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Abstract
We show the implications of angles having their own dimension, which facilitates a consistent
use of units as is done for lengths, masses, and other physical quantities. We do this by
examining the properties of complete trigonometric and exponential functions that are
generalizations of the corresponding functions that have dimensionless numbers for
arguments. These generalizations provide functions of angles with the dimension of angle as
arguments, but with no reference to units. This parallels most equations in physics which are
valid for any units. This property also provides a consistent framework for including quantities
involving angles in computer algebra programs without ambiguity that may otherwise occur.
This is in contrast to the conventional practice in scientific applications involving
trigonometric or exponential functions of angles where it is assumed that the argument is the
numerical part of the angle when expressed in units of radians. That practice also assumes that
the functions are the corresponding radian-based versions. These assumptions allow angles to
be treated as if they had no dimension and no units, an approach that can lead to important
difficulties such as incorrect factors of 2π, which can be avoided by assigning an independent
dimension to angles.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Angle is a familiar concept that needs no formal definition.
When two lines cross in a plane, two pairs of vertical angles
are formed. Unless the lines are perpendicular, one pair of
angles is acute and the other pair is obtuse. In trigonometry, the
geometric properties of interior angles of right triangles may
be used to derive general relations between various trigono-
metric functions. For example, the formula for the sine of the
sum of two angles in terms of sine and cosine functions of
each of the angles, does not depend on a quantitative specifi-
cation of the angles. That is, when we write sin(α+ β) = sin
α cosβ + cosα sin β we do not specify whether α and β are
measured in degrees or radians or grads, nor do we specify that
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the appropriate functions be used, according to the units of the
arguments. This and other features of angles lead to the often-
repeated (and often misunderstood) assertion that angles do
not have units and therefore do not have a dimension (or that
their dimension is unity).

By contrast, when angles appear in physical measurements,
it is essential to specify the unit of measure for the angle. For
example, it would be of no use to specify the angle subtended
by the distance between two stars, or the angle between two
laser beams, or the rotation angle of a wheel without giving
units like arcseconds or milliradians or full rotations.

All of these comments about plane angles apply equally to
phase angles. For example, the amplitude of an electromag-
netic plane wave of fixed frequency and propagation vector
(wave vector) is proportional to a sine function of an argu-
ment, a phase angle, whose value changes linearly with time
and distance. If we want to report the difference in phase angle
between two spacetime points, for example, we must specify
the units—degrees or radians or cycles (full rotations).
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Expressions for the frequencies of periodic phenomena are
particularly important examples of the difficulties associated
with units for angles. Frequency is the time rate of change of
the phase angle associated with a periodic series of events.
As such, it is just as important that the units of frequency
reflect the units of angles as that they express the units of
time. Frequencies are usually given in units of radians per sec-
ond, or hertz, meaning cycles (full rotations or revolutions of
the phase angle) per second. Less often, frequencies might
be given in degrees per second or revolutions per minute.
Unfortunately, sometimes frequencies are simply expressed
in inverse seconds, leading to confusion about what the unit
really is.

If we agree that angles have units, we must also agree
that they have a dimension, the dimension of angle, which is
independent of other dimensions like length, time, or mass.
Sometimes it is argued that angles do not have an indepen-
dent dimension, or that the dimension is unity, because the
dimension of angle is length divided by length. The justifica-
tion given for this is that one may measure angles as arc length
divided by radius vector length. However, this ratio gives only
the numerical factor of the quantity expression for the angle.
To completely specify the angle in this case, the unit radian
must be included. Without a unit, the numerical factor could
be the number of degrees of the angle, or anything else. More-
over, that is only one way in which angle might be measured
[1]. In fact, the most common way of measuring angles is with
a protractor, whereby unknown angles are compared to known
angles. This is exactly analogous to measuring an unknown
length by comparing it to known lengths. Angles and lengths
are manifestly different kinds of physical quantities, and each
has its associated dimension.

While we argue that angles are physical quantities distinct
from other physical quantities or combinations of such quan-
tities, and that they therefore have their own dimension and
unit, we recognize, as have many others, that this represents
a choice, and that that choice is made in part for the sake of
convenience. The number of base units in the metric system
(now the SI, the International System of Units) has changed
over time, because of changes in what was considered to be
most useful and convenient. The scientific community could
have decided to have a unit system in which temperature is
measured in joules, but we find it to be more convenient to
measure temperature in kelvins. In some sense we have the
same kind of choice here with angles, and we argue that the
advantage achieved by giving angles a separate dimension and
unit outweigh any difficulties.

