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Abstract

The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing.
However, current high-performance data processing architectures/frameworks are not well suited for astronomers
because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-
source distributed computing framework to support rapidly developing high-performance processing pipelines of
astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs
facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data
processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we
present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and
simple programming interfaces, but also a flexible means of scaling up the number of interacting entities.
OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-
performance data processing system of astronomical telescopes and for significantly reducing software
development expenses.

Key words: instrumentation: interferometers – methods: data analysis – methods: numerical – techniques: image
processing – techniques: interferometric

Online material: color figures

1. Introduction

An increasing number of high-performance, high-precision,
high-resolution telescopes have been used for astronomical
observations. In the last decade, the data obtained by these
observations have exponentially increased. The Sloan Digital
Sky Survey (SDSS) telescope, for example, produces approxi-
mately 200 GB of data every night, adding to a database that
was approximately 50 TB in 2012 (Feigelson & Babu 2012). In
addition, the Large Synoptic Survey Telescope has a three-
billion-pixel digital camera and produces 5–10 TB of data each
night (Andersen 2012; Feigelson & Babu 2012). As the number
of large data sets obtained in this way has drastically increased,
many challenging problems have developed that demand
prompt and effective solutions. Among these solutions are
efficient distributed algorithms and frameworks, which can
help address the scalability and performance requirements
required by modern astronomical data processing.

Message Passing Interface (MPI) and MapReduce are two of
the most significant approaches in high-performance comput-
ing research. However, in general, MPI is rarely selected for

developing real-time data processing systems because it does
not provide standardized fault tolerance interfaces and
semantics. Although extensive research (Rodrguez et al.
2007, p. 153; Walters & Chaudhary 2009; Hursey et al.
2011) has been conducted in this area, few available tools exist
to help parallel programmers enhance their applications with
fault tolerance support. Moreover, the exploitation of MPI is
impeded by difficulties in software development. The original
existing serial algorithms or programs must be modified or
recreated to achieve performance improvement (Galizia
et al. 2014).
The renowned MapReduce paradigm (Dean & Ghemawat

2010), on the other hand, has been attracting considerable
interest and is currently considered the best selection of a
framework for large-scale data processing. Although different
research groups have developed some astronomical image
processing techniques by leveraging MapReduce (Wiley et al.
2011; Szul & Bednarz 2014), only a few astronomical data
processing pipelines have been developed using the
MapReduce framework.
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Overall, the existing distributed processing platforms are not
yet well suited for astronomy. On one hand, most big data
frameworks are heavily dependent on Java or Scala, whereas
scientists are more likely to be familiar with Python or C++.
On the other hand, it is not easy to simply copy or reuse the
mature methods and frameworks of big data processing from
the Internet. This is because the number of computing nodes of
an astronomical project is far smaller than that of the Internet.
Moreover, it is difficult to guarantee the processing perfor-
mance in a limited computing environment. Meanwhile, the
procedures and requirements of astronomical data processing
pipelines are likewise different. Many attributes, such as
scalability, real-time processing, and fault tolerance, are
strongly demanded by the pipeline design.

Based on the above considerations, the main aim of our
study is the design and implementation of a flexible
architectural framework referred to as OpenCluster, which
provides a distributed processing solution for huge amounts of
astronomical data over few nodes or a cluster. In this paper, we
discuss the OpenCluster design principles and detail its
implementations. We highlight a case study of a method of
designing a data processing pipeline for a telescope by using
OpenCluster.

The remainder of this paper is organized as follows. In
Section 2, we briefly overview related works on the methods
and architectures of distributed processing. In Section 3, we
present the OpenCluster design and implementation details as
well as key technologies. In Section 4, we briefly introduce
APIs of OpenCluster. In Section 5, OpenCluster use cases are
presented. Section 6 describes the experiments performed to
evaluate various performance aspects of the proposed archi-
tecture. Section 7 gives the discussions about OpenCluster.
Finally, Section 8 provides our conclusions and directions for
future work.

2. Related Work

In recent years, a surge of research activity in developing
frameworks for distributed computing applications has
occurred. Actually, the idea of using corporate and personal
computing resources for solving computing tasks appeared
more than 30 years ago. More recently, approximately ten years
ago, various organizations began to use systems such as MPI
cluster and Map/Reduce on account of advancements in global
and local networks.

