Orientation selective deep brain stimulation

To cite this article: Lauri J Lehto et al 2017 J. Neural Eng. 14 016016

View the article online for updates and enhancements.

Related content

- Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes
 Bryan Howell, Brian Huynh and Warren M Grill

- Computational modeling of an endovascular approach to deep brain stimulation
 Benjamin A Teplitzky, Allison T Connolly, Jawad A Bajwa et al.

- Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy
 Zhi-De Deng, Sarah H Lisanby and Angel V Peterchev
Orientation selective deep brain stimulation

Lauri J Lehto1, Julia P Slopsema2, Matthew D Johnson2, Artem Shatillo3, Benjamin A Teplitzky2, Lynn Utecht1, Gregor Adriany1, Silvia Mangia1, Alejandra Sierra1, Walter C Low4, Olli Gröhn1,3,5 and Shalom Michaeli1,5

1 Center for Magnetic Resonance Research, Radiology, University of Minnesota, 2021 6th St SE, Minneapolis, MN 55455, USA
2 Department of Biomedical Engineering, University of Minnesota, 312 Church St SE, Minneapolis, MN 55455, USA
3 A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, FI-70211 Kuopio, Finland
4 Department of Neurosurgery, University of Minnesota, 2001 6th St SE, Minneapolis, MN, USA
5 These authors are joint senior authors on this work.

E-mail: shalom@cmrr.umn.edu

Received 5 October 2016, revised 15 November 2016
Accepted for publication 7 December 2016
Published 9 January 2017

Abstract

Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS.

Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation.

Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field.

Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

Keywords: deep brain stimulation, orientation selective stimulation, fMRI, rat

(Some figures may appear in colour only in the online journal)
is significant as most clinical targets of DBS are embedded within complex networks of axonal fiber tracts with a range of local orientations and broadly distributed synaptic connections that when perturbed can result in inconsistent clinical outcomes across patients [9]. It is well known that the gradient of the extracellular electric field defines excitability of axons [10, 11]. Therefore, if the orientation of the gradient can be controlled, this will enable orientation selective stimulation of axonal populations. In structures where the neuronal ensemble of axonal fibers have a well-defined orientation, as in the corpus callosum (CC) or in other major white matter tracts in the brain, the maximal activation should thus occur with the electric field gradient oriented parallel to the orientation of the axonal track.

In this work, a new strategy for orientation-selective paradigms for DBS is presented, which is poised to increase precision of targeted activation beyond currently employed shaping and steering approaches. This was achieved using variable sets of amplitudes and a multichannel electrode configuration which enables control of the electric field direction in a plane and thus orient the spatial gradient of the electric field parallel to axonal tracts.

Materials and methods

All surgical and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Minnesota. Sprague-Dawley rats (Envigo; Madison, WI, USA; n = 12, male, 275–300 g) were initially anesthetized using isoflurane for the duration of the implantation (5% for induction, 2–3% during surgery) with O2/N2O 30%/70% carrier gas. Temperature was monitored with a rectal thermometer. The respiration rate was monitored with a plastic pressure sensor during the surgery and MRI. The temperature was maintained at 37 °C with a heating pad during the surgery and with heated water circulation and heated air during MRI. After the electrode implantation, the anesthesia was changed to urethane with three consecutive i.p. injections 15 min apart (1.25–1.50 g kg⁻¹) while gradually lowering the isoflurane level, reaching 0% after the last injection. We chose to use urethane as it enables a strong blood-oxygen-level dependent (BOLD) response [12, 13] and it is known to maintain near normal electrophysiology and blood gases in spontaneously breathing animals [14, 15].