Our examination of the question of how to deal with units
for angles is of interest not only for the important goal of a
consistent, unambiguous use of units in physics, but also for
systematically including units for angles in algebraic com-
puter software applications. The current practice of sometimes
ignoring the units and resolving any resulting ambiguity by
human judgment is not suitable for the digital age.

There is a long history of discussions of the role of units
for angles [1–59]. The underlying ideas in this paper have, in

essence, been considered in a multitude of earlier works. Here,
we have synthesized many of those ideas, while paying partic-
ular attention to making the proposed reforms compatible with
modern computer processing.

While it would be impractical for every argument in a
numerical computation of trigonometric functions to explic-
itly carry an angle, having radians, degrees, . . . , in general
(compound) units that describe physical quantities, such as
angular velocity or differential cross sections, are crucial for
automated symbolic computations where results from one
computation have to be dimensionally consistent with the next
computation step. For instance, Mathematica [60] considers
angles to have an angle dimension. But in the absence of
a well-defined standard, dimensional inconsistencies result-
ing from conversions such as ‘1 Hz = 1/s’ are unavoidable
and currently require hard-coded heuristics rather than a fully
deterministic algorithmic treatment. The issue of the consistent
presence of an angle dimension becomes even more ampli-
fied at the level of equations that involve physical quantities
(see sections 5.4 and 5.5 below).

Although there is a diversity of opinions on the question,
the overwhelming majority of papers on the subject acknowl-
edge that angles should be regarded as having an indepen-
dent dimension and associated units. The difficulty of con-
sistently implementing this proposal is also often cited as
a reason for maintaining the acknowledged unsatisfactory
status quo.

2. Unit notation

Following Maxwell [4] and the general practice of inter-
national metrology, we specify a physical quantity Q by a
coefficient and a unit as

Q = {Q}[Q], (1)

where {Q} is a real or complex number as in Maxwell’s
definition (or more generally an operator, matrix, etc), and [Q]
is the unit. Or to be more precise, we may write

Q = {Q}[Q][Q], (2)

because the value of {Q} depends on the unit [Q].
For example, a length of 3 metres, L = 3 m, corresponds to

{L} = 3 and [L] = m. The choice of units in equation (1) is
not unique, so we may have

Q = {Q}[Q]1[Q]1 = {Q}[Q]2 [Q]2. (3)

For the previous example, the length L could (ill-advisedly)
also be expressed in inches as

L = 3 m = 118.11 . . . in, (4)

where [L]1 = m, {L}m = 3, [L]2 = in, and {L}in = 118.11. . . .
The quantity Q is the same physical quantity, regardless of the
unit in which it is expressed.
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3. Units for angles

When we consider angles as measurable physical quantities,
as with other such quantities, an angle θ may be expressed as

θ = {θ}[θ][θ], (5)

where [θ] is one of any number of possible units. The list
includes degree, minute, second, radian, revolution or cycle,
grad, among other possible choices, although those mentioned
are commonly used. We focus on degree, radian, and revolu-
tion (i.e., cycle or period) as examples, with the understanding
that generalization to other units is always possible.

An example of a particular angle, expressed in different
units, is

θ = 45 deg where [θ] = deg and {θ}deg = 45, (6)

θ =
π

4
rad where [θ] = rad and {θ}rad =

π

4
, (7)

θ =
1
8

rev where [θ] = rev and {θ}rev =
1
8

, (8)

where the notation 45 deg ≡ 45◦ is used, and rev is the abbre-
viation for revolution. In these examples, the unit provides
necessary information about the angle. If an angle were simply
given as a number, say ‘θ = 45’, with no unit, it could taken
to be 45 rad, which is a perfectly respectable angle, although
it may not be the one the author had in mind.

The relationship between plane right triangles and the
trigonometric functions is clear. For a given interior angle, the
sine of this angle is the ratio of the length of the side opposite
the angle to the length of the hypotenuse. This is a real number
between 0 and 1. (Here we limit the discussion to real angles,
although the extension to complex angles is considered below.)
Thus the properties of trigonometric functions are based on
geometrical angles, whereas the functions themselves are usu-
ally defined to have numbers as the argument. This apparent
inconsistency will be addressed in section 4.

