wisb = isb
−a + b, (3)

where the optimal values of a and b have been optimized in the study [19] and set

to 1.25 and 0.25, respectively. The response score of an EEG sample at frequency fk is

%k =

Nsb∑
isb=1

wisb · ρ(Sisb ,Rk)
2. (4)

2.3.2. Minimum target classification algorithm We used a graph neural network (GNN)

to classify the intermediate cell response results further. GNN abstracts irregular

data as nodes, and each node establishes a relationship with its neighbor nodes

through edges; thus GNNs can capture the complex structural relationships in graphs

[20, 21, 22]. Graph Convolutional Network (GCN) is a representative GNN, especially

the spatial-based GCN borrows the idea of the convolutional neural network to define

graph convolution based on the spatial relationship of nodes, which is essentially a

process of iteratively aggregating neighborhood information. The key to the minimum

target classification of the proposed paradigm is the SSVEP response distributions of

competing neighbors. Therefore, the properties of GCN neighbor aggregation fit well

with the paradigm design. We designed a dual-scale graph attention network (DSGAT)

for the global 112 classification problem.

Graph definition DSGAT involves two scales of graphs with two types of stimulus cells

in the paradigm as graph nodes, respectively.

(i) Define intermediate graph Gm = (Vm, Em), as shown in Figure 3a, and consider each

intermediate cell as a node vm (coarse-grained node, later referred to intermediate

node). Vm is the set of intermediate nodes, |Vm| = Nm is the number of intermediate

nodes, and Em denotes the set of intermediate node edges. The SSVEP frequency

responses of the intermediate cells are used as the initial node feature set of Gm,

which is denoted as Xm ∈ RNm×NTm , and NTm is the number of feature channels.
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An SSVEP-based BCI with 112 Targets 8

(a) intermediate graph Gm (b) minimum graph Gc

Figure 3: Local diagram of Gm and Gc. The circles denote nodes, squares denote the

minimum cells in the paradigm, and 2 × 2 squares denote intermediate cells. 3a is the

local structure of Gm, including a central intermediate node and its first-order neighbors.

3b is the local structure of Gc, including a central minimum node and its first-order

neighbors

The distributions of SSVEP frequency responses change over time, so SSVEP

detection is performed multiple times for the duration of the stimulation. Therefore,

the feature vector of the i-th intermediate node vim denoted as X i
m ∈ RNTm is a

sequence of FBCCA detection scores throughout the stimulation:

X i
m = [%i(1), %i(2), . . . %i(NTm)]. (5)

The feature vectors of all intermediate nodes form Xm. Thus the number of feature

channels NTm of Xm is the number of SSVEP detection times during the whole

stimulus process.

(ii) Define minimum graph Gc = (Vc, Ec), as shown in Figure 3b, with each minimum

cell as node vc (fine-grained node, later referred to minimum node), Vc is the set

of minimum nodes, |Vc| = Nc. Ec denotes the set of minimum node edges. The

feature set of Gc is denoted by Xc ∈ RNc×NTc .

The first-order neighbors of node vi are denoted as N (vi), and the feature matrix

of N (vi) is denoted as XN (vi). There is a corresponding relationship between Vm and

Vc, consistent with the inclusive relationship of the two types of cells in the paradigm.

Structure of DSGAT model Figure 4 illustrates the architecture of DSGAT, consisting

of an aggregation module, a fully connected layer, and a softmax output layer, where

the aggregation module consists of a temporal embedding layer and a multi-head graph

attention layer. The core idea of DSGAT is summarized in three points.
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An SSVEP-based BCI with 112 Targets 9

Temporal Embedding Layer

1

Sub-Network

Multi-Head Graph 
Attention Layer

Fully Connected Layer

Softmax Output Layer

H

Aggregate Aggregate Aggregate

Softmax

FC FC

Hadamard Hadamard

2 3 4

Aggregate

Concatenate

Concatenate Concatenate

Concatenate

1 1H H 1H 1 1H 2

H 1

HH 1 1

H H1 1

T

T

Figure 4: Structure of DSGAT model. The operations with the same color in the same

sub-network in the figure have the same parameters

(i) Operations on the graph are performed sequentially at Gm and Gc, so that feature

information flows from coarse-grained nodes to fine-grained nodes, corresponding

to the refinement process of SSVEP responses to global target localization.

(ii) The relationship between the distributions of SSVEP responses to different

competing stimuli and target localization is captured using a multi-head graph

attention mechanism to cope with the contradiction between repetition and

heterogeneity in the paradigm.

(iii) A temporal embedding layer is added to handle the imbalance of SSVEP responses

in the time dimension.

The graph structures of the three example interfaces are not identical, and the

network structures here are exemplified by the AA paradigm (figure 2a).

The network input is the SSVEP detection results at all frequencies, and the

input features are first subjected to a neighbor aggregation operation on Gm. For the

AA paradigm, the 1-step neighbors of an intermediate node are its 8-neighborhood

intermediate cells as well as itself. Unlike Gm, the nodes in Gc have an additional

attribute: the location detection of the minimum cell in the intermediate cell, and thus

there are four location attributes. Therefore, Xm is fed into four sub-networks with

the same structure but different parameters to distinguish four minimum nodes. The

output of the p-th (p = 1, 2, 3, 4) sub-network is passed to the p-th group of minimum

nodes, thus allowing the information to flow from the intermediate nodes to the more

numerous minimum nodes.

The SSVEP detection results by FBCCA algorithm have fluctuating amplitudes

over time, and the stimulus duration affects the accuracy of SSVEP detection.

