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Abstract

We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory
(iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this
system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image
subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also
review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused
regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by
;10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions.
Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an
efficiency (or completeness) of ;97% for a maximum tolerable false-positive rate of 1% when classifying raw
candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual
metadata from other surveys, and possible associations with known Solar System objects are stored in a relational
database for retrieval by the various science working groups. We review our efforts in mitigating false-positives
and our experience in optimizing the overall system in response to the multitude of science projects underway
with iPTF.

Key words: methods: analytical – methods: data analysis – methods: statistical – techniques: image processing –

techniques: photometric

Online material: color figures

1. Introduction

The Palomar Transient Factory (PTF; Rau et al. 2009) and its
successor survey currently underway, the intermediate Palomar
Transient Factory (iPTF; Kulkarni 2013) have been advancing
our knowledge of the transient, variable, and dynamic sky at
optical wavelengths since 2009 March. From new classes of
supernovae (Maguire et al. 2014; White et al. 2015), identify-
ing gamma-ray burst optical afterglows (Singer et al. 2015)
and counterparts to gravitational wave triggers (Kasliwal
et al. 2016), exotic stellar outbursts (Miller et al. 2011; Tang
et al. 2014), Milky Way tomography (Sesar et al. 2013) to near-
Earth asteroids (Waszczak et al. 2016) and comets (Waszczak
et al. 2013), iPTF continues to deliver,8 serving as a testbed for
the development of future time-domain surveys. iPTF uses a

92-megapixel camera mosaicked into eleven functional
2048×4096 CCDs covering 7.26 deg2 on the Palomar 48-
inch Samuel Oschin Schmidt telescope. The single exposures
reach a depth of (Mould) R;21 mag (5σ) in 60 s. The pixel
scale is ≈1″ and the image quality is ≈2 2 (median FWHM),
implying the Point Spread Function (PSF) is better than
critically sampled slightly more than 50% of the time.
Further details of the hardware, survey design, and on-sky
performance are described in Law et al. (2009, 2010) and Ofek
et al. (2012). An overview of the image pre-processing and
photometry pipelines, and archival system is described in Laher
et al. (2014).
The near real-time discovery of transients from iPTF

imaging data is currently performed using an image differen-
cing pipeline at the National Energy Research Scientific
Computing Center (NERSC; Cao et al. 2016). New incoming
images are astrometrically and instrumentally calibrated, then
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7 Hubble Fellow.
8 For a list of all publications to date, see http://www.ptf.caltech.edu/iptf.
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aligned, PSF-matched, and differenced with deeper reference
images supplied by the Infrared Processing and Analysis
Center (IPAC, Caltech; Laher et al. 2014). Transient candidates
are extracted from the differenced images then vetted using a
classification engine (Bloom et al. 2012; Rusu et al. 2014). The
NERSC infrastructure has contributed immensely to the
success of PTF and iPTF.

We have implemented an enhanced version of the discovery
pipeline to complement the pipeline at NERSC. In 2017, the
iPTF project will be replaced by the Zwicky Transient Facility
(ZTF) using a new camera on the same telescope (Bellm 2014;
Smith et al. 2014). The ZTF camera will have a field of view of
∼47 square degrees, enabling a full scan of the Northern visible
sky every night, at a rate ∼15 times faster than iPTF to similar
depths. The massive high-rate data stream and volume
expected from ZTF will require advancements in algorithms
and data-management practices despite the (inevitable) growth
in hardware technology. This will pave the way to the Large
Synoptic Survey Telescope (LSST; Ivezić et al. 2014) that is
expected to yield at least 100× as many astrophysical transients
per image exposure than ZTF. In anticipation of this data
deluge, we have embarked on a new efficient discovery
pipeline and infrastructure at IPAC. Our design philosophy is
flexibility, i.e., being able to operate in a range of complex
astrophysical environments (including the galactic plane),
robustness to instrumental glitches, adaptability to a wide
range of atmospheric seeing and transparency, minimal tuning
(unless warranted by instrumental changes), optimality (in the
signal-to-noise sense), reliability in extracted candidates to
moderately low S/N levels, and fast delivery of vetted
candidates to enable follow-up in near real-time.

Searches for astrophysical transients (by virtue of changes in
flux and/or position) have traditionally been conducted using
either of two approaches. The first involves differencing of
astrometrically aligned, PSF-matched images from two epochs:
the science or target image containing the potential transient
sources, and a deeper reference or template image serving as a
static representation of the sky, for example, defined from an
average of images from multiple historical epochs. The
difference image is then thresholded to find and measure
excess signals, i.e., the transient candidates. This approach was
(and in some cases continues to be) used by numerous synoptic
surveys, e.g., OGLE (Wyrzykowski et al. 2014), ROTSE
(Akerlof et al. 2003), La Silla-QUEST (Hadjiyska et al. 2012),
Pan-STARRS (Kaiser et al. 2010), and PTF (Law et al. 2009).
Although simple in theory, a challenging aspect of discovery
via image differencing is the prior matching of PSFs between
the input images. This has lead to an intensive, ongoing
research effort (e.g., Alard & Lupton 1998; Alard 2000;
Woźniak 2000; Bramich 2008; Yuan & Akerlof 2008; Becker
et al. 2012; Bramich et al. 2016; Zackay et al. 2016). The
ultimate goal is the elimination of systematic instrumental
residuals, e.g., induced by non-optimal calibrations and/or

PSF-matching upstream. These would otherwise contaminate
lists of extracted transient candidates, i.e., the false positives
that would need to be dealt with later (see below). In practice,
one strives to minimize their occurence in difference images
such that in a global sense, the resulting pixel fluctuations and
photometric uncertainties of bona fide flux transients approach
expectations from Poisson noise and/or detector read-noise.
The second approach involves positionally matching source

catalogs extracted from images at different epochs and searching
for large flux differences between the epochs, e.g., as used by the
Catalina Real-time Transient Survey (CRTS; Drake et al. 2009).
This method avoids systematics from color-correlated source-
position misalignments due to differential chromatic refraction,
an effect that can be severe for some facilities. However, this
method requires a relatively large flux-difference threshold to
ensure reliability. This is at the expense of a higher missed
detection rate (incompleteness) at low flux levels, particularly in
regions with a complex background and/or high source-
density (e.g., the galactic plane) where positional-matching is a
challenge. On the other hand, assuming optimally calibrated and
instrumentally matched inputs, image differencing excels in
regions where source confusion is high and/or where complex,
fast-varying backgrounds are present (e.g., near or within
galaxies). Due to its adaptability to a wide range of astrophysical
environments, the PTF project adopted image differencing as its
primary means for discovery.
Following the extraction of transient candidates from

differenced images, a somewhat daunting problem is deciding
which are bogus (i.e., spurious) or real and worthy of further
study. The existing iPTF discovery pipeline at NERSC
accomplishes this using a supervised machine-learned (ML)
classifier (Bloom et al. 2012; Brink et al. 2013). Here, a pre-
labelled training set of previously discovered real transients are
first fit to a two-class (real or bogus) non-parametric model
described by a number of selected source features (or metrics).
This model is then used to predict the class (real or bogus) of
future candidates according to some probability threshold. The
probabilities are also referred to as RealBogus (or quality)
scores.
The iPTF discovery pipeline at NERSC typically yields a

few to ten real “interesting” transients per night (excluding
Solar-System objects and periodic or reoccuring variables in
regions with a high stellar density). For ZTF, we expect at least
100 such transients per night. Currently however, real iPTF
transients can be outnumbered by spurious candidates (false
positives) by more than two orders of magnitude, despite
efforts to minimize their incidence through careful pre-
calibration. The problem gets worse if one is interested in
finding the rare gems down to low S/N levels (e.g., Masci
2012). Depending on the science goals, the vetted candidates
need to be delivered in a timely manner to the respective
science working groups for follow-up. At NERSC, this
currently takes ∼30 minutes since observation. The goal is to
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get this below ∼15 minutes. Large numbers of false-positives
can strain any machine-learned vetting process and affect its
reliability (Brink et al. 2013). It is crucial that the vetting
process be efficient and reliable.

We have developed an automated image-differencing,
transient-extraction and vetting system at IPAC; hereafter, the
IPAC/iPTF Discovery Engine (or IDE). This infrastructure is
currently in use for iPTF and is expected to be a foundation for
ZTF in future. We have 6+ years of PTF science data in hand
(ongoing with iPTF) and an experienced team at NERSC that
aided in developing and refining all aspects of a robust discovery
engine—from instrumental calibration to vetted transient
candidates. Guided by previous implementations of the image
subtraction problem, this paper reviews our algorithms, optim-
ization strategies, experiences, and liens. We also describe
our probabilistic (real–bogus) classification scheme for vetting
transient candidates, Quality Assurance (QA) metrics, and
database (DB) schema.

We note that two of the core pipeline steps in IDE: (i) image-
differencing (that includes pre-conditioning of image inputs),
and (ii) extraction of raw transient candidates therefrom, are
both implemented in a stand-alone software module called
PTFIDE.9 In this paper, we use the acronym PTFIDE when
referring to these specific processing steps, otherwise, we use
IDE when referring to the overall processing system. The latter
includes all pre-calibration steps (prior to PTFIDE), machine-
learned vetting and archival steps (post-PTFIDE). Furthermore,
when referring to astrophysical transients, we use the term
“transient” in a generic sense, i.e., all types of flux-excesses
that can be detected in difference images (in both the positive
and negative sense, relative to a reference image template):
moving objects, periodic or aperiodic variable sources, or
short-lived (fast) events. The goal of IDE is to deliver reliable
transient candidates to the various science working groups for
further follow-up. From hereon, these science working groups
will be referred to as “science marshals,” or simply marshals.

This paper is organized as follows. In Section 2 we give an
overview of IDE and provide references for more information
on each subsystem, both in this paper and elsewhere. Section 3
gives a broad overview of the image differencing and
extraction module PTFIDE and its dependencies: input
parameters, reference-image building, and output products.
Section 4 expands on the specific processing steps in PTFIDE:
gain and background matching, astrometric refinement, refer-
ence-image resampling, and PSF-matching. This includes a
summary of all image-based and transient-candidate source
metrics, and their use in deriving simple initial quality scores.
Section 5 reviews the DB schema for storing all difference
image-based and source-based metrics. The machine-learned

vetting infrastructure, which includes training, tuning, and its
overall performance is described in Section 6. Lessons learned
during the course of development and testing are given in
Section 7. Future and potential enhancements are discussed in
Section 8 and conclusions are given in Section 9.

2. Overview of the Near Real-time Discovery Engine

The raw camera-image files are first sent from the Palomar
48-inch Samuel Oschin Schmidt telescope to the San Diego
Supercomputing Center via a ≈100 Mbit s−1 microwave link
and then pushed to Caltech and IPAC over the internet
(bandwidth is 1 Gbit s−1). At IPAC, the camera-image files
are ingested into an archive and associated metadata are stored
in a relational database for fast retrieval and processing soon
thereafter (see below).
Figure 1 gives an overview of the near real-time discovery

pipeline. An executive pipeline wrapper controls the various
steps: preprocessing which performs basic instrumental and
astrometric calibration per CCD image (light purple boxes);
PTFIDE—the image-differencing and transient extraction
module (red boxes); then returning to the pipeline executive
for archiving, DB-loading, and machine-learned vetting (light
purple boxes). The preprocessing steps are from a stripped
down version of the PTF/iPTF frame-processing pipeline. This
executes asynchronously and independently of IDE following
ingestion of an entire night’s worth of image data. The purpose
of this pipeline is to provide accurately calibrated images and
source catalogs for future public distribution. This pipeline and
the IDE preprocessing steps borrowed therefrom (light purple
boxes in Figure 1) are described in detail in Laher et al. (2014).
Below we summarize the major processing steps. The steps
specific to PTFIDE (red boxes) are expanded in Sections 3–6.
Operational details and tools used by the various science
marshals (green boxes) will be discussed in future papers. In
particular, the streak-detection functionality that is designed to
detect moving objects in difference images, i.e., that streak in
individual exposures is described in Waszczak et al. (2016).
The 92-megapixel raw camera-image files (one per expo-

sure) are processed by the real-time pipeline soon after they are
ingested, check-summed, and registered in the database at
IPAC. The ingest process also loads a jobs database table that is
automatically queried by the pipeline executive to initiate the
camera-splitting pipeline (Laher et al. 2014). This pipeline
splits the camera-images into twelve 17MB CCD image files
(with overscan regions included), and noting that one
of the CCDs is defective. An initial astrometric solution is
derived and attached to their FITS10 headers. This astrometric
solution is not the final (and best) calibration attached to the
CCD images prior to image-differencing with PTFIDE. It is
used to support source-catalog overlays, quick-look image

9 Source code, instructions for installing external dependencies and examples
with test data are available at http://web.ipac.caltech.edu/staff/fmasci/home/
ptfide.

10 FITS stands for Flexible Image Transport System; see http://fits.gsfc.
nasa.gov.
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visualizations, and quality assurance (QA) from the archive.
The individual raw CCD frames in FITS format are copied to a
local sandbox directory and associated metadata (including
quality metrics and image usability indicators) are stored in a
database to facilitate retrieval for the next processing steps.

A number of preprocessing and instrumental calibration
steps are then applied to the raw CCD image. These include a
dynamic (floating) bias correction and a static bias correction, a
flat-field (pixel-to-pixel responsivity) correction, and cropping
to remove overscan regions. The static bias and flat-field
calibration maps are retrieved from an archive. These are
generally the latest (closest-in-time) products available for the
night being processed, i.e., that were made by combining data
from a prior night. For the flat-field calibration in particular,

quality metrics are used to check that the responsivity pattern
falls within the range expected for a specific CCD and filter. If
not, a pristine superflat is used. This preprocessing also initiates
and populates a 16-bit mask image to record bad hardware
pixels for the specific CCD frame, badly calibrated pixels, and
saturated pixels. This mask is further augmented below to
record image artifacts and object detections.
At this stage, we have a bias-corrected, flattened CCD image

and accompanying mask image. Sources are then extracted
from the CCD image using SExtractor (Bertin & Arnouts 1996;
Bertin 2006a) primarily to support astrometric calibration—the
most important calibration step in the real-time pipeline since
its accuracy is crucial to attaining good quality difference
images (Section 4.2). The SExtractor module is executed twice.

Figure 1. Processing flow in the near real-time IPAC/iPTF Discovery Engine (IDE). The color-coding separates the various modular steps: preprocessing, archival,
and machine-learned vetting (light purple); core image-differencing and transient extraction module: PTFIDE (red); external science applications and follow-up
marshals (green). See Section 2 for details.
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The first run is to compute an accurate value of the overall
image seeing (point-source FWHM) from the mode of a filtered
distribution of individual source FWHM values. This estimate
is then used to support source-detection in the second
SExtractor run via a point-source matched filter. The first
SExtractor run also folds in the object detections into the image
mask, or rather the contiguous pixels contributing to each
object above the specified threshold. The createtrackimage
module is also executed to detect satellite and aircraft tracks in
the CCD image and record their locations in the image mask.
These occur with a frequency of typically several times per
night and the same track can cross multiple CCDs. Metrics for
each track are also computed (e.g., length and median intensity)
and stored in a database table. For details on track identification
and characterization, see Laher et al. (2014). The second
SExtractor run generates a source catalog for input into the
astrometric calibration step.

Astrometric calibration is initially performed using SCAMP
(Bertin 2006b, 2014). SCAMP is executed using one of two
possible astrometric reference catalogs as input: if the CCD
image overlaps entirely with a field from the Sloan Digital Sky
Survey (SDSS), the SDSS-DR9 Catalog (Ahn et al. 2012) is
used; otherwise, the UCAC4 Catalog (Zacharias et al. 2013) is
used. If SCAMP fails to find an astrometric solution using
either of these catalogs, it is rerun with the USNO-B1 Catalog
(Monet et al. 2003). In addition to solving for the standard
World Coordinate System (WCS) first-order terms (for a
gnomonic sky-projection; Calabretta & Greisen 2002), SCAMP
simultaneously solves for field of view distortion using the PV
polynomial convention on a per-image basis. The solution
implicitly captures both the fixed camera-distortion and any
variable atmospheric refraction effects at the time of exposure.
The WCS solution and PV distortion coefficients are written to
the CCD image FITS header. To enable other downstream (as
well as generic analysis) software to map from pixel to sky
coordinates and vice-versa, the PV coefficients are converted to
the SIP representation (Shupe et al. 2005) using the pv2sip
module (Shupe et al. 2012). The associated SIP coefficients are
also written to the FITS header.