The animal was placed on a stereotactic frame and a 1 mm craniectomy was performed on the right hemisphere through which a tripolar lead which is composed of a 1 mm craniectomy was performed on the right hemisphere (B)) so that

$$\Delta = 17 \text{ ms}, \delta = 5 \text{ ms}, b = \frac{1000 \text{ s}}{\text{mm}^2}, \text{ and } 1 \text{ acquisition without diffusion weighting.}$$

The stimulation paradigm consisted of 60 s of rest and 18 s of stimulation, repeated twice and ending in a rest period. The stimulation waveforms were delivered using a digital-to-analogue converter (National Instruments; Austin, TX, USA) driven by MATLAB 2015b (Mathworks; Natick, MA, USA) and three stimulus-isolators (A-M Systems; Carlsborg, WA, USA). The placement of the electrode and the response of the brain to stimulation were confirmed by driving the tripolar electrode monopolar (i.e, biphasic, 60 μs per phase, 20 Hz, 0.4–0.6 mA) and by recording BOLD response in the somatosensory cortex (S1). During the experiments the performance of stimulus isolators were systematically monitored. For the directional stimulation, the relative current amplitudes $I_{2,3}$ of the three channels were chosen based on sinusoidal functions with phase offsets of 120° (figures 1(A) and (B)) so that

$$I_1 = I_0 \sin(\phi)$$

$$I_2 = I_0 \sin(\phi + 120°)$$

$$I_3 = I_0 \sin(\phi - 120°),$$

where I_0 is the stimulation current amplitude and ϕ governs the stimulation angle. Sets of amplitudes were chosen in
increments of 30° along the phase-offset sinusoids leading to 12 amplitude-combinations. This induced an electric dipole field such that the principal direction is defined by the phase step along the sinusoids (see figure 1(C)). The order of fMRI trials with different directions of the stimulation was randomized for each experiment, and a 5 min break was taken between trials. Charge-balanced, symmetric biphasic 60 µs square pulses were delivered at a rate of 20 Hz. The pulse amplitude for the directional stimulation was 0.9–1.2 mA.

The analysis of the time series of fMRI data were performed using SPM8 (www.fil.ion.ucl.ac.uk/spm) and MATLAB. The preprocessing included slice timing correction, motion correction and spatial smoothing with a 2 × 2 pixel full-width-at-half-maximum Gaussian kernel. The general linear model for SPM consisted of a block design model convolved with a rat hemodynamic function [18] and the baseline. For the statistical parametric maps, the significance threshold was set to p < 0.05 (family-wise error corrected). The maps were overlaid on the anatomical FSE images. The strength of the BOLD response with different stimulation directions was analyzed using a region of interest (ROI) drawn in the ipsilateral and contralateral barrel fields of the primary somatosensory cortex (S1BF) in Aedes software package (aedes.uef.fi). The anatomically based ROIs were drawn on one or two EPI slices nearest to the electrode that showed activation with at least one stimulation angle. The mean time series were corrected for baseline and linear trending.

The 12 animals consisted of two non-random subgroups, in which the implanted orientation of the electrode was controlled or not. In the first subgroup of 6 rats the dependence of BOLD contrast on the orientation of the dipolar field within 0°–360° was investigated without controlling the orientation of the implanted electrode. The angular dependence of the BOLD response was observed when the orientation of the dipolar field was varied. The maximal mean BOLD response averaged over 18 s after the BOLD contrast reached maximum during the first stimulus period, was assigned to the parallel orientation of the dipolar field with the axons of the CC, and designated as the 0° reference angle. For the second subgroup, the orientation of the lead tip was controlled using a microscope, identifying each channel with a multi-meter. Angle 0° was defined as the angle where cathode and anode point towards the ipsilateral and contralateral hemispheres, respectively. In both groups, ipsilateral and contralateral mean time series were then normalized to the ipsilateral mean maximum BOLD response to reduce the effects of inter-animal variability in BOLD contrast. Fitting a Gaussian function was used to estimate the deviation from the assumed angle of 0°, i.e. axons of the CC were assumed to travel exactly in the medial-lateral direction, however, this is not always the case (see figure 5). Finally, the dependence of the activation on the stimulation angle was aggregated between two groups of rats.

Computational tissue conductance models were developed using COMSOL Multiphysics® v5.2 (COMSOL AB, Stockholm, Sweden) and were coupled with multi-compartment axonal models in NEURON v7.4 [19] to simulate the effects of the rotated dipole on radially distributed axons. The FEM model consisted of a 19 × 7.5 mm (length × radius) cylinder representing the approximate anatomical size of the rat brain [16]. The tissue was assumed to be homogeneous and isotropic with a conductivity of 0.11 S m⁻¹ and relative permittivity of 30204, these values were calculated from the frequency dependent Cole–Cole dispersion function for gray matter described by Gabriel et al using the median frequency component of a symmetric biphasic waveform (60 µs per phase, 7.197 kHz) [20]. The tripolar electrode configuration was modeled as three cylinders (200 µm diameter) positioned at the approximate experimental stereotactic location within the brain. The base of the brain cylinder furthest from the electrodes was set as ground to reflect the experimental setup, the electrode shafts were modeled as perfect insulators, and independent monopolar normal current densities were applied to the active disc surfaces on the tips of the electrodes.