Therefore, a temporal embedding layer is designed before aggregation, which creates
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An SSVEP-based BCI with 112 Targets 10

Hm

Hm

Hm
Hm

Hm

Hm

Hm

Hm

Hm

Hm

layer layer

(1)

Hm(2)

Hm(3)

Hm(4)

Figure 5: Schematic diagram of the aggregation operation of Gm. The edges in four

colors and line types indicate the aggregation operations of four sub-networks

a learnable temporal embedding matrix T emb
m ∈ R|N (vim)|×NTm to compensate for this

temporal disequilibrium. For the p-th sub-network, the embedded feature matrix of

node vim and its 1-step neighbor nodes is

HN (vim)(p)
emb = σReLU(XN (vim)(p) ◦ T emb

m (p)), (6)

whereXN (vim) ∈ R|N (vim)|×NTm is the feature matrix ofN (vim), ◦ is the Hadamard product

operation, σReLU is the ReLU activation function.

The embedded feature signals are then neighborhood aggregated through the graph

attention layer. There are two types of relationships between the intermediate nodes vim
and vjm ∈ N (vim): frequency relationship and location relationship. When gazing at a

target in SSVEP-BCI, the responses of its competing stimuli are also enhanced in both

the spatial and frequency domains. For vim, vjm ∈ N (vim) have a regular arrangement

in space and frequency, with left-right, up-down, and diagonal neighbors symmetric to

each other and have equal frequency differences to the target stimulus.

An intermediate node is related to four minimum nodes, and when a minimum node

is gazed at, the SSVEP responses of neighboring intermediate nodes in the direction of

other minimum nodes are also affected; thus, the target localization needs to consider

all 1-step neighbors of the intermediate node. The influence of neighboring intermediate

nodes varies from different minimum nodes so the attention mechanism is applied to

learn this difference adaptively, with different weights on the edges.

The global localization from 40 frequency responses to 112 targets is essentially a 4-

classification problem. The four feature distributions of the intermediate nodes and their

1-step neighbors determine the classification results of the four minimum nodes. We

used a multi-headed graph attention layer to learn the four distribution patterns (unlike

the standard graph attention layer, DSGAT restricts the attention calculation to 1-step

neighbors, and the aggregation is also varied). Each sub-network uses Ka independent

attention mechanisms. The schematic diagram of the aggregation operation on Gm is

shown in figure 5.

Suppose the input feature vector of the central node vim at l-th layer is H i
m(l) and
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An SSVEP-based BCI with 112 Targets 11

the weight coefficient of the neighbor node vjm to vim is αij, then the parameters of layer

l are

Wα(p)(l) = [αi1(p)(l), αi2(p)(l), . . . , αi|N (vim)|(p)(l)]. (7)

For the k-th (k = 1, . . . Ka) group of attention aggregators, the edge weights are

softmax normalized, and the new coefficients are

W̃α(p)(l)(k) = softmax(Wα(p)(l)(k)). (8)

The new feature vector of node vim is obtained by weighted summation of neighbors:

H i
m(p)(l + 1)(k) = σLReLU

 ∑
vjm∈N (vim)

α̃ij(p)(l)(k)Hj
m(p)(l)

 , (9)

σLReLU is the LeakyReLU activation function. The Ka group outputs are combined

by the concatenation operation into an aggregated feature vector of the p-th group of

minimum nodes:

Hc
agg(p)(l + 1) =

Ka

||
k=1

Hm(p)(l + 1)(k), (10)

where || is the concatenation operation. To avoid over-smooth, the new feature vector of

minimum nodes are obtained by skip concatenating the pre-aggregation and aggregation

feature vectors:

Hc(p)(l + 1) = Hm(p)(l)||Hc
agg(p)(l + 1) (11)

After the information is propagated from the intermediate nodes to the minimum

nodes, the subsequent computation is performed on Gc. The features of the aggregation

operation are fed to a fully connected layer and a final softmax output layer. The final

predicted output is:

Ŷc = softmax (σReLU(HcWf + bf )) , (12)

where Hc ∈ R|N (Vc)|×N ′Tc is the feature matrix of Gc, N ′Tc is the number of feature

channels after aggregation, and Wf and bf are the fully connected layer parameters.

The aggregation operation in DSGAT is consistent for all nodes, but the nodes

located at the outermost circle of the paradigm lack sufficient neighbors. For this case,

borrowing from the padding method in convolutional neural networks, virtual nodes

are constructed to fill the missing neighbors. Suppose a virtual node used for padding

is vpad, and the initial feature vector is Xpad
m ∈ RNTm . The t-th value of Xpad

m is the

minimum value of the t-th channel of Xm.

3. Experiments

3.1. Subjects

Eleven healthy subjects participated in the experiment, including six males, aged 23-32

years old, mean aged of 26.6 years, and all participants had normal or corrected normal
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An SSVEP-based BCI with 112 Targets 12

Algorithm 1 Dural scal graph attention networks (DSGAT)

Input: The SSVEP response scores calculated by FBCCA is used as the feature matrix

Xm ∈ RNm×NTm of Gm
Output: Prediction results Ŷc of each node of Gc

1: for p = 1 : 4 do

2: HN (vim)(p)
emb = σReLU(XN (vim)(p) ◦ T emb

m (p))

3: for i = 1 : Nm do

4: for k = 1 : Ka do

5: α̃ij(p)(l)(k) = softmaxj(αij(p)(l)(k))

6: H i
m(p)(l + 1)(k) = σLReLU

( ∑
vjm∈N (vim)

α̃ij(p)(l)(k)Hj
m(p)(l)

)
7: end for

8: end for

9: Hc
agg(p)(l + 1) =

Ka

||
k=1

Hm(p)(l + 1)(k)

10: Hc(p)(l + 1) = Hm(p)(l)||Hc
agg(p)(l + 1)

11: end for

12: Ŷc = softmax (σReLU(HcWf + bf ))

vision. Two subjects had experience with SSVEP-BCI experiments, and the others

did not. This study was performed in accordance with the Declaration of Helsinki.