The first widely used distributed computing technique was
the grid which was proposed by Foster et al. (2001). Grid
computing is distinguished from conventional distributed
computing by its focus on large-scale resource sharing,
innovative applications, and, in some cases, high-performance
orientations. Open Grid Services Architecture (OGSA) is
known as the next generation of grid architecture. Coupled
with web service technology, OGSA is the most outstanding

extension of service-oriented architecture (Czajkowski
et al. 2001). A renowned example of distributed computing is
the SETI@home project (setiathome.berkeley.edu). The project
employs the computers of volunteers to filter signals from the
Search for Extraterrestrial Intelligence (SETI) radio telescopes
to search for extraterrestrial intelligence (Lebofsky et al. 2001;
Kalyaev & Korovin 2014). However, SETI@home enables use
of private computing resources because it was created to solve
only easily decomposed tasks that can be divided into non-
coherent pieces.
MPI is another de facto standard for modeling a parallel

program on a distributed memory system. Currently, the two
major open-source MPI implementation code bases are Open-
MPI and MPICH2 (Adams et al. 2015). In the astronomical
field, the tools characterized by HPC were built based on MPI,
such as BDMPI, which was developed by the author of (Lasalle
& Karypis 2014), and Mechanic, which was developed by the
author of (Sonina et al. 2014). MPI is also widely used for
scientific image processing in heterogeneous systems (Galizia
et al. 2014).
In the last decade, the most ubiquitous framework has been

Apache Hadoop, an open-source software framework for
storage and large-scale processing of data sets on clusters of
commodity hardware that can reliably scale to thousands of
nodes and petabytes of data (Dean & Ghemawat 2008; Szul &
Bednarz 2014). Apache Hadoop implements the MapReduce
computational paradigm. Currently, Apache Hadoop is not just
a framework; it is an ecosystem comprised of MapReduce and
Hadoop distributed file systems, as well as a few related
projects (Hive (Thusoo et al. 2009), HBase (Vora 2011), and
Pig (Samak et al. 2012)). Wiley et al. presented a method of
using Hadoop to implement a scalable image-processing
pipeline for the SDSS imaging database. They additionally
described an approach to adapting an image co-addition to the
MapReduce framework (Wiley et al. 2011). Furthermore,
Tapiador et al. presented a framework as a thin layer on top of
Hadoop without addressing a specific interface to the lower-
level distributed system implementation (Hadoop) Tapiador
et al. (2014). In addition, Ekanayake et al. designed a high-
energy physics data analysis framework that was embedded in
the MapReduce system by means of wrappers (in the Map and
Reduce phases) and external storage. They additionally
designed CGL-MapReduce, a streaming-based MapReduce
implementation Ekanayake et al. (2008).
In addition to Hadoop, the frameworks that fit the

MapReduce paradigm, such as Spark (Zaharia et al. 2010, p.
10), Flink (Flink 2015), and streaming technologies, such as
Storm (Marz et al. 2015), are also widely used for enterprise
and big data applications. These tools are largely driven by
Internet companies and are most readily applied to web and
business data.
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3. OpenCluster

3.1. Motivation

We confronted many challenges while developing a high-
performance data processing system for Mingantu Ultrawide
Spectral Radioheliograph (MUSER) with MPI, MapReduce,
Spark, and other frameworks. We realized the existence
of limitations in current frameworks despite their effective-
ness in general information technology. Obviously, using
an existing solution of distributed data processing is an
obviously preferable scheme that would save time. However,
as mentioned above, MapReduce models are not well
suited to astronomical data processing because the data
format must be processed. The raw data generated by the
observational equipment completely differs from the Internet
data in terms of the amount, format, and potential users.
Most existing big data frameworks are primarily intended
for text-based data. The frameworks are written in (or
ported to) Java. Reading and writing binary file formats,
which are commonly used in astronomical research, are not
straightforward.

To solve the problems of massive astronomical data
processing, it is necessary to develop a framework that is
cost-effective and can be simply used for all data processing

systems. The framework should be able to run on hetero-
geneous systems and support different operating systems.
Considering that few programming experts exist for the
communication model and data exchange in an astronomical
project team, the prospective framework should be capable of
providing high-level interfaces with programming ease and
using modern interpreted scripting languages with object-
oriented features.