Figure 1. Rotating and directionally selective electric fields generated using a tripolar electrode configuration. The electric field rotation can be produced using sinusoid waveforms (A), or the electric field can be fixed by selecting individual pulse amplitudes for each channel (B). The induced electric field potentials, and the electric field gradients parallel and perpendicular the electric dipole field are shown in (C)-(E), respectively.
The FEM model was solved for 24-amplitude combinations along the 120° phase-offset sinusoids using a Fourier FEM technique [21, 22]. For this method, the waveform (biphasic symmetric square pulse, 60 μs per phase, 1 ms length) was constructed, and a 1024-point discrete Fourier transform (DFT) of the stimulus waveform was used to transform the waveform from the time domain to the frequency domain. The FEM model was solved at 513 frequencies between 0 and 512 kHz. The resulting complex voltage distribution of the FEM was interpolated along straight multi-compartment 2 μm diameter myelinated axon models [23, 24]. Axon membrane dynamics were modeled using sodium and potassium channels, and passive leakage currents as described previously [24]. Axons were positioned at 12-orientations around the centroid of the three contact electrode in planes 0.2–1 mm below the surface of the electrodes (figure 2(A)). The complex voltages were used to scale and shift the magnitude and phase of the frequency-domain waveform and the inverse DFT was applied to convert the extracellular voltage waveform back to the time-domain for each axon compartment. Stimulation waveforms were superimposed onto the model using the e_extracellular function in NEURON. Activation percentage curves were calculated by normalizing the angle between the primary direction of the electric field for a given amplitude combination and the orientation of each axon (figure 2(B)). The percentage of activated axons (i.e. those with stimulus-entrained action potential activity) for each nominal stimulation angle was found using a stimulation of 1.2 mA and 60 axons at 5 distances.

Results

The orientation of an electric field vector in a plane was controlled by inducing an electric dipole with a minimum of three electrode channels. The general concept for controlling the direction of an electric dipole using a tripolar electrode configuration is shown in figure 1. Using amplitudes from phase offset sinusoidal functions (figures 1(A) and (B)) the anode and cathode can be shifted to rotate a dipole field (figure 1(C)).

Figures 1(D) and (E) show that the electric field gradient of the dipolar field is greater when it is parallel to the principal electric field orientation as compared to the perpendicular direction, indicating that axons parallel to the dipole field should be excited at a lower threshold than perpendicular axons. By selecting the amplitudes of the three channels from sinusoids with 120° phase offsets, one enables a rotation of the electric field below the tip of the electrode. To generate a uniform rotation with n channels the phase of the channel i should be defined as 360°/n * (i − 1), given that the dipole is desired to be uniform in each direction.

As a proof of concept, the electrodes were implanted into the rat CC, and the response to stimulation was detected using simultaneous BOLD fMRI. The estimated standard deviation (SD) of the coordinates of implantation between animals obtained from anatomical images were: AP: −1.6 ± 0.4 mm, ML: −2.5 ± 0.5 mm, and DV: −2.7 ± 0.2 mm. Figure 3 shows a representative example of the fMRI activation map and averaged time courses (n = 12) from the rat brain. It can be seen from the time courses that the maximal amplitude of the BOLD response about the S1BF was detected when the electric field gradient was aligned with the fibers of the CC, while the activation was gradually reduced when the angle between the electric field and the fiber orientation was changed reaching a minimum at approximately 90° between the electric field gradient and the fibers. The BOLD contrast increased again gradually upon the re-orientation of the electric field to 180°, resulting again in a parallel orientation with the CC fiber pathway. The ratio of contralateral to ipsilateral activated pixels at the nominal stimulation angle 0° within the S1BF ROIs was 0.85 ± 0.65. In one out of 12 experiments contralateral activation was not observed.