If we are working in an environment where only numbers
are being used, such as a scientific calculator or traditional
FORTRAN, then the unit ambiguity is avoided if it is recog-
nized that the sine function itself depends on what units are
being used. As is well known, looking up the sine of a number
representing an angle depends on its unit, and vice versa. There
are different trigonometric tables for angles in degrees and for
angles in radians. Similarly, when using a calculator to find
the sine or inverse sine of a number, it is necessary to specify
which unit is being assumed for the input or expected as output
by, for example, touching the Deg/Rad key first. This depen-
dence on the type of sine function being used can be denoted
by writing

sindeg(45) =
1√
2

, (9)

sinrad

(π
4

)
=

1√
2

, (10)

sinrev

(
1
8

)
=

1√
2

, (11)

where the subscript on the name of the function indicates the
unit being assumed for the angle. Similarly, for the inverse
functions, we have

arcsindeg

(
1√
2

)
= 45, (12)

arcsinrad

(
1√
2

)
=

π

4
, (13)

arcsinrev

(
1√
2

)
=

1
8

, (14)

where the particular arcsine function being used determines
the value for the inverse. However, even if the type of arc-
sine function is specified, the result on the right-hand side of
equations (12)–(14) has lost that information. As a result, the
numbers 45, π/4, or 1/8 could be degrees, radians, revolu-
tions, or anything else. As humans, we can look back at our
notes and figure it out, but it is useful to retain that information
along with the number, either to provide complete information
about the result or so that it can unambiguously be used for
the next step in a series of calculations. This is the rationale for
using units in the first place, and it is important for information
to be processed by computers.

To accomplish this, specification of the unit is added to the
‘output’ of equations (12)–(14). Thus for the angle θ = 45
deg = π/4 rad = 1/8 rev, we have

θ = arcsindeg

(
1√
2

)
deg = 45 deg, (15)

θ = arcsinrad

(
1√
2

)
rad =

π

4
rad, (16)

θ = arcsinrev

(
1√
2

)
rev =

1
8

rev. (17)

Note that equations (9)–(14) are mapping of numbers to num-
bers without dimensions, but equations (15)–(17) provide
angles with units included. These equations may be general-
ized to an angle θ = {θ}[θ][θ] expressed in any unit [θ], as in
equation (5), by writing

w = sin[θ]

(
{θ}[θ]

)
(18)

and
{θ}[θ] = arcsin[θ](w). (19)

In general, because the sine function is periodic, an infinite
number of angles map into a particular value of the sine func-
tion, so we assume that the formula for the inverse gives angles
in the range: |{θ}[θ]| � 90, π/2, 1/4, as appropriate.

In this section, we have considered the purely numerical
sine and arcsine functions. That is, functions that have real
numbers for both their domains and ranges. The extension to
a sine function of angles with dimensions and any units and to
the corresponding arcsine function that has dimensional angles
as its range is examined in the next section. Of course, this gen-
eralization applies to the cosine and exponential functions and
their inverses as well.
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4. Unit-independent transcendental functions

Here, we consider the concept of ‘complete’ functions [6].
That is, they are independent of the units in which the argu-
ments are expressed. This is a property of trigonometric func-
tions based on plane geometry, which may be derived with
no reference to units for the angles. On the other hand, for
physical applications, it is useful to specify units for both the
arguments of the functions and for the functions themselves.
This has been spelled out in detail above for the three exam-
ples of units of degrees, radians, and revolutions or cycles. For
this purpose, it is useful to make a clear distinction between
trigonometric functions that have angles with dimensions as
arguments and trigonometric functions that have real num-
bers as arguments, as considered in the preceding sections.
In the latter case, the real number is the numerical factor of
the angle when expressed in a particular unit. The terminol-
ogy ‘geometrical angle’ and ‘analytical angle’ for these dif-
fering representations for angles was applied by Romain [8],
although only radian units for the analytic form were con-
sidered at the time. This terminology has been repeated in
many works since then. Here we examine the relation between
complete trigonometric functions and the explicit unit forms
considered in the foregoing.

4.1. Trigonometric functions

To describe complete transcendental functions, it is necessary
to consider generalizations of their derivatives. Angles may
be represented as quantities with the dimension of angle, but
with an arbitrary unit. Infinitesimal changes in an angle corre-
spond to infinitesimal changes in the ratios of the associated
sides of the triangle that includes the angle. This relation-
ship provides a quantitative relation between changes of the
angle and changes of the trigonometric functions. However,
the conventional formula for the derivative,

‘
d

dθ
sin(θ) = cos(θ)’, (20)

is problematic, because the equation is not dimensionally con-
sistent. Both sine and cosine are dimensionless, as they are
ratios of lengths of the sides of a triangle, so the left-hand
side of the equation has the dimension of the inverse of an
angle, and the right-hand side is dimensionless. As mentioned
previously, angles are not intrinsically dimensionless. The con-
sequence of angles not being dimensionless is that the stan-
dard formulas which assume particular units are being used
are not sufficiently general, and it is necessary to reexamine
the relevant formulas to take the dimensionality into account.

