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Abstract: Conventional frame-based image sensors suffer greatly from high energy consumption and latency. Mimicking neuro-
biological  structures  and  functionalities  of  the  retina  provides  a  promising  way  to  build  a  neuromorphic  vision  sensor  with
highly  efficient  image  processing.  In  this  review  article,  we  will  start  with  a  brief  introduction  to  explain  the  working  mechan-
ism and the challenges of conventional frame-based image sensors, and introduce the structure and functions of biological ret-
ina.  In  the  main  section,  we  will  overview  recent  developments  in  neuromorphic  vision  sensors,  including  the  silicon  retina
based  on  conventional  Si  CMOS  digital  technologies,  and  the  neuromorphic  vision  sensors  with  the  implementation  of  emer-
ging devices. Finally, we will provide a brief outline of the prospects and outlook for the development of this field.
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1.  Introduction

The  computational  methods  of  biological  nervous  sys-
tem  have  been  applied  to  artificial  information  processing
units  for  decades[1, 2].  The  “neuromorphic  engineering”  was
first proposed by Carver Mead in the late 1980s, in which elec-
tronic  systems  can  mimic  neural  architecture  in  biological
nervous  systems  to  improve  information  processing  effi-
ciency[3, 4].  Neuromorphic  electronic  systems  are  analogue,
self-adaptive,  error-tolerant  and  scalable,  and  they  can  pro-
cess information energy-efficiently, asynchronously, event-driv-
en,  and  quickly.  Neuromorphic  electronic  systems  are  much
more  energy  efficient,  which  consume  ten  thousand  times
less power than digital  systems, and are much more resistant
to  component  degradation  and  failure  than  traditional  digit-
al systems[5].

Neuromorphic functions can be implemented by conven-
tional digital very large-scale integration (VLSI) based on tran-
sistors  or  emerging  devices.  The  integrated  circuits  based  on
complementary  metal–oxide–semiconductor  (CMOS)  field-
effect  transistor  (FET)  can  realize  models  of  voltage-con-
trolled  neurons  and  synapses[6].  But  they  face  an  important
challenge  in  large-scale  integrations,  because  typically  more
than  dozens  of  transistors  are  used  to  realize  the  function  of
one synapse or neuron[7]. In recent years, a few types of emer-
ging devices, such as resistive switching memories[8, 9], phase-
change  memories[10, 11],  synaptic  transistors[12, 13],  and  atom
switch  memories[14],  have  been  proposed  to  mimic  synaptic
functions.  Artificial  synapses  with  these  devices  have  advant-
ages of  small  cell  size,  simple device structure,  low operating
voltage, and ease of large-scale integration.

In  conventional  imaging systems,  the image sensing and

processing  units  are  physically  separated,  which  causes  high
power consumption because of data movement between sens-
ing  and  computing  units,  greatly  limiting  their  applications
with  increasing  demand  for  low-power  and  real-time  pro-
cessing.  Inspired by the low-power and high-efficient  charac-
teristics  of  human  eye,  there  have  been  lots  of  works  about
emulating  the  functions  of  human  eye  with  semiconductor
devices and circuits, including silicon retina[15, 16], optoelectron-
ic random-access memory (ORAM) vision sensors[17], neural net-
work (NN) vision sensors[18−21] and hemispherically shaped vis-
ion sensors[22, 23].

2.  Conventional frame-based image sensors

Current mainstream image sensors are based on semicon-
ductor  technology.  There  are  mainly  two  types,  including
charge­  coupled  devices  (CCD)[24, 25] and  CMOS  active  pixel
sensors  (APS)[26, 27].  Conventional  visual  system  consists  of
two-dimensional (2D) image sensors array (CCD or APS) to per-
ceive  the  external  environmental  information  inputs  as  digit-
al images, a memory unit to store the captured visual informa-
tion,  and  a  processing  unit  to  execute  computer  vision  al-
gorithms  for  image-processing  tasks,  such  as  object  recogni-
tion and object tracking[28−32]. These sensors are driven by arti-
ficially created timing and controlled by artificially created di-
gital  signals,  and acquire  the  visual  information as  a  series  of
‘‘snapshot’’  images  (frames).  The  quantized  visual  informa-
tion  in  time  domain  at  a  predetermined  frame  rate  is  not
related  to  the  dynamics  present  in  the  real  world.  Each
recorded frame conveys  the information from all  pixels,  even
the  information  is  unchanged  since  the  last  frame  was  ac-
quired[33].