3.2. Fundamental Model

The processing of scientific data is similar to the production
of industrial products. In general, a product experiences
several phases, such as manufacturing, packaging, and
shipping, before it is brought to market. Figure 1 presents a
schematic of production. Many managers who supervise
a large group of employees respectively control the
product procedure. The managers assign the related produc-
tion tasks to specific workers. When a production process
ends, the product is transitioned to the next procedure. In
production, several public services, such as printing, phone
use, and providing of meals, should be provisioned to all
employees.
To construct a distributed computing framework for massive

data processing, the model of modern industry can be

Figure 1. Abstract process of traditional production.
(A color version of this figure is available in the online journal.)
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referenced. In fact, the data processing procedure is very
similar to industrial production. First, the astronomical
telescope produces raw observational data. These data should
be processed in a sequence of steps.

OpenCluster was designed to provide a unified framework
that can easily support large distributed computation in a
computer cluster environment. A system based on OpenCluster
can be developed in a straightforward and efficient manner.
The overall objective of OpenCluster is to permit a collection
of heterogeneous machines on a network to be viewed as a
general purpose concurrent computation resource. OpenCluster
provides the communication backend based on sockets. It
enables them to run on heterogeneous, geographically
dispersed machines.

OpenCluster was built in-house with minimal software
requirements. Moreover, it does not depend on a particular
middleware or analysis framework, thereby fostering greater
flexibility in the installation. OpenCluster additionally includes
a built-in monitoring system with no dependencies on external
tools for this purpose. These properties make OpenCluster a
very lightweight yet powerful tool and extend its scope beyond
astronomical applications.

To devise an abstract model for OpenCluster, we adapt
components from the modern industrial assembly line. Five
main elements comprise the OpenCluster abstract model:
factory, workshop, manager, worker, and service, (see
Figure 2).

1. Factory A logical registry that contains all information
about workshops, managers, workers, and services. It
adopts the master/slave model to avoid a single-point
failure.

2. Workshop A computational node, which refers to a real
computer in a common area. A daemon process runs in
the workshop to communicate with the factory instance
and to report information and status updates.

3. Manager A particular task or job manager that requests
services and assigns tasks to workers.

4. Worker A process that runs in a workshop (computer).
The workers wait for the call from managers.

5. Service A process similar to that of a worker. The service
can be invoked by managers, workers, or even external
applications.

3.3. OpenCluster Implementation

We ultimately selected Python to implement OpenCluster.
Python is not effective for developing high-performance data
processing software. Nevertheless, many astronomical scien-
tists prefer Python on account of its simplicity and elegance. In
addition, Python has a large user and developer base, and many
scientific libraries are available for it. Most importantly, many
emerging and mature programs exist in it for scientific
computations written by astronomical scientists. These pro-
grams can be seamlessly and easily integrated into Open-
Cluster. To this end, we created five main base classes for

Figure 2. Relational diagram of OpenCluster components.
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implementing the functions of Factory, WorkShop, Manager,
Worker, and Service. The other classes are derived from these
five base classes.

3.3.1. Factory

The core component of OpenCluster, Factory administers one
or more workshops. As a register center, all workshops,
managers, workers, and services should first register to the
factory. In general, we can launch at least two factory instances.
One is a single master; the others are multi-slaves. These factory
instances can run on a specified node or different physical nodes.
If any connection information of the factory master changes, the
factory master will synchronize the updated information to all
slaves. Therefore, all slaves theoretically have the same
information as the master. When a master factory failure occurs,
the cluster selects one factory from slaves as the new master
factory. It then immediately switches in real time to the factory.
Thus, no single-point failure of the factory exists.

3.3.2. Workshop

We typically handle a real computing server in the cluster as
a workshop. There are many workers or service instances
running in the workshop. As a Linux daemon, Node Daemon
runs in the background on each workshop of the cluster,
respectively. It is responsible for managing workers, monitor-
ing their resource usages (CPU, memory, and network), and
reporting updates to the factory. The service interfaces
provided by Node Daemon can be used to start or stop a
new worker/service instance. On startup, Node Daemon
registers to the factory and sends resource information of the
node. A heart beat mechanism is used to monitor the
connection between Node Daemon and the factory. If the
factory does not receive the heartbeat, it can determine that
problems occurred in the workshop. After a specific time
period, the factory will remove the registration of the timeout
Node Daemon. If Node Daemon does not receive the heartbeat,
it will decide that problems exist with the current leader of the
factories and a new leader is requested.