To address this, we calculate the derivative as the defining
limit by writing

d
dθ

sin(θ) = lim
Δθ→0

sin(θ +Δθ) − sin(θ)
Δθ

. (21)

From the conventional angle sum identity, based on the geo-
metric properties of triangles and the notation in figure 1, we
have

Figure 1. The triangle (in red) relevant to equations (21)–(24) with
angle Δθ. The hypotenuse has length r, the adjacent side has length
d and the opposite side has length Δh. The arc length of the circle of
radius r subtended by Δθ is Δs.

sin(θ +Δθ) = sin(θ) cos(Δθ) + cos(θ) sin(Δθ)

= sin(θ)
d
r
+ cos(θ)

Δh
r
. (22)

Also from figure 1, it is evident that

lim
Δθ→0

d
r
= 1, (23)

lim
Δθ→0

Δh
Δs

= 1. (24)

Thus,
d

dθ
sin(θ) = C cos(θ), (25)

where

C = lim
Δθ→0

Δs
r Δθ

=
1
r

ds
dθ

. (26)

Note that this provides a dimensionally consistent result for the
derivative. The coefficientC can be evaluated by the integration

C
∫ Θ

0
dθ =

1
r

∫ 2πr

0
ds, (27)

where Θ is the angle of a complete revolution or period of the
sine function

sin(θ +Θ) = sin(θ), (28)

and 2πr is the circumference of a circle of radius r, which
yields

C =
2π
Θ

. (29)

Similarly, for the cosine function, we have

d
dθ

cos(θ) = lim
Δθ→0

cos(θ +Δθ) − cos(θ)
Δθ

, (30)

where

cos(θ +Δθ) = cos(θ) cos(Δθ) − sin(θ) sin(Δθ)

= cos(θ)
d
r
− sin(θ)

Δh
r

, (31)

4
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which gives
d
dθ

cos(θ) = −C sin(θ). (32)

4.2. Exponential function

The complete exponential function of an angle can be defined
in terms of the complete trigonometric functions. This gener-
alization recognizes that the exponential function expressed as
Euler’s number e raised to a power is not a complete function.
In that case the argument is the numerical part of the angle
expressed in radian units, as shown in the next section.

The complete-function definition is

exp(i θ) = cos(θ) + i sin(θ), (33)

where i2 = −1. That is, we do not specify what number is
raised to a power. The derivative follows from the derivatives
of the cosine and sine functions as

d
dθ

exp(i θ) = −C sin θ + i C cos θ

= i C exp(i θ)

= i
2π
Θ

exp(i θ). (34)

We also have exp(0) = 1. With this generalization of the
derivative of the exponential function, one obtains the power
series

exp(i θ) =
∞∑

n=0

1
n!

(
2πi θ
Θ

)n

, (35)

or
exp(i θ) = e2πiθ/Θ. (36)

The expressions on the right-hand side of equations (35) and
(36) are well-defined, because the ratio θ/Θ is just a number
with no unit. Thus the derivation starting from equation (21)
through equation (36) provides an expression for the complete
exponential function with a dimensional argument in terms
of an analytic dimensionless function with no dependence on
units.

The power series for the complete cosine and sine functions,
the real and imaginary parts of equation (35), are

cos(θ) =
∞∑

n=0

(−1)n

(2n)!

(
2πθ
Θ

)2n

, (37)

sin(θ) =
∞∑

n=0

(−1)n

(2n + 1)!

(
2πθ
Θ

)2n+1

. (38)

If
z = exp(iθ) (39)

then the complete logarithmic function is

log(z) = iθ + ikΘ, (40)

where θ is the dimensional geometric angle and k is an inte-
ger. Here the name ‘log’ with no label is meant to signify the
complete logarithmic function, as for the trigonometric and
exponential function names in this paper.

To gain some perspective, it is useful to consider differen-
tiation and integration of the complete logarithmic function to
check the consistency of viewing it as having the dimension of
angle. From equation (34), we have

dz
dθ

=
2πi
Θ

z, (41)

so that
d
dz

log(z) =
d
dz

i θ =
Θ

2π
1
z
. (42)

Thus the derivative of the logarithmic function also has the
correct dimension of angle. (Recall that z is a dimensionless
number.) This can be extended to the power series of log(1 − z)
by noting that

d
dz

log(1 − z) = − Θ

2π
1

1 − z
, (43)

(
d
dz

)n

log(1 − z) = − Θ

2π
(n − 1)!
(1 − z)n

, (44)

which gives

log(1 − z) = − Θ

2π

∞∑
n=1

zn

n
. (45)

To check the integral of log(z), we write

d
dz

z log(z) = log(z) +
Θ

2π
= log(z) +

d
dz

Θ

2π
z, (46)

or
d
dz

(
z log(z) − Θ

2π
z

)
= log(z) (47)

so that ∫
log(z) dz = z log(z) − Θ

2π
z + constant, (48)

where the constant has the dimension of angle. Thus the inte-
gral of the logarithmic function also has the proper unit of
angle. Of course, this expression reduces to the special case
commonly used, where the logarithmic function is assumed to
have the base e and the radian is replaced by 1. That is, log→
ln and Θ→ 2π. In this form, the indefinite integral of ln(z)
is z ln(z) − z.