Conventional  image sensors  face  great  limitations  result-
ing  from  the  frame-based  operation.  Low  frame  rate  gives
rise to the loss of key information, while a high frame rate inev-
itably  results  in  too  much  redundant  data.  This  shortcoming
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becomes  very  obvious  for  data-intensive  and  delay-sensitive
applications,  such  as  high-speed  motor  control,  autonomous
robot navigation, etc. These sensors generate a lot of redund-
ant  data  from  the  frame-based  acquisition  of  visual  informa-
tion. The large amount of visual information is usually conver-
ted  to  a  digital  electronic  format  and  pass  to  a  computing
unit  for  image  processing.  The  data  movement  between
sensors  and  processing  unit  lead  to  delays  (latency),  in-
creased  communication  bandwidth  requirements,  and  high-
power consumption.

3.  Biological retina and synapse

Human  visual  system  mainly  consists  of  eye,  optic  nerve
and  brain  visual  cortex  (Fig.  1(a)).  The  visual  information  is
first passed through the lens, and then perceived and prepro-
cessed  by  the  retina  in  the  human  eye,  and  the  extracted  in-
formation  is  further  passed  through  optic  nerves  and  finally
processed in the visual  cortex.  A principal  function of the hu-
man retina is to extract key features of the input visual informa-
tion by preprocessing operations, which aims to discard the re-
dundant  visual  data  and  substantially  accelerates  further  in-
formation processing in the human brain,  such as  pattern re-
cognition and interpretation[34].

As  illustrated by Fig.  1(b),  the  human retina  is  a  complex
structure that consist of three primary layers: the photorecept-
or layer, the outer plexiform layer, and the inner plexiform lay-
er[15, 35].  More  than  50  kinds  of  different  cells  are  distributed
in  the  human  retina,  such  as  the  photoreceptors,  the  bipolar
cells,  and  the  ganglion  cells.  The  photoreceptors  (e.g.,  cones
for  color  recognition  and  sharp  vision,  rods  for  vision  under
dim  light  conditions[36])  transduce  visual  signals  into  electric-
al potential, while the bipolar cells and ganglion cells serve as
the critical harbors for shaping input signals, which can acceler-
ate  perception  in  the  brain.  The  bipolar  cells  can  be  divided

to the ON cells  and the OFF cells.  The former  code for  bright
and  the  latter  code  for  dark  spatio–temporal  contrast
changes.  The  bipolar  and  ganglion  cells  can  be  further  di-
vided  into  two  different  groups:  the  cells  with  more  sus-
tained responses and the cells with more transient responses.
There  are  at  least  two  parallel  pathways:  the  magno-cellular
pathway, where cells are sensitive to temporal changes in the
scene (biological “where” system), and the parvo-cellular path-
way where  cells  are  sensitive  to  forms in  the scene (biologic-
al “what” system)[15, 37].

In  the  (retina)  nerve  system,  the  synapse  is  a  specialized
structure  that  allows  a  neuron  to  pass  chemical  or  electrical
signals  to  another  neuron  or  to  the  target  effector  cell
(Fig.  2(c))[38].  The  synapse  possessed  special  synaptic  plasti-
city (the change in synaptic weight),  which is the fundament-
al  mechanism  of  memory  and  learning  process  in  biological
nervous system.  In  general,  synaptic  plasticity  can be divided
into two main parts: short-term plasticity (STP) and long-term
plasticity  (LTP)[39, 40].  STP  in  the  hippocampus  is  a  temporal
change in synaptic connection and will rapidly decay to its ori-
ginal  state  after  removing  the  external  spike.  In  contrast,  LTP
is a longstanding transform in synaptic connection and it is cru-
cial for memory and learning.