This human study was approved by The Ethics Committee of the Xiangya Hospital

of Central South University - approval: 2021111249. All adult participants provided

written informed consent to participate in this study.

3.2. Data acquisition

EEG signals acquisition utilized a BrainAmp Amplifier (Brain Products GmbH,

Germany) through 12 electrodes placed at Oz, O1, O2, POz, PO3, PO4, PO7, PO8, P1,

P2, P5, and P6, referenced to TP10 and grounded to Fpz, according to the International

10/20 system. The signal sampling rate is 500 Hz. Before data recording, the electrode

impedances were kept below 20kΩ.

3.3. Experiment process

The visual paradigm was presented on a 27 inch LCD monitor with a 240 Hz refresh rate

and a 1920px × 1080px resolution. Frequency stimulus presentation was implemented

using the PsychoPy toolkit [23], with 40 frequencies set to 8-15.8 Hz at 0.2 Hz intervals.

The experimental procedure was controlled using the BCI2000 platform [24]. Subjects

seated at a distance of 60cm from the monitor, with the horizontal viewpoint at the

monitor center. The single minimum cell spanned 2.81◦ horizontally and 2.53◦ vertically

and was separated from adjacent cells by approximately 0.65◦ and 0.59◦ in horizontal
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An SSVEP-based BCI with 112 Targets 13

and vertical viewing angles, satisfying the competing stimulus condition.

Each subject performed at least one training experiment before the formal

experiments to understand the experimental process and adapt to the new paradigm.

In the formal experiments, each subject performed three sessions of experiments

corresponding to the three paradigms. Each session consists of two groups, with 112

trials in each group, i.e., one data collection for each target in the effective area. 112 trials

were divided into 12 blocks, each block containing ten trials (the last group contained

two trials). The rest period between groups was determined by the subjects themselves

according to their status. Each trial consisted of a visual cue and a stimuli flicker phase.

In the target cue phase, all stimuli were presented at maximum luminance, and the

target to be selected was covered by a red square for 2 s. During the flicker phase, all

stimuli started to flicker for 6.5 s. The target cue turned from a solid square to a red

wireframe during the stimulus phase. To improve the subjects’ attention level and their

sense of control over the experiment, we used a real-time feedback mechanism. Since the

global classification parameters had not been trained yet, and the FBCCA algorithm

for SSVEP detection is an unsupervised method, the current detected 40 classification

results were fed back in real-time during the flicker phase. SSVEP detection is performed

every 0.2 s. The intermediate cell corresponding to the maximum value of each FBCCA

score is marked with a red dot. To avoid the effect of experimental sequence, each

subject performed a session within one day, and the order of trials was arranged in a

randomized form. Before the formal experiment, subjects were asked to perform several

practice trials to familiarize themselves with the paradigm, the gaze method, and the

experimental process. During the cueing phase in the practice experiment, the target

minimum cell was marked by a red square and its adjacent L-shaped area was framed

by a red wireframe, indicating the area to which the subject needed to pay attention

simultaneously while gazing at the target. The target cue turned to a red box during

the flicker phase, and the attention cue disappeared.

For DSGAT training, the data collected for one trial is one sample, and the data of

a subject is divided into training and test sets in the ratio of 8:2. The network model

uses two attention operations (Ka = 2) for each sub-network and contains a 1-layer

aggregation module. The model is trained with an Adam optimization algorithm to

minimize the cross-entropy on the training data for 100 epochs. The initial learning

rate is 0.1 with a decay rate of 0.7 after every 20 epochs. The batch size is 128.

In addition, we used two baselines for comparison with DSGAT, using global

classification accuracy as the evaluation metric.

baseline 1 An unsupervised method to locate the minimum cell in the intermediate

cell based on the SSVEP detection results. For an EEG sample, the intermediate cell

detected by FBCCA at t is

Mtg(t) = arg max
k∈[1,...Nm]

%k(t). (13)
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An SSVEP-based BCI with 112 Targets 14

For cij in Mtg, the sum of the SSVEP response scores of cij and its L-shape region

neighbors at moment t is taken as the new feature value of cij. The minimum cell with

the highest number of maximum feature values over a period is taken as the final global

target.

baseline 2 Logistic Regression (LR) algorithm is used to classify the four minimum cells

in Mtg. The SSVEP score vectors of Mtg and its 1-step neighbors in Gm are concatenated

as the feature vector XN (Mtg)
LR ∈ R|N (Mtg)|×NTm , and the sequence number of the

minimum cell in the intermediate cell is used as the 4-classification label. The training

data were screened before training because wrong Mtg localization could interfere with

the LR algorithm training. A data sample is considered valid if the intermediate cell

containing the true target gets the highest FBCCA score for the most times in a period

of time, and conversely, the sample is rejected in training.

4. Results

4.1. Qualitative relsults of SSVEP responses

We first verified whether the frequency response components of the target and competing

stimuli could be evoked simultaneously in the EEG signal by time-frequency analysis.

Figure 6b shows example spectra of four data samples using Fast Fourier Transform

(FFT) on a typical subject (S1) under the AA paradigm (figure 2a). The spectrum in

each subplot is the average of all channels of the EEG signal. The targets of the four

samples belong to the same intermediate cell with a stimulus frequency of 11.6 Hz, noted

as c19,1, c19,2, c19,3 and c19,4 (11.6 Hz is the 19th frequency), and the mean spectra of all

signal channels for each data sample is shown in the figure.