3.3.3. Worker

The worker is assigned to perform a task specified by the
manager and returns the results to the manager. After the
worker instance is successfully started, it attempts to connect to
the leader factory. It then submits the information, including
connection information, types of workers, and so on. After the
information communication, the worker enters a listening state
and awaits a call from the manager.

OpenCluster provides only a base class of workers (worker.
py), which includes a function (perform) for executing tasks
and setting attributes, such as the host, port, and work type
(defined in the constructor). Workers defined by the user must

inherit from the base class and override the function. The
function perform has an argument with the WorkPiece type and
returns a WorkPiece value. Section 3.3.5 discusses details of
WorkPiece. In Section 4, we describe a method of extending a
base class and implementing user-defined workers.
The set of methods defined by this base class include, but are

not limited to, these functions. Additional functions also exist,
such as the interaction with the factory, the heartbeat, and
communication with managers, which all are hidden within the
higher hierarchy of the base worker class. The user is not
concerned with the part of the functions. Each worker instance
is executed as an isolated process and also a socket server. This
enables multiple worker processes to run in one node.
However, the number of processes created in one node should
work in harmony with the CPU core number. If we establish a
greater number of processes than the core number, it will only
reduce the processing speed.

3.3.4. Manager

The manager is responsible for creating a job to be run,
querying the factory, and expecting the factory to provide its
workers or services with metadata containing the endpoint
address and port of the provider matching the query. It
additionally finds a series of suitable workers that can run the
job and dispatch the job to these workers. When the manager is
started, it looks up the list of workers who have registered in
the factory and dispatches the job to the available workers. The
workers then accept this request, perform the computing tasks,
and return the results to the manager. The entire task can
contain multiple managers. Like the worker, the scheduling
logic of the manager is programmed by developers. Developers
can freely control the scheduling process and assume different
strategies. The manager is considered an entry to the computing
tasks or an initial stage of a chain process.
The manager can invoke worker instances in an asynchro-

nous or synchronous way. OpenCluster provides a lightweight
thread pool implementation by which users can easily
implement multi-threading. It depends on the ability of the
computing node in which the manager resides to maximize the
reuse of multi-core CPUs. OpenCluster additionally provides a
manager base class (manager.py), which includes the methods
for scheduling tasks (a function named schedule (task)). User-
defined managers must inherit from the base class and override
the function of the schedule. The function of the schedule
includes only the argument of typeWorkPiece. When it returns,
the task is finished, and the manager will notify the factory of
the corresponding task statistics.

3.3.5. WorkPeice

To simplify programming, DataItem is added to Open-
Cluster, which inherits from the Python dictionary Python
(2014) and provides a set of convenient functions. DataItem
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can be regarded as an unordered set of key/value pairs indexed
by keys, which can be any immutable types. Strings and
numbers can both act as keys. The value can hold arbitrary data
formats. Thus, we can send any data structures, such as text and
binary data. This means that DataItem can accept any number
or type of input parameters. It can also return any number or
type of output results. Because OpenCluster is a framework, it
should not assume the type and quantity of input and output
parameters that are user-defined.

3.4. Deployment and Operation

OpenCluster is easy to deploy on a system. We only need to
copy all files into a specific directory and set the related files
with appropriate permissions. A web application was devel-
oped using the web.py Webpy.org (2015) framework to control
the starting and stopping of OpenCluster. It also can present the
status of all operational nodes, managers, services, and
workers. The status updates and statistics are reported by the
clients to the factory. They provide useful information for
monitoring the processing progress and for detecting errors.
The updates include status changes and information about the
execution host as well as manager statistics. The web server
can run as a stand-alone daemon or as a CGI script within a
more robust web server. The web interface additionally
provides the functionality to control worker and service
instances by authenticated users. Other features of the interface
include graphs displaying resources usage and the number of
managers in various states. Figure 3 shows a screenshot of the
OpenCluster interactive interface.

Furthermore, OpenCluster has a variety of configurations for
fine-tuning the behaviors of factories, managers, and workers.
Each configuration has a default value defined in the file config.
ini, where users can override these configurations. To run a
cluster, users must first code the creation of a factory object and
execute the factory start function.