The human retina has a hierarchical  biostructure for con-
nectivity  among neurons  with  distinct  functionalities  and en-
ables simultaneous sensing and preprocessing of visual inform-
ation.  Emulating  the  structures  and  functionalities  of  the  hu-
man retina  provide a  promising and effective  way to  achieve
vision  sensor  with  low-power  and  high-efficient  image  pro-
cessing.

4.  Conventional neuromorphic vision sensor

In  conventional  neuromorphic  vision  devices,  also  name
as  silicon  retina,  various  vision  sensors  based  on  integrated
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Fig. 1. (Color online) Schematic diagram of (a) the composition of human visual system, (b) multilayer structure of human retina, and (c) a biologic-
al synapse.
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circuits  have  been  developed  over  the  past  two  decades,  in-
cluding  temporal  contrast  vision  sensors,  gradient-based
sensors,  edge-orientation  sensitive  sensors,  and  optical  flow
sensors[41−43].  However,  very  few  have  been  used  in  practical
applications,  because  of  circuit  complexity,  low  integration
level,  and high noise level[33].  More recently,  there have been
many  improvements  in  vision  sensors  based  on  biological
principles  in  terms  of  performance  and  practicality.  These
sensors include dynamic vison sensors (DVS)[44−46], asynchron-
ous  time-based  image  sensors  (ATIS)[47, 48],  and  recently  de-
veloped dynamic and active pixel vision sensors (DAVIS)[49, 50].
There  have  a  few  excellent  reviews  on  conventional  neur-
omorphic  vision  sensors[15, 16, 33, 37].  In  this  section,  we  will
show a brief introduction of their research progress.

4.1.  DVS

To  implement  a  practicable  vision  sensor  based  on  the
functions of the magno-cellular transient pathway in retina, re-
searchers proposed the DVS[44−46, 51]. The DVS emulates a sim-
plified three-layer retina (Fig.  2(a))  to realize an abstraction of
information flow through the photoreceptor, bipolar, and gan-
glion  cells.  The  photo-current  is  logarithmically  encoded  by
the photoreceptor circuit and output voltage Vp. The differenti-
ation circuit amplifies the changes with high precision and out-
put Vdiff.  The  comparators  compare  the Vdiff against  global
thresholds that are offset  from the reset voltage to detect in-
creasing  and  decreasing  changes.  If Vdiff is  larger  than  the
threshold,  an  ON  or  OFF  event  is  generated. Fig.  2(b) shows
the mechanism of  operation of  each pixel. Fig.  2(c) illustrates
the  response  of  a  DVS  pixel  array  to  a  natural  scene.  Events
are  collected  over  tens  of  milliseconds,  and  displayed  as  an
event  map  image  with  ON  (going  brighter)  and  OFF  (going
darker) events, as depicted by white and black dots. Figs. 2(d)
and 2(e) illustrate  an example of  an array  of  DVS observing a
light  dot  on an analog oscilloscope screen moving in  a  spiral
pattern,  which  is  repeated  at  a  frequency  of  500  Hz,  exhibit-

ing  the  fast,  high-temporal-resolution  operation  of  event  re-
sponse[15].

The DVS is sensitive to the scene dynamics and directly re-
sponds  to  changes,  i.e.,  temporal  contrast  with  individual
pixel.  Compared with frame-based image sensors, the gain of
DVS  is  dramatic  in  terms  of  temporal  resolution.  Other  para-
meters, e.g., the intra-scene dynamic range, also greatly bene-
fit from the bio-inspired approach. The DVS is suitable for the
machine vision applications, involving high-speed motion de-
tection and analysis, object tracking, and shape recognition.

4.2.  ATIS

Posch  and  co-workers  developed  the  ATIS[47, 48],  which
incorporates  the  “where”  and  “what”  system.  As  shown  in
Fig.  3(a),  this  ATIS  sensor  consists  of  an  event-based  change
detector  (CD)  that  detects  changes  in  the  event  stream  and
an  exposure  measurement  (EM)  unit  based  on  pulse  width
modulation  (PWM)  that  gains  event-based  intensity  values.
An  EM  is  executed  when  it  is  triggered  by  a  change  detec-
tion.  As  a  result,  two  types  of  asynchronous  address-event
representation  (AER)  events,  encoding  change  and  exposure
information,  are  generated  and  transmitted  separately
(Fig.  3(b)).  From a biological  retina point  of  view,  the CD unit
(similar  to  DVS  pixel)  works  as  a  magno-cellular  structure
(“where” system), while the additional EM unit represents biolo-
gical  parvo-cellular  structure  (“what”  system). Fig.  3(c) dis-
play  an  example  of  change  detection  events  recorded  dur-
ing a short time window and associated gray-level updates at
the corresponding pixel positions.