For ease of observation, the paradigm is simplified to a schematic diagram with only

the intermediate cells, as shown in figure 6a. It is clearly observed from every subplot

that the 11.6 Hz peak is evoked, while amplitude peaks at competing and harmonic

frequencies are also observed. For c19,1, the spectra show amplitude peaks at the target

stimulus frequency 11.6 Hz, the 2nd harmonic frequency of 23.2 Hz, and the competing

stimulus frequency of 9.8 Hz. The 9.8 Hz stimuli located in the neighboring L-shaped

region L19,1, whereas the amplitudes of competing frequencies farther away do not show

a significant increase. Similarly, for the target c19,2, an amplitude peak occurs at 10.4

Hz in the L19,2 region, while the neighboring competing stimulus responses for c19,3 and

c19,4 show peaks at 13.2 Hz and 13.4 Hz, respectively.

In addition, the spectra of c19,1 and c19,2 also show amplitude peaks at frequencies

such as 20 Hz (c19,1) and 19 Hz (c19,2). These peaks may be the intermodulation and

harmonic components of competing stimulus frequencies. The 20 Hz peak in c19,1 may

be the 2nd harmonic of the 10 Hz stimulus, or intermodulations of different frequencies,

such as the sum of 10.2 Hz and 9.8 Hz, or the sum of 8.6 Hz and 11.4 Hz. The 19 Hz

peak in c19,2 may be caused by the complex intermodulations, such as the sum of 8.8
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(a) Simplification schematic of AA paradigm
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(b) Mean FFT spectra across all electrodes

Figure 6: FFT spectra of a typical subject (S1)

Hz and 10.2 Hz.

These results suggest that the competing response enhancement has different

distributions when different minimum cells in the same intermediate cell are targeted,

which initially verifies the validity of the proposed paradigm. The enhancement is not

limited to 1-step neighbors; the 2-step neighbors in this example also show different

degrees of amplitude increase, such as 9.6 Hz and 10.4 Hz. This phenomenon may be

caused by a combination of frequency, spatial distance, and subjects’ selective attention.

Further, we use the FBCCA scores to analyze the time-frequency pattern, still

using the four examples above, and the results are shown in figure 7. The upper panels
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An SSVEP-based BCI with 112 Targets 16

show the FBCCA scores of each frequency at different time points. The scores for all

frequencies at the beginning phase are higher than those afterward (overfitting due to

the short signal length [25]), resulting in unintuitive visualization of the stabilization

phase later. Thus the figure shows the normalization results of all frequency scores at

each moment. we randomly selected the FBCCA detection results at 4.6 s as an example

for visualization, as shown in the lower panels, which display the scores according to

the arrangement of intermediate cells.

It can be seen that all plots have the strongest response at 11.6 Hz, and the SSVEP

responses are gradually ordered from about 1 second onwards. Two frequencies, 11.4

Hz and 11.8 Hz, also show higher response enhancement than the other frequencies

because they are closest to the target 11.6 Hz in both frequency and spatial distances.

This dual effect of space and frequency is not limited to 11.4 Hz and 11.8 Hz, as the 2-

step neighbors with a 0.4 Hz frequency difference also have different degrees of response

enhancement. In addition, the neighbors located on the left and right sides are slightly

different from each other, and intuitively the response on the side of the minimum

cell is slightly higher than the other side. Other competing stimuli also have response

enhancement, and the degree of enhancement and the spacial distance to the target

minimum cell showed correlations, such as 9.8 Hz, 10 Hz, 10.2 Hz for c19,1 and c19,2, and

13.2 Hz, 13.4 Hz for c19,3 and c19,4. These competing responses lag slightly compared

to the target frequency and fluctuate over time, which is related to the fixation method

with regional attention, with selective attentional wandering leading to instability of

competing neighbor responses.

To summarize the time-frequency analysis, the target frequency evokes the strongest

SSVEP response, and the 1-step neighboring intermediate cells could elicit higher

responses than other stimuli, especially in the direction of the minimum target cell.

Enhanced responses are also observed for 2-step neighbor stimuli, but are generally lower

than for 1-step neighbors. This subsection is just a qualitative analysis of the SSVEP

response of the intermediate cells through an example to visualize the feasibility of the

method. The performance of the proposed method needs to be statistically analyzed

further.

4.2. Statistical results of SSVEP detection

Figure 8 shows the intermediate cell classification accuracy-data length curves for each

subject, with accuracy calculated every 0.2 s for 224 trials in each paradigm. This

metric reflects the performance of the first step of signal processing. A higher accuracy

result only represents a more accurate identification of the intermediate cell containing

the target, and does not reflect the responses to the competing frequencies. Overall, for

three paradigms, the accuracy tends to increase with data length. In the beginning, the

accuracy increases rapidly and basically stabilizes.

In terms of accuracy, most of the subjects were able to achieve high accuracy, with

some subjects achieving a maximum accuracy close to 100%. There are also individual
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Figure 7: Time-frequency analysis of a typical subject (S1) using FBCCA results
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Figure 8: Accuracy-data length curves for the classification of 40 intermediate cells per

subject. Red, blue and green curves represent AA, NA and SA paradigms, respectively.

subjects, such as S8, with an average classification accuracy of only 67.97% for the

40 intermediate cells. In terms of response speed, there were individual differences

between subjects, but basically they all stabilized from about 2 s. Thus reliable SSVEP

detection results were obtained most of the time throughout the stimulation, providing

a data base for subsequent global classification. It can also be observed in the resuls

of some subjects that the accuracy shows a slight decrease in the later stage. This

phenomenon was particularly obvious for S6, which shows a decreasing trend after the

accuracy reached the highest point. The reason may be that, on the one hand, the

proximity of the stimuli and their mutual influence make detection difficult, but the

main reason should be the subjects’ selective attention operation, which indicates that

the method of accompanying attentional fixation puts requirements on the subjects. It

is potentially possible for the subjects to further enhance the efficiency of the method

in this study by training and mastering the skill.