4. OpenCluster APIs

We provide several APIs to help the user rapidly develop
applications under OpenCluster. At a high level, each Open-
Cluster application consists of a manager program that runs the
users main function, and several worker programs that receive
tasks from managers in a cluster. The object-oriented method is
adopted to implement a user-defined manager and worker. The
complex codes, such as network communication, multi-
threading, and task scheduling, are well wrapped so that users
do not need to address them. To write an OpenCluster
application, users must only implement the user-defined
managers and workers by inheriting the base classes Worker
and Manager. Both Worker and Manager include a required
method (outlined in red in Figure 4) to be overridden.

The base class Manager includes two methods:

1. getAvailableWorkers(worker_type), which returns avail-
able instances of the worker by a given type of worker in
a cluster.

2. schedule(task), which is an empty method that must be
redefined in a derived class by users. In general, users
split a task into sub-tasks, which they dispatch to
available worker.

In the same way, the key methods of the class Worker are as
follows:

1. ready(type, host, port). When invoked, it denotes that the
worker is ready to accept the command. The first
parameter is the type or identity of the worker; the
second and third parameters are the host and port to
which the worker instance binds.

2. perform(task) is an empty method that users must
override with detailed data processing logic. The
parameter is task and the return result is a type of
WorkPiece.

3. interrupt() interrupts the running worker instance.

It is very easy to develop applications on the OpenCluster
framework. The pseudo-code (see Tables 1 and 2) shows how
to program a classic example WordCount, which is a simple
application that counts the number of occurrences of each word
in a given file.
Class WordCountManager is derived from the base class of

Manager. The method schedule (lines 4 to 11) is overridden to
split the task, dispatch sub-tasks to workers in turn, combine a
result from the worker into the entire wordcount (line 10), and
finally return the result. Class WordCountWorker inherits from
the base class of Worker. It overrides the perform function
(lines 5 to 13), where it receives the work from WordCount-
Manager. It then opens the file, splits the line into tokens
separated by whitespaces, and returns a work piece containing
a key-value pair of áá ñ ñword , count . In the main entry (lines 15
to 16), a worker instance is declared. After invoking the ready
function, the worker with type WordCount listens to 9280 on
all network interfaces.

5. MUSER Pipeline Using OpenCluster

OpenCluster is adaptable for developing various distributed
computing schemes. It ports an existing project into a
distributed computing environment with minimal customiza-
tion and modification. OpenCluster users must only be familiar
with the basic usage and astronomical data processing of
Python; they are not required to have professional skills or
experience in distributed computing or multithreading.
The data processing pipeline is one of the most important

parts of MUSER. The massive data generated by MUSER
should be processed in real time. MUSER generates 1.92 GB
data per minute (low frequency sub-array; MUSER-I) and
3.6 GB per minute (high frequency sub-array; MUSER-II)

6

Publications of the Astronomical Society of the Pacific, 129:024001 (14pp), 2017 February Wei et al.



(Wang et al. 2015). The amount of raw data can be up to
approximately 4.4 TB every day, assuming 10 h of observation
occurs in one day.

To fully leverage the computing resource, we designed a
pipeline that can concurrently support multiple run levels. An
architecture diagram of the MUSER data processing pipeline is
shown in Figure 5. Owing to the limitations of the hardware
platform, the MUSER data processing pipeline simultaneously
supports two modes of data processing. One is a batch data
processing mode, which is used for scientific research. The
other is real-time data processing, which is used for observa-
tional monitoring in daily observations. The tasks of real-time
data processing must be guaranteed to ensure daily observation.
Meanwhile, other batch data processing tasks can be processed
when the computer platform has spare resources.

We thus present two examples of designing data processing
pipelines with multiple concurrent tasks using OpenCluster.

The observational data from digital receiver includes the two
parts: (1) Full raw data which will be stored in the file storage

cluster. (2) Sampled raw data (a quick-look display of raw data
for data quality assurance) which will be sent periodically as a
TCP/IP stream. When the astronomers submit a special
integration request at a certain time of date via a web page,
the data processing system is in charge of providing the
UVFITS files or images with batch computing. Meanwhile, the
system receives the real-time sampled data, and execute the
same computing procedure for web publication. Focused on the
two computing mode, in this section, we present two
illustrative cases of the ability of OpenCluster to run vast
amount of data processing on astronomical data using a few
commands. The examples have been applied in actual
environment of MUSER.
Example 1. Data file format transformation.The function of

the file format transformation is necessary for follow-up
scientific research and cooperation. However, the MUSER
raw observational data cannot be directly shared because the
raw data have no corresponding observation information, such
as observational targets and target positions. To implement a