The astrometric (and distortion) solution from SCAMP is
then validated. The first validation step coarsely checks that the
standard first-order WCS terms (pointing, rotation, and scale)
are within their expected ranges according to specific prior
values. The second validation step involves re-extracting
sources from the astrometrically calibrated CCD image (again
using SExtractor) and matching them to a filtered subset of
sources from the 2MASS Point Source Catalog (PSC; Skrutskie
et al. 2006). A matching radius of 2″ is used and a minimum of
20 2MASS matches must be present. If the number of matches
exceeds this minimum, the axial root-mean-squared (rms)
position differences are root-sum-squared (RSS’d) and com-
pared against a threshold that is dependent on galactic latitude.
This threshold (t) lies in the range   t0. 3 0. 7

corresponding to galactic latitudes   b0 90∣ ∣ . The
threshold is interpolated from a look-up table of predetermined
values according to the galactic latitude of the input image. The
reason for a latitude-dependent threshold is due to the less
reliable rms estimates in position differences following source
matching when the source density is high. We are less tolerant
of larger rms estimates in this regime due to the higher
probability of false matches.
If the above validation checks on the astrometry are not

satisfied, another attempt is made at the astrometric calibration,
this time by executing the Astrometry.net module (Lang
et al. 2010). This module uses the 2MASS PSC as the
astrometric-reference catalog. Astrometry.net also solves for
distortion on a per-image basis, however, its representation is
only in the SIP format. To ensure proper execution of other
downstream pipeline modules that depend exclusively on the
PV representation, the SIP coefficients are converted to PV
equivalents using the sip2pv module (Shupe et al. 2012) and
written to the FITS header. The solution from Astrometry.net is
validated in the same manner as above using the 2MASS PSC.
If the acceptability criteria are still not satisfied, a bit-flag is set
in a database table for use downstream. Metrics to assess the
astrometric performance on each image are computed and also
stored in the database to facilitate future analysis and trending
(for details, see Laher et al. 2014).
Figure 2(a) quantifies the astrometric performance of the

real-time pipeline for 68,310 iPTF CCD images acquired from
2015 January 1 to 2015 May 1 that used the SDSS-DR9
Catalog in their SCAMP solution. This catalog covers ;14,555
deg2 at galactic latitudes of typically  b 30∣ ∣ and has an
overall astrometric accuracy (rms per axis) of ;50 milli-
arcseconds (mas) with respect to earlier UCAC releases (Pier
et al. 2003). The median rms per iPTF CCD per axis is
typically 115 mas with respect to SDSS-DR9. The astrometric
performance outside the SDSS-DR9 footprint (calibrated using
either UCAC4 or USNO-B1; see above) is similar, except
however for exposures observed in regions with a high source-
density (e.g., the galactic plane) where systematics are more
prevalent. These systematics are currently being addressed
since iPTF includes a number galactic-plane science programs.
Figure 2(b) shows the rms distributions for a subset of 24,168
CCD images from the same SDSS-DR9 overlap region with
respect to the 2MASS PSC. Here, only images containing
>200 2MASS matches each were used. The median astro-
metric accuracy with respect to 2MASS degrades to ;190 mas
per axis. This larger rms is somewhat expected since the
2MASS PSC has an accuracy of typically 150–200 mas
(Skrutskie et al. 2006).
Preprocessing in the real-time pipeline also includes a step to

detect and mask artifacts induced by bright-source reflections
in the telescope optics, primarily ghosts and halos. The ghosts
are due to bright sources lying off the telescope’s optical axis,
while halos are more coincident with the offending source.
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These features are located by first searching for bright (parent)
stars from the Tycho-2 Catalog (Høg et al. 2000) with <V 6.2
mag. The positions of ghosts are then isolated using a pre-
determined geometric mapping from the parent stars to
expected ghost positions. Circular areas are flagged in the
CCD bit-mask image to indicate probable ghosts and halos.
Given the ghost and halo sizes vary with the brightness of the
parent star, a conservative maximally sized masking area is
used. The positions of ghosts, halos and their parent stars are
stored in the database to facilitate future analysis. Lastly, the
preprocessing phase computes a number of QA metrics for the
image pixels and accompanying mask, a summary of which
can be found in Laher et al. (2014). These are also loaded into
the database.

There is no absolute photometric calibration in the
preprocessing phase of the real-time pipeline to assign image-
specific photometric zeropoints. Instead, the raw pixel signals
are later throughput (gain)-matched to a reference image
template during PTFIDE processing using sources extracted
therefrom (Section 4.2). This reference image has an associated
photometric zeropoint and therefore serves as the generic
zeropoint for all real-time products that are matched to it,
including the difference image products downstream. For
details, see Sections 3.3 and 4.9.2. For an overview on the
performance of the initial photometric calibration of the CCD
images (on which the reference and difference-image products
ultimately depend), see Ofek et al. (2012).

Figure 3 shows the typical durations of the primary steps in
the real-time pipeline: from acquisition of a camera exposure to
vetted candidates, ready to be examined by the science

marshals. The median total time lag since exposure acquisition
(Figure 3(b)) is ;16 minutes and the 95th percentile is 22
minutes. When broken down into the various steps, the bulk of
the lag is in the transfer of image data from the telescope to
IPAC (;9 minutes). This includes database ingestion and
archiving, which amount to no more than several seconds per
camera exposure. The preprocessing, PTFIDE and final
archival steps amount to no more than ;7 minutes,
although there is a long tail in the PTFIDE runtime which
we attribute to the extraction and processing of transient
candidates from “bad” difference-images, i.e., containing an
excess of residual artifacts (Section 6.2). The timing metrics
shown in Figure 3 are those inferred at the time of writing using
1340 camera-image files and all eleven CCD images therein.
The overall lag is expected to decrease in the near future, in
particular in the transfer of image-data from the telescope
to IPAC.
At the time of writing (pertaining to iPTF operations), the

IDE pipeline executes on a Linux cluster of 23 machines
consisting of 232 64-bit physical CPU cores in total: 11
machines have 8 Intel® Xeon® cores running at 3.0 GHz each
and the remaining 12 machines have 12 similar cores running
at 2.4 GHz each. All the machines, file and database servers are
connected by a 10 Gbit network. Given that the 12-core
machines can admit two threads per core, this cluster can in
principle allow for 376 concurrent processes. However, since
much of the processing involves a considerable amount of disk
I/O, we achieve close to maximum throughput with only one
thread per physical core, and therefore we usually execute at
most 232 simultaneous threads. As raw camera-image files are

Figure 2. Distributions of the astrometric rms per CCD image along each axis with respect to (a) the SDSS-DR9 Catalog using 68,310 images and (b) the 2MASS
PSC using a subset of 24,168 images containing sufficient matches. See the text for details.
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received during the night, multiple instances of the camera-
splitting pipeline are first run across all idle processor cores
(until filled) to generate the individual raw CCD-images. These
images then enter the processing queue and the level of core-
parallelism now occurs at the CCD-image level through all the
remaining pipeline steps (Figure 1).

The IDE pipeline was designed to be flexible enough to also
process archival (preprocessed) image data. This mode
facilitates pipeline tuning, iterative training of machined-
learned classifiers in response to changing detector properties
and/or science goals, but it also supports archival research in
general, i.e., ad-hoc discovery projects using different pipeline
parameters and thresholds. This offline execution mode only
runs the PTFIDE steps (red boxes in Figure 1) using
preprocessed image data that were previously instrumentally
calibrated and archived by the regular PTF/iPTF frame-
processing pipeline (Laher et al. 2014). This is because the
preprocessed intermediate products from the initial phase of the
IDE pipeline (light purple boxes in Figure 1) are not stored in a
long-term archive.

To summarize, we have given a general overview of the near
real-time IDE pipeline, with particular emphasis on the
preprocessing steps needed to generate instrumentally and
astrometrically calibrated CCD-images for input into the
image-differencing and transient extraction module (PTFIDE).
The primary outputs from the preprocessing step are a calibrated
science image exposure, an accompanying bit-mask image, and
metrics that quantify the astrometric performance and quality of

the image-pixel data. The details on how these metrics and
products are used in PTFIDE are discussed in Section 4.

3. PTFIDE Module Overview and Preliminaries

This section gives a broad overview of the PTFIDE
software,11 dependencies, design assumptions, input data and
formats, tunable parameters, and outputs—both primary pro-
ducts for archival and ancillary products for debug and analysis.
PTFIDE is a standalone Unix command-line tool written in Perl.
It calls a number of software executables written in C, C++ and
Fortran. For a summary of the dependencies, see Section 3.1.
The software can be built and configured to run under most
Linux or Unix-like operating systems.
Figure 4 summarizes the main processing steps in PTFIDE,

from preparing the inputs, to extracted transient candidates and
metrics ready for loading into a relational database. A summary
of all input files, parameters, and their default values is given in
Section 3.2. One of the most important inputs is the reference
image and its accompanying source catalog. Requirements
regarding its construction are given in Section 3.3. Output
products, formats, and their level of importance are summar-
ized in Section 3.4. The details of each computational step in
Figure 4 are expanded in Section 4.

Figure 3. (a) Distributions of the elapsed time for various processing steps in the (near-)real-time discovery engine per CCD image. (b) Total elapsed time from
acquisition of a CCD image exposure to vetted candidates extracted therefrom. Metrics were derived using 1340 camera-image exposures.
(A color version of this figure is available in the online journal.)

11 Source code, instructions for installing external dependencies and examples
with test data are available at http://web.ipac.caltech.edu/staff/fmasci/home/
ptfide.
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3.1. Software Design Philosophy, Dependencies,
and Parallelization

To expedite the delivery of science quality products
following the commencement of iPTF, some of the processing
steps in PTFIDE leverage existing astronomical software tools.
This is mostly heritage software that has been well tested by the

astronomical community and refined over time. Table 1
summarizes the external (third-party) software components
used in PTFIDE and other dependencies.
One of the design goals was robustness against missing or

corrupted input data with appropriate error handling and
reporting upon pipeline termination. Depending on the error,

Figure 4. Processing flow in the PTFIDE (image differencing and extraction) module. These steps are contained in the first red box of the real-time pipeline flowchart
in Figure 1. See Section 4 for details.
(A color version of this figure is available in the online journal.)

Table 1
External (Third-party) Software used by PTFIDE

Software or Library Versiona Purpose

Perl 5.16.2 Core language for scripting and performing arithmetic operations
PDL 2.4.10 Perl module for vectorized image processing; built with bad-value and GSL support
GSL 1.15 GNU Scientific Library (numerical library)
Astro-WCS-LibWCS 0.93 Perl module to support World Coordinate System (WCS) transformations
Ptfutils, Pars 1.0 In-house developed Perl modules specific to PTF data processing
xy2xytrans 2.0 For fast image-to-image pixel position transformations
libtwoplane 1.0 Library to support xy2xytrans module
wcstools 3.8.7 Contains WCS library to support multiple modules listed here
cfitsio 3.35 FITS file-manipulation library to support multiple modules listed here
SExtractor 2.8.6 For initial source extraction to support internal source-matching steps
SWarp 2.19.1 For image resampling and interpolation using WCS
DAOPhot II, 1/15/2004 Source detection, aperture photometry, and PSF-estimation
Allstar II, 2/7/2001 PSF-fit photometry and support for PSF-estimation (included in DAOPhot package).

Note.
a Version number shown is that in use at the time of writing.
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any missing (or out-of-range) data or associated metadata are
replaced with default values in an attempt to salvage as many
products as possible. Warnings are issued and logged if these
occur. Furthermore, different pipeline exit codes are assigned
according to the different anomalies (fatal and benign)
encountered in processing. These status codes are stored as a
bit-string in a database table to enable follow-up or to avoid
querying unusable (or non-optimal) science products in future.
Another design consideration was the ability to generate as
many intermediate products and write as much information as
possible from each processing step (Section 3.4). This was to
facilitate offline debugging and tuning since many of the steps
have complex interdependencies. This debug mode is con-
trolled by a command-line switch and is typically turned off in
operations to minimize runtime.

The base language in PTFIDE is Perl. This code executes
both the external software modules and performs its own
image-processing computations through use of the Perl Data
Language (PDL; Glazebrook & Economou 1997). PDL is an
object-oriented extension to Perl5 that is freely available as an
add-on module. PDL is optimized for computations on large
multidimensional data sets by making use of the hyper-
threading capabilities of modern processor technologies. That
is, PDL has its own threading engine that uses constructs from
linear algebra to process large arrays as efficiently as possible
using parallel computations. This is crucial since most of the
steps in PTFIDE are CPU-bound. This low-level parallelism
occurs on the individual processor cores where our basic
processing unit is a single CCD-image. A higher level of
parallelism is achieved by using all of the 232 CPU cores in our
Linux cluster (described in Section 2). Here we typically
execute 232 simultaneous threads (one CCD-image per core at
any time). This gives us close to maximum throughput.

3.2. Primary Inputs and Parameter Summary

PTFIDE is driven by the Perl script ptfide.pl. The inputs can
be broadly separated into the following: an instrumentally
calibrated CCD-image exposure (the science image); an
accompanying bit-mask (pixel-status) image; a spatially over-
lapping reference image; an accompanying source catalog for
the reference image; configuration files for the various external
software modules; processing parameters, thresholds, and
control switches.

All image files are in FITS format (defined in Section 2).
Input parameters and thresholds may be supplied on either the
ptfide.pl command-line or in a configuration file, while image
FITS-file names, other configuration files, and switches can
only be supplied on the command-line. Table 2 summarizes the
inputs to ptfide.pl with a brief explanation for each. The default
parameter values are those currently used for iPTF. More
details on some of the parameters can be found in Section 4.

3.3. Reference Image Construction and Requirements

The purpose of a reference image is to provide a static
representation of the sky, or more specifically, a historical
snapshot as defined by the state of the sky recorded in previous
image exposures. This image provides a benchmark against
which future exposures can be compared (i.e., differenced) to
assist with transient discovery, both temporally (for flux
changes) and/or spatially (for motion changes). The reference
images also provide “absolute anchors” for assigning a
photometric calibration to the incoming real-time science
images and difference images derived therefrom. They are
also used to check and refine astrometric solutions prior to
differencing. Details are given below.
The reference images are co-adds (stack averages; see

below) of several to fifty high-quality CCD-images selected
from the image archive. Therefore, they have a higher S/N than
the individual exposures. Besides supporting transient dis-
covery, they can also benefit other science applications that
require deeper photometry. So far in iPTF, the goal has been to
construct reference images that are optimal for single-exposure
image differencing and transient discovery. These do not
necessarily achieve the highest possible depths (S/N) by using
all available (good quality) images. This may be performed at a
later date on completion of the survey and with different input
image selection criteria.
Reference images are generated by a separate pipeline in

iPTF operations that executes asynchronously and is indepen-
dent of the real-time pipeline. This pipeline is only triggered
when enough good quality images are available for a given
field, CCD, and filter in the archive. The generation process is
iterative in that reference images are remade and refined if an
existing product is identified to be of low quality or unusable,
provided better quality image-data are available. The input-
image selection criteria for reference image generation were
outlined in Laher et al. (2014). Given their importance, we
repeat them below and expand on some of the details. These
were derived from analyses of the distributions of numerous
image metrics in 2013 June. The goal was to cover as much of
the iPTF-visible sky as possible according to the available
depth-of-coverage across all visited fields at the time.

1. The image must have been astrometrically and photo-
metrically calibrated in an absolute sense and passed all
automated quality checks prior to archiving (Laher
et al. 2014).

2. The astrometric calibration (including full distortion
solution)must have passed all validation steps (Section 2).
This includes a separate check on the higher-order terms
of the distortion polynomial.

3. The spatially binned photometric zeropoint values
(provided by the ZP Variations Map or ZPVM from
photometric calibration) must lie within ±0.15 mag.
Furthermore, the source color-term coefficients derived
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Table 2
Inputs to PTFIDE (Script ptfide.pl)

Inputa Defaultb Purposec

-cfgide L Optional input configuraton file listing all numerical parameters and thresholds defined below; these
override those on the command-line, if any

-scilst L Input filename listing science image FITS file(s)
-msklst L Input filename listing mask image FITS file(s) accompanying -scilist
-ref L Input FITS filename of reference image (co-add)
-catref L Input reference image source catalog file from SExtractor; -cn specifies required columns
-cn 2, 3, 4, 42, 10, 57, 60, 63, 72, 78, 27,

48, 14, 15, 45
List of integers defining locations of required columns in the -catref input file

-catfilt 0.5, 100, 19.0, 1.3 Thresholds for filtering reference source catalog: min/max tolerable values for CLASS_STAR, ISO-
AREAF_IMAGE, MAG_APER, and ratio AWIN_WORLD/BWIN_WORLD

-od L Directory name for output products (including any debug output)
-cfgswp L Input configuration file for SWarp module
-cfgsex L Input configuration file for SExtractor to support position/gain matching
-cfgsexpsf L Input configuration file for SExtractor to support association with PSF extractions
-cfgcol L Input SExtractor column name configuration file to support position/gain matching
-cfgcolpsf L Input SExtractor column name configuration file to support association with PSF extractions
-cfgfil L Input filename for SExtractor convolution kernel filter
-cfgnnw L Input SExtractor neural network configuration file for star/galaxy classification
-cfgdao L Input generic DAOPhot parameter file
-cfgpht L Input DAOPhot photometry parameter file
-tmaxpsf 2000.0 Threshold [#bckgnd sigma] above background in reference image for maximum usable pixel value when

creating PSF
-tdetpsf 50.0 DAOPhot findthreshold [#bckgnd sigma] for PSF creation from reference image
-tmaxdao 3000.0 Threshold [#bckgnd sigma] above zero-background in difference image for maximum usable pixel value

for source extraction
-tdetdao 3.5 DAOPhot findthreshold [#bckgnd sigma] for source extraction on difference image
-tchi 8.0 Threshold on chi metric from Allstar program below which extractions on difference image are retained;

larger => more non-PSF-like profiles are retained
-tshp 4.0 Threshold on sharp metric from Allstar program where extractions on difference image with –tshp

 sharp +tshp are retained; values of sharp;0 => sources are more PSF-like
-tsnr 4.0 Threshold on flux signal-to-noise ratio in PSF-fit photometry above which difference image extractions are

retained
-fatbits 8, 9, 10, 12 Fatal bits to mask as encoded in input mask images (-msklist input); set to 1 for no masking
-satbit 8 Saturation bit# in mask images for determining saturation level in science images
-expnbad 3 Mask an additional (expnbad×expnbad) - 1 pixels around each input masked science and reference image

pixel; provides more complete blanketing
-eg 1.5 Native electronic gain of detector [e-/ADU]; used for pixel-uncertainty estimation
-sxt 2.0 SExtractor detection threshold [#sigma] to support position/gain matching
-rad 3.0 Match radius [pixels] for associating reference and science frame extractions for position refinement and

gain matching
-nmin 200 Minimum number of reference-to-science image source matches above which to proceed with position

refinement and gain matching
-dgt 1.5 Minimum relative gain factor [%] above which to proceed with relative gain correction
-dpt 0.07 Minimum offset [pixels] above which to proceed with position refinements (dX or dY)
-dgsnt 5.0 Minimum S/N ratio in gain factor above which to proceed with relative gain correction
-dpsnt 5.0 Minimum S/N ratio in deltas above which to proceed with position corrections (dX or dY)
-gridXY 4,8 Number of image partitions per axis to support differential SVB computation
-tpix 2.0 Threshold t [#sigma] for replacing pixel values > mode + t∗sigma in an image partition to support

differential SVB computation
-tmode 500.0 Threshold t [%] for replacing all pixels of a partition with global mode if its local mode is

> + t1 % 100( [ ] ) ∗ global mode; to support differential SVB computation
-tsig 100 Threshold t [%] for replacing all pixels of a partition with local mode if its robust sigma is> +1( t[%]/100)

∗ “median of all partition sigmas”; to support differential SVB computation
-rfac 16 Image-pixel sampling factor to speed up filtering for differential SVB computation
-szker 41 Median-filter size for downsampled image to support differential SVB computation [pixels]
-ker LANCZOS3 Interpolation kernel type for SWarp module
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Table 2
(Continued)