The exponential function in equation (35) may be ana-
lytically continued to real values of the argument to give

exp(φ) =
∞∑

n=0

1
n!

(
2πφ
Θ

)n

, (49)

which provides the complete hyperbolic functions cosh and
sinh as

cosh(φ) =
exp(φ) + exp(−φ)

2
=

∞∑
n=0

1
(2n)!

(
2πφ
Θ

)2n

, (50)

sinh(φ) =
exp(φ) − exp(−φ)

2
=

∞∑
n=0

1
(2n + 1)!

(
2πφ
Θ

)2n+1

.

(51)

5
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4.3. Explicit unit expressions

4.3.1. Arbitrary units, [θ] = A. To connect to the earlier
sections in which particular units are considered, the expres-
sions in the previous section can be given for a particular, but
arbitrary, choice of unit [θ] = A. In this case, we employ the
relations Θ = {Θ}A A and θ = {θ}A A to write

θ

Θ
=

{θ}A

{Θ}A
, (52)

a ratio that is independent of units. Equation (36) may be
written as

exp(i θ) = expA(i{θ}A) = b i{θ}A
A , (53)

where
bA = e2π/{Θ}A (54)

is the base of the exponential function for the unit A. The
corresponding logarithmic function is

logbA
(z) = i{θ}A + ik{Θ}A, (55)

where
z = b i{θ}A

A . (56)

This can be contrasted to the complete logarithmic function in
equation (40), which has the dimension of angle as its value,
whereas in equation (55) the function is dimensionless. Note
that Re logA(bA) = 1.

We also have

cosA({θ}A) =
b i{θ}A

A + b −i{θ}A
A

2
, (57)

sinA({θ}A) =
b i{θ}A

A − b −i{θ}A
A

2 i
. (58)

4.3.2. Radian unit, A = rad. If A is the radian, we have
{C}rad = 2π/{Θ}rad = 1, brad = e, and

exp(i θ) = exprad(i{θ}rad) = ei{θ}rad , (59)

which is the conventional result. If

z = ei{θ}rad , (60)

then
loge(z) = ln(z) = i{θ}rad + ik2π. (61)

Also

cosrad({θ}rad) =
e i{θ}rad + e −i{θ}rad

2
, (62)

sinrad({θ}rad) =
e i{θ}rad − e −i{θ}rad

2 i
. (63)

As is evident from equations (59)–(63), where {C}rad = 1,
the conventional trigonometric and exponential functions are
implicitly assumed to be based on the radian unit. For example,
the relation that the cosine function is the derivative of the
sine function with no numerical coefficient assumes that

the argument is the numerical factor of the angle expressed
in the radian unit. Similarly, when the exponential function is
written as the base e raised to the power of the argument, it is
assumed that the argument is the numerical factor of the angle
expressed in the radian unit.

4.3.3. Revolution or cycle unit, A = rev. In this case,
{C}rev = 2π/{Θ}rev = 2π, brev = e2π, and

exp(i θ) = exprev(i{θ}rev) = e2πi{θ}rev . (64)

It is important to be aware of the units being considered,
because it is also often implicitly assumed that the revolution
(i.e., cycle or period), rather than the radian, is the suppressed
unit, particularly where the angle denotes phase. For example,
wavelength λ is often taken to be the distance over which a
spatially periodic function undergoes a phase change corre-
sponding to one revolution or cycle rather than one radian. In
the latter case, it is often called the reduced wavelength λ−.
The risk of not taking this into account can and does lead to
errors of 2π. Similarly, frequencies, are commonly expressed
in Hz or cycles s−1 rather than radians s−1, which can also lead
to the same error.

4.3.4. Dimensionless functions. Various forms of the expo-
nential and logarithmic functions are described above in terms
of units for the dimension of angle or phase. For purely numer-
ical (dimensionless) applications, the radian-base forms are
commonly used with no reference to angle units. In such
applications, we have

y = ex, (65)

and
x = ln(y), (66)

where x and y are dimensionless real numbers.
Another commonly used dimensionless base is 10, where

y = 10 x , (67)

and
x = log10(y). (68)

In any of these applications, there is no reference to angle or
phase.