For  the  first  time,  the  development  of  ATIS  showed  the
possibility  to obtain static  and dynamic image information in
parallel.  The  duality  opens  up  a  large  number  of  new  pro-
cessing  capabilities,  because  many  conventional  machine
vision  algorithms  do  not  work  with  asynchronous  event
streams.  The  special  design  and  operating  principle  of  the
ATIS also offers further advantages and makes it close to prac-
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Fig. 2. (Color online) (a) Abstracted pixel schematic of DVS. (b) Principle of operation[45]. (c) The response of a DVS array to a person moving in the
field of view of the sensor. (d) A DVS array is observing a 500 Hz spiral on an analog oscilloscope. (e) The DVS output is a continuous sequence of
address events (x, y) in time. Red and blue events represent an increase or decrease change of light, respectively[15].
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tical  applications.  For  example,  video  compression  at  sensor
level can be achieved by suppressing temporal redundancies.
In  addition,  the  extremely  high  temporal  resolution  (50–
100 kfps equivalent) and the dynamic range of 143 dB are re-
markable.

4.3.  DAVIS

DAVIS is another approach to combine dynamic and stat-
ic  information  into  a  single  pixel[49, 50],  which  combines  both
DVS  and  APS.  As  presented  in Fig.  4(a),  the  DVS  circuit  is  re-
sponsible for the asynchronous detection of logarithmic inten-
sity  changes,  generating  dynamic  scene  information.  The
second  component  of  the  DAVIS  is  an  APS,  similar  to  the  EM
of  ATIS,  which  is  responsible  for  absolute  exposure  measure-
ment  and  generates  gray-scale  images  in  addition  to  the

event  stream.  Different  from  ATIS,  the  additional  component
of  DAVIS  is  not  asynchronous.  The  APS  circuit  receives  static
scene  information  by  frame-based  sampling  of  the  intensit-
ies. Fig. 4(b) illustrates the combined output of both DVS and
APS  readouts  when  a  person  is  catching  a  football.  The  out-
put  illustrates  the  sparseness  of  the  DVS  output  (colored),  in
which  the  events  are  mainly  produced  by  the  moving  ball
while  most  pixels  stay  silent.  Inset  of Fig.  4(b) demonstrates
the  temporal  accuracy  and  resolution  of  the  DVS  events.  A  5
ms slice of DVS events (colored) acquired 75 ms after the APS
frame  highlights  the  contours  of  the  ball. Fig.  4(c) shows  a
space-time view of the DVS data generated by a 100 Hz spin-
ning  rectangle.  Because  of  the  asynchronous  nature  of  the
DVS output, the sensor can capture high-speed motion exceed-
ing 40 000 pixels/s.

 

Log pixel illumination

Change detection

Change events

Gray level events
Gray value determination

EM

Triggers

ATIS pixel

CD  (DVS)

VDD

Reset
Vreset

Vpix

Vref

Vou

OFF

−A−A

ON

PD

Vlog Vdiff

C1
C2

I Reset

(a) (b) (c)
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Fig. 4. (Color online) The circuit and output of DAVIS vision sensor. (a) The pixel circuit of DAVIS pixel combines an APS with a DVS. (b) A snap-
shot from DAVIS sensors illustrating a captured APS frame in gray scale with the DVS events in color. The football was flying toward the person. In-
set: 5 ms of output right after the frame capture of the football. (c) Space-time 3D view of DVS events during 40 ms of a white rectangle spinning
on a black disk at 100 Hz. Green events are older and red events are newer[49].
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The DAVIS has the advantages over the DVS circuit. For ex-
ample,  the  APS  shares  same  one  photodiode  with  the  DVS
component.  The  simple  readout  circuit  of  DAVIS  only  has  a
few  transistors,  increasing  the  DVS  pixel  area  by  approxim-
ately  5%.  It  allows  to  capture  framed  images,  but  collects  re-
dundant data.