Figure 3. OpenCluster monitoring interface.
(A color version of this figure is available in the online journal.)
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function by OpenCluster to support converting raw data to a
UVFITS file, we first developed a standalone function named
generateUVFITS, which can open a specified file, read related
raw data in a time range, and finally generate UVFITS files to
the specified output directory. To integrate generateUVFITS
into the OpenCluster platform, we simply create three classes:

1. UVFITSWorker, which is derived from the Worker class
and wrapped generateUVFITS in the perform() method;

2. UVFITSManager, which is derived from the Manager
class. The schedule() method is implemented to schedule
UVFITSWorker; and

3. UVFITSTaskDispatcher, which is a daemon program that
periodically polls a task queue to determine if it has a new
task to submit.

In the UVFITSTaskDispatcher implementation, we created a
thread pool of UVFITSManager (the optimum pool size should
be equal to the number of CPU cores) to improve the
computing performance. When a new batch computing task is
submitted, this task is stored in a task queue. If there is an
available thread in the thread pool of UVFITSManager,
UVFITSTaskDispatcher presents an UVFITSManager instance
from the thread pool. It then begins to run a new thread. When

Figure 4. Class hierarchy of Manager and Worker.
(A color version of this figure is available in the online journal.)
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the UVFITSManager thread is started, the corresponding task is
split into a series of sub-tasks. Then, the subtask is processed
by the corresponding UVFITSWorker, respectively and con-
currently. The flow diagram of data file format transformation
is shown in Figure 6.

Example 2. Real-time imaging and monitoring.As a synth-
etic aperture radio interferometer, MUSER can ultimately
produce high-resolution images after performing a series of
processes, such as gridding, flagging, and CLEAN (Antonio
et al. 2014). Among them, the de-convolution for dirty images
is a highly time-intensive calculation procedure that must be
executed on machines with GPUs.

OpenCluster can design a complex data processing pipeline
that can utilize hybrid hardware resources for MUSER. For
example, observational data monitoring is a necessary function
for daily observation. A dedicated computer will send raw
observational data every five minutes to the monitoring system.

The monitoring system should receive the data and imaging as
quickly as possible. OpenCluster provides a TCP socket server
implementation that can be reused by users to extend user-
defined data handling in a pooling thread style.

1. MUSERSocketServer is an asynchronous TCP socket
server. After new data is received, a new MUSERIma-
geManager instance is invoked to process the new data;

2. MUSERImageManager, which is derived from the
Manager class and rewritten as a schedule() method.
The task is split into sub-tasks, and it arranges sub-tasks
for MUSERImageWorker instances;

3. MUSERImageWorker, which is derived from the Worker
class, is deployed on machines with GPUs. The business
logics are implemented in the perform() method to fetch
sub-tasks, perform computing issues (i.e., CLEAN, FFT,
and so on), and return results.

When MUSERSocketServer receives raw observational data,
it creates a new MUSERImageManager instance and stores the
instance in a thread pool queue. When resources are available
to be run, the instance of MUSERImageManager is presented
from the queue and executed. MUSERImageManager splits
one observational data item into multiple slices according to the
band and frequency. It dispatches each slice to multiple
MUSERImageWorker instances to respectively generate
images.The flow diagram of data file format transformation is
shown in Figure 7.

6. Performance Assessment

We conducted an assessment of OpenCluster because it is
fully developed by Python and some developers may question
its performance. We thus conducted a series of experiments to
specifically assess its availability and performance. The testing
environment was a computing cluster with five machines
connected by gigabit Ethernet. Each cluster node had two-way
Intel Xeon E5-2640 v2 CPUs, 2.0 GHz, 16 cores, and 1 TB of
hard disk space. They ran runs on the CentOS 7 operating
system. In addition, we used two GPU-enable nodes equipped
with NVIDIA Tesla C2060. We exclusively assigned one node
as the master factory, which also provided web monitoring, and
other nodes as workers.