5. Applications

The use of complete transcendental functions can resolve some
apparent mismatches of angle units that appear in commonly
used equations in physics. To examine this, it is useful to dis-
tinguish between ‘unit analysis’ and ‘dimensional analysis’.
As considered here, dimensional analysis is more general in
the sense that a geometrical angle or phase angle may be
expressed in various units, such as degrees, radians, and rev-
olutions or cycles, but in all cases, it has the dimension of
angle, which we denote by A. This can be expressed by writ-
ing 〈θ〉 = A, where θ is an angle and the brackets are used
to denote dimension, in contrast to the notation for the unit
[θ] = rad, for example. Other dimensions that we will consider
here are time, length, mass, and charge denoted by T, L, M,

6
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and Q, respectively. (While the ampere, with dimension
‘current’ is one of the traditional base units of the SI, the
definition of the ampere involves the defining charge of the
electron, Hence, it is natural, when considering electric units,
to focus on the unit coulomb and its associated dimension,
electrical charge.) In all cases, the dimensions on either side
of an equation must be the same.

In the following, examples are given where a dimensional
analysis based on complete functions resolves an apparent
angle unit ambiguity.

5.1. Centripetal acceleration

A familiar relation in physics is the equation for centripetal
acceleration ac of a mass, in uniform circular motion, conven-
tionally given by

ac =
v2

r
= rω2, (69)

where v is the linear velocity of the mass, r is the radius of
the path, and ω is the rotational frequency of the mass. The SI
units of the two terms on the right-hand end of that equation are
m s−2 and m rad2 s−2. There is an obvious mismatch between
these two terms, which is also reflected in the dimensional
analysis which gives LT−2 and LA2 T−2 for the latter two
terms, whereas ac has the dimension LT−2. This difference
can be resolved by deriving the complete expression for the
acceleration from basic principles.

Consider the uniform circular motion of a mass described
by its position in cylindrical coordinates r(r,φ). For motion in
the î, ĵ plane, we have

r(r,φ) = r cos(φ) î + r sin(φ) ĵ, (70)

where φ = ωt. The centripetal acceleration is

ac =
d2

dt2
r(r,φ) = ω2 d2

dφ2
r(r,φ). (71)

From equations (25), (29) and (32), we have

d2

dφ2
cos(φ) = −

(
2π
Θ

)2

cos(φ), (72)

d2

dφ2
sin(φ) = −

(
2π
Θ

)2

sin(φ), (73)

so that

ac = −
(

2πω
Θ

)2

r(r,φ), (74)

or

ac = r

(
2πω
Θ

)2

. (75)

This has proper dimension of LT−2, which resolves the dis-
agreement in equation (69).

For the radian as the angle unit, we have Θ = 2π rad and

ac = rω2
rad, (76)

where ωrad ≡ ω/(1 rad). This means that ac = rω2 is not a
complete equation, although ac = v2/r and equation (75) are,
which resolves the mismatch [61].

5.2. Volume integration

If we do a transformation of a Cartesian volume element to a
volume element in spherical coordinates, we have

〈dx dy dz〉 = L3, (77)

〈
r2 dr sin θ dθ dφ

〉
= L3 A2. (78)

How can this be made consistent?
The transformed coordinates are

x = r sin(θ) cos(φ), (79)

y = r sin(θ) sin(φ), (80)

z = r cos(θ). (81)

The transformation is given by the Jacobian determinant

dx dy dz =

∣∣∣∣∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣∣∣∣∣
dr dθ dφ

=

(
2π
Θ

)2

∣∣∣∣∣∣∣∣

sin(θ) cos(φ) r cos(θ) cos(φ) −r sin(θ) sin(φ)

sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)

cos(θ) −r sin(θ) 0

∣∣∣∣∣∣∣∣
dr dθ dφ

=

(
2π
Θ

)2

r2 dr sin(θ)dθ dφ, (82)

7
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which has the dimension L3, as required. Thus, for an integral,
we have∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z) dx dy dz

=

(
2π
Θ

)2∫ Θ

0

∫ Θ/2

−Θ/2

∫ ∞

0
f (r sin(θ) cos(φ), r sin(θ)

× sin(φ), r cos(θ)) r2 dr sin(θ) dθ dφ. (83)

If the unit for angles is the radian, then Θ = 2π rad, and

sin(θ) = sinrad({θ}rad) ≡ sinrad(θrad) etc. (84)

2π
Θ

dθ = d{θ}rad ≡ dθrad etc. (85)

This gives
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z) dx dy dz

=

∫ 2π

0

∫ π

−π

∫ ∞

0
f (r sinrad(θrad)cosrad(φrad),

r sinrad(θrad)sinrad(φrad), r cosrad(θrad))

× r2 dr sinrad(θrad) dθrad dφrad, (86)

which reduces to the conventional result if the radian label is
dropped:

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z) dx dy dz

=

∫ 2π

0

∫ π

−π

∫ ∞

0
f (r sin(θ) cos(φ), r sin(θ) sin(φ),

r cos(θ)) r2 dr sin(θ) dθ dφ. (87)

5.3. Water waves

The problem of the phase velocity of shallow water waves
provides an interesting case about unit compatibility.