4.4.  Summary of a conventional neuromorphic vision

sensor

In this part, we compare three representative neuromorph-
ic  vision sensors based on conventional  Si  CMOS technology.
Table  1 documents  the  specifications  of  the  reported  DVS,
ATIS,  and  DAVIS.  The  DVS  is  a  bioinspired  “where”  system
that  responds  to  relative  illumination  changes.  The  ATIS  is  a
combination  of  bioinspired  “where”  and  “what”  systems  that
contains  event-based CD and PWM-based EM units.  Both the
DVS  and  the  ATIS  are  based  on  an  asynchronous  event-driv-
en method,  and the single pixel  can handle its  own visual  in-
formation individually and autonomously. The DAVIS is a com-
bination of an asynchronous “where” system and a synchron-
ous “what” system. It  outputs image frames by the synchron-
ous  APS  pathway  and  simultaneously  outputs  events  by  the
asynchronous DVS pathway.

The  common  shortcomings  of  these  technologies  are
very  complex  circuit,  a  large  pixel  area  and  a  low  filling
factor.  Conventional  neuromorphic  vision  sensors  have  been
applied to various computer vision and robotics applications,
but  still  face  the  challenges  in  terms  of  low-integration  level,
high-power consumption and latency.

5.  Emerging neuromorphic vision sensors

The  neuromorphic  vision  sensors  implemented  by  silic-
on  retina  based  on  CMOS  technology  suffer  from  the  short-
comings of circuit complexity, large pixel area, low fill  factors,
and high noise level. In contrast to the complex structure of sil-
icon  retina,  the  neuromorphic  vision  sensors  based  on  emer-
ging  devices  is  simple  and  compact,  which  potentially  de-
creases  power  consumption  and  increases  response  speed.
For example, ORAM devices offer great opportunities for multi-
functional  integration  of  optical  sensing,  data  storage  and
pre-processing functions into one single device[52]. Recently, re-
searchers reported emerging neuromorphic vision sensors, in-
clude  ORAM  vision  sensors[17],  NN  vision  sensors[18−21] and
hemispherically shaped vision sensors[22, 23].

5.1.  ORAM vision sensors

Compare  to  traditional  random-access  memories  (RAMs)
that  are usually  manipulated by electrical  triggers,  ORAM has
alternative  way  modulated  by  optical  excitation,  which  en-
ables the ORAM to integrate the functions of both optical sens-
ing  and  preprocessing,  and  can  realize  the  part  of  the  func-
tions  of  artificial  retina.  The  ORAM  shows  great  potential  for
bridging  the  gap  between  optical  sensing  and  neuromorph-
ic  computing  which  results  in  simplifying  the  neuromorphic
vision  sensor  circuitry  and  reducing  the  power  consumption.
The current  ORAMs are  mainly  divided into  two types:  three-
terminal  FET  memory[53−60] and  two-terminal  optoelectronic
resistive random-access memories (ORRAMs)[17, 52, 61−63].

Researchers  have  demonstrated  excellent  works  about
ORAM  vision  sensors[17, 53, 58, 64].  For  example,  Zhou et  al.[17]

demonstrated  an  ORRAM  synaptic  device  with  two-terminal
of Pd/MoOx/ITO (indium tin oxide) that shows ultraviolet (UV)
light sensing, optically triggered non-volatile and volatile resi-
stance  switching  and  light-tunable  synaptic  behaviors
(Figs.  5(a) and 5(b)).  The  ORRAM  arrays  allow  us  to  achieve
the  functions  of  image  sensing  and  memorization,  as  well  as
preprocessing  (Fig.  5(c)).  The  image  preprocessing  functions
are  implemented  based  on  the  light-dosage  tunable  plasti-
city of  the ORRAM device.  The input and output images after
the preprocessing are compared in Fig. 5(d). After the prepro-
cessing  through  ORRAM  arrays,  the  body  features  of  the  let-
ters were highlighted and the background noise signals were
smoothed.  The image preprocessing can further  improve the
efficiencies  in  image  recognition  process. Fig.  5(e) shows  the
recognition  rate  of  visual  systems  with  and  without  ORRAM,
and  illustrates  obvious  improvements  in  the  recognition  rate
and efficiency with the use of  ORRAMs for  the image prepro-
cessing.