6.1. Message/Data Transmission

In the first test, we compared the performances of MPI and
OpenCluster by evaluating the message/data transmission
(e.g., binary data transmission). Five nodes were used, and
16 worker instances were started on each node while assessing
the OpenCluster performance. To compare it with MPI
(programming with MPICH) (mpich.org 2015), we established
five nodes and created 16 processes on each node, respectively.
The network environment of two platforms was the same. We

Table 1
Pseudo Code for Manager of WordCount in OpenCluster

1 class WordCountManager(Manager) :
2 def __init__ (self):
3 super(WordCountManager,self).__init__()
4 def schedule(self, task):
5 workers=self.getAvailableWorkers(“WordCount”)
6 wordcount={}
7 # split task into sub tasks
8 for worker in workers:
9 subwordcount=worker.perform(tasks[i])
10 wordcount.join(subwordcount)
11 return wordcount
12 if __name__==“__main__” :
13 manager=WordCountManager()
14 result=manager.schedule“/logs/wordcount.log”)
15 print result

Table 2
Pseudo Code for Worker of WordCount in OpenCluster

1 class WordCountWorker (Worker):
2 def __init__ (self, name):
3 super(WordCountWorker,self).__init__()
4 self.name=name
5 def perform (self, work):
6 filepath=work.getObj(“filepath”)
7 offset=work.getObj(“offset”)
8 size=work.getObj(“size”)
9 wordcount={}
10 # count the number of words
11 wp=WorkPiece(True)
12 wp.setObj(“word,”wordcount)
13 return wp
14 if __name__==“__main__” :
15 worker=WordCountWorker(“worker1”)
16 worker.ready(“WordCount,”“*,”9280)
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benchmarked the time consumption when sending a certain size
of blocks from one node to others (or from one worker to other
workers). The performance with a block size of 100 KB is
shown in Figure 8; Figure 9 shows the results using 5 MB. By
comparing the performance results between 100 K and 5 M of
the block size, we determined that OpenCluster performed
much worse than MPI. However, the performance became
much closer to MPI when using a large block. This result
implied that remote parallel execution was not favorable for

smaller tasks because the overhead for communication between
the machines was significant compared to MPI.
In the second test, with same 5 node and a split raw file

which contains 1000 frames, we evaluated the time used of
UVFITS generation in MUSER for consecutive increasing
quantity of worker instances (as shown in Figure 10). The
existing code of UVFITS generation can only be executed on a
standalone machine without multi-threading, and execution
time for 1 frame is about 0.3 s. When with massive quantity of

Figure 5. MUSER data processing pipeline.
(A color version of this figure is available in the online journal.)

Figure 6. Flow diagram of data file format transformation.
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frames, it is a high time-consuming procedure. But with
extensibility provided by OpenCluster, the same code can be
executed on 5 nodes, and each node contains 16 instances.
With the increase of quantity of worker instances, the cost of
generation decreases linearly. We are enabled to conclude that
the calculation can be performed in parallel, thus reducing the
total computing time.

6.2. Execution Performance

In the second test, with the same five nodes and a split raw file
containing 1000 frames, we evaluated the time used during
UVFITS generation in MUSER for consecutive increasing of the
quantity of worker instances (as shown in Figure 10). The
existing code of UVFITS generation could only be executed on a
standalone machine without multi-threading, and the execution

Figure 7. Flow diagram of real-time imaging.

Figure 8. Comparison of elapsed times for binary transmission using a 100 K size block between OpenCluster and MPI.

(A color version of this figure is available in the online journal.)
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time for one frame was approximately 0.3 s. With a massive
quantity of frames, it was a very time-intensive procedure.
However, with the extensibility provided by OpenCluster, the
same code could be executed on five nodes, and each node
contained 16 instances. With an increased quantity of worker
instances, the generation cost linearly decreased. We could thus
conclude that the calculation could be performed in parallel, thus
reducing the total computing time.

According to the above results, with OpenCluster, the MUSER
data processing procedure was spread across multiple computers
and a GPU hybrid system. This made it easy to achieve optimal

parallelism and maximize the usage of the cluster. It additionally
provided an acceptable level of performance to meet the MUSER
requirements. Moreover, its advanced scale-out capability, as
demonstrated, will enabled customers to rapidly expand an
infrastructure with minimal efforts.

7. Discussion

7.1. Stability

We considered several mechanisms to enhance OpenCluster
stability. On account of distributed system constraints, at least

Figure 9. Comparison of elapsed times for binary transmission using a 5-M size block between OpenCluster and MPI.
(A color version of this figure is available in the online journal.)