The explicit conventional expression for the phase velocity
is [62]

cp =
ω

k
=

√
gk tanh(kh)

k
=

√
gh

√
tanh(kh)

kh
, (88)

corresponding to

ω2 = gk tanh(kh), (89)

where ω is the frequency of the wave, k = 1/ λ− is the
wavenumber, g is the acceleration of gravity, and h is the
depth of the water. The corresponding dimensions are

〈
ω2

〉
=

A2 T−2, 〈k〉 = AL−1, 〈g〉 = LT−2, and 〈h〉 = L.
The problem is that the left-hand side of equation (89)

has the dimension A2 T−2 and the right-hand side has dimen-
sion AT−2, so that one angle dimension appears to have
been lost in the derivation. This contradiction can be fixed
by repeating the derivation with angles properly taken into

account. Equation (89) follows from solving the equation for
the velocity potential given by [62]

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0, (90)

at z = 0, with the boundary condition

∂ϕ

∂z

∣∣∣∣
z=−h

= 0. (91)

The solution is

ϕ =
cosh k(z + h)

k sinh kh
ωa sin(k · x− ωt), (92)

where a is a normalization constant and kz = 0. Differentiation
gives

∂2ϕ

∂t2
= −

(
2πω
Θ

)2

ϕ, (93)

so that

ω2 =
g
ϕ

(
Θ

2π

)2
∂ϕ

∂z

∣∣∣∣
z=0

= gk
Θ

2π
tanh kh. (94)

The right-hand side has the correct dimension of AT−1.

5.4. Units for the cyclotron resonance frequency

The relevant conventional equation is

ω =
qBc

m
, (95)

whereω is the frequency, q/m is the charge to mass ratio of the
particle, and Bc is the classical magnetic field. The dimensions
are 〈ω〉 = AT−1, 〈q/m〉 = QM−1, and 〈Bc〉 = MT−1 Q−1.

The left-hand side of equation (95) has dimension AT−1

and the right-hand side works out to T−1, so there is a mis-
match of the angle dimension and the equation is not complete.
Moreover, because the right-hand side has dimension T−1, the
current SI prescribes that the unit is s−1, or Hz, which is not
correct (see equation (105)) [63]. As a result, Mathematica
[60], which provides calculations with units, gets regular bug
reports about this. To resolve this problem, we work out the
complete version of this equation.

For motion of a particle of mass m and charge q in the î, ĵ
plane along a circular path of radius r, centered at x = 0, we
have

x = r cos(ωt) î + r sin(ωt) ĵ (96)

v =
d
dt

x =
d
dt

[
r cos(ωt) î + r sin(ωt) ĵ

]
(97)

=
2πω
Θ

[
−r sin(ωt) î + r cos(ωt) ĵ

]
(98)

a =
d
dt

v = −
(

2πω
Θ

)2[
r cos(ωt) î + r sin(ωt) ĵ

]
(99)

= −
(

2πω
Θ

)2

x. (100)
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For a magnetic field given by Bc = −Bck̂, the classical force
is

Fc = qv × Bc = −qBc
2πω
Θ

[
r sin(ωt) ĵ + r cos(ωt) î

]

(101)

= −qBc
2πω
Θ

x. (102)

Thus from Newton’s law, Fc = ma, we have

qBc = m
2πω
Θ

(103)

or

ω =
qBc

m
Θ

2π
. (104)

This is the complete equation, and the dimensions, AT−1,
match.

In SI units, the frequency is

ω =

{
qBc

m

}
×

⎧⎪⎨
⎪⎩

rad s−1

cycles s−1

2π
=

Hz
2π

. (105)

5.5. Classical pendulum

The conventional expression for the small-oscillation fre-
quency ω of a classical pendulum is

ω =

√
g
L

, (106)

where g is the acceleration of gravity and L is the length of the
pendulum arm. The current SI unit for

√
g/L is s−1, which sug-

gests the frequency is in Hz, but, as for the case of the cyclotron
frequency above, this is not correct, as shown by considering
the complete equation calculation.

The equation of motion is

m
d2s(t)

dt2
= −mg sin(θ(t)), (107)

where θ and s are the angle and arc length from the lowest
position of the pendulum, as indicated in figure 2. The mass
cancels out of the equation. We consider small displacements
from the lowest point, so that

sin(θ(t)) =
2πθ(t)
Θ

+ . . . , (108)

according to equation (38). From equations (26) and (29), we
have

2π
Θ

∫
dθ =

1
L

∫
ds, (109)

which provides the relation

s(t) =
2πL
Θ

θ(t). (110)

We thus have

d2θ(t)
dt2

+
g
L
θ(t) = 0. (111)

Figure 2. Classical pendulum.