In terms of the of variability in the performance across the three paradigms, we

record the statistical accuracy for each subject in Table 1 (SSVEP columns). The
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Figure 9: Average accuracy histogram of the three paradigms using different algorithms

statistical accuracy was calculated as follows: for each 6.5-second sample, the sequence

of SSVEP detection results was counted (every 0.2 s), and if the frequency with the

highest number of occurrences was consistent with the ground-truth frequency, the

sample result was considered correct. The 11 subjects’ average accuracies for AA,

NA, and SA are 95.01±7.77%, 94.30±9.34%, and 90.80±10.67%, respectively. One-way

repeated measures analysis of variance (RANOVA) was used to test the difference in

the classification performances across paradigms, with a Greenhouse–Geisser correction

and statistical significance defined as p < 0.05. The one-way RANOVA shows that

there is a statistically significant difference in accuracies among the three paradigms

[F(2,20)=4.397, p=0.047]. In the AA and NA paradigm, there are eight competing

stimuli around an intermediate cell, and in the SA paradigm, the number is six. We

expected that the reducing competing stimuli would promote the efficiency of SSVEP

detection, but the experimental results were contrary to our expectations. We also note

that the accuracy of S9 in the SA paradigm has a gap with AA and NA paradigms.

The reason may be that the row stagger design of the SA interfered with the subjects’

observations, thus affecting the SSVEP detection.

4.3. Minimum target classification results

Table 1 records the minimum target classification accuracy of each subject applying

three paradigms and using different algorithms. The minimum target classification

accuracy for each subject is a 5-fold cross-validation average. The table shows the

SSVEP detection accuracy, the accuracy results of the DSGAT method, two baselines,

and the DSGAT without temporal embedding (w/o T embm ). Figure 9 shows the average

accuracy histogram of the three paradigms using different algorithms.

It can be seen that the DSGAT approach achieves higher accuracy in three

paradigms (AA: DSGAT vs BS1, p < 0.001, DSGAT vs BS2, p < 0.01; NA: DSGAT

vs BS1, p < 0.001, DSGAT vs BS2, p < 0.05; SA: DSGAT vs BS1, p < 0.001, DSGAT
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Table 1: Global localization accuracy of each subject (%)(DSGAT∗ : DSGAT w/o T embm )