Figure 10. Elapsed times for UVFITS generation evaluation of 1000 frame for different number of worker instances.
(A color version of this figure is available in the online journal.)
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one node should act as a leader responsible for cluster
management and scheduling. Therefore, when the cluster is
operating at various stages, it is necessary to ensure that a
leader exists to provide services in the event of malfunctions. If
a failure occurs, the system must be able to select a new leader.

The method of leader selection in OpenCluster is different
from that of Paxos proposed by (Lamport et al. 2009). Paxos is
a protocol of processes for reaching a consensus on a series of
proposals. In terms of maintaining the consistency of leader
selection or variable modifications, Paxos adopts a considerable
majority approval mechanism, similar to a parliamentary vote.
For example, leader selection is regarded as a bill that requires
more than half of the voter affirmations. Each node has a record
number after carrying the bill. When the node again receives a
request of another leader candidate, it rejects the request
because it already has the record number.

Nevertheless, a lightweight courtesy method is adopted in
leader selection of factories in OpenCluster. When a factory
instance is started, it asks other factory instances if they would
like to be a leader. If there is no leader, the factory performs as
the leader. If a factory was already the leader, the factory will
perform as a slave. The benefit of this courtesy approach with
no competition possibly avoids conflict and maintains a
consistency between factories. Figure 11(a) shows the process
of leader selection of a factory. The leader automatically
duplicates updates to other factory instances via a background
thread. A factory is responsible for providing a registration and
lookup for connections of workshops, workers, services, and
managers (categorized as clients), just like a directory service,
whereas it does not dispatch the computing tasks or data. Thus,
much less stress occurs on the CPU or memory in a factory
instance. Once the factory leader is determined, the clients deal

with the leader. Therefore, the clients must know who the
leader is. Figure 11(b) illustrates the client operational
processes before detailed works.

7.2. Hybrid Resource Scheduling

OpenCluster can utilize hybrid hardware resources on a
computing platform that has CPU-only and CPU/GPU hybrid
computers. With the OpenCluster schedule, CPU-oriented tasks
can be executed on general-purpose nodes (all computers),
while time-consuming image processing tasks can be executed
on GPU-enabled machines (e.g., CPUs/GPUs). This feature is
quite useful for designing high-performance pipelines, espe-
cially pipelines locally executed in an observatory. It is very
difficult to implement high-performance imaging tasks without
GPU support. However, on account of the power consumption
constraint, only parts of computers are equipped with
professional GPU cards.
OpenCluster supports hybrid resource scheduling mechan-

isms because of its registration approach of workers. During
startup, the worker must register to the factory the type of task
that it can accomplish. Therefore, managers can differentiate
varieties of workers and dispatch different tasks to relevant
workers that run on the appropriate hardware.

8. Conclusions

1. We presented a novel distributed framework, i.e.,
OpenCluster, for computing in astrophysical field. The
system has been implemented and released at https://
github.com/astroitlab/opencluster. The data processing
pipeline of MUSER which designed upon OpenCluster
proves that OpenCluster is robust, reliable and scalable.

Figure 11. (a) Process of leader selection of a factory; (b) client operational processes before other works.
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We presented the concept, the design, the programming
interfaces and the components of OpenCluster.

2. We have demonstrated applications of the OpenCluster
framework that show different aspects of the usage of the
framework. We also described an automated way that the
OpenCluster provides to monitor the behavior of each
task and take actions, based upon the observed behavior.

3. The current OpenCluster design has some limitations,
which must be considered when using the framework.
OpenCluster is currently being enhanced to support
processing based on the messaging center and self-
defined task prioritization. Moreover, it does not support
resource isolation. Thus, we are considering integrating it
with Mesos (Hindman et al. 2011). We aim to provide a
hierarchical cluster-based architecture that can be dyna-
mically tuned to different workloads in the astrophysical
field. In the future, we will apply the architecture in other
scientific areas to verify its effectiveness and improve its
efficiency.

The work discussed in this paper was jointly supported by
Kunming University of Science and Technology and Yunnan
Observatories of Chinese Academy of Sciences. This paper is
funded by National Natural Science Foundation of China under
grants No.U1231205 and No.11403009, and Applied Basic
Research Foundation of Yunnan Province under Grants No.
2013FA013, 2013FA032, and 2013FZ018. We also thank the
reviewers for suggestions that improved the paper.
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