The general solution is

θ(t) = a sin(ωt) + b cos(ωt), (112)

and so the complete second derivative

d2θ(t)
dt2

= −
(

2πω
Θ

)2

θ(t) (113)

gives

ω =

√
g
L

Θ

2π
, (114)

which has the dimension AT−1. Finally, the proper SI expres-
sion for ω is

ω =

√{ g
L

}
rad s−1. (115)

5.6. Jacobi elliptic functions

The Jacobi elliptic functions sn(u, k) and cn(u, k) may be
viewed as generalizations of the sine and cosine functions
because [64]

sn(u, 0) = sin u, (116)

cn(u, 0) = cos u. (117)

It is natural to seek the generalization of the differentiation
formula in equation (25).

The functions, together with dn(u, k), are defined by

u =

∫ φ

0

dφ′√
1 − k2 sin2 φ′

, (118)

sn(u, k) = sin φ, (119)

9
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cn(u, k) = cos φ, (120)

dn(u, k) =
√

1 − k2 sin2 φ. (121)

From equation (118), we have

du
dφ

=
1√

1 − k2 sin2 φ
, (122)

and so

d
du

sn(u, k) =
d

du
sin φ =

(
d

dφ
sin φ

)
dφ
du

=
2π
Θ

cos φ

√
1 − k2 sin2 φ

=
2π
Θ

cn(u, k) dn(u, k), (123)

which reduces to the conventional result for the derivative of
sn(u, k) if rad is replaced by 1 and agrees with equation (25)
if k = 0.

6. Conclusion

Here, we review some key points relevant to the treatment of
angles and their units in equations of physics. In this context,
the term angle is used to mean both plane angle and phase
angle.

A guiding principle is that the use and properties of units
(e.g. their dimensions) is a matter of choice. Units are not a
property of nature, but rather they provide a rational method
for quantitatively describing natural phenomena with math-
ematical equations. Of course, the choice is not completely
arbitrary, because the units must fit into a logically consistent
framework.

We may choose to assign to angles an independent dimen-
sion with associated units, or not. The current practice is gen-
erally to treat angles simply as numbers and view them as
dimensionless. However, as should be evident from the forgo-
ing sections, this point of view makes unstated assumptions. In
particular, it assumes that the number representing an angle is
the numerical factor of the angle expressed in the radian unit.
This view also assumes that the radian unit is not actually a
unit but is just the number one. An advantage of this approach
is that it represents the status quo and as such requires no fur-
ther thought or analysis. However, this leads to ambiguities
and errors as described in the forgoing examples. Because the
radian is a coherent unit in the SI, there is no numerical factor
when the radian is restored, as illustrated by equations (105)
and (115). On the other hand, Hz is not a coherent unit as seen
in equation (105) where there is an additional factor of 1/2π.

Such ambiguities and errors can be avoided by assigning
an independent dimension to angles and treating this dimen-
sion in a consistent way, insuring the correct dimension for
the equations of physics, as well as insuring the proper units
among the various units that might be used for angles. The use
of complete functions and complete equations is a powerful
tool to insure a consistent treatment of dimension and units.
An important advantage is that it eliminates errors of a factor

of 2π as shown in the examples. The assignment of a dimen-
sion to angles also raises awareness that there are built-in hid-
den assumptions in the widely accepted way in which angles
and trigonometric functions of angles are treated. Moreover,
the analysis of the consequences of assigning a dimension to
angles provides a generalization of the relevant equations, so
that they become complete equations. As already noted, com-
plete equations do not assume that the quantities appearing in
them are expressed in particular units.

To elaborate on this point, we consider the example, often
used by theoretical physicists, of setting the speed of light
c to 1 [65]. When this is done, c disappears from equations
that would otherwise show it. Then we have E = m instead
of E = mc2, which introduces an ambiguity between energy
and mass. Restoration of c at the end of a calculation requires
judgment by the practitioner. This is completely analogous to
the practice of setting C = 2π/Θ, as defined in the preced-
ing sections, equal to 1, which is the default for the ‘radian
assumption’. If C is restored, it shows up as an additional
parameter in some equations, just as c shows up when it is
not 1.

The cost of this restoration of C = 2π/Θ is the task of deter-
mining where it belongs in equations in which it has been
replaced by 1, by default. In this paper, the generalization has
been worked out for transcendental functions and applied in
various examples.
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