Subject
AA paradigm NA paradigm SA paradigm

SSVEP BS1 BS2 DSGATDSGAT∗ SSVEP BS1 BS2 DSGAT DSGAT∗ SSVEP BS1 BS2 DSGAT DSGAT∗

S1 99.11
69.13 81.74 84.35 80.43

97.32
80.00 86.52 93.91 89.57

93.75
74.78 77.39 85.65 80.00

±8.61 ±5.87 ±3.23 ±2.66 ±6.03 ±7.28 ±2.38 ±5.19 ±7.93 ±3.95 ±5.67 ±5.63

S2 89.29
54.35 77.83 90.00 87.39

88.39
65.65 75.65 93.48 91.74

89.29
63.91 80.87 87.39 84.08

±10.54 ±9.14 ±3.30 ±5.63 ±10.24 ±4.46 ±2.67 ±3.57 ±4.51 ±4.71 ±3.89 ±3.94

S3 93.75
70.43 79.13 88.26 88.69

99.11
76.96 82.17 86.52 86.96

94.64
66.52 78.26 84.35 83.05

±9.17 ±6.26 ±4.51 ±5.63 ±9.42 ±5.63 ±3.89 ±1.54 ±9.55 ±4.07 ±4.96 ±4.46

S4 98.20
86.96 89.56 96.52 94.35

99.11
87.39 92.17 96.52 95.22

100.00
74.78 79.56 83.48 80.43

±5.54 ±6.41 ±4.77 ±3.95 ±5.83 ±3.30 ±1.19 ±0.97 ±7.93 ±4.24 ±3.95 ±3.44

S5 99.11
66.96 69.13 75.12 70.43

98.21
57.83 63.04 68.26 68.26

99.11
55.56 68.70 76.52 70.00

±7.90 ±6.41 ±4.82 ±5.87 ±5.67 ±5.10 ±3.64 ±3.95 ±5.88 ±8.36 ±7.90 ±8.47

S6 98.21
70.00 86.52 92.17 86.52

99.11
80.44 87.83 93.91 87.39

91.96
76.89 84.78 94.35 92.17

±7.11 ±4.45 ±5.87 ±5.83 ±5.63 ±8.64 ±4.18 ±8.19 ±5.76 ±2.67 ±3.30 ±3.95

S7 99.13
74.35 84.35 90.43 90.87

98.70
73.48 88.26 96.09 93.04

93.04
64.78 79.57 90.87 89.57

±6.77 ±7.11 ±6.80 ±5.83 ±7.11 ±5.00 ±2.38 ±4.46 ±9.40 ±5.67 ±6.03 ±4.18

S8 73.48
44.35 63.91 90.00 89.13

67.83
40.00 55.65 92.17 84.35

62.61
29.13 56.96 93.91 90.43

±6.26 ±7.47 ±1.94 ±2.66 ±9.30 ±5.67 ±2.48 ±1.82 ±9.04 ±2.83 ±5.19 ±4.24

S9 99.57
74.35 86.96 92.17 87.83

98.70
70.87 78.70 88.70 84.35

81.74
55.22 72.17 90.87 83.48

±9.02 ±2.66 ±5.46 ±3.30 ±6.98 ±4.18 ±3.89 ±4.18 ±5.24 ±3.89 ±4.18 ±2.92

S10 97.83
70.00 78.26 86.96 83.48

94.78
79.13 88.70 96.52 91.30

99.13
66.96 73.48 83.04 80.00

±7.90 ±4.07 ±4.35 ±7.14 ±6.63 ±4.18 ±3.30 ±2.17 ±12.05 ±11.02 ±3.57 ±5.63

S11 97.39
80.87 87.39 94.78 93.48

96.09
81.30 86.96 99.13 92.17

93.48
76.09 87.83 96.52 95.65

±5.19 ±5.19 ±2.92 ±2.66 ±3.30 ±4.61 ±1.94 ±2.48 ±6.15 ±3.30 ±3.63 ±3.44

AVG 95.01 69.25 80.43 89.16 86.60 94.30 72.10 80.51 91.38 87.67 90.80 64.06 76.32 87.90 84.44

STD 7.77 11.62 8.01 5.77 6.69 9.34 13.43 11.61 8.48 7.34 10.67 13.87 8.42 6.00 7.17

vs BS2, p < 0.005). For the three paradigms, the average 112 classification accuracies

across all subjects using DSGAT are 89.16%, 91.38%, and 87.90%, indicating that all

three paradigms are feasible and effective. For each subject, at least one paradigm was

able to achieve a classification accuracy of over 70%, and the highest accuracy of each

subject (using any paradigm and approach) reaches an average of 92.84%, with subject

S11 being able to achieve 99.13% using the AA and NA paradigms.

Comparing the three paradigms, it can be concluded from the overall average results

that the NA paradigm obtains the best performances using different algorithms, the

AA paradigm comes second, and the SA paradigm has the lowest average classification

accuracy. But the one-way RANOVA shows that there is no statistically significant

difference in the accuracies among the three paradigms [F(2,20)=2.228, p > 0.05].

Compared to the SSVEP detection accuracies of intermediate cells, the classification

results of the minimum cell by DSGAT do not show obvious correlation with them, with

a Pearson correlation coefficient between the two types of accuracies of -0.206, i.e., the

SSVEP detection accuracy does not directly affect the results of DSGAT. Especially for

S8, the SSVEP detection accuracies under the three paradigms are 73.48%, 67.83%, and

62.61%, while the accuracies obtained by the DSGAT algorithm are 90.00%, 92.17%, and

93.91%, respectively. This interesting result indicates that DSGAT is able to compensate

for the detection error of FBCCA. In the case of unsatisfactory SSVEP detections, it is

still possible for the DSGAT algorithm to learn the correct mapping relation from the

intermediate cell response distribution.

Compare the performance of different global localization methods. BS1 is
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An SSVEP-based BCI with 112 Targets 21

an unsupervised method that intuitively reflects the approximate distribution of

competitive stimulus responses. This method obtained the lowest accuracy, indicating

that it is difficult to comprehensively capture the underlying relationships and

distribution patterns among competing stimuli by analyzing them in a piecemeal fashion.

Some subjects can achieve an accuracy of 80% or 90% or even higher through the

unsupervised method, while some others are much lower; for example, the data of S4

has excellent separability, which directly demonstrates the feasibility of the paradigm.

BS2 has higher accuracy compared to BS1, and a few subjects are able to achieve results

close to those of DSGAT. Compared to the two baselines, DSGAT is more stable and

has the smallest standard deviation over 5-fold cross-validation, while the baselines are

more affected by the data. For example, for S2 and S8, both subjects have very limited

baseline results, but achieve good results with DSGAT.

Comparing the three algorithms, two baselines perform 4-classification on the

basis of a single intermediate cell screened by FBCCA, and thus global localization

is directly affected by the SSVEP detection. In contrast, DSGAT applies global SSVEP

response information, which makes it possible to analyze subjects’ SSVEP distribution

preferences and thus locate the correct target minimum cell, even if the intermediate cell

is mislocalized. We further analyzed the relationship between the two-step localization

results. For DSGAT and the two baselines, we calculated the proportion of samples with

correct global localization (TPC) among those with correct SSVEP detection results

(TPM), denoted as P (TPC |TPM), and among those with incorrect SSVEP detection

results (TNM), denoted as P (TPC |TNM), respectively. The results are recorded in

table 2. It can be seen that DSGAT can accomplish correct global localization even

in the case of incorrect SSVEP detection, while the baselines must base on the right

intermediate cell.

Temporal embedding operation was added to the DSGAT network. To verify the

impact of this operation, we removed the temporal embedding layer to perform the

ablation study. The results are presented in table 1. The temporal embedding operation

improved the average accuracy of all subjects by 2.56%, 3.71%, and 3.46% for AA, NA,

and SA paradigms, respectively, demonstrating that the temporal embedding further

exploits the process information of SSVEP detection to optimize the classification

performance. DSGAT w/o T emb
m outperforms two baselines and can get even higher

accuracy than DSGAT for some subjects, further demonstrating the superiority of

treating the paradigm as graph data and showing that for the proposed paradigm,

the key to minimum target classification lies in dealing with the relationship between

competing and target stimuli.

Table 3 lists the average ITRs by different algorithms using the three paradigms.