Inputa Defaultb Purposec

-zpskey IMAGEZPT Keyword name for photometric zeropoint in science image FITS headers
-zprkey IMAGEZPT Keyword name for photometric zeropoint in reference image FITS header
-pmeth 2 Method to derive PSF-matching kernel between sci and ref images: 1 => old Alard & Lupton (1998)

method (now deprecated); 2 => Pixelated Convolution Kernel (PiCK) method
-conv auto For -pmeth 2: image to convolve; can be sci, ref, or auto. The auto option uses the sci and ref FWHM

values to select the image to convolve
-kersz 9 For -pmeth 2: linear size of PSF-matching kernel stamps [pixels]
-kerXY 3,3 For -pmeth 2: number of image partitions along X, Y to represent spatially dependent kernel
-psfsz 25 For -pmeth 2 if -rpick was set: linear size of PSF stamps created from point source cutouts
-apr 9.0 For -pmeth 2 if -rpick was set: source aperture radius [pixels] to compute flux for normalizing PSFs and

background level outside this
-nmins 20 For -pmeth 2 if -rpick was set: minimum number of sources in an image partition above which PSF-creation

is attempted
-nmaxs 150 For -pmeth 2 if -rpick was set: use n brightest sources per image partition for PSF-creation
-rpickthres 4.0, 5.0, 0.0004, 40, 0.045 For -pmeth 2 if -rpick was set: list of parameter thresholds for creating PSFs: N-sigma threshold for stack-

outlier rejection; N-sigma threshold for spatial outlier-detection and winsorisation; maximum tolerable
RSS of spatial RMSs of PSF products for (re)assigning partition inputs for kernel derivation; minimum
distance to edge to avoid when selecting sources from sci and ref images; threshold td for
= -d R median R∣ { }∣ where R=ratio of PSF pixel sums and PSFs with >d td are rescaled to the

median{R} of all image partitions
-nbreftb 65 For -pmeth 2: number of pixel rows to force as bad at top and bottom of internal images used for kernel

derivation to account for edge effects in resampled reference image
-nbreflr 35 For -pmeth 2: number of pixel columns to force as bad at left and right of internal images used for kernel

derivation to account for edge effects in resampled reference image
-bckwin 31 For -pmeth 2: linear window size for median filtering of [downsampled] reference image when computing

spatially varying background; note: downsampling factor is fixed at 16× per axis
-tsat 0.65 For -pmeth 2: factor threshold to perform more conservative tagging of resampled ref image pixels

satisfying  *tsat saturate where tsat 1 and saturate is from resampled ref image header. This
assumes the ref image was made using the mkcoadd.pl co-addition software

-goodcuts 5.3, 1.2, 5.0, 0.02, 22, 4, 0.8, 35,
14.3, 7.0, 2, 0.07, 0.2

For -pmeth 2: list of parameter thresholds for performing simple 1D cuts on source metrics for assigning
goodcand flag in output extraction tables: chi, sharp, snrpsf, magfromlim, nneg, nbad, magdiff, mind-
toedge, magnear, dnear, elong, - ksum1∣ ∣, kpr

-baddiff 80, 15, 15, 3, 140, 0.2, 0.7, 0.15,
0.15, 1.5, 1.5

List of parameter thresholds for performing simple 1D cuts on difference-image metrics for assigning good
flag in output QA file: diffpctbad, dmedchi, davgchi, diffsigpixmin, diffsigpixmax, dmedksum, medkpr,
ncandscimrefratio, ncandrefmsciratio, dinpseeing, dconvseeing

-uglydiff 80, 15, 15, 140, 0.2, 0.7, 0.35 List of parameter thresholds for performing simple 1D cuts on difference-image metrics to decide if should
proceed with source extraction on difference images: diffpctbad, dmedchi, davgchi, diffsigpixmax,
dmedksum, medkpr, maxminksum

-qas 41, 2008, 41, 4056 Coordinate range of rectangular region in image for computing QA metrics in difference images if -qa
switch was set; format is: xmin, xmax, ymin, ymax where pixel numbering is unit based and
 <xmin xmax NAXIS1 1;  <ymin ymax NAXIS1 2

-apnum 3 Internal aperture number for which DAOPhot aperture photometry information should be propagated to
output PSF-fit photometry table

-forceparams R.A., decl., 43 List of parameters to support “forced sub-image mode” if -forced switch was set; parameters are: R.A.
[deg], decl. [deg], linsize [pixels]

-kerlst L Input filename listing FITS image cubes storing prior-derived, spatially dependent PSF-matching kernels
for each science image to support “forced sub-image mode.”

-phtcalsci L Switch to perform absolute photometric calibration of input science image after gain-matching to ref-image
by computing a ZP using the calibrated MAG_AUTO values in the ref-image SExtractor catalog; this ZP
will allow big-aperture (and PSF-fit) absolute photometry on the input science image before further gain
refinements in the PSF-matching step downstream

-phtcaldif L Switch to perform absolute photometric calibration on science image after possible gain refinement and
before image-differencing with ref-image by computing a ZP using the calibrated MAG_AUTO values in
the ref-image SExtractor catalog; this ZP will allow big-aperture (and PSF-fit) absolute photometry on
the science and difference images

-wmode L Switch to compute image modes (instead of medians) for the differential SVB correction
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from photometric calibration (as described in Ofek et al.
2012) must lie between the overall observed 1st and 99th
percentiles.

4. The seeing (inferred from the mode of the point-source
FWHM distribution) is < 3. 6.

5. The 5-σ limiting magnitude, estimated using both theor-
etical and empirically derived inputs is >R 20lim mag.

6. The number of sources extracted from the image (via
SExtractor) is 300. This reinforces the previous
criterion and ensures the transparency was not too low
or image noise not too excessive.

7. The minimum number of input images that must satisfy
the above criteria before proceeding with reference image
generation is Nmin=5.

If N 5min , the image limiting magnitudes Rlim are then
sorted in descending order (faintest to brightest). Next, co-add
limiting magnitudes mc

lim are predicted cumulatively and
incrementally per-image for this list of candidate images. The
resulting values of mc

lim are then compared to a predefined set
of six target magnitude limits desired for the final co-add; e.g.,
for the iPTF R filter, these are defined:

= + +


m n R N n2.5 log 0.5

21.5, 22.0, 22.5, 23.0, 23.5, 24.0 ,

t
lim lim

med
10 min( ) ( )

{ }

where  n0 5, Rmed
lim is the typical (median) 5-σ limiting

magnitude of a single R-band exposure (Law et al. 2009), and
Nmin=5. The faintest target limit m nt

flim ( ) is then identified as
the faintest mt

lim that just falls below the co-add limit predicted
from the entire image-list: m m nc t

flim lim ( ). The number of

images N to co-add is then the smallest possible N whose
cumulative mc

lim comes closest to m nt
flim ( ), i.e.,

= -N m m nmin arg min , 50 ,
N

c t
flim lim{ [∣ ( )∣] }

where 50 is the maximum number of images allowed at this
stage.
The requirement of an upper cutoff in the input image

FWHM (3 6; criterion #4 above) is an important considera-
tion since it influences the quality (effective point-source
FWHM) of the resulting reference image and image subtrac-
tions derived therefrom. It is desirable to generate a reference
image whose effective FWHM is smaller than that generally
expected in the science (target) images. This ensures the higher
S/N reference image is preferentially convolved (smoothed) to
match the science image PSF prior to subtraction in PTFIDE.
Not only will this minimize the relative fraction of correlated
pixel-noise in the difference images (i.e., since noise will be
dominated by the science image), it ensures robustness and
minimizes the potential for error when using an automatic
method to decide on which image to convolve. This is because
the decision metrics themselves are inherently noisy and one
cannot be confident that the correct image will always be
selected. For the interested reader, Huckvale et al. (2014)
present an analysis on ways to select the best reference image
and convolution direction for optimal image subtraction in the
presence of variable seeing. The median FWHM of the iPTF
science images is ≈2 2. Therefore, it is inevitable that some
cases will require the science image to be convolved when
matching PSFs. This is not detrimental since PTFIDE can

Table 2
(Continued)

Inputa Defaultb Purposec

-rpick L Switch to use robust version of the PiCK method (-pmeth 2) when deriving PSF-matching kernel, i.e., via
the construction of image PSFs using point-source cutouts

-psffit L Switch to perform PSF-fit photometry on difference images with prior PSF estimation off [possibly con-
volved] reference image

-apphot L Switch to perform fixed-aperture photometry on difference images using DAOPhot
-dontextract L Switch to only estimate spatially varying PSF; no extraction or photometry is performed
-forced L Switch to execute in “forced sub-image mode” where only “sci minus ref” difference image stamps (and

ancillary files) centered on input R.A., decl. (-forceparams inputs) are made
-outstp L Switch to generate image cutouts of candidates from “sci minus ref” difference images
-pg L Switch to compute sci-to-ref relative astrometric and gain corrections, and apply if significant
-pcln L Switch to pre-clean (remove) output products directory specified by -od
-qa L Switch to generate QA metrics on difference images before and after PSF-matching within image slice

defined by -qas string; results are written to standard output and an ASCII file
-d L Switch to write debug information to standard output, ASCII files and FITS images
-v L Switch to increase verbosity to standard output.

Notes.
a This same name (with prefix “–”) is used in the ptfide.pl command-line specification.
b Default values, where shown, are optimal for the iPTF real-time pipeline. Command-line switches are “off” by default.
c Some of these are further discussed in Section 4.
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automatically select the image to convolve, with some margin
for error (see below). The desire to have a lower cutoff for the
input image FWHM when constructing reference images is
mentioned here as a future improvement, specifically to
optimize image subtraction. As mentioned, the requirement of
FWHM< 3. 6 was driven by data availability (after accounting
for all other selection criteria) and a need to generate reference
images for a large fraction of the iPTF survey fields in short
order.

Before co-addition to create a reference image, the input list
of high-quality overlapping CCD-images (for a given field and
filter) are astrometrically refined as an ensemble. This is
performed in a relative image-to-image sense using SCAMP
with inputs provided by SExtractor. Their distortion solutions
(in the PV format) are also refined self-consistently. This
improves the astrometric solutions of the input images as well
as the overall astrometry in final co-adds.

Following astrometric refinement, the images are fed to an
in-house developed co-addition tool (mkcoadd.pl) specifically
written for iPTF. This software first determines the WCS
geometry of the output co-add footprint using WCS metadata
from all the input images. The co-add pixel scale is set to
the native value determined for the center of the focal plane:
1 01/pixel, and the footprint X, Y dimensions are fixed at
2500 pixels × 4600 pixels throughout. These dimensions can
accomodate for slight offsets in the reconstructed image
pointing within a field. Retaining the native pixel scale for
co-add images ensures they more-or-less remain (marginally)
critically sampled in median seeing conditions. A future
consideration would be to use half the native pixel scale to
take advantage of the natural dithering offered by random
offsets in telescope pointing across image epochs. This
dithering would benefit input lists that are dominated by
undersampled images (i.e., acquired in better than median
seeing) so that the effective PSF can be better sampled when all
images are combined.

Bad and saturated pixels are internally set to NaN in each
CCD-image using their accompanying masks. This facilitates
easier omission and tracking of all bad pixels downstream.
Respective image-median levels are then subtracted. This
stabilizes (or homogenizes) the images against temporally
varying backgrounds before they are combined (see below).
These backgrounds are not always astrophysical, for example,
there is contamination from scattered moonlight and internal
scattering from other bright objects whose line-of-sight may
not directly fall on the focal plane. The individual image
background levels are stored for later use. Each image is then
de-warped (distortion-corrected) and interpolated onto the
output co-add grid using its astrometric and distortion solution.
This is accomplished using the SWarp software (Bertin et al.
2002). For an image observed at epoch t, the pixel values pij

t

at distortion-corrected positions i, j are interpolated and

resampled using a 2D Lanczos kernel of window size three:

¢ ¢ = ¢ ¢ ¢ ¢L x y x x y y, sinc sinc 3 sinc sinc 3 , 1( ) ( ) ( ) ( ) ( ) ( )

where - < ¢ <x3 3 and - < ¢ <y3 3, and the signal at pixel
position x, y in the output grid is given by
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This generates a new set of images for epochs t=1, 2, 3...N
that have been corrected for distortion, all sharing the same
WCS geometry, i.e., that of the final co-add footprint.
The choice of a Lanczos kernel (Equation (1)), particularly

with window size three, is motivated by three reasons. First, it
is close to optimal for PSFs that are sampled close to or above
the Nyquist rate, i.e., its sinc-like properties can reconstruct
well-sampled signals to good accuracy. By “optimal,” we mean
in the context of conserving information content. Second, its
sinc-like nature also ensures that uncorrelated input noise
remains close to uncorrelated on output. Third, its relatively
compact support minimizes aliasing and the spreading of bad
and saturated pixels on output. Given the ≈1″ pixel size, one
small downside is that localized ringing can occur when the
PSF is severely undersampled, i.e., when the seeing falls
below ≈1 6.
Since the epochal images will have been observed at different

atmospheric transparencies, their photometric throughput (or
effective photon-to-DN gain factors) will be different. Through-
put-matching the images to a common photometric gain or
zeropoint (ZP) value is therefore necessary before combining
them. This can be done in a relative sense (by computing source-
flux ratios across images and rescaling pixel values therein) or in
an absolute sense using the image-ZP values derived from
photometric calibration upstream. We have chosen to use the
absolute ZP values to compute the gain-factors. This is
accomplished by throughput-matching all images to a common
target zero point of ZPc. This value becomes the final co-add
(reference image) ZP, where currently, all archived PTF
reference images have ZPc=27 magnitudes. The gain-corrected
pixel values in a resampled image at epoch t with specific zero
point ZPt are given by

= - -S x y S x y, , 10 . 3c
t t 0.4 ZP ZPt c( ) ( ) ( )( )

The resampled and throughput-matched epochal images with
pixel signals S x y,c

t ( ) are then combined using a lightly-
trimmed weighted-average. Outlier-trimming is performed on
the individual pixel stacks (along the t dimension) by first
computing robust measures of the location and spread:
respectively the median (p50) and s - p p0.5 84 16[ ], where
the px are percentiles. Pixels that satisfy s- >S p 9c

t
50∣ ∣ are

rejected from their temporal-stack at position x, y prior to
combining the remaining pixels using a weighted-average (see
below). Our choice of a relatively loose trimming threshold
(9σ) is driven by our goal to remove the largest outliers only
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(e.g., cosmic rays and unmasked satellite trails), therefore
preserving as much information as possible.

The pixels in a stack are weighted using an inverse power of
the seeing (FWHMt) in the images they originated from, i.e.,

⎛
⎝⎜

⎞
⎠⎟=
a

w
FWHM

FWHM
, 4t

t

0 ( )

where FWHM0 is a constant fiducial value currently set to the
modal value of 2″ and is unimportant since it cancels following
normalization in the final weighted average. α is a parameter
that controls the overall importance of the weighting. This
weighting is purely motivated by empirical and practical
considerations as an attempt to handle the time-dependent
seeing in a qualitative sense, i.e., in that relatively more weight
is given to images acquired in better seeing. There is no
theoretical justification that satisfies some optimality criterion
like maximal S/N, however, it is interesting to note that α=2
corresponds to the case where sµ µw N1 1t p psf

2 , where Np

is the effective number of noise pixels12 for a Gaussian-like
PSF and spsf

2 is the flux-variance that would result from PSF-fit
photometry on the image (see also Masci & Fowler 2009).
Therefore when α=2, the weighting is effectively inverse-
variance weighting of the images according to the expected
point-source flux uncertainties from PSF-fitting. Besides being
optimal for PSF-fitting (simultaneously over the entire image
stack), and particularly when the input noise is Gaussian, we
found through simulation and analysis of on-sky data that
α=2 can lead to significantly distorted PSFs and slight
degradations in the co-add pixel S/N. This is due to the
undersampled nature of the PSF when the seeing is better than
average in iPTF exposures. We found that values of

 a0.7 1.4 for the range of seeing encountered (and a
forced cutoff of FWHM < 3. 6; see above) work best. As a
compromise, we assumed α=1 throughout. This choice is
similar to that adopted by Jiang et al. (2014) for combining
SDSS image data. These authors also included inverse-variance
weights in their weighting scheme, with pixel variances
computed from the background rms in each input image.

The Nr remaining pixels in a stack following outlier rejection
are combined using a weighted average to produce the co-
added pixel signal,

å
å

= +=
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where S x y,c
t ( ) and wt are given by Equations (3) and (4)

respectively. The Bc
t are the individual image background

levels that were initially subtracted from each image (see
above) then rescaled using the same throughput-match factors
in Equation (3). A median of all these levels is computed and
used as a fiducial background for the final co-add. We

also generate an image of the uncertainties in the weighted
averages S(x, y). For co-add pixel x, y, this can be written:

s s= å Wt t t
2 2 where = åW w wt t t t and σt is the uncertainty

(e.g., a prior) for the input pixel signal at x, y, t. We assume that
the noise is spatially and temporally uncorrelated across
images. Instead of using explicit priors for σt (e.g., from a
pixel-noise model), we approximate σt using an unbiased and
unweighted estimate of the population standard-deviation in the
stack of S x y,c

t ( ) values. The uncertainty in S(x, y)
(Equation (5)) then becomes
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The effective  N1 r scaling is implicitly represented by the
fractional term involving wt. An image of the pixel depth-of-
coverage, Nr(x, y), is also generated.
The astrometric solution in the reference image is validated

against the 2MASS PSC using a procedure similar to that
described in Section 2. Sources are extracted and measured
from the reference image using both aperture (SExtractor) and
PSF-fit photometry (DAOPhot). Ancillary products for the
PSF-fit catalog include a DS9-region file and estimates of the
spatially variable PSF represented in both DAOPhotʼs look-up-
table format and as a grid of FITS-image stamps. QA metrics
for the image and catalog products are also generated. The
product files are archived and their paths/filenames and
associated metrics stored in a relational database.
Each reference image product is uniquely identified accord-

ing to survey field, CCD, filter, pipeline number, version, and
archive status flag. The pipeline number supports variants of
the reference image pipeline tailored for different science
applications, for example, a specific time range, number of
input images, and/or different filtering criteria than the default
used to support real-time processing. As mentioned, the
reference image library is periodically updated as low-quality
or unusable products are identified from analyses of outputs
from the real-time pipeline, provided enough good quality
images are available (see above).
The reference image and its SExtractor catalog for a given

survey field, CCD, and filter are two of the primary products
used in PTFIDE (Section 4). As mentioned, these provide an
absolute anchor for assigning a photometric ZP to all the new
incoming, spatially coincident science images and subtractions
derived therefrom. The ZP value in the FITS header of a
reference image is the target fiducial value ZPc onto which
selected input images were gain-matched prior to co-addition
(Equation (3)). The absolute accuracy of ZPc is therefore
determined by the accuracy of the input image ZPt values.