5.2.  NN vision sensors

For  conventional  image  processing  with  neuromorphic
computing,  the  optical  signals  in  the  images  are  first  conver-
ted to electronic signals through image sensors. The electron-
ic  signals  are  then  transferred  to  the  neural  network  for  fur-
ther  complicated  processing.  The  movement  of  redundant
data between sensor and processing unit leads to delays and
high-power  consumption  in  conventional  vision  system[65].
To  solve  these  problems,  researchers  demonstrated  NN  vis-
ion  sensors  with  in-sensor  computing  ability  for  highly  effi-
cient processing. Tian et al.[21] reported an artificial optical syn-

Table 1.   Comparison of three representative silicon retina.

Parameter DVS[45, 46] ATIS[47, 48] DAVIS[49, 50]

Major function Asynchronous temporal contrast event
detection

DVS + Intensity measurement for each
event

DVS + Synchronous imaging

Noise 2.1% 0.25% 0.4% APS, 3.5% DVS
Pixel complexity 26 transistors, 3 caps, 1 photodiode 77 transistors, 3 caps, 2 photodiodes 47 transistors, 3 caps,

1 photodiode
Power consumption
(mW)

24 50–175 5–14

Resolution 128 × 128 304 × 240 240 × 180
Pixel size (μm2) 40 × 40 30 × 30 18.5 × 18.5
Latency (μs) 15 4 3
Dynamic range 120 dB 125 dB 130 dB DVS, 51 dB APS
Date of publication 2008 2011 2013
Application Dynamic scenes Surveillance Dynamic scenes
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apse  array  based  on  a  graphene/2D  perovskite  heterostruc-
ture  for  pattern  recognition,  showing  a  high  accuracy  rate  of
80%  (Fig.  6(a)).  Seo et  al.[20] further  demonstrated  an  optic-
neural  network  (ONN)  based  on  WSe2/h-BN  heterostructure
for  emulating  the  function  of  color-mixed  pattern  recogni-
tion  in  human  vision  (Fig.  6(b)).  The  recognition  rate  for
mixed-color  digits  in  ONN  is  about  60%  higher  than  that  of
NN.

More  recently,  Wang et  al.[19] designed  an  image  sensor
based  on  the  WSe2/h-BN/Al2O3 van  der  Waals  (vdW)  hetero-
structures  (Fig.  6(c)).  The  NN  based  on  such  devices  can
achieve  reconfigurable  vision  sensor  for  simultaneously  im-

age  sensing  and  processing.  In  addition,  a  convolutional  NN
formed by the sensors can be trained to classify the input im-
ages. Mennel and co-workers[18] implemented an artificial neu-
ral  network  (ANN)  in  their  image  sensor  that  simultaneously
senses and process optical images near real-time. The NN im-
age  sensor  consists  of N pixels  and M subpixels  (Fig.  6(d)).
Each  subpixel  is  based  on  a  WSe2 photodiode  with  tunable
photo-responsivity  by  split-gate  voltage.  They  demonstrated
both  supervised  (e.g.,  a  classifier  (Fig.  6(e)))  and  unsuper-
vised  learning  (e.g.,  an  autoencoder  (Fig.  6(f))  algorithms  us-
ing  the  NN  vision  sensor.  The  classification  and  autoencod-
ing  can  be  implemented  at  a  throughput  of  20  million  bits
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Fig. 5. (Color online) Neuromorphic vision sensors based on ORRAM. (a) I–V characteristics of ORRAM with optical set and electrical reset. Inset,
schematic structure of the MoOx ORRAM and its cross-section scanning electron microscopy (SEM) image. Scale bar, 100 nm. (b) Light-tunable syn-
aptic characteristics under light intensity of 0.22, 0.45, 0.65 and 0.88 mW/cm2, respectively, with a pulse width of 200 ms. (c) Illustrations of the im-
age memory function of ORRAM array. The letter F was stimulated with a light intensity of 0.88 mW/cm2.  (d) Images before (left columns) and
after (right columns) ORRAM image sensor pre-processing. (e) The image recognition rate with and without ORRAM image preprocessing[17].
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Fig. 6. (Color online) NN vision sensors. (a) Schematic of the 2D Perovskite/Graphene optical synaptic device[21]. (b) Schematic of an artificial op-
tic-neural synapse device based on h-BN/WSe2 heterostructure[20]. (c) Optical image of WSe2/h-BN/Al2O3 vdW heterostructure based device (left)
and its structural diagram (right)[19]. (d) Optical microscope image of the photodiode array consisting of 3 × 3 pixels. The upper right: Schematic
of a WSe2 photodiode. The bottom right: SEM image of the pixel. (e) Schematics of the classifier. (f) Schematics of the autoencoder[18].
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per second with optically projected onto the chip. The NN vis-
ion  sensor  device  has  great  potential  to  large-scale  integra-
tion and provides various algorithms for ultrafast machine vis-
ion applications.