In figure 4(A) the averaged amplitudes of the normalized BOLD responses from ipsilateral and contralateral sides from 12 rats are shown. The angular dependencies of the BOLD were aligned from the independent experiments and averaged together. The figure demonstrates that maximal BOLD contrast was detected on both ipsilateral and contralateral sides for the angles 0° and 180° between the electric field and
the neuronal track in the CC, while reaching minima for the angles 90° and 270°. Notably, the mean of the BOLD contrast was not statistically significantly smaller when the dipole was oriented at 180° to axons in the CC as compared to the BOLD contrast at 0° (figures 4(A) and (B)).

To further support our experimental findings, a computational model was developed to demonstrate the dependence of axonal activation on the angle between the primary direction of the electric field and axons radially distributed below the plane of the electrodes (figures 2 and 4(C)). The peak activation percentage was 80% for nominal stimulation angles of 0° and 180°, when the electric field was oriented parallel to the axons of the CC. The activation percentage decreased as the angle between the axon and the electric field increased, with minimum activation percentages of 18.33% and 16.67% at angles of 90° and 270° respectively, when the electric field was oriented perpendicular to the axons. The orientation dependence of the model was sharper compared to the experimental results.

In four rats within the group of six, the maximal BOLD contrast was detected when the angles were $16^\circ \pm 17^\circ$ from the visually determined axial plane. These findings are in good agreement with orientation of the fiber tracts in the CC, which varies within $\sim 30^\circ$ from the anterior–posterior direction when moving to the deep areas of CC from cortex (figure 5). In two rats out of six, the maximal BOLD contrast was instead detected at 102° and 92°. Even though all animals showed activation in S1BF, also other cortical areas were indeed occasionally stimulated, such as retrosplenial/cingulate (Cg 1/2; $n = 3$) and S1 forelimb/hindlimb (S1 FL/HL; $n = 4$) cortices. Three examples of the activation pattern variability are shown in figure 6. To investigate the orientation dependence of the activation outside S1BF, an additional ROI analysis was conducted in these regions and the results are summarized in table 1 (see ROIs in figure 6(C)). It should be noted that the ipsilateral and contralateral Cg 1/2 ROIs were not defined separately because of insufficient image resolution, and thus...
Figure 5. Variability of axonal directions in a rat. (A) Horizontal slices of directionally encoded color-fractional anisotropy maps obtained using DTI. Colors indicate principle directions of the water diffusion. Numbers indicate the distance of the images from the brain surface. (B) Photomicrographs of myelin stained sections of the same rat brain shown in panel (A). White rectangles represent the frames of the high magnification photomicrographs shown in panel (C). Full arrow indicates the stimulation angle 0° used in the experiments, dashed arrows indicate direction of the axons. Abbreviations: cc = corpus callosum, cg = cingulum, alv = alveus, CA1 = hippocampal area CA1. Scale bars: 500 µm (B) and 150 µm (C).

Figure 6. Examples of the variability of BOLD response at nominal stimulation angle 0°. Representative example with (A) strong activation in S1BF, (B) relatively weak activation with BOLD contrast observed in the motor cortex as indicated by an arrow, and (C) strong bilateral activation in the S1BF area, but also with an activation detected in the retrosplenial/cingulate cortices (Cg1/2). The smaller activated area ipsilateral to the electrode in (A) is due to the susceptibility artefact in SE-EPI. The red and blue boxes indicate the ROIs used for the results in table 1 (Cg1/2 and S1BF, respectively) and the green box indicates the ROI of S1BF. The anterior–posterior coordinates are indicated above with −1.6 mm matching to Paxinos’ atlas [16].
were averaged together. Similarly, while activation was also detected in motor cortex, reliable assignment was not possible and thus motor cortex was excluded from our analysis. Although peak BOLD responses were different at the nominal stimulation angles 0°, 90°, 180° and 270° for each ROI, only activation in the S1BF area was significantly greater for the stimulation angles 0° and 180° as compared to the minimal values observed for 90° and 270°.