12 see http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_6ci.html.
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These were initially derived from photometric calibration in the
frame-processing pipeline using the SDSS-DR9 catalog (Ofek
et al. 2012; Laher et al. 2014). The input instrumental
magnitudes used to perform this calibration are Kron-like
aperture measurements from SExtractor, also referred to as
mag_auto. At the time of writing, these are the only
instrumental magnitudes in iPTF products that can be tied to
an absolute photometric system via the image ZPt values. The
individual (spatially averaged) image ZPt values are accurate to
2%–4% (absolute rms; Ofek et al. 2012). These could be less
accurate on sub-image scales due to possible residual spatial
variations in the instrumental response. The ZPt-inherent gain-
match errors will propagate into the reference image pixel
values following image rescaling (Equation (3)). These errors
will only be captured by the empirical uncertainty estimates in
Equation (6) (with its implicit  N1 r scaling) assuming no
systematics in the ZPt derivations upstream. A future goal is to
calibrate the ZPt values to better than 1%, preferably using
PSF-fit photometry.

3.4. Summary of Output Products

PTFIDE output products are files that are generically named:
InputImgFilename_type.ext where InputImgFilename is the
root filename assigned to the CCD image following pre-
calibration upstream (Section 2) and type.ext is a mnemonic for
the type of PTFIDE product generated. The extension (ext) can
be either fits (for FITS-formatted image), tbl for ASCII table in
the standard IPAC format, psf for PSF file in DAOPhotʼs look-
up-table format, reg for DS9 region-overlay file, log for logfile,
or txt for other ASCII files.

Table 3 lists the primary PTFIDE products generated per
CCD image. By “primary,” these represent the products that are
later used for real-time transient discovery and/or general
archival science applications, for example, light-curve genera-
tion using forced-photometry on the difference images. The
image, PSF, QA, and log files are copied to long-term storage
and their paths/filenames registered in relational database
tables. The table (tbl) files contain the extracted transient
candidates and associated metrics (Section 4.9.5), one for the
positive and another for the negative difference image. The
metadata for each transient are later stored in database tables
(see Section 5). The metrics in the _diffqa.txt QA files
(Section 4.8.2) are stored in a separate database table. The
generation of positive (sci—ref ) and negative (ref—sci)
difference images may seem somewhat redundant since one
is simply the negative of the other. The purpose of having a
negative difference is to enable detection of transients that
dissapear below the reference image baseline level, for
example, variable stars that are observed in their “low” state
relative to their time-averaged (reference image) flux. Our
source detection software is designed to detect positive signals
only and therefore it is necessary to negate the positive

difference image and extract any new transients (or excursions
in variable flux) that happened to be below the reference level
at that epoch.
Table 4 lists the secondary or ancillary PTFIDE products that

can be generated per input CCD image. These are diagnostic
files to support offline analysis, debugging and tuning, and are
not generated by the (real-time) production pipeline. They are
generated in addition to the products in Table 3 if the debug
(-d) switch was specified for ptfide.pl. Furthermore, some
products are only generated when ptfide.pl is executed in sub-
image mode (with the -forced switch; Section 4.10).

4. PTFIDE Processing Steps

The input pre-calibrated CCD images need to satisfy a
number of criteria prior to processing through PTFIDE. These
criteria use a number of quality metrics computed upstream
during preprocessing (Section 2). Inputs that do not satisfy
these criteria are expected to be of low quality and are not used
for transient discovery. Instead, they are assigned a status flag
(that is encoded into an overall processing bit-string at the end
of processing) and stored in a database table for future
reference. The criteria currently used to declare a CCD image
as “good” and worthy for image differencing are as follows:

1. The seeing FWHM on the corresponding raw exposure
image satisfies <0 FWHM  4. 75. Values of FWHM
> 4. 75 are also a good proxy for low atmospheric
transparency. Over the course of iPTF, ;0.04% of
exposures are above this limit.

2. The calculation of the seeing FWHM used in (1) was
based on a sufficient number of point sources and is not a
NaN. The latter may occur due to bad inputs.

3. At least 500 sources were found by SExtractor for use in
the astrometric calibration using SCAMP.

4. The WCS solution from SCAMP used >300 source
matches with the astrometric catalog.

5. The WCS solution could be derived using SCAMP with
no errors or warnings. I.e., the astrometric calibration did
not fallback to Astrometry.net.

6. At least 20 sources were matched with the 2MASS PSC
for validating the WCS.

7. The axial rms position differences using the 2MASS
matches are within the maximum tolerable value (which
depends on galactic latitude; see Section 2).

8. The first-order WCS terms (pointing, rotation, and scale)
are within range.

9. The higher-order terms of the distortion polynomial are
within range.

Below, we expand on the processing steps outlined in the
PTFIDE processing flow of Figure 4. This includes additional
details not shown in this figure. The descriptions make
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extensive use of the input parameters and output products
summarized in Tables 2–4.

4.1. Mask-creation and Bad-pixel Expansion

The input bit-mask image for the CCD science image is first
AND’d with the fatal-pixel bit-string template specified by –

fatbits. This identifies those pixels to omit from processing. To
enable tracking downstream, these pixels are forced to NaN and
all good (usable) pixels are reset to 1 in an internal image mask.
This mask is then further processed and regularized by forcing
an additional (N×N)−1 pixels around each masked (NaN’d)
pixel to also be bad, where N=input from –expnbad parameter.
This provides more complete blanketing of bad pixel regions,
e.g., for saturated sources in particular whose unmasked edges
and associated bleed artifacts will lead to residuals in the
difference images and hence unreliable extractions. This
expansion operation is also performed on saturated pixels in
the resampled reference image, i.e., following reprojection onto
the science image frame (Section 4.3). These internal regularized
science and reference image masks are propagated downstream.
In debug mode, they can be written to FITS format with filename
suffixes _badmsksci.fits and _badmskref.fits respectively.

Another reason for spatially expanding all bad input pixels is
that both the reference image resampling and the later PSF-
matching step that involves convolving one of the images
(Section 4.7) will cause bad-pixel regions to implicitly grow. A
forced expansion provides a more conservative blanketing that is

matched in both images prior to subtraction. Both the science
and reference image masks are later combined (following
PSF-matching) to produce a final effective bad-pixel mask
(_pmtchdiffmsk.fits) for both difference images: _pmtchscimref.
fits and _pmtchrefmsci.fits. Furthermore, all bad pixels in the
difference images are tagged with value −999,999.

4.2. Relative Gain-matching and Astrometric Refinement

Two important preprocessing steps are photometric through-
put (or gain)-matching and a (possible) astrometric alignment
of the science image with the reference image. As discussed in
Section 3.3, the reference image provides an absolute anchor
for assigning a photometric zeropoint (ZP) and a WCS to the
final difference image products. The relative photometric and
astrometric corrections are first derived and validated, and then
only applied to the science image if found to be statistically
significant. We describe each in turn below.
First, the input reference image catalog from SExtractor (–

catref ) is filtered to retain primarily isolated point sources
using the following SExtractor-derived metrics: CLASS_STAR
(minimum stellarity index); ISOAREAF_IMAGE (maximum
effective isophotal area); MAG_APER (faintest magnitude
based on a fixed 14-pixel diameter aperture); and the ratio
AWIN_WORLD/BWIN_WORLD (maximum effective source
elongation). The thresholds for these metrics are specified by
the –catfilt input. Another requirement is that all sources be
clean and uncontaminated with no bad SExtractor flags, i.e.,

Table 3
Primary Outputs from PTFIDE

Output file suffixa Format Descriptionb

_pmtchscimref.fits FITS imagec Final PSF-matched “science minus reference” difference image
_pmtchscimrefpsffit.tbl IPAC table Table of extracted transient candidates with PSF-fit and aperture photometry, and source metrics corresponding to the

_pmtchscimref.fits difference image
_pmtchscimrefpsffit.reg ASCII DS9 region/source-overlay file for all transient candidates in _pmtchscimrefpsffit.tbl
_pmtchrefmsci.fits FITS imagec Final PSF-matched “reference minus science” difference image
_pmtchrefmscipsffit.tbl IPAC table Table of extracted transient candidates with PSF-fit and aperture photometry, and source metrics corresponding to the

_pmtchrefmsci.fits difference image
_pmtchrefmscipsffit.reg ASCII DS9 region/source-overlay file for all transient candidates in _pmtchrefmscipsffit.tbl
_pmtchdiffunc.fits FITS imagec Image storing 1-σ pixel uncertainties corresponding to the _pmtchscimref.fits and _pmtchrefmsci.fits difference images
_pmtchkerncube.fits FITS cube Image stamps of spatially dependent PSF-matching convolution kernels with metadata in header. Each plane of cube

stores kernel image for a specific partition in input science image
_pmtchconvrefdao.psf ASCII File storing PSF template generated by DAOPhot from the kernel-convolved reference image. Only generated if the

reference image was convolved to match the science image seeing (FWHM)
_resamprefdao.psf ASCII File storing PSF template generated by DAOPhot directly from the reference image, with no convolution. Only generated

if the science image was convolved to match the reference image FWHM
_diffqa.txt ASCII File storing QA metrics on image-differencing process and statistics on number of transients extracted
_ptfide.log ASCII Log file storing processing diagnostics and verbose output.

Notes.
a This is also a mnemonic for the product type; see Section 3.4.
b More details are given in Section 4.
c The sizes of these image files are ;34 MB each (2048×4096 pixels with 32 bits per pixel).
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Table 4
Ancillary (Debug-Mode) Outputs from PTFIDE

Output file suffixa Descriptionb

_badmsksci.fits Bad pixel mask for science image that includes spatially expanded bad pixels
_badmskref.fits Bad pixel mask for reference image (mostly showing saturated regions)
_scisatpixels.fits Image showing locations of only saturated pixels in science image
sx_ref_filt.tbl Table of filtered sources from input reference-image SExtractor catalog to support gain-matching and position refinement
sx_ref_filt.reg DS9 region/source-overlay file corresponding to sx_ref_filt.tbl
_sxrefremap.tbl Table of positions and fluxes of filtered reference image sources from sx_ref_filt.tbl with positions mapped onto science image

frame to support source-association in SExtractor run
_sx.tbl SExtractor catalog of science image extractions matched to filtered and remapped reference image sources from _sxrefremap.tbl; to

support gain-matching and photometric calibration
_sx.reg DS9 region/source-overlay file corresponding to _sx.tbl
_sxbck.fits Diagnostic background image computed by SExtractor when generating _sx.tbl catalog
_sxbckrms.fits Diagnostic background rms image computed by SExtractor when generating _sx.tbl catalog
_sxobjects.fits Diagnostic image showing objects extracted by SExtractor when generating _sx.tbl catalog
_resampref.fits Reference image resampled onto science image frame
_resamprefunc.fits Pixel-uncertainty image corresponding to _resampref.fits
_resamprefwt.fits Weight image from resampling of reference image using SWarp
_newscitmp.fits Science image gain-matched and positionally refined relative to reference image
_inpsvb.fits Regularized image used to compute smoothly varying differential background (SVB) image
_svb.fits Image of smoothly varying differential background; used to correct science image
_newscibmtch.fits Science image with differential background, photometric gain, and astrometry matched to resampled reference image, before PSF-

matching
_newsciuncbmtch.fits Pixel-uncertainty image corresponding to _newscibmtch.fits
_diffbmtch.fits Internal “science minus reference” difference image before any PSF-matching
_noconv_pm_stpn.fits Point-source image stamp indexed by n in partition mof image that is not convolved
_toconv_pm_stpn.fits Point-source image stamp indexed by n in partition m of image that will be convolved
_noconv_pm_psfcoad.fits Final co-added PSF from all point-source stamps in partition m of image that is not convolved; used to derive PSF-matching kernel

for partition m
_toconv_pm_psfcoad.fits Final co-added PSF from all point-source stamps in partition m of image that will be convolved; used to derive PSF-matching

kernel for partition m
_noconv_pm_psfcoaddepth.fits Pixel depth-of-coverage map corresponding to _noconv_pm_psfcoad.fits
_toconv_pm_psfcoaddepth.fits Pixel depth-of-coverage map corresponding to _toconv_pm_psfcoad.fits
_sxrefremapcorr.tbl Equivalent to _sxrefremap.tbl but performed on regularized science image (gain-matched, position-refined, and PSF-matched with

additional gain-corrections) prior to differencing
_scibefdiff.fits Regularized science image (gain-matched, position-refined, and PSF-matched with additional gain-corrections); input for SEx-

tractor to generate _sx_scibefdiff.tbl catalog
_sx_scibefdiff.tbl SExtractor catalog of science image extractions matched to filtered and remapped ref image sources from _sxrefremapcorr.tbl; to

support photometric calibration of difference image
_pmtchconvref.fits Convolved reference image prior to differencing; only produced if ref image was convolved
_pmtchconvsci.fits Convolved science image prior to differencing; only produced if sci image was convolved
_pmtchdiffmsk.fits Bad-pixel mask for final difference images; includes effects of convolution from PSF-matching
_pmtchdiffchisq.fits Image of binned pseudo-χ2 values for difference image after PSF-matching
_pmtchconvref.cooc DAOPhot output file listing initial detections from _pmtchconvref.fits for PSF generation
_pmtchconvref.lstc DAOPhot output file listing stars picked from _pmtchconvref.fits for PSF generation
_pmtchconvref.lst.regc DS9 region/source-overlay file corresponding to_pmtchconvref.lst
_pmtchconvref.neic Allstar/DAOPhot output file listing neighbors of the stars listed in _pmtchconvref.lst
_pmtchconvrefdaosub.fitsc Allstar/DAOPhot output image showing PSF-subtracted sources from _pmtchconvref.fits
_pmtchconvrefdaopsf.fitsc Image of spatially varying PSF represented as a grid of 16×32 postage stamps
_pmtchscimref.coo DAOPhot output file listing initial detections from _pmtchscimref.fits difference image
_pmtchrefmsci.coo DAOPhot output file listing initial detections from _pmtchrefmsci.fits difference image
_pmtchscimrefdaosub.fits Allstar/DAOPhot output image showing PSF-subtracted sources from _pmtchscimref.fits
_pmtchrefmscidaosub.fits Allstar/DAOPhot output image showing PSF-subtracted sources from _pmtchrefmsci.fits
_pmtchscimrefapphot.tbl Table containing concentric aperture photometry for extracted transient candidates from the _pmtchscimref.fits difference image;

only generated if the –apphot switch was set
_pmtchscimrefapphot.reg DS9 region/source-overlay file for all sources in _pmtchscimrefapphot.tbl
_pmtchrefmsciapphot.tbl Table containing concentric aperture photometry for extracted transient candidates from the _pmtchrefmsci.fits difference image;

only generated if the –apphot switch was set
_pmtchrefmsciapphot.reg DS9 region/source-overlay file for all sources in _pmtchrefmsciapphot.tbl
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FLAGS=0. A 14-pixel diameter aperture is used so that
integrated source fluxes are relatively immune to seeing
variations for the range of seeing encountered. This choice
however is not optimal for crowded fields (see below). An
intermediate filtered reference image catalog is then generated
with filename sx_ref_filt.tbl.

The source x, y positions in the filtered reference image
catalog are then mapped into the coordinate frame of the
science image using the xy2xytrans utility. The reason for this
is to support efficient source-matching within SExtractor when
run in source-association mode (below) since it only supports
source-matching in x, y coordinates. A new intermediate
catalog is made with filename suffix _sxrefremap.tbl that stores
photometric information for the filtered reference image
sources and with x, y positions in the WCS of the science
image. It is not guaranteed that this WCS is correct; hence any
possible astrometric errors will be reflected in the remapped x, y
positions. These positions will be used below to refine the
overall astrometry. SExtractor is then executed in source-
association mode using the filtered and position-remapped
reference catalog sources. This entails finding the nearest
science image sources with S/N above input threshold –sxt and
within a radial tolerance of –rad. A source-matched catalog
table is generated (_sx.tbl) with an accompanying DS9 region
file (_sx.reg). This table is used to derive the gain and
astrometric corrections.

4.2.1. Gain and Astrometric Corrections

The relative photometric gain factor Dg is estimated using a
median of the flux ratios of all Nm science-to-reference source

matches, where all fluxes are based on a 14-pixel diameter
aperture13:
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The uncertainty in Dg is estimated from the Median Absolute
Deviation (MAD), appropriately rescaled for consistency with
Gaussian statistics in the limit of large Nm, and further inflated
by p 2 to account for the fact that the median in Equation (7)
is noisier than a mean:
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Global position offsets along the x and y axes are also
computed using medians of the source-position differences:
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with uncertainties that are also based on the MAD estimator,
similar to Equation (8). Note that these represent overall
orthogonal offsets between the science and reference images,
and do not account for possible spatially dependent offsets, for
example, that would result from an erroneous distortion
solution for the science image (as calibrated upstream; see
Section 2). Recall that the reference-image pixels have already
been corrected for distortion during the co-addition process

Table 4
(Continued)

Output file suffixa Descriptionb

_pmtchscimrefsex.tbl SExtractor catalog for _pmtchscimref.fits difference image to associate with PSF-fit extractions; used to assign source-shape
metrics

_pmtchrefmscisex.tbl SExtractor catalog for _pmtchrefmsci.fits difference image to associate with PSF-fit extraction; used to assign source-shape metrics
_pmtchconvscistamp.fitsd Convolved sci image stamp prior to differencing; only produced if sci image was convolved
_pmtchconvrefstamp.fitsd Convolved ref image stamp prior to differencing; only produced if ref image was convolved
_imgtoconvstamp.fitsd Stamp image that is not convolved with PSF-matching kernel. Can be either sci or ref image
_imgnoconvstamp.fitsd Stamp image that will be convolved with PSF-matching kernel. Can be either sci or ref
_msktoconvstamp.fitsd Mask image stamp corresponding to _imgtoconvstamp.fits
_msknoconvstamp.fitsd Mask image stamp corresponding to _imgnoconvstamp.fits
_uncscistamp.fitsd Pixel-uncertainty image stamp corresponding to regularized science image
_uncrefstamp.fitsd Pixel-uncertainty image stamp corresponding to regularized reference image
_pmtchkernstamp.fitsd Image of PSF-matching kernel used to convolve image stamp; extracted from archival _pmtchkerncube.fits file.

Notes.
a This is also a mnemonic for the product type; listed in approximately the same order as generated by ptfide.pl, along with the primary products in Table 3.
b More details are given in Section 4.
c Only generated if the resampled reference image was convolved with the PSF-matching kernel, otherwise, the pmtchconvref filename string is replaced with
resampref if the science image was convolved.
d Only generated in “forced” sub-image mode if the -forced switch was specified in processing; see Section 4.10.