Since the data length used was the same for all subjects, only the average ITRs

are reported in the table. The highest average ITRs for the three paradigms are

51.66± 5.07 bits/min, 53.96± 7.33 bits/min, and 50.55± 5.36 bits/min, respectively.
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An SSVEP-based BCI with 112 Targets 22

Table 2: Comparison analysis of SSVEP detection and global localization results

Subject Sample type
AA paradigm NA paradigm SA paradigm

BS1 BS2 DSGAT BS1 BS2 DSGAT BS1 BS2 DSGAT

S1
P (TPC |TPM ) 0.70 0.82 0.86 0.82 0.89 0.94 0.80 0.83 0.86

P (TPC |TNM ) 0 0 0.50 0 0 1.00 0 0 0.56

S2
P (TPC |TPM ) 0.61 0.87 0.91 0.74 0.86 0.93 0.72 0.91 0.89

P (TPC |TNM ) 0 0 0.89 0 0 0.97 0 0 0.75

S3
P (TPC |TPM ) 0.75 0.84 0.88 0.78 0.83 0.87 0.70 0.83 0.84

P (TPC |TNM ) 0 0 0.88 0 0 0.75 0 0 0.88

S4
P (TPC |TPM ) 0.89 0.91 0.96 0.88 0.93 0.96 0.75 0.80 0.84

P (TPC |TNM ) 0 0 1.00 0 0 1.00 0 0 1.00

S5
P (TPC |TPM ) 0.68 0.70 0.76 0.59 0.64 0.68 0.56 0.69 0.79

P (TPC |TNM ) 0 0 0 0 0 0.75 0 0 0.50

S6
P (TPC |TPM ) 0.71 0.88 0.93 0.81 0.89 0.94 0.84 0.92 0.96

P (TPC |TNM ) 0 0 0.78 0 0 0.67 0 0 0.88

S7
P (TPC |TPM ) 0.75 0.85 0.91 0.74 0.89 0.96 0.70 0.86 0.93

P (TPC |TNM ) 0 0 0.50 0 0 1.00 0 0 0.63

S8
P (TPC |TPM ) 0.60 0.87 0.91 0.59 0.82 0.96 0.47 0.91 0.94

P (TPC |TNM ) 0 0 0.89 0 0 0.85 0 0 0.93

S9
P (TPC |TPM ) 0.72 0.87 0.93 0.72 0.80 0.90 0.68 0.88 0.94

P (TPC |TNM ) 0 0 0.00 0 0 0.67 0 0 0.79

S10
P (TPC |TPM ) 0.72 0.80 0.87 0.83 0.94 0.97 0.68 0.74 0.84

P (TPC |TNM ) 0 0 0.80 0 0 0.92 0 0 0.50

S11
P (TPC |TPM ) 0.83 0.90 0.95 0.85 0.90 0.989 0.81 0.94 0.98

P (TPC |TNM ) 0 0 1.00 0 0 1.00 0 0 0.87

Table 3: The average ITR (bits/min) for the three paradigms using different algorithms

Paradigm BS1 BS2 DSGAT DSGAT∗

AA 35.72± 8.33 44.22± 6.37 51.66± 5.07 49.41± 5.65

NA 37.97± 9.52 44.53± 9.01 53.96± 7.33 50.39± 6.15

SA 32.09± 9.06 40.93± 6.42 50.55± 5.36 47.57± 6.13

5. Discussion

Frequency spatial multiplexing can also be seen as a segmentation of the intermediate

cell. Then the 112 target classification is achieved merely by relying on the relative

position of the stimuli and the position of the fixation point. Based on the AA paradigm,

the NA paradigm was proposed to decouple the frequency and spatial relationship to
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An SSVEP-based BCI with 112 Targets 23

explore whether the same efficient global classification can be achieved through the

spatial relationship only. NA paradigm keeps similar frequencies as far away from each

other as possible, which helps to improve the SSVEP detection performance, but in turn,

introduces the risk of locating completely off-target areas. SA paradigm was proposed to

increase the distinguishability between adjacent targets. The experimental results show

that the NA paradigm has better performance, but the three paradigms do not show

significant differences (p > 0.1), demonstrating that all three paradigms can achieve

high-resolution target selection and that global classification relies more on the spatial

relationships of competing stimuli.

In this study, the minimum target classification used the strategy of first detecting

the SSVEP response distribution of the intermediate cells and then locating the

minimum target. Therefore, the supervision part of the location is essentially a 4-

classification problem. If minimum target classification were performed directly, it

transformed into a 112 classification problem, then a massive amount of data needs

to be collected to ensure each class has enough data.

The classification accuracy of the GCN method can reach a satisfactory level.

Although the paradigm layout is regular, we still treated it as graph data because the

properties of each minimum cell are different, determined by its relative position in the

intermediate cell, which is the irregularity of the paradigm. The advantages of DSGAT

are:

1) Spatially-based graph convolutional network models perform the same local

convolution for each node, thus require fewer parameters by sharing weights, and

are highly scalable, allowing the paradigm to scale up or down in size freely.

2) Although the aggregation operation is local inductive learning, but the local

aggregation covers the whole paradigm. Therefore, DSGAT is able to handle 1-

step and 2-step neighbor informations as well as more distant response informations,

which takes into account the global while focusing on the local.

3) DSGAT can adaptively demarcate the competing influence scale. Multi-layer GCNs

are able to obtain a larger perceptual domain. In this study, the aggregation

operation was performed only on Gm, and we have attempted to make a second

aggregation layer on Gc, which resulted in training overfitting due to the contradiction

between the parameter increase and the current amount of data. And the single-layer

aggregation operation was sufficient to verify the paradigm feasibility; thus, finally,

we did not use the multilayer aggregation structure.