Discussion

In this work, a new strategy for orientation-selective paradigms for DBS was developed and whole brain activation response was monitored using BOLD fMRI. The method aims at increasing precision of targeted activation beyond currently employed shaping and steering approaches [4–8]. This was achieved using a multichannel electrode configuration and variable sets of amplitudes based on sinusoidal functions with 120° phase offsets, which enabled control of the orientation the spatial gradient of the electric field dipole. It is noteworthy that the dipole field and its derivatives maintain their shape regardless of the orientation relative to the electrode, even though the electrode design is in its simplest 3-channel configuration.

The activation detected in rat’s brain area S1BF exhibited dramatic dependence on the orientation of electric field gradient generated from the tripolar electrode implanted in the CC. Activation was also seen outside of S1BF, however, the activated regions did not exhibit pronounced stimulation orientation dependence although it could be achieved with a different electrode placement. These activation patterns could be attributed to suboptimal electrode placement and also to the stimulation of the adjacent tracks with anterior–posterior orientation of the fibers. Whereas we did our best to guarantee reproducible electrode placement, partial inaccuracy of the electrode implantation (e.g. slight tilt of the implanted electrode or location of the tip of the lead) could not be avoided. A more refined study with larger number of channels of the lead could overcome imperfection of electrode placement and increase precision of the stimulation.

The computational models supported our experimental results of maximum activation for parallel axon orientations, and minimum activation for perpendicular axon orientations relative to the electric field orientation. The simulation results demonstrated sharper dependence of the activated axons on the orientation angle as compared to the experiment. We attribute this to the smoothing of the angular dependence during fMRI due to the distribution of the electric field dipole and due to a greater stimulation angle step (30°) for the experimental setup compared to simulations (15°). It is also noteworthy, that the activation percentages of the simulated axons were not zero at nominal stimulation angles of 90° and 270°. No activation would be expected for an axon traveling through the center of a dipole field perpendicular to the primary axis because the surface of zero extracellular electric potential is planar. However, in the tripolar electrode, when all channels are conducting, two channels share one pole of the dipole field, indicating that the dipole is asymmetric and thus the surface of zero electric potential is not planar but curved. Therefore, the straight axon positioned under the center of the tripolar electrode perpendicular to this asymmetric dipole experiences a non-zero spatial derivative of the electric field and thus can be activated. Finally, possible curvature of real axons can lead to strong spatial derivatives of the electric field along the axons thus creating hotspots for inducing action potentials [25, 26].

The effect of having a parallel bipolar electrode configuration perpendicular and parallel to axons has been studied by stimulating the rat midbrain [27, 28] with seemingly contradictory results to those presented here. Using 60 Hz sinusoidal stimulation, the forepaws response was detected at lower thresholds when the electrodes, or dipole, were perpendicular to the target axons compared to a parallel orientation [28]. The same authors showed later with electrodes parallel to the axons, but by using 200 µs square pulses at 200 Hz instead of sinusoids, that the stimulation was significantly less dependent on the electrode orientation [28]. It was concluded that the sinusoidal pulses that were used previously led to an anodic block, inhibiting the action potential from traveling to the brain in the parallel orientation [29], whereas when using the square pulses, the pulse length was not long enough to form a block. The anodic block was also demonstrated in the hypothalamus by changing the polarity of a bipolar electrode parallel to the axons, so that a response was seen when the cathode was towards the frontal brain [30]. Based on these findings, a full anodic block was unlikely for our stimulation paradigm. Additionally, contrary to Szabo et al, our results showed clear orientation dependence. We attribute this difference to longer, 200 µs pulses and tenfold, 200 Hz stimulation rate used by Szabo et al (in our case, 60 µs and 20 Hz).

Previously, orientation selective DBS has been studied for axons perpendicular and parallel to DBS leads with high-perimeter cylindrical electrodes [31] and with cylindrical electrodes with different height to diameter ratios [32]. Both studies showed that selectivity can be achieved with cylindrical electrodes, and that longer electrodes are more selective to axons perpendicular to the lead, while shorter electrodes are more selective to the parallel axons. This can be explained with the second spatial derivative of the electric potential, so that the electric field potential of a long electrode is more homogeneous parallel to the electrode orientation leading to a smaller second spatial derivative as compared to the perpendicular direction, and vice versa for the short electrodes. Selectivity to parallel axons was also achieved with an asymmetric bipolar electrode and a cathodic electrode surrounded by anodes [32].