13 These will be affected by source confusion in crowded fields. In future, we
will use PSF-fit photometry from both images, that includes source-deblending.

18

Publications of the Astronomical Society of the Pacific, 129:014002 (48pp), 2017 January Masci et al.



(Section 3.3). Therefore, the assumption here is that the
distortion solution is reasonably accurate over the CCD image,
and that any systematics in the relative astrometry are purely
global shifts along either x or y or both.

Furthermore, to gauge the spread in the Nm input flux ratios
(Equation (7)) and position offsets (Equation (9)), 5th—95th
percentile ranges are also computed for these quantities. A
large spread in the flux ratios for example (relative to some
expected nominal value) may indicate that the flat-fielding was
inaccurate upstream. A large spread in the position offsets may
indicate that the distortion calibration was inaccurate. These
metrics are stored in a database table for trending.

The gain correction factor Dg (Equation (7)) is only used to
rescale the science image pixel values to match those in the
reference image if the following criteria are satisfied: the
number of matches Nm from which it was derived exceeds –

nmin; the quantity - D100 1 g∣ ∣ exceeds –dgt; and its
significance or S/N ratio, s- D D1 g g∣ ∣ ( ), exceeds –dgsnt.
Similarly, the orthogonal position corrections D D,x y are only
applied to the science image WCS parameters if the following
criteria are satisfied: the number of matches Nm also exceeds –
nmin; either Dx∣ ∣ or Dy∣ ∣ exceed –dpt; and their S/N ratios,

sD Dx x∣ ∣ ( ) or sD Dy y∣ ∣ ( ), exceed –dpsnt. Note, since the
D D,x y are constant corrections (independent of position), it
suffices to simply correct the coordinate origin defining the
science image WCS. These are the FITS keyword values
CRPIX1 and CRPIX2, and are corrected to the new values

-CRPIX D1 x and -CRPIX D2 y respectively. This adjust-
ment then ensures that the reference image is reprojected (and
registered) onto the correct science image WCS later on (see
Section 4.3).

As a detail, there are occasions when the input science image
was already absolutely photometrically calibrated and asso-
ciated with a ZP value, for example, when PTFIDE is executed
in offline mode on processed archival data. In this case, an
initial global gain correction factor G is computed using
the science and reference image ZP values according to
Equation (3). The Dg factor (Equation (7)) is still computed, but
it becomes a delta-correction on top of G. The final effective
gain correction factor for rescaling the science image pixels is
then ¢ =D G Dg g, where Dg is only applied if the above criteria
are met, otherwise it is reset to 1. Therefore, regardless of
whether the science image had a valid ZP calibration, PTFIDE
always computes a relative gain correction factor in order to
place the science image pixels on the same scale as those in the
reference image as best as possible.

4.2.2. Photometric Zeropoint Refinement

After rescaling the science image pixels, the above method
then implies that the reference image ZP will enable absolute
photometry on the science image, and eventually the difference
images derived therefrom. However, it is important to note that

the reference image ZP will only allow an absolute calibration
of the same type of instrumental photometry that was initially
used to calibrate that ZP. At the time of writing, the
instrumental photometry used for the absolute photometric
calibration of PTF/iPTF data are the Kron-like MAG_AUTO
aperture measurements from SExtractor (Ofek et al. 2012). As
discussed in Section 3.3, these are used together with sources
from the SDSS-DR9 catalog to derive the absolute ZPs in all
archived image products, including reference images. Unfortu-
nately, the MAG_AUTO measurements tend to systematically
underestimate the total instrumental flux, with a bias that
depends non-trivially on the image seeing. This bias is of order
4%–8%. Therefore, the current reference image based ZPs are
only applicable to MAG AUTO_ -like measurements performed
on the gain-corrected science and difference images. On the
other hand, the primary instrumental photometry extracted
from PTFIDE image products is PSF-fitting (Section 4.9.2). A
refinement to the ZP is therefore necessary.
To enable an absolute calibration of other flavors of

photometry, for example PSF-fitting or big-aperture photo-
metry on the real-time science and difference images, we
compute a new ZP value for insertion into their FITS headers,
denoted ZPSCI. This is only performed by PTFIDE if the –

phtcalsci switch was specified. This new ZP is computed using
the (absolutely calibrated) MAG AUTO_ magnitudes of the
same filtered reference image point sources as used for the
relative gain-correction above, with matching 14-pixel dia-
meter aperture measurements from the science image, corrected
for any residual Dg. If the number of source-matches exceeds
100, the new ZP is estimated as

=

-

ZPSCI MAG AUTO

MAG APER

median _

_ . 10

i

i

ref
abs

sci
inst

{(
) } ( )

A robust rms based on percentiles, ZPSCIRMS, is also
computed to quote as a possible systematic uncertainty on
ZPSCI. It is important to note that the MAG APER_ sci

inst

instrumental photometry used here is from a relatively large
fixed (14-pixel diameter) aperture. The ZPSCI value will also
be applicable to PSF-fit instrumental photometry because
analyses have consistently shown that this agrees, within
measurement error, with the instrumental fluxes from large
aperture photometry. I.e., both flavors of photometry catch the
same total instrumental flux for the range of seeing encoun-
tered. Therefore, to enable an absolute calibration (on the
SDSS system) of the photometry from PTFIDE image
products, involving either PSF-fitting and/or large apertures,
it is advised that the ZPSCI values be used. We note that this
reverse engineering to recover the correct ZP for PSF-fit
photometry will disappear in the future when our photometric
calibration system is upgraded to use PSF-fit photometry
throughout.
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To summarize, we have at this stage an internally regularized
science image whose pixels are gain-matched to those in the
input reference image, and with a possibly refined WCS
that matches the reference image astrometric solution. This
intermediate science image can be written to a FITS-formatted
file with suffix _newscitmp.fits. Other metadata that depend on
the gain-matching operation are recomputed and also propa-
gated along. These are the science image saturation level and
the pixel electronic gain (used for uncertainty estimation later).
Along with the MAG_AUTO-based ZP inherited from the
reference image, a new ZP is also available, ZPSCI, to enable a
more accurate absolute calibration of PSF-fit photometry
downstream. It is important to note that these corrections
represent initial adjustments at the global image level. Other
refinements to the relative photometric gain and/or astrometry
are possible at the local (sub-image) level later when we apply
the spatially dependent convolution kernels to match the image
PSFs (Section 4.8).

4.3. Reprojection of Reference Image

The reference image is warped onto the native pixel grid of
the science image (accounting for distortion) using its refined
WCS as described in Section 4.2.1. The SWarp utility (Bertin
et al. 2002) is used to perform the reprojection and resampling.
This software conveniently uses the science image’s distortion
polynomial with coefficients encoded in the PV-format, derived
upstream during astrometric calibration (Section 2). Pixels are
interpolated using a 2D Lanczos kernel of window size three
(Equation (1)), i.e., the same as that used when constructing the
reference images. See Section 3.3 for a discussion of its
advantages.

It is imperative that the distortion solution for the science
image be as accurate as possible over the entire frame to avoid
mapping the reference image pixels into the wrong locations.
Even slight inaccuracies (down to a tenth of pixel) will lead to
systematic residuals in the difference images. One could
mitigate these spatially dependent astrometric residuals by
fitting for a differential (relative) distortion between the science
and reference images and if significant, correcting the science
image distortion prior to reprojection. We found this to be
unnecessary for now since for the bulk of iPTF fields, the
spatially binned source-position residuals between the science
and reprojected reference image sources have maximal rms
values of  0. 12 per axis. This maximum rms per image is
computed over 6×12 spatial bins, where the binning is
intended to capture local systematics in the distortion solution
of the science image. 0 1 is typically the maximum tolerable
residual to obtain good quality difference images for iPTF
under median seeing or worse, at the location of R16 mag
sources. Presently however, the residuals are generally larger in
the densest regions of the galactic plane since that is where the

astrometric calibration is most challenging. This is a work in
progress.
The resampled reference image can be written to a FITS-

formatted file with suffix _resampref.fits. An accompanying
weight-image file is also generated (_resamprefwt.fits). This
weight image is used to generate a mask image for the
resampled reference image (_basmskref.fits) that primarily tags
saturated pixels. These pixels are then expanded to account for
their growth during the interpolation and PSF-matching process
(see Section 4.1).

4.4. Differential Spatially Dependent
Background Matching

The slowly varying background (SVB) component in the
rescaled and astrometrically refined science image is matched
to that in the resampled reference image. This background
matching step helps minimize systematics in the difference-
image photometry later on (through estimation of the local
background), particularly when the differential background
between the science and reference image varies nonlinearly
with position. The background correction map is estimated
using a robust image-partitioning method performed on a
preliminary science—reference difference image, where the
inputs are already gain matched (Section 4.2.1) and astrome-
trically aligned (Section 4.3) but not yet PSF-matched. Bad and
saturated pixels from both images are masked in the difference
image prior to processing. The reason for computing the
background correction map from a raw difference image is that
this minimizes any biases from bright extended emission (e.g.,
galaxies). Furthermore, the presence of residuals at the point-
source level due to the lack of PSF-matching (at high spatial
frequencies) does not impact the estimation process.
The difference image is first partitioned into M×N

rectangles where M, N are specified by –gridXY (see Table 2).
Pixel modes (or optionally medians) are computed both
globally (for the entire image) and within each partition using
only unmasked pixels. Modes are only computed if the–wmode
switch was specified, otherwise medians are computed. In the
steps described below, mode can be interchanged with median
if the latter was used.
First, for each partition, we replace all pixel values therein

with the global mode if its local mode exceeds or is below the
global mode by a relative percentage specified by –tmode, i.e.,
if - >mode globalmode globalmode tmode100∣ ∣ is satisfied.
Furthermore, we replace any outlying pixel values pi in all
partitions with their respective local mode if s- >p mode ti∣ ∣
is satisfied, where t is a threshold specified by –tpix and σ is a
robust local rms estimated from a trimmed standard-deviation
of the low-tail pixel distribution in the partition, i.e., below its
local mode.
The resulting outlier-trimmed modal map is further

regularized by replacing all pixels in those partitions

20

Publications of the Astronomical Society of the Pacific, 129:014002 (48pp), 2017 January Masci et al.



with the global image mode whose local σ (robust rms) is
s> ´ ¢tsig median s from all partitions{ }, where tsig is a

relative threshold specified by –tsig. This avoids noisy
partitions (e.g., due to excessive Poisson noise from bight
emission) from affecting the differential SVB estimate. At this
stage, the regularized difference image can be written to a
FITS-formatted file with suffix _inpsvb.fits.

Next, we down-sample the regularized difference image
using the binning factor specified by –rfac. This binning
uses a local averaging of pixels and is performed to speed
up the filtering in the next step. The down-sampled map
is median filtered using a window size specified by –szker
to smooth out the partition boundaries. The resulting image
is up-sampled back to the original image pixel dimensions
for use downstream. This is the final SVB correction
map and can be written to a FITS-formatted file with suffix
_svb.fits.

The SVB correction map is subtracted from the input (gain-
matched) science image to produce a new regularized science
image (file suffix _newscibmtch.fits). This now has a SVB
whose pattern matches that in the resampled reference image.
Figure 5 shows an example of an input science and resampled
reference image, and the differential (low-pass filtered) SVB

image generated therefrom. At this stage, a preliminary
difference image (still with no PSF-matching) can be generated
with suffix _diffbmtch.fits to check the quality of the
background matching. An example is shown on the far right
of Figure 5.

4.5. Pixel-level Uncertainty Estimation

At this stage, images of the 1-σ uncertainties corresponding
to the gain and background-matched science and resampled
reference images are initialized for propagation downstream.
These pixel uncertainties are later updated to account for
additional processing on the images.
We use a robust semi-empirical method to compute the pixel

uncertainties. First, we find the minimum background pixel
variance sbcksci

2 and mode mbcksci over all partitions of the
science image. These are the same partitions from the
background matching step above (Section 4.4). The variances
are computed from a robust pixel rms based on a trimmed
standard-deviation of the low-tail pixel distribution in each
partition. The minimum value is used for conservatism in the
sense that any biases from bright emission and/or source-
confusion are minimal. The 1-σ uncertainty for a pixel signal

Figure 5. Left to right: an example science and reference image containing the M13 Globular Cluster. The image stretch is intended to amplify background variations.
The difference of these images is used to generate the differential slowly varying background (SVB) map where the minimum-to-maximum range is ;18 DN (or a few
percent). The SVB map is then subtracted from the science image. When the reference image is subtracted from the new (background-matched) science image, this
results in the spatially uniform difference image on the far right. This difference has the same image stretch as the SVB map. Black regions are bad and saturated
pixels.
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fDN in the science image is approximated by
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where S is a scale factor to account for the gain-matching
operation (Section 4.2.1) and is needed since the actual
counting of photoelectrons (for the Poisson term) is always
with respect to the native detector ADU counts. g is the
detector’s electronic gain in -e DN (input parameter e.g.,). We
have subtracted an estimate of the background from the pixel
signals since any Poisson-noise from the background is already
implicitly included in the sbcksci

2 term and we remove any
unknown (hidden) bias level that is not induced by photoelec-
trons. This avoids overestimating the Poisson contribution from
the background. Furthermore, sbcksci

2 implicitly includes the
read-noise component. Pixels with - <f m 0DN bcksci are reset
to zero.

For the reference image pixel uncertainties, we first compute
a robust background pixel variance sbckref

2 from the same
(minimally contaminated) partition as used for the science
image. Given that the reference image was created from
a co-add of science images with variable photometric ZPs (that
were later used to throughput-match the images; Section 3.3),
the Poisson-noise contribution will be difficult to estimate
precisely from first principles. Instead, we approximate the 1-σ
uncertainty for a pixel signal in the reference image by scaling
from the science image uncertainties (Equation (11)) and the
relative background rms estimates:
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This is expected to be a reasonable approximation since the
pixel signals (in DN) are guaranteed to be conserved between
the rescaled science image and resampled reference image,
to within measurement error. In other words, the signals
contributing to the Poisson component are not expected to
change much between these images and any N1 diminution
in the overall noise in the reference image from co-addition is
effectively handled by the ratio s sbckref bcksci.

An important effect that is not accounted for in the pixel
uncertainties of the resampled reference image at this stage is
the possibility of correlated pixel noise. This could arise from
both co-addition (during construction of the initial reference
image) and the reinterpolation step (onto the science image
pixel grid; Section 4.3). Accounting for spatially correlated
noise is more important when estimating the photometric
uncertainties of extracted sources from difference images
(Section 4.9.2). The contribution of correlated noise from
reference images however is expected to be small. This is
because first, as discussed in Section 3.3, correlated noise will
be negligible due to the choice of a sinc-like interpolation
kernel, and second, because of the N1 diminution from co-

addition. The difference image noise will be dominated by that
in the science image. The difference image pixel uncertainty
estimates are described in Section 4.8. The science and
reference image pixel-uncertainty images can be written to
FITS format with suffix names _newsciuncbmtch.fits and
_resamprefunc.fits respectively.

4.6. Preparation of Inputs for PSF-matching

Our overall goal is to derive a kernel image K(u, v ) where u,
v are relative pixel coordinates, which when convolved with
one of the input images (science or reference), will match their
PSFs in some optimal manner. The details of how this kernel is
represented and derived are outlined in Section 4.7. Following
the global-matching steps above (i.e., registration, gain and
background-matching), the PSF-matching problem can be
generalized by attempting to model one of the input images
in terms of the other through K(u, v ) and some local differential
background dB. For instance, let us assume the science image
pixel values Iij can be modeled from those in an overlapping
reference image Rij where the point-source profiles therein are
significantly more narrow (in terms of overall FWHM):

= Ä + +I K u v R dB, . 13ij ij ij[ ( ) ] ( )

ij is a noise term, usually a correction to the random noise
component inherent in the R image since the latter is not strictly
noiseless. Note, if I was determined to be the better seeing
image (according to some ΔFWHM threshold based on prior
metrics; see Section 4.7), then R and I would be interchanged in
Equation (13) without loss of generality. Aside from modeling
differences in PSF shape, K(u, v ) will also (implicitly) model
local residuals in the relative photometric gain and/or
astrometry, for later removal when K(u, v ) is applied.
Regardless of how K(u, v ) is parameterized (see below), the

crucial inputs for an optimal solution (in the least-squares
sense) are accurate representations of the PSFs as a function of
position in both the science and reference images. These PSFs
then effectively take-on the role of I and R in Equation (13). To
account for spatial dependencies, we estimate the PSFs over a
grid of = ´N N Nm x y image partitions where Nx, Ny are
specified by –kerXY (currently = 3×3 or ¢ ´ ¢11.5 23 for
iPTF). The boundaries of the partitions are made to overlap by
a length equal to half the kernel image width (input –kersz;
currently =9 pixels). The partition size is determined from an
analysis of the coherency in PSF-shape versus position,
balanced against the typical number of point-sources expected
therein in order to obtain PSFs of reasonable S/N when all
sources are combined. Our derivation of K(u, v ) is highly
sensitive to input noise and therefore every attempt is made to
maximize the pixel S/N in the final PSF images, for all image
partitions.
Figure 6 gives an overview of the steps used to construct the

2×Nm high quality PSF images for all partitions in the
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preprocessed science and reference images. The primary input
is a list of clean point-sources from the input reference
SExtractor catalog, with x, y centroid positions in the
resampled reference image frame. These are the same filtered
point-sources used for the relative gain-matching and astro-
metric refinement steps described in Section 4.2. The sources
are assigned to their specific image partitions and we require a
minimum of Nmin=20 sources (parameter –nmins) per
partition. The maximum is capped at Nmax=150 (–nmaxs)
where if exceeded, the brightest Nmax sources in the partition
are selected. This maximum is imposed for runtime reasons,
but still provides a sufficient overall S/N when all sources are
combined.

For a given image partition m, square stamps of linear size –
psfsz (=25) pixels centered on the reference-image-based
source centroids are cut from the (already registered) science
and reference images. The reason for using the same
(reference) position on both images is that we want to preserve
any possible local astrometric shift between stamps of the same
source from each image. This shift (if significant) will persist

into the final respective PSF images and be subsequently
captured by the kernel solution K(u, v ). This will allow any
local systematic shifts to be corrected following the application
of K(u, v ) to its respective image partition (Section 4.8). The
point-source cutouts are then filtered to remove cases with large
numbers of masked pixels. Each stamp is then interpolated into
a new pixel grid so that the input (fractional-pixel) source
centroids are made to fall close to their geometric centers, i.e.,
to correct for the truncation error when creating the initial
cutouts using integer pixel coordinates. This registration step is
important prior to stacking the point-source stamps. The stamps
are then background-subtracted to ensure a zero-median
background level outside an aperture with size specified by –

apr. Pixel signals inside this aperture from only the reference
image cutouts are then integrated and used to flux-normalize
each matching science and reference image cutout of the same
source. The reason is similar to that mentioned above for
source positions—it preserves any possible residual in the
relative gain that can later be modeled and removed by K(u, v ).