5.3.  Hemispherically shaped vision sensors

A  hemispherical  vision  sensor  design  with  broad  view
angle  is  important  for  humanoid  robots.  However,  commer-
cial  CCD,  APS image sensors  and silicon retina are mainly de-
pendent on planner device structures by conventional planar
microfabrication processes, which is difficult to fabricate hemi-
spherical  devices.  Previously,  there have been some reported
works  about  hemispherical  image  sensors  by  utilize  curved,
folded,  or  individually  assembled  photodetectors[22, 30, 32, 66].
These  photodetectors  were  mainly  pre-fabricated  on  planar
substrates, then transferred to a hemispherical supporting ma-
terial  or  folded into  a  hemispherical  shape.  This  design limits
the density of  the imager pixels,  because space had to be re-
served between them to allow for the transfer or folding.

More recently, Gu et al.[23] demonstrated an artificial visu-
al  system  using  a  spherical  biomimetic  electrochemical  eye
(EC-EYE)  with  a  hemispherical  retina.  They  constructed  the
artificial  retina  with  a  high-density  perovskite  nanowire
(Figs.  7(a) and 7(b)).  An  ionic  liquid  electrolyte  was  used  as  a
front-side common contact to the nanowires, and liquid-met-
al  wires  (eutectic  gallium  indium  in  soft  rubber  tubes)  were
used as back contacts to the nanowire photosensors, mimick-
ing  human  nerve  fibers  behind  the  retina.  Device  characte-
rizations  show  that  the  EC-EYE  has  a  high  responsivity
(303.2  mA/W)  (Fig.  6(c)),  a  reasonable  response  speed  (re-
sponse time 19.2 ms,  recovery time 23.9 ms) (Fig.  6(d)),  a  low
detection  limit  (0.3 μW/cm2)  and  a  wide  field  of  view  (100°)
(Fig.  6(e)).  In  addition  to  its  structural  similarity  with  a  hu-
man  eye,  the  hemispherical  artificial  retina  has  a  nanowire
density  much  higher  than  that  of  photoreceptors  in  a  hu-
man  retina  and  can  thus  potentially  achieve  higher  image
resolution  (4.6  ×  108 cm–2).  The  authors  also  demonstrated
the  image-sensing  functions  of  the  biomimetic  device  by  re-

constructing  the  optical  patterns  projected  onto  the  device
(Fig.  7(f)).  This  work  may  lead  to  biomimetic  photosensing
devices  that  can  be  used  in  a  wide  spectrum  of  technologic-
al applications.

5.4.  Summary of emerging neuromorphic vision sensor

In  this  section,  we  summarize  the  state-of-the-art  pro-
gress and performance of neuromorphic vision sensors based
on various emerging devices. Table 2 compares various emer-
ging  devices  based  neuromorphic  vision  sensors.  ORAM  syn-
aptic devices allow for achieving the functions of image sens-
ing  and  preprocessing,  as  well  as  memory,  showing  promise
in  reducing  the  complex  circuitry  for  an  artificial  visual  sys-
tem.  However,  the  ORAM  requires  the  operation  process  of
optically SET and electrically RESET, which limits its further ap-
plication  in  neuromorphic  network.  Furthermore,  it  still  re-
quires  to  further  reduce  the  energy  consumption,  compar-
able  to  per  synaptic  operation  in  a  biological  neural  network
(10–15 J)[67].