Table 1. Mean BOLD response of ipsilateral S1BF (also see figure 4), contralateral S1FL/HL and bilateral Cg1/2 at the same nominal stimulation angles.

<table>
<thead>
<tr>
<th>Brain area</th>
<th>Nominal stimulation angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°</td>
</tr>
<tr>
<td>S1BF (\text{(n = 12)})</td>
<td>4.5 ± 1.4</td>
</tr>
<tr>
<td>S1FL/HL (\text{(n = 4)})</td>
<td>4.3 ± 0.9</td>
</tr>
<tr>
<td>Cg1/2 (\text{(n = 3)})</td>
<td>3.4 ± 0.5</td>
</tr>
</tbody>
</table>
Although those results are very encouraging, the control of orientational selectivity of the lead is restricted by the orientation in which the lead is implanted. On the other hand, the present study demonstrates that an electrode design with multiple and independently driven channels inherently provides flexibility in orienting the electric field in space irrespective of the orientation of electrode implantation, and ultimately leads to various degrees of neuronal stimulation.

As shown in figure 2, three, or more, channels could also be used to create rotating, rather than static-orientation electrical fields. When the trajectory of the stimulating field covers all directions evenly in time, the electric field will evenly stimulate all cells whose axonal orientations lie within the orientation space of the electric field. This may provide an efficient and robust stimulation approach for grey matter or in situations when it is desirable to simultaneously stimulate multiple fiber populations with different orientations. Furthermore, the approach enables a versatile design of electric field trajectories which can be optimized to selectively stimulate one or more axonal populations.

Finally, MRI pulse sequences can induce unwanted currents in DBS leads. This can cause heating of the tip of the electrode [33, 34]. However, tissue damage has not been reported so far in previous DBS-MRI studies in rats [35–37]. In our experiments based on scout MRI tests conducted during and at the end of the studies, we did not notice any tissue damage. It is also possible that induced currents would cause neuromodulation themselves. Peripheral nerve stimulation is a possible side effect of MRI, however, to the best of our knowledge the brain stimulation during DBS just by MRI pulse sequences have not been reported.

Conclusion

To summarize, the concept of selectivity of neuromodulation based on the angular dependence of axonal excitability was evaluated using a directional electric field approach for stimulation. It was shown that biphasic pulses with amplitudes chosen independently for each channel of an electrode based on sine functions with constant phase offsets enabled orientation selective electric stimulation. The orientation selectivity was implemented using tripolar electrodes implanted into the rat CC where fiber orientation is well defined. Computational models demonstrated angular dependence of the excitability of axons with respect to the orientation of the stimulating electric field, supporting the experimental findings. To the best of our knowledge, this is the first demonstration of orientation selectivity created using multichannel electrodes for DBS applications as detected using fMRI.

Acknowledgments

The Office Technology Commercialization (OTC) of the University of Minnesota filed provisional application N# ROIT20150170, S Michaeli, S Mangia, O Gröhn, A Shatillo, LJ Lehto and M Johnson, Deep brain stimulation system that generates rotating or spatially selective electromagnetic fields. This work was supported by the following sources: NIH grants: P41-EB015894, P30-NS057091; UEF-Brain Pool; R01-NS081118; R01-NS094206; Michael J Fox Foundation; Fulbright-Saastamoinen Foundation Grant in Health and Environmental Science to SM; MnDRIVE post-doctoral fellowship to LJL; and NSF IGERT fellowship (DGE-1069104) to JPS; Academy of Finland (#275453). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant, agreement No 691110 (MICROBRADAM).

References

[8] Butson C R and McIntyre C C 2006 Role of electrode design on the volume of tissue activated during deep brain stimulation J. Neural Eng. 3 1–8

[26] Eickenscheidt M and Zeck G 2014 Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential *J. Neural Eng.* 11 036006

[29] Van Den Honert C and Mortimer J T 1979 Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli *Science* 206 1311–2

[31] Howell B and Grill W M 2014 Evaluation of high-perimeter electrode designs for deep brain stimulation *J. Neural Eng.* 11 046026

[36] Lai H Y, Younce J R, Albaugh D L, Kao Y C and Shih Y Y 2014 Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus *Neuroimage* 84 11–8