Figure 6. Processing flow for the creation and allocation of PSF image products for each common science and reference image partition. These are used to derive the
spatially dependent PSF-matching kernel between the science and reference image. See Section 4.6 for details.
(A color version of this figure is available in the online journal.)
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If the debug switch was set, the point-source image cutouts
can be individually written to FITS format with file suffixes
_noconv_pm_stpn.fits and _toconv_pm_stpn.fits for the science
and reference image respectively, where m is the partition
identification index and n is the source index therein.

The homogenized point-source cutouts for partition m are
then separately stacked for the science and reference images.
The first step involves using robust statistics to identify and
mask outlying pixels in the pixel stacks. The stamps are
combined using a weighted average where weights are the
inverse of the pixel variances computed from the background
in each stamp (outside an aperture with radius –apr). This
results in two PSF images for partition m, one for the science
and another for the reference image. The PSF images are
further cleaned for possible pixel outliers using Winsorization
(e.g., Kafadar 2003). Here, pixels that exceed some threshold (a
multiple of the robust spatial rms above or below the
background) are replaced with the threshold value. This
replacement (when used with a high threshold) does not
inadvertently distort the PSF shape. The input parameters and
thresholds for the above steps are specified by the –rpickthres
input string.

The source-cutout and stamp-stacking process is performed
on all Nm partitions. This results in two preliminary (science
and reference) PSF images per partition, assuming there were
enough point sources therein (i.e., exceeding Nmin). If the
debug switch was set, these can be written to FITS format with
filename suffixes _noconv_pm_psfcoad.fits and _toconv_pm_
psfcoad.fits for the science and reference image respectively,
where m is the partition index. Accompanying pixel-depth
maps showing the final number of stacked pixels are also
generated with _psfcoad.fits replaced by _psfcoaddepth.fits in
these filenames.

These PSFs are preliminary in the sense that there is no
guarantee that all are of sufficient quality with good overall S/
N across all partitions. For example, a partition could fall on a
highly confused region, exhibit a complex background, or not
have enough good quality point-sources. To account for this,
we further regularize the PSFs for approximate consistency
across all partitions. This includes replacing a bad PSF with a
better quality one from a neighboring partition. A consequence
of this replacement is that the selected PSFs (for a common
science and reference partition) will no longer represent the true
PSF shapes for that partition. This is a small loss since this
replacement does not occur often, and when it does occur, the
overall PSF variation is small enough that the impact to the
PSF-matching is negligible when another partition’s PSFs are
used. These regularization steps are described in more detail
below, with control parameters also specified by the –

rpickthres input.
We first correct any PSF pairs with a large residual gain

relative to all other PSF pairs from other partitions. The
residual gain is estimated using the ratio of the sum of

normalized PSF pixel values for the pair. Ratios that deviate by
more than some threshold from the median pixel-sum ratio over
all partitions have their respective PSF pixels rescaled to match
the median ratio. This median ratio is typically unity due to the
global gain-matching performed earlier (Section 4.2). Note that
this “gain-homogenization” is only intended to correct PSF
pairs with large outlying residuals in their relative gain. Next,
we allocate the final PSF pairs to each partition by enuring that
first, there were enough sources to make PSFs in the first place
(i.e., Nmin ) and second, that the RSS of their robust spatial
RMSs were below some threshold. If either of these conditions
are not satisfied for a partition, we assign PSFs from that
partition with the lowest RSS’d rms value. Each overlapping
science and reference image partition is now associated with a
high quality pair of PSFs, ready for the PSF-matching step.
Figure 7 shows an example of the PSFs for two image
partitions and the resulting matching kernels K(u, v ) using
the formalism in Section 4.7. As expected, the reference
image PSFs will have a higher S/N and appear smoother since
the references were initially created from a stack of science
images.

4.7. Derivation of PSF-matching Kernel

Given high S/N representations of the science and reference-
image PSFs for a spatial partition, with PSF pixel values Iij and
Rij respectively at common coordinates i, j, we outline below
the method used to obtain an optimal solution for the
convolution kernel K(u, v ) and differential background dB in
Equation (13). Following previous approaches, these can be
derived by minimizing a weighted sum of the squared residuals

Figure 7. Example PSF image products for two separate image partitions: top
row corresponds to a partition at the bottom left of a CCD image and bottom
row is for a partition at top right of the same image. From left to right: PSF for
science image, PSF for reference image, and the resulting PSF matching kernel
derived using the method in Section 4.7. Pixel sizes are the same throughout.
The kernel images are enlarged for clarity.
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between a model and some new image (here the science image
PSF); for example, using the objective function
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where sij are prior pixel uncertainties in the Iij that may include
some scaled contribution from Rij (see below). Equivalently,
Equation (14) can be recast in vector-matrix notation:

c = - W --I M I M , 15o
T2

cov
1( ) ( ) ( )

where Wcov is the full error-covariance matrix to account for
possible correlated errors between the input pixels, andM is the
model-image with elements:

= Ä +M K u v R dB, . 16ij ij[ ( ) ] ( )

Strictly speaking, the objective function co
2 can only be

compared to a true χ2 distribution with degrees-of-freedom
Ndof for the purpose of validating model solutions using
probabilistic inference if the input data errors are normally
distributed; i.e.,  s~ N 0,ij ij

2( ). These errors can be inter-
dependent (and if so, need to be captured by Ωcov), but they do
need to be identically distributed for χ2-validation purposes.
The null hypothesis is that the model (Equation (16))
“generated” the Iij. Furthermore, for linear parameterizations
of K(u, v ) (see below), the minimization of co

2 reduces to a
generalized linear least-squares problem with a solution that is
unique and optimal in the maximum-likelihood sense for
normally distributed errors.

Another important consideration is that the input errors ij are
heteroskedastic, i.e., they are not identically distributed with
constant variance over the input pixels i, j. This is because we
are exclusively fitting point-source data where Poisson noise
dominates. The noise-variance will have a spatial dependence
following the shape of the PSF profile (Iij). Even though this
dependence can be accounted for by using prior weights
derived from the pixel uncertainties ( s1 ij

2 or W-
cov

1 ) that

implicitly include Poisson-noise, their direct use in co
2 will

lead to biased estimates for K(u, v ) and dB. This was explored
in a different context by Mighell (1999). A number of complex
variance-stabilizing methods exist to ensure unbiased esti-
mates. For simplicity, we omit the use of prior weights when
estimating K(u, v ) and dB. Our solution will still be optimal in
the least-squares sense and will also be close to the maximum-
likelihood solution for normally distributed errors in general.
Even though the exclusion of weighting in Equation (14)
prohibits the use of goodness-of-fit tests in an absolute
(probabilistic) sense, relative changes in the global co

2 can be
used to validate the performance of different kernel solutions
when applied to full images (see Section 4.8.2). For
completeness, we continue to carry the σij term (as represented
in Equation (14)) in our derivations below. In the end, our

estimates are really solutions to an ordinary linear least-squares
(OLS) problem.
Our construction in Equations (13) and (14) assumes that the

image containing the narrower PSF is the one that should be
convolved. However, there is no guarantee that this image is
always the reference PSF (Rij) and hence without loss of
generality, Iij and Rij can be interchanged. It is therefore
important to predefine the convolution direction. This can be
specified by the–conv input string. The choices are sci, ref, or
auto. The sci and ref options always force the science (Iij) or
reference (Rij) image pixels to be convolved respectively. The
auto option allows an automatic selection of the image to
convolve and is our current operating mode. This selection is
based on comparing global-image measures of the FWHM
values of filtered stars from the science and reference images.
The FWHM values are from 2D Gaussian fits performed by
SExtractor. These values are medianed to yield two measures:
FWHMsci and FWHMref. The automatic selection is based on
the value of the relative difference

d = -1
FWHM

FWHM
. 17sci

ref
( )

Currently if d 0.03, the science image is selected for
convolution, otherwise the reference image is selected, i.e., as
depicted in the estimation equations above. The threshold for δ
was tuned by examining distributions in FWHMsci and
FWHMref from many images and setting a conservative value
to allow for uncertainty in the median FWHM estimates. In
other words, the fuzzy interval d- < <0.03 0.03 implies the
overall sci and ref PSF FWHM measures are consistent within
measurement error. Note that the FWHM measure is assumed
to be a good proxy for PSF shape in general, at least to first
order for the purpose of defining a convolution direction. When
the PSF FWHMs are consistent, no useful information is
expected in the kernel solution, i.e., aside from noise and
perhaps variations incurred by higher-order PSF-shape differ-
ences. The kernel then effectively becomes a single spike (i.e.,
a δ-function) where in principle, no PSF-matching would be
required.
Usually (for 85% of science image exposures encoun-

tered), the reference images are those selected for convolution
since by design, these were constructed from archived science
images with moderately better seeing than average, in addition
to being weighted by their inverse-seeing (Section 3.3).
However, for cases where the science image (Iij) is selected
for convolution, the roles of Iij and Rij are interchanged in
Equations (14) and (16) so that Iij convolved with K(u, v )
becomes the model-image fitted to the data, Rij. This
complicates the error and weighting structure if a true χ2

objective function (based on Equation (14)) were to be used for
estimation since the model would be noisier than the data being
fitted. This is another reason for omitting the use of prior
weights in the objective function and treating it as a simple
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OLS problem. The application of K(u, v ) to the noisier Iij
image also causes a larger fraction of the noise to be correlated
in the final difference image. This is further discussed in
Section 4.8.

As mentioned above, linear parameterizations for K(u, v ) are
the simplest to solve from a computational standpoint, for
example, by expanding K(u, v ) as a linear combination of n
basis functions:

å=K u v a K u v, , , 18
i

n

i i( ) ( ) ( )

and solving for the n coefficients ai. A traditional choice for the
Ki(u, v ) are Gaussians of different width, each modified by a
2D shape-morphing polynomial. The ai are further expanded
into another polynomial in x, y to model possible dependencies
over the focal plane. This is the classic PSF-matching algorithm
of Alard & Lupton (1998) and Alard (2000), and extended by
Yuan & Akerlof (2008). This algorithm has been successfully
used by several time-domain surveys, e.g., OGLE (Wyrzy-
kowski et al. 2014), La Silla-QUEST (Hadjiyska et al. 2012),
Pan-STARRS (Kaiser et al. 2010) and the SDSS-II Supernova
Survey (Sako et al. 2008). Initially, we extensively validated
this method for PTF (at IPAC, Caltech) as implemented in the
HOTPANTS14 and DIAPL utilities (Woźniak 2000). A major
limitation was the specification of a number of fixed
configuration parameters. These parameters are not fitted, i.e.,
the Gaussian widths (at least four were needed) and the
polynomial orders (six more parameters). The overall perfor-
mance was sensitive to the precise choice of these parameters.
Furthermore, the basis functions were not complex or flexible
enough to model the bulk of the data encountered in the survey,
under a continuum of atmospheric conditions and unforeseen
instrumental behaviors. Despite attempts to constrain the basis
function constants using a priori information in a dynamic
manner (e.g., as prescribed by Israel et al. 2007), a generic-
enough representation for K(u, v ) under this framework that
kept the false-positive rate among transient candidates
appreciably low and at a manageable level eluded us.

A more flexible “shape free” basis representation for K(u, v )
was proposed by Bramich (2008). Here the kernel is discretized
into L×M pixels and each pixel value therein, Klm, is treated
as a free parameter in the OLS fitting problem. This free form
basis is also referred to as the delta function representation
where the kernel can be expressed as a 2D array of delta
functions:

d d= - -K u v K u l v m, . 19lm( ) ( ) ( ) ( )

A kernel size of 9×9 pixels (input parameter–kersz) then has
81 orthonormal basis functions when expanded as a linear
combination according to Equation (18). For comparison, the
best Gaussian-basis model mentioned above has 252 free

parameters for effectively the same amount of input data in the
estimation process. Apart from the kernel image size and
threshold parameters used to creating the regularized
PSF-inputs (Section 4.6), there are no shape-based tuning
parameters for the delta-function representation. For this
reason, it can accomodate more generic shapes, as well as
capture offsets in the astrometry on scales used to construct the
input PSF data Iij and Rij, coming from effectively a Nx×Ny

image partition. As we shall discuss, this unconstrained
specification is both good and bad.
With this representation, the model image (Equation (16))

can be written in terms of the unknown coefficients Klm as
follows:

åå= + + +M dB K R . 20ij
l m

lm i l j m ( )( )( )

The objective function to minimize (the equivalent of
Equation (14)) then becomes

⎡
⎣⎢

⎤
⎦⎥å ååc

s
= - - + +I dB K R

1
. 21o

i j ij
ij
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2

,

2

( )( )( )

The optimal values of Klm and dB are those that minimize co
2,

i.e., where the partial derivaties of co
2 with respect to each

parameter are all zero:
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These are evaluated at the specific parameter values indexed by
l m,o o for Klm and dBo to yield two general relations:
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14 see http://www.astro.washington.edu/users/becker/v2.0/hotpants.html.
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respectively. The kernel pixel indices in Equations (23) and
(24) have the ranges

 
 

- - -
- - -

L l L
M m M

1 2 1 2
1 2 1 2, 25

o

o

( ) ( )
( ) ( ) ( )

where =l m, 0, 0o o( ) ( ) corresponds to the center pixel of the
kernel with dimensions L×M pixels and p is a one-
dimensional index: p=1, 2, 3, K, LM. For a given lo, mo,

= + + +p l Lm LM 1 2. 26o o ( ) ( )

Equations (23) and (24) lead to a simultaneous system of
LM+1 equations in LM+1 unknowns that can be written in
the vector-matrix form:

=A X B, 27( )

where X is a vector containing the LM kernel-pixel unknowns
Kp (=Klm) and differential background estimate dBo.

Equation (27) can be inverted using standard techniques, and
at first, X was estimated directly using a LU-decomposition of
A. However, in accord with previous analyses (e.g., Becker
et al. 2012), the unconstrained nature of a pure delta-function
representation can make the Klm solutions very sensitive to
noise and contamination from non-PSF related signal in the
inputs Iij and Rij. The model-fit is therefore subject to over-
fitting. This is the so-called bias versus variance tradeoff where
one is after a solution that is expressive enough to avoid biases,
but not so complex as to introduce excessive variance when the
solutions are later applied to match the PSFs in an entire input
image or partition. In the end, one is after the true PSF-
matching kernel for the two images. Despite our attempts to
mitigate noise in the input PSF co-add stamps (Iij and Rij;
Section 4.6), noise is inevitable. One way to avoid overfitting
and still maintain optimality is to invoke regularization in the
estimation process.

4.7.1. The Regularized PiCK Method

Becker et al. (2012) implemented a regularized version of
the delta-function kernel model by introducing a tunable
smoothing constraint in the χ2 objective function. This function
is proportional to the second spatial derivative in the input
pixels and is intended to penalize fits that are too irregular as a
result of high-frequency noise. This regularization method was
explored and validated in detail by Bramich et al. (2016) from
the aspect of maximizing photometric accuracy in final
difference images. This extension is attractive, but it did not
become known to us until after we had implemented an
alternative regularized version of the delta-function model (see
below). This worked very well on PTF image data. We will
refer to this method as the Pixelated Convolution Kernel
method (or PiCK for short).

Instead of imposing a regularizing constraint on the objective
function as in Becker et al. (2012), our approach involves
regularizing the coefficient matrix A in Equation (27). We

perform a spectral decomposition, also known as an eigende-
composition of A:

=A V W V , 28T ( )

where V is an orthogonal matrix ( = -V VT 1) and W is a
diagonal matrix:

= ¼ ¼ +W w w w wdiag , , , , , 29i1 2 LM 1( ) ( )

with eigenvalues    ¼ +w w w w 01 2 3 LM 1 . The
corresponding linearly independent eigenvectors of A reside
in the columns of V. Given A is a real symmetric matrix, such a
decomposition can always be found. This decomposition
allows us to examine the basis vectors that will contribute to
the kernel solution. The least-important eigenvectors of A are
those associated with input noise and can be identified by their
relatively small eigenvalues, below some threshold. These can
then be “zeroed-out.” For example, the inverse of A can then be
written

=- -A V W V , 30T1 1 ( )

where

= ¼ ¼- - - -
+

-W w w w wdiag , , , , , 31i
1

1
1

2
1 1

LM 1
1( ) ( )

for all >w 0i . For values wi=0 (within machine precision),
the -wi

1 are replaced by zero in -W 1. This special replacement
corresponds to the classic Singular Value Decomposition
(SVD) method for handling singular (ill-conditioned) matrices.
The inverse defined by Equation (30) then becomes the pseudo-
inverse of A. This approximation is better conditioned for
obtaining a solution to the matrix equation in (27).
The essence of the PiCK method is to make this SVD-like

replacement more generic and less restrictive on the specific wi

to replace. The goal is to also make A more regularized against
noisy input data (including singular cases) by finding the
largest eigenvalue wk such that <w w Tmaxk i{ } for some
threshold T (see below). For all i k, we reset =-w 0i

1 in
W−1 and then proceed to obtain a solution. Following the
decomposition in (30), the solution vector X in Equation (27)
can be written

⎛
⎝⎜

⎞
⎠⎟å=

+

X
w

V B V
1

. 32
i

LM

i
i
T

i

1

( )

In this form, it can be seen that the noisiest (least-relevant)
eigenvectors Vi according to »-w 0i

1 will not significantly
contribute to X. Therefore, they can be eliminated by forcing

=-w 0i
1 . These eigenvectors can be also identified by their

relatively small dot-products with the B vector, V Bi
T∣ ∣, as shown

in Figure 8.
The threshold T is dynamically derived on a per image-

partition basis, i.e., where an inversion of Equation (27) via
(30) is performed. This uses the following semi-empirical
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criterion:

⎧⎨⎩
⎫⎬⎭= -T

w

w
min 10 , 10th percentile in

max
, 33i

i

6

[ ]
( )

where the second argument corresponds to the low-tail
percentile of the max-normalized wi distribution. The values
in Equation (33) were tuned by examining the eigendecompo-
sitions of A using iPTF image data acquired across different
environments, from low source-density to densities approach-
ing those in the galactic plane. A range of T values were then
tested by exploring the impact of the corresponding regularized
solutions on the overall fit χ2 (Equation (21)). Examples of
these eigendecompositions are shown in Figure 8. The criterion
in Equation (33) corresponds to approximately an inflexion
point in the relative eigenvalue size. This choice is also
conservative in the sense that the amount of legitimate high-
frequency information thrown away (not associated with noise)
is expected to be insignificant as determined by the change in
χ2 with and without regularization (T= 0). I.e., we ensure that

c s nD =c2 2 22 2 , where ν is the effective number of
degrees of freedom. In the current setup for iPTF,

n = ´ - +
= ´ - ´ + =

psfsz psfsz LM 1
25 25 9 9 1 543. 34

( ) ( )
( ) ( ) ( )

The regularization threshold T is also dependent on the size
of the kernel assumed (=L×M free parameters to solve) since

this determines the relative fraction of noise contributing to the
Klm estimates. The kernel image size was tuned beforehand to
be small enough to avoid introducing too many free parameters
that would result in overfitting on noisy backgrounds in the
PSF stamps, but large enough to accomodate the range of
seeing (point-source profile widths) encountered. This ensures
both unbiased kernel solutions and minimal variance following
their application, i.e., a compromise in the bias versus variance
tradeoff mentioned above.
When a PSF-matching kernel image with estimates Klm is

available, a measure of the relative residual gain between the
science and reference image pixels for a specific image
partition (from which Iij and Rij were extracted) is given by
the sum

åå=K K . 35
l m

lmsum ( )

The Ksum values (across all image partitions) can be used to
assess the accuracy of the global relative gain correction
computed upstream (Section 4.2.1). More importantly, they
provide local estimates of any residual photometric gain where
if significant, can be used to refine the gain factor at the image
partition level prior to differencing (see Section 4.8). Ksum also
provides a diagnostic to assess the quality of the kernel
solution. For example, an image partition with a Ksum that
significantly deviates from unity compared to that of its

Figure 8. Relative eigenvalue strength (crosses) and eigenvector magnitude (circles) vs. eigenvector index i. Increasing i corresponds to progressively higher spatial
frequencies, eventually approaching the pixel noise. Horizontal dashed lines correspond to dynamically derived truncation thresholds; see Section 4.7.1. Results are
shown for two kernel solutions derived for image partitions with two different source densities, left: moderate to low-density typical of high galactic latitudes; right: a
density that is ∼80× higher.
(A color version of this figure is available in the online journal.)
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neighboring partitions could indicate a problem in the
estimation process, perhaps triggered by bad or low-quality
input PSFs. For details, see the discussion on quality assurance
in Section 4.8.2.