Technically, DSGAT differs from the standard attention mechanism because

classical attention is a shared mechanism, i.e., all neighbors share the same parameters

to calculate the correlation coefficient through the features themselves. In this work,

the neighbor features are determined by the neighborhood relationship, so the shared

attention aggregation can only invert the established node relationships. Therefore,

for the specificity of the paradigm, DSGAT directly takes the edge weights Wα as the

learnable parameters.
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Table 4: Characteristics of BCI study focusing on multiple targets

Authors (Year) Number of

targets

Number of

frequencies

Accuracy

(%)

ITR

(bits/min)

Method

Nakanish (2018) [5] 40 40 89.83 325.33 single-frequency

Chen et al (2014) [26] 45 45 84.1 105 single-frequency

Hwang et al (2013) [9] 12 4 87.23 33.26 frequency spatial

multiplexing

Liang (2020) [12] 40 11 96.06 196.09 frequency spatial

multiplexing

Yosuke et al (2013) [11] 10 2 81.75 28.90 frequency temporal

multiplexing

Chen et al (2021) [13] 160 40 87.16 78.84 frequency temporal

multiplexing

Beńıtez et al (2018) [27] 5 4 97.78 not

mentioned

frequency control signals

superposition

Chen et al (2013) [10] 8 3+2 93.83 33.80 other attributes

frequency modulation

Shi et al (2023) [6] 160 - 95 366.05 broadband code

modulated VEP

This study 112 40 91.38 53.96 frequency spatial

multiplexing

As can be seen from the results, the classification accuracies of the two stages

do not show correlation and have individual differences. The average intermediate

cell classification accuracy of most subjects is higher than the final minimum target

classification accuracy, and there are also some experimental results that the final

accuracies are higher, indicating the effectiveness of the algorithm. The reasons for the

lower final classification accuracy could be, on the one hand, insufficient data samples

resulting in the algorithm not fully capturing the pattern features. On the other hand, it

is also necessary to consider the individual data differences, which may be the different

adaptability of subjects to the new paradigm, or the differences in the subjects’ response

patterns to the target and competing stimuli.

As shown in table 4, we compared the proposed method with representative studies

that increase the target resolution of SSVEP-BCI. The table lists the methods of each

study, the number of targets, the number of frequencies used, and the performance of the

experiments. In addition, a cVEP method is also listed in the table, which illustrates the

ability of the cVEP method to enhance target resolution, but we believe that SSVEP

BCIs also hold promise for further enhancement and is worth continuing to explore.

Compared to other methods, our method does not currently stand out in terms of

number of targets and ITR. But the proposed method has its unique advantages. First

of all, we use the method of frequency spatial multiplexing, a line of research that is

only attempted with a small number of targets, whereas our method has large number

of targets. On the other hand, the method we proposed does not conflict with other

excellent methods. While other paradigms focus on the design of individual target

Page 24 of 28AUTHOR SUBMITTED MANUSCRIPT - JNE-107092.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



An SSVEP-based BCI with 112 Targets 25

stimuli, this study relies on the positional relationship between the stimuli and does

not circumvent the competing response problem. Therefore, not only these methods,

but also other state-of-the-art methods focusing on enhancing the efficiency of SSVEP

detection can be used as a basis for the present method to achieve very promising

enhancements to make further contributions.

Some limitations of this study should to be discussed further. 1) Firstly, the

proposed method has only achieved good results in offline experimental evaluations,

in the future, we need to further validate the feasibility under online conditions. 2) In

addition, there is still a gap in the ITR with some cutting-edge SSVEP-BCI systems, due

to the long stimulus duration. There is a significant difference between the laboratory

environment and the real-world. For applications in the real-word, methods with

excellent response speed could ensure more robust performance. And for the SSVEP

BCI study, longer duration of visual stimulation inevitably brought about visual fatigue.

These factors prompted us to further explore more strategies to improve the performance

under short time windows. 3) Considering that in some practical applications, visual

stimuli may be superimposed on top of the image, but the current large size of the stimuli

will affect the observation of other tasks. If subjects are required to balance observation

and control, the situation of long-time operation risks aggravating the brain load.

Therefore lower burden interactivity is also an area that should be further optimized. 4)

Currently our algorithm requires within-subjects training, which puts pressure on data

collection and a relatively heavier burden on the subjects. The next step is to explore

cross-subjects classification methods, employing transfer learning techniques to make

full use of the old data to transfer to the new subject data. 5) This work focuses on

validating the effectiveness of the proposed method through three paradigms, and the

next step will be to further optimize the performance for a specific paradigm.

Next, we aim to address the current shortcomings and systematically improve the

performance. In terms of time reduction, according to the time-frequency analysis, the

SSVEP response of competing neighbors has increased in the first half of the stimulation

phase. The next step is to use graph spatial-temporal networks (GSTN) to study the

real-time global classification method. GSTN better captures the temporal variation of

the relationship and is suitable for the temporal continuity of SSVEP detection results.

Thus, GSTN is expected to learn the changing pattern of competing stimuli better

to shorten the stimulus duration. Regarding raising the number of targets, 1) In the

proposed paradigm, a frequency is assigned only to one intermediate cell. Further,

the frequency spatial multiplexing mechanism can be extended to intermediate cells,

i.e., a frequency is assigned to multiple intermediate cells at different locations, further

increasing the number of targets through a richer frequency scheduling relationship. 2)

Combine with other methods to advance research based on better performing SSVEP

BCIs. Finally, the present method has application prospects in the fields of medical

health, computer vision assistance, spatial navigation, complex cognitive decoding, and

human-machine shared control, etc. However, the current research is synchronous,

and in practical asynchronous applications, the spatio-temporal pattern of the SSVEP
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response changes when the subject needs to switch the target, and how to adapt to and

discriminate such a situation is an important aspect that needs to be further optimized.

6. Conclusion

This study designed a novel unimodal SSVEP-BCI paradigm with 112 targets based on

frequency spatial multiplexing and neuronal competing mechanism. Instead of designing

individual visual stimuli, the present work distinguishes the minimum cells relying on

the location relationship of the stimulus arrangement. Three specific interfaces were

designed, namely AA, NA, and SA paradigms. A dual-scale graph attention network

was constructed as a global localization algorithm based on the SSVEP detection using

FBCCA. Eleven subjects participated in the offline validation experiments and obtained

an average global localization accuracy of 91.38% and ITR of 53.96 bits/min using the

DSGAT algorithm in the NA paradigm. This study is applicable to BCI application

scenarios with a large number of targets and has the potential to expand the number of

targets for SSVEP-BCI further.
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