NN  image  sensors  based  on  various  semiconductor  ma-
terials,  especially  2D  materials  can  simultaneously  perceive
and process optical  images information near real-time, which
show  great  potential  for  ultrafast  machine  vision  applicat-
ions[64].  However, this type of neuromorphic visual system for
self-driving automobile and robotics will  need to capture ste-
reo  dynamic  images  with  a  wide  field  of  view.  Its  planar
shape will limit its further application[22].

Hemispherically shaped image sensors have high similar-
ity  with  human  eye  structure,  which  is  expected  to  achieve
high  imaging  resolution  and  a  wide  FOV.  Such  a  biomimetic
eye  has  great  potential  applications  in  humanoid  robots  and
human eye prosthesis. However, the pixels in the hemispheric-
ally  shaped  image  sensors  consist  of  photodetectors  without
the functions of  information memory and preprocessing.  The
light  information  converts  to  electric  signals  and  then  trans-
fer to an external information processing unit, like convention-
al  digital  visual  system.  Moreover,  the  fabrication  process  in-
volves some costly and low-throughput steps.
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Fig. 7. (Color online) A hemispherical retina based on perovskite nanowire array and its properties. (a) Side view of a completed EC-EYE. (b) The
structure diagram of the EC-EYE. (c) Photocurrent and responsivity depend on light intensity of a perovskite nanowire photoreceptor. (d) I–V char-
acteristics and the response of individual pixels. (e) The comparison of field of view (FOV) of the planar and hemispherical image sensors. (f) The re-
constructed letter ‘A’ image of EC-EYE and its projection on a flat plane[23].
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6.  Perspectives

Leveraged on matured Si CMOS technologies, most of ex-
isting works about neuromorphic vision sensors are based on
the Si  integrated circuits,  such as silicon retina.  Silicon retinas
have  been  developed  for  decades,  and  were  demonstrated
with  several  representative  prototypes,  such  as  DVS,  ATIS,
and  DVAIS.  However,  they  have  faced  an  obvious  shortcom-
ing  of  high-density  integrations  due  to  its  circuit  complexity,
large pixel area, low fill factors and poor uniformity of pixel re-
sponse  characteristics[45].  Silicon  retina  are  mainly  fabricated
by  mainstream  planar  microfabrication  processes,  which
makes it difficult to construct hemispherical shape, greatly re-
stricts  the applications of  wide-field camera,  and leads to the
optical aberration. In addition, their intrinsically digital charac-
teristics  results  in  the  inefficiency  of  implementing  neur-
omorphic algorithms.

By exploiting emerging devices with analogue characteris-
tics  and  new  working  principle,  it  can  offer  alternative  ap-
proaches  to  realize  neuromorphic  vision  sensors  with  high
energy  efficiency  and  high  response  speed.  Although  in-
tense  progress  has  been  obtained  in  emerging  devices  for
neuromorphic  vision  sensor  applications,  there  are  still  some
grand challenges. For example, during the learning and forget-
ting  process,  light  stimuli  is  mainly  used  to  achieve  potenti-
ation  behavior,  whereas  electric  stimuli  is  utilized  for  the  de-
pression behavior. Hence, it also requires to obtain the habitu-
ation  characteristics  under  light  stimulus.  Thus,  it  is  import-
ant  to  emulate  sophisticated  neural  functionalities  through
the  optical  modulation.  In  addition,  the  2D  shape  of  existing
vision  sensor  arrays  also  hinder  the  development  of  wide-
field  cameras.  For  hemispherically  shaped image sensors,  the
complexity  and  cost  of  the  fabrication  process  are  obvious
problems. In the future, how to make full use of optoelectron-
ic  devices to form a large-scale hemispherical  shaped NN im-
age  sensor  is  an  important  research  direction,  which  is  ex-
pected  to  realize  a  low-power  consumption,  real-time,  and

highly bionic machine vision system.
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