To summarize, we have extended the free form delta-
function model representation to derive PSF-matching kernels
by performing a simple regularization of the matrix system
used for the least-squares solution. This uses an eigendecom-
position to retain the most significant basis vectors within a
statistically validated threshold. We have coined this the PiCK
method. Figure 9 shows examples of input images, kernels, and
the resulting difference images for a relatively dense field with
and without regularization included. The relative change in χ2

(Equation (21)) going from the unregularized to regularized
solution for the entire image shown in Figure 9 is ≈−3.5%.
The PiCK method leads to smoother PSF-matching kernels and
hence difference images in general. It is also robust against
contamination in the input PSFs (Iij and Rij), for example when
constructed from high source-density regions.

4.8. Kernel Application and Difference Image Products

The PSF-matching convolution kernel is first normalized to
unity to yield

=~
K

K

K
, 36lm

lm

sum
( )

where Ksum was defined by Equation (35).
~
Klm is then

convolved with the specific image partition that was initially
selected for convolution using the method in Section 4.7, i.e.,
defining the convolution direction. The reason for decoupling
Ksum (the local relative gain factor) from the raw kernel Klm is
so that any residual gain correction can be refactored and
applied as a multiplicative correction on the science image
pixels only, and not the resampled reference image, regardless
of the convolution direction. This is consistent with our modus
operandi in PTFIDE: all corrections are applied to the science
image pixels, in order to match the photometrically and
astrometrically calibrated reference image as best as possible.

If the reference image was selected for convolution, the
difference image pixel values for an image partition from
which the kernel and differential background estimates were
derived can be written:

⎡
⎣⎢

⎤
⎦⎥ åå=

-
- ~

+ +D
I dB

K
K R . 37ij

ij o

l m
lm i l j m

sum
( )( )( )

If the science image was selected for convolution, the
difference image pixel values for the image partition can be
written:

⎡
⎣⎢

⎤
⎦⎥åå= + -~

+ +D dB K K I R . 38ij o
l m

lm i l j m ijsum ( )( )( )

Two difference images per science, reference image pair are
generated, a positive (sci—ref ) and negative (ref—sci)
difference image. As described in Section 3.4, this is to enable
the detection of transients and variables that happen to be
below the reference-image baseline level at any observation
epoch. The positive and negative difference images are written
to FITS formatted files with filename suffixes _pmtchscimref.
fits and _pmtchrefmsci.fits respectively. If the debug switch was
set, ancillary products representing the different components of
Equations (37) or (38) prior to differencing can also be
generated (see Table 4). These are the final science image,
convolved or not with Ksum and dBo applied: _scibefdiff.fits,
and the convolved counterpart: either Ä

~
K Rij or Ä

~
K Iij:

_pmtchconvref.fits or _pmtchconvsci.fits respectively.
The science and reference image bad-pixel masks generated

upstream (Section 4.1) include the effects of convolution
where bad pixel regions are expanded accordingly. These are
combined to produce a final effective bad-pixel mask for both
the positive and negative difference images. If the debug switch
was set, this can also be written to FITS format with filename
suffix _pmtchdiffmsk.fits. Furthermore, all bad pixels in the
difference images are tagged with value −999,999.
An image of the 1-σ uncertainties corresponding to the Dij

images (Equations (37) or (38)) is also generated. These
uncertainties are estimated by RSS’ing the input uncertainties
for the science and reference images (Equations (11) and (12)
respectively in Section 4.5) with a correction for correlated-noise:

s s s= +F . 39D c sci
2

ref
2

ij ( )

The correlated-noise correction factor Fc accounts for the
diminution in the pixel rms noise (lost to covariance) due to the
convolution process. Recall that this convolution may have
been performed on either the science or reference image (see
above). Fc is approximated as the ratio of the robust pixel rms
in the actual difference image to the RSS’d background RMSs
in the science and reference images prior to any convolution:

s

s s
»

+
F . 40c

bckdiff

bcksci
2

bckref
2

( )

The background variances in the denominator of Equation (40)
are the same estimates used in Equations (11) and (12) of
Section 4.5. The presence of correlated-noise in the difference
image will underestimate the photometric uncertainties of
extracted sources therefrom if not properly accounted for on the
spatial scales of interest (i.e., the spatial-extent on which the
photometry is performed). Note that Fc does not represent any
correction at the source level. Its purpose is to capture any
modification to the input uncertainties (σsci and σref) due to
smoothing from the PSF-matching process. The source level
correction is computed and applied during the source extraction
step (see Section 4.9.2).
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Figure 9. Top left and right: zoomed-in region on a preprocessed science and resampled reference image respectively containing a portion of the M13 Globular
Cluster and measuring ;5′ on a side. The magenta regions are saturated pixels. Middle left and right: PSF-matching kernels based on no regularization (from a naïve
inversion of Equation (27)) and with regularization respectively (Section 4.7.1). These are enlarged for clarity. Bottom left and right: difference images resulting from
“science minus kernel-convolved reference” for the unregularized and regularized kernels respectively. Saturated pixel regions were reset to zero in the difference
images. These were also spatially expanded from their original size (top images) due to the convolution process. The bright source-like residuals in the difference
images are on the locations of known RR-Lyrae variable stars. For an animation of products for the entire CCD across multiple epochs, see http://web.ipac.caltech.
edu/staff/fmasci/home/idemovies/d4335ccd8f2movie.html.

30

Publications of the Astronomical Society of the Pacific, 129:014002 (48pp), 2017 January Masci et al.

http://web.ipac.caltech.edu/staff/fmasci/home/idemovies/d4335ccd8f2movie.html
http://web.ipac.caltech.edu/staff/fmasci/home/idemovies/d4335ccd8f2movie.html
http://web.ipac.caltech.edu/staff/fmasci/home/idemovies/d4335ccd8f2movie.html
http://web.ipac.caltech.edu/staff/fmasci/home/idemovies/d4335ccd8f2movie.html


4.8.1. Photometric Zeropoint Quality Check

Following application of the spatially dependent convolution
kernels and associated gain-corrections (Ksum) to the science
image pixels (Equations (37) and (38)), we compute a new
photometric zeropoint for the adjusted science image. This ZP
will also be applicable to the difference images generated
therefrom. It provides a sanity check on the global-image
ZPSCI value computed upstream using the input absolutely
calibrated reference image photometry (see Section 4.2.2). As
mentioned, ZPSCI enables a more accurate absolute calibration
of either PSF-fit or big-aperture photometry.

The new ZP is only computed if the–phtcaldif switch was
specified on input. If so, it is written as the ZPDIF keyword
with accompanying rms ZPDIFRMS to the FITS headers of
both the positive and negative difference images. The
computation uses exactly the same methodology as outlined
in Section 4.2.2. If the debug switch was set, a catalog of the
reference-to-science image matches used to compute ZPDIF is
generated with suffix _sx_scibefdiff.tbl. When the PSF-
matching and additional gain-refinement steps perform as
intended, ZPDIF is generally consistent with ZPSCI, within
random measurement error. Large deviations in Δ

ZP=ZPSCI−ZPDIF usually imply a problem with either
the PSF-matching kernel(s), the input astrometry, or its later
refinement since astrometric accuracy will indirectly affect the
source matching step used to estimate the ZPs. Δ ZP therefore
provides a powerful quality assurance metric.

4.8.2. Difference-image Quality Assurance Metrics

Metrics and diagnostics for a difference image product are
shown in Table 6. These encompass information on photometric
zeropoints; pixel statistics before and after PSF-matching;
properties of the PSF-matching kernels; statistics on the input
science and reference images; global image FWHM values; and
the number of candidates extracted (Section 4.9). These metrics
are used to support later machine-learned vetting (Section 6).

In PTFIDE processing, two checks are performed to assess
the quality of the difference image: (i) “atrocious” and unusable
for extracting candidates, and (ii) simply “bad” and warranting
visual examination before use. PTFIDE does not extract
candidates if (i) is satisfied, but does proceed to extract
candidates if (ii) is satisfied. The indicator flag for either
condition is the status flag in Table 6 [=0 (bad) or 1 (good)].
Even though candidates are extracted under (ii) during
processing, these are not loaded into the database (Section 5).
The rationale is that bad subtractions will lead to thousands of
spurious candidates and strain both database loading as well as
machine-learned vetting downstream. The conditions for (i)
and (ii) are determined using one-dimensional cuts on a number
of metrics from Table 6 as follows.

First, a difference image is flagged atrocious if the following
criteria are satisfied:

c
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where in terms of the metrics listed in Table 6,

c
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and the seven thresholds (thresai) are specified by the–uglydiff
input string with defaults defined in Table 2.
If the difference image is not labelled atrocious according to

the criteria in (41), it is subject to the less-severe criteria below.
These are applied after transient candidates are extracted. The
metrics used here are therefore a subset of those from above
(but with lower “badness” thresholds) and others related to the
number and properties of candidates extracted. See Table 6 for
definitions.
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The 11 thresholds (thresbi) are specified by the–baddiff input
string with defaults defined in Table 2. If the criteria in (43) are
satisfied, status=0 is assigned to indicate a possibly bad
difference. This flag is propagated to the subtractions table of
the transients database (Section 5).

15 This ratio is used if the reference image was convolved, otherwise the
inverse of this ratio is used.
16 This ratio is used if the reference image was convolved, otherwise the ratio
is refconvseeing/refinpseeing.
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Table 5 summarizes the percentages of atrocious, bad, and
good difference images obtained from real-time processing for
two sky regions spanning different galactic latitudes and
longitudes. These regions sample the extremes in source-
density: near the galactic center and bulge, and high galactic
latitudes. These were covered by iPTF from 2015 August to
2016 January. The high fraction of failures near the galactic
center (or bulge) can be attributed to adverse effects from high
source confusion on the processing steps prior to differencing,
for example, astrometric calibration, and/or gain and PSF-
matching. All these steps depend on source-matching of some
kind between the science and reference images, and is severely
challenged in regions of high source density. For examples of
bad or unusable difference images and their causes, see
Section 6.2.

If the debug switch was set, an image of the locally
smoothed pixel chi-square is generated for both positive and
negative difference images. This is analogous to a reduced χ2

and is defined as

c
s

=
D

, 44d
ij

D ij

2
2

2
ij

( )

where the angled brackets denote boxcar averaging over pixels
i, j that fall within 8×8 pixel bins over the difference image.
The image generated from Equation (44) is written to a FITS
formatted file with suffix _pmtchdiffchisq.fits. Large values in
cd

2 (significantly above unity) may indicate residuals from
imperfect instrumental calibrations, underestimated pixel
uncertainties, or the presence of real transient sources. Small
values (c  1d

2 ) will imply that the pixel uncertainties are
overestimated.

4.9. Candidate Transient Detection and Photometry

The detection and photometry of transient candidates on
both the positive and negative difference images is performed
using an automated implementation of the DAOPhot tool
(Stetson 1987, 2000). This includes the subsidiary program
Allstar which performs PSF-fit photometry on the detections

found by DAOPhot. The primary output photometry for
characterizing transient candidates is PSF-fitting. Fixed
concentric aperture photometry is also generated as a
diagnostic. The benefits of PSF-fit photometry cannot be
stressed enough, at least for detecting transient events. For
example, this provides better photometric accuracy to faint
fluxes; the ability to de-blend confused sources; and simple
metrics to distinguish point (PSF-like) sources from artifacts.
These metrics can be used to maximize the reliability of
candidates.
Perl routines were written to automate all decision-related

and processing steps in DAOPhot. These steps would have
been done interactively in classic DAOPhot. This includes all
file I/O, parameter handling, checking of outputs, and quality
assurance. The steps are summarized below.

4.9.1. Point Source Detection

DAOPhot first detects sources for input into either the PSF-
determination step or final PSF-fitting step using a matched
filter via its find algorithm. The filter is constructed from a
Gaussian with a proxy for the image FWHM computed
upstream using SExtractor on the science image. This Gaussian
is convolved with the image in question to construct the point-
source matched filter, i.e., an internal product that is optimized
for point-source detection. This assumes that the PSF is
approximately spatially uniform over the image, and for the
purpose of detection, the penalty in detection S/N by not using
the precise spatially varying PSF is negligible. This image is
then background-subtracted using local estimates of the
background. The pixel-uncertainty product from Equation (39),
which effectively includes contributions from detector read-
noise, background, and Poisson noise at the location of sources,
is internally readjusted to account for the matched filtering. The
ratio of the match-filtered, background-subtracted image and its
corresponding uncertainty image is then thresholded. Either
the–tdetpsf or–tdetdao S/N parameter threshold is used
depending if PSF-determination or final dectection is desired
respectively. If the debug switch was set, the detection tables
from these steps are written to files with extension .coo (see
Table 4 for filenames).

4.9.2. PSF Determination, PSF-fitting and
Aperture Photometry

PSF generation and PSF-fit photometry (or source extraction
of any form) are only attempted if the input difference image
was determined to be of sufficient quality according to a
number of quality metrics (see Section 4.8.2). If not, PTFIDE
processing terminates gracefully after the image differencing
step. Furthermore, PSF-fit photometry can be intentionally
turned off by omitting the–psffit switch.
The base parameters specific to DAOPhot and Allstar reside

in configuration files specified by–cfgdao and–cfgpht, with

Table 5
Difference Image Quality Statistics

Quality  b 5 ;∣ ∣   l320 40  b 70 ;∣ ∣  < l0 360
(1824 diff. images) (7629 diff. images)

atrociousa 25.0% 0.42%
badb 34.5% 11.18%
goodc 40.5% 88.40%

Notes.
a Flagged according to the criteria in (41).
b Flagged according to the criteria in (43).
c Satisfy neither (41) or (43).
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some of the more important (threshold-like) parameters therein
overridden by the command-line inputs: –tmaxpsf, –tdetpsf,
and –tmaxdao. Also, some parameters are computed dynami-
cally within ptfide.pl and override those from both the input
files and command-line. These parameters are those that
depend on the image noise, usable pixel range, and image
FWHM: RE, LO, HI, FW, PS, FI, and nested aperture radii Ai

where i=1K6. The parameters that depend on the input
FWHM (FW) are the linear-half-size of the PSF image stamp,
PS (for PSF-creation only); the PSF-fitting radius, FI; and the
aperture radii Ai, all in units of pixels. Respectively, these
parameters are adjusted according to

= +
=
= + -

PS FW
FI
A i

min 19, int max 9, 6 2.355 0.5 ,
min 7, max 3, FW ,
min 15, 1.5 max 3, FW 1, 45i

( { [ ] })
( [ ])
( [ ]) ( )

where i=1K6, and min, max, int denote the minimum,
maximum, and integer part of the argument respectively.

When ptfide.pl is run in PSF-fit photometry mode (with the –
psffit switch), only one aperture measurement corresponding to
a single fixed aperture is written to the primary output tables:
file suffixes _pmtchscimrefpsffit.tbl and _pmtchrefmscipsffit.tbl
for the positive and negative difference images respectively.
This is the aperture number i corresponding to the user-
specified parameter –apnum (currently=3). If however, the –
apphot switch was also specified, all nested aperture measure-
ments (i=1K6) are written to separate tables with file suffixes
_pmtchscimrefapphot.tbl and _pmtchrefmsciapphot.tbl. These
products are not currently generated in production. It is
important to note that the aperture measurements are not
curve-of-growth corrected to account for the variable seeing.
They only serve as diagnostics (or source features; Table 7) to
support machine-learned vetting (Section 6).

The PSF used for PSF-fitting is estimated automatically
using utilities within DAOPhot and Allstar. Its shape over a
CCD image is modeled as a linear function in x, y. This
dependence is sufficient to catch spatial variations in the PSF
and avoids introducing too many free parameters. The PSF is
always estimated from the resampled and possibly convolved
reference image (following PSF-matching). This is because the
reference image (convolved or not) is expected to have a higher
S/N than the science image. In the end, we want to estimate the
PSF on an image whose point-source profiles match those in
the difference image (either positive or negative). In theory,
given that the only operations performed on the input images
prior to differencing are gain, background and PSF-matching,
and given that differencing is a linear operation, either the
science or reference image would have sufficed for PSF
estimation.

For iPTF, no more than the brightest 200 point sources
with magnitudes 15.5 are automatically selected per CCD

image to estimate an initial spatially varying PSF. This is
refined in a second iteration by subtracting neighboring sources
(in the wings) from the initially chosen PSF stars and then
re-estimating the PSF. This second iteration can be rather slow
if there are many neighbors since it involves PSF-fitting to
obtain the fluxes and positions of the neighbors to subtract. To
speed up the process, we regulate the number of neighbors to
consider by only subtracting the brightest 1000 neighbors to all
the initially PSF-picked stars. Therefore, given a random
distribution of sources and 200 sources picked for PSF
generation, 5 (brightest) sources on average will be
subtracted prior to refinement of the PSF in the second
iteration. This makes the PSF estimation relatively fast and
robust, and there are always enough stars in an image to yield a
reasonably accurate PSF model.
The PSF model is stored in the default DAOPhot format,

with output file suffix _pmtchconvrefdao.psf if the reference
image was convolved, otherwise _resamprefdao.psf if the
science image was convolved. This file consists of a look-up
table of corrections to a best-fitting Gaussian basis model over
the image. Other basis functions are available, but we found a
Gaussian works reasonably well for PTF data (in terms of
photometric accuracy). This basis representation also has the
least number of free parameters. If the debug switch was set,
the DAOPhot-formatted PSF file is converted to a FITS image
of 16×32 PSF-stamps for visualization (output file suffix
_pmtchconvrefdaopsf.fits). Other ancillary files, e.g., the list of
PSF-picked stars, their neighbors, and DS9 region files are also
generated (see Table 4).
Following PSF estimation, sources are detected on the

positive and negative difference images above a specific
threshold as described in Section 4.9.1. PSF-fit photometry is
then performed using Allstar. This program estimates seven
quantities per input detection: flux; flux uncertainty (to be
rescaled later, see below); refined image x, y position;
uncertainties in x, y; and two metrics from the fit: chi, and
sharp (see below). We do not iteratively subtract the PSF to
uncover new sources that were missed in the first detection
pass, e.g., because they were hidden in the wings of brighter
sources. This is commonly done for crowded fields. Given we
are extracting sources from difference images, source-
crowding (or rather, blending of transient candidates) is
largely absent, even in areas of high source density. One can
argue however for cases where instrumental residuals could
blend with real transient sources. This is also rare, but
nonetheless the components of a blend only need to be
detected in the first place so that simultaneous PSF-fitting can
yield fluxes and other metrics for further examination
downstream.
The PSF-fit fluxes are converted to absolute calibrated

magnitudes using the ZPSCI image zeropoint computed
upstream (Section 4.2.2). This places the photometry on the
PTF filter system (Ofek et al. 2012). Note that the supposedly
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refined ZPDIF value (Section 4.8.1) is not used since analyses
have shown that it exhibits a greater variance than ZPSCI. This
arises from systematics in the PSF-matching and relative gain-
matching process. The source x, y positions are converted to R.
A., Decl. using the difference image WCS (inherited and
refined from the reference image WCS). This information is
written to the transient-candidate extraction tables (one for each
difference image; see above). DS9 region files also accompany
these tables (see Table 3 for filenames).

4.9.3. Correcting Uncertainties for Correlated Noise

Another detail is correcting the flux uncertiainties from PSF-
fitting for correlated pixel-noise in the difference image. As
discussed in Sections 4.5 and 4.8, correlated noise arises from
the reference-image construction process (interpolation and
resampling), but the more dominant effect is from convolution
by the PSF-matching kernel, where either the science or
reference image may have been convolved. Given that the
reference image has a higher S/N in general, and that this is the
image that is usually convolved (by design), the fraction of the
pixel noise that is correlated in a difference image is likely to be
small. For example, if the reference image is made from a stack
of Nf science images all with similar pixel noise-variances, the
fractional contribution to the difference image pixel-noise from
the (convolved) reference would be + - N1 f

0.5( ) . If the
science image were convolved however, the fractional
contribution would be greater, i.e., + - N1 1 f

0.5( [ ]) ,
approaching 100% if Nf is large.

We use a simple method to correct the source-flux
uncertainties from PSF-fit photometry before writing them to
the photometry tables. The flux uncertainties from Allstar are
estimated using some combination of the difference image
pixel uncertainties (Equation (39)) within the effective fitting
area of the PSF. Following convolution (smoothing) of the one
of the images, these will underestimate the true source-flux
uncertainty. The true uncertainty contributed by the convolved
image can be recovered by scaling its pixel uncertainties by the
effective number of noise pixels17 defining the convolution
kernel:

⎡
⎣⎢

⎤
⎦⎥åå= ~
-

N K , 46k
l m

lm
2

1

( )

where
~
Klm are the unit-normalized pixel values of the kernel

image (Equation (36)). Nk effectively represents the correlation
length (or in this case the correlation area) in pixels. Therefore,
we seek a correction factor C for scaling the difference image
source flux variance which can also be written in terms of its
science and reference image contributions, after convolution

by
~
Klm:

s s s= +C N , 47ksrcdiff
2

srcsci
2

srcref
2 ( )

where we assume (for illustration) that the reference image was
convolved. If the science image was convolved, Nk would be
multiplying the science image variance term. Since all the flux-
variance terms in Equation (47) are some weighted combina-
tion (or effectively an RSS) of the pixel noise variances, in the
limit of background-dominated noise, the correction factor can
be estimated from

s s
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where the variances now denote robust estimates of the
background pixel rms in the science, [convolved] reference, and
difference images. These quantities are estimated within
respective image partitions, i.e., the same partitions used to
compute the kernel images (and hence Nk). This construction
was verified using Monte Carlo simulations (see footnote 17).

4.9.4. Coarse Filtering of Raw Candidates

The raw candidates initially extracted from the difference images
as described in Section 4.9.2 undergo loose filtering prior to writing
them to the transient-candidate tables (file suffixes _pmtchscim-
refpsffit.tbl and _pmtchrefmscipsffit.tbl for positive and negative
difference images respectively). The intent is to catch the most
deviant non-PSF-like residuals from the difference images and
remove them. This somewhat relieves traffic on database loads
(Section 5) and the machined-learned vetting step (Section 6) which
also heavily relies on interactions with the database.
This simple filtering can result in reductions of up to a factor

of five in the number of raw transient candidates initially
detected from the point-source match-filtered image down to
S/N;3.5 (–tdetdao input threshold; Table 2). It is worth
mentioning that this relatively low initial detection threshold is
to ensure completeness prior to further filtering and
analysis downstream, including photometric S/N. The filtering
applied to the raw detected candidates is  -chi tchi;

 -sharp tshp;∣ ∣ > -snrpsf tsnr , where the thresholds on
the right are currently 8, 4, and 4 respectively (from Table 2).
All these parameters are source-based metrics from PSF-

fitting and are defined as follows: chi—the ratio of the rms in
PSF-fit residuals to that expected using prior pixel uncertain-
ties; sharp—effectively the difference between the squared
FWHM of the source light profile (from a 2D Gaussian fit) and
that expected from the PSF template model derived for the
image, i.e., -FWHM FWHM ;obs

2
psf
2 and snrpsf—the photo-

metric signal-to-noise ratio using the PSF-fitted flux and
uncertainty. Relatively large values of chi and/or sharp∣ ∣
indicate deviations from the nominal PSF template estimated
upstream for the difference image (Section 4.9.2). The
optimum values of chi and sharp are 1 and 0 respectively.

17 see http://web.ipac.caltech.edu/staff/fmasci/home/mystats/ApPhotUncert_
corr.pdf
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Table 6
Difference Image-based Quality Assurance Metrics from PTFIDE

Metrica Description

zpmaginpsci Photometric zeropoint (ZP) estimate of science image before rescaling to reference [mag]
zpmaginpsciunc 1-σ uncertainty in zpmaginpsci [mag]
zpmagcormed Median ZP correction offset to zpmaginpsci over all partitioned convolution kernel sums [mag]
zpmagcormin Min. ZP correction offset to zpmaginpsci over all partitioned convolution kernel sums [mag]
zpmagcormax Max. ZP correction offset to zpmaginpsci over all partitioned convolution kernel sums [mag]
zpmaginpscicor Refined photometric zeropoint (ZP) of science image following application of kernel sums: “zpmaginpsci + zpmagcormed” [mag]
zpfacinpsci Photometric scale factor applied to science image to match reference image ZP
zpfacinpsciunc 1-σ uncertainty in zpfacinpsci
zpref Photometric zeropoint (ZP) of input reference image [mag]
nmatch Number of sources matched within 3.0 pixels between science and reference images to support initial gain-matching and astrometric refinement
fluxrat Median flux ratio of matched sources prior to global gain-matching: fluxsci/fluxref
pctfluxrat 5th–95th percentile range in ’fluxrat’ values of matched sources
deltax Median positional difference along X-axis using matched sources: Xref−Xsci [pixels]
sigdeltax 1-σ uncertainty in deltax [pixels]
pctdeltax 5th–95th percentile range in deltax values across matched sources [pixels]
deltay Median positional difference along Y-axis using matched sources: Yref−Ysci [pixels]
sigdeltay 1-σ uncertainty in deltay [pixels]
pctdeltay 5th–95th percentile range in deltay values across matched sources [pixels]
medksum Median pixel-sum of all image-partitioned raw convolution kernel sums
minksum Minimum pixel-sum of all image-partitioned raw convolution kernel sums
maxksum Maximum pixel-sum of all image-partitioned raw convolution kernel sums
medkdb Median differential background over all image-partitioned raw convolution kernels [DN]
minkdb Minimum differential background over all image-partitioned raw convolution kernels [DN]
maxkdb Maximum differential background over all image-partitioned raw convolution kernels [DN]
medkpr Median 5th–95th percentile pixel range of all image-partitioned raw convolution kernels
minkpr Minimum 5th–95th percentile pixel range of all image-partitioned raw convolution kernels
maxkpr Maximum 5th–95th percentile pixel range of all image-partitioned raw convolution kernels
zpdiff Photometric zero point of difference image [mag]
ngoodpixbef Number of good pixels in difference image before PSF-matching [pixels]
ngoodpixaft Number of good pixels in difference image after PSF-matching [pixels]
nbadpixbef Number of bad pixels in difference image before PSF-matching [pixels]
nbadpixaft Number of bad pixels in difference image after PSF-matching [pixels]
medlevbef Difference image median level before PSF-matching [DN]
medlevaft Difference image median level after PSF-matching [DN]
avglevbef Difference image average level before PSF-matching [DN]
avglevaft Difference image average level after PSF-matching [DN]
medsqbef Median of squared differences before PSF-matching [DN2]
medsqaft Median of squared differences after PSF-matching [DN2]
avgsqbef Average of squared differences before PSF-matching [DN2]
avgsqaft Average of squared differences after PSF-matching [DN2]
chisqmedbef Difference image chi-square using median before PSF-matching
chisqmedaft Difference image chi-square using median after PSF-matching
chisqavgbef Difference image chi-square using average before PSF-matching
chisqavgaft Difference image chi-square using average after PSF-matching
scibckgnd Modal background level in science image after gain and background matching [DN]
refbckgnd Modal background level in ref-image after gain, background matching, and resampling [DN]
scisigpix Robust sigma per pixel in science image after gain and background matching [DN]
refsigpix Robust sigma per pixel in ref-image after gain, background matching, and resampling [DN]
scigain Effective electronic gain in science image after gain-matching [e-/DN]
scisat Saturation level in science image after gain-matching [DN]
refsat Saturation level in reference image after resampling [DN]
scimaglim Expected 5-σ magnitude limit of science image after gain and background matching [mag]
refmaglim Expected 5-σ mag. limit of ref-image after gain, background matching, and resampling [mag]
diffbckgnd Median background level in difference image [DN]
diffpctbad Percentage of difference image pixels that are bad/unusable [%]
diffsigpix Robust sigma per pixel in difference image [DN]
diffmaglim Expected 5-σ magnitude limit of difference image [mag]
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For example, a cosmic-ray spike would yield sharp 0 and
an extended source sharp 0, as well as chi 1 for both
these cases. The number of candidates that satisfy initial
filtering using chi, sharp, and snrpsf are recorded as ncandfilt in
the QA output table (Table 6).

Figure 10 shows an example of the distribution in chi versus
sharp for raw transient candidates extracted from a collection
of iPTF difference images acquired during late 2015 to early
2016, mostly at high galactic latitudes. The solid rectangle
shows the region covered by reliable (likely real) candidates
according to a machine-learned classification (realbogus) score
of 0.8 (see Section 6 for details). The rectangle boundaries
span 1–99 percentile ranges along each axis for these likely real
candidates only. Note that the machined-learned classifier uses
over 40 metrics (or features from Tables 6 and 7) for scoring, of
which chi and sharp are the most important.

4.9.5. Candidate Source Metadata and Features

In addition to the measurements and metrics from PSF-fitting
(see above), the transient-candidate extraction tables are
augmented with more metrics and features to support
machine-learned vetting (Section 6). Most of these metrics
are listed in Table 7. The shape metrics, for example aimage,
bimage, elong, are computed by first executing SExtractor,
then associating the extractions (with metadata) with those
from DAOPhot above. Furthermore, the source metrics with
names that end in nr in Table 7 refer to those of the nearest
reference image source. These are assigned by associating the
DAOPhot extractions with the input reference-image catalog,
also originally from SExtractor.

Prior to implementation of the machine-learned vetting
(Section 6), we resorted to simple one-dimensional cuts on a

number of metrics in Table 7 in order to isolate those
candidates as probably real transients. Unlike machine-
learning, this involved no probabilistic classification of
candidates into likely reals and bogus transients. It only
provided a means to isolate candidates for further follow-up.
The most powerful metrics and filtering logic we have found to

Table 6
(Continued)

Metrica Description

sciinpseeing Seeing (point source FWHM) of input science image [pixels]
refinpseeing Seeing (point source FWHM) of input reference image [pixels]
refconvseeing Seeing (point source FWHM) of reference image after convolution [pixels]
ncandraw Number of candidates extracted from difference image before any internal filtering (for positive and negative difference)
ncandfilt Number of candidates extracted from difference image after internal filtering using chi, sharp, and snr source metrics; this is the actual number

loaded into database (for positive and negative difference)
ncandgood Number of candidates from difference image likely to be real using 1D cuts on several extracted source features (for positive and negative

difference)
nrefsrcstodifflim Number of reference image extractions to difference-image mag limit (diffmaglim)
ncandfiltrat ratio: ncandfilt/nrefsrcstodifflim (for positive and negative difference)
status Good/bad difference image status flag (=1 or 0); based on combining a number of internal image metrics (see Section 4.8.2). Only candidates

from status=1 subtractions are loaded into database for vetting

Note.
a A majority of these are loaded into the subtractions relational database table (Section 5) to support trending and machine-learned vetting (Section 6).

Figure 10. chi vs. sharp parameters from PSF-fitting (using DAOPhot) for
transient candidates extracted from ;30,000 difference images. Only
candidates with  R14.0 18.5PTF and S/N >5 were used. The solid
rectangle spans the 1–99 percentile range along each independent axis for
candidates with a real-bogus machine-learned reliability score of 0.8 (see
Section 4.9.4 for details).
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label a candidate as “interesting” are as follows:
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where the metric names on the left are defined in Table 7 and
the corresponding thresholds (thressi) are specified by the –

goodcuts input string with defaults defined in Table 2. The
number of candidates that satisfy the above criteria per
difference image are recorded as ncandgood in the QA output
table (Table 6).
Figure 11 shows the number of transient candidates extracted

from a collection of iPTF difference images acquired during
late 2015 to early 2016, mostly at high galactic latitudes. These
are shown as a function of the (point-source) FWHM and
density of sources extracted from the science image using
SExtractor to a fixed magnitude limit of R 20.5PTF mag.
Three different levels of candidate filtering are shown: first, the
number initially extracted using the loose filtering described in
Section 4.9.4 (ncandfilt); second, the number resulting from the
simple one-dimensional cuts in Section 4.9.5 (Equation (49);
ncandgood); and third, the number satisfying a machine-
learned classification (realbogus) score of >0.73. This score

Table 7
Transient Candidate Source Metrics and Features from PTFIDE

Metrica Description

xpos X-image coordinate [one-based pixels]
ypos Y-image coordinate [one-based pixels]
R.A. J2000 R.A. [degrees]
decl. J2000 Decl. [degrees]
magpsf Magnitude from PSF fit [mag]
sigmagpsf 1-σ uncertainty in PSF-fit magnitude [mag]
flxpsf Flux from PSF fit [DN]
sigflxpsf 1-σ uncertainty in PSF-fit flux [DN]
magap Magnitude from aperture photometry [mag]
sigmagap 1-σ uncertainty in magap [mag]
flxap Flux from aperture photometry [DN]
sigflxap 1-σ uncertainty in flxap [DN]
snrpsf Ratio: flxpsf/sigflxpsf
sky Local sky background level [DN]
nneg Number of negative pixels in a 7 × 7 box
nbad Number of bad pixels in a 7 × 7 box
distnr Distance to nearest reference image extraction [arcsec]
magnr Magnitude of nearest reference image extraction [mag]
sigmagnr 1-σ uncertainty in magnr [mag]
arefnr aimage (major axis rms) of nearest reference image

extraction [pixels]
brefnr bimage (minor axis rms) of nearest reference image

extraction [pixels]
normfwhmrefnr Ratio: (fwhm of nearest ref-image extraction)/(average

fwhm of ref-image)
elongnr Elongation of nearest reference image extraction (=arefnr/

brefnr)
chi Chi value from PSF fit
sharp Sharpness value from PSF fit
nneg2 Number of negative pixels in a 5 × 5 box
nbad2 Number of bad pixels in a 5 × 5 box
magdiff Magnitude difference: magap—magpsf [mag]
fwhm FWHM from Gaussian profile fit [pixels]
aimage Windowed rms along major axis of source profile [pixels]
aimagerat Ratio: aimage/fwhm
bimage Windowed rms along minor axis of source profile [pixels]
bimagerat Ratio: bimage/fwhm
elong Elongation=aimage/bimage
seeratio Ratio: fwhm/(average fwhm of science image)
mindistoedge Distance to nearest edge in frame [pixels]
magfromlim Magnitude difference: diffmaglim—magpsf [mag]
ksum Pixel sum of psf-matching kernel for image partition con-

taining source
kdb Differential background associated with psf-matching ker-

nel estimate for image partition containing source [DN]
kpr 5th–95th percentile range of pixel values in psf-matching

kernel for image partition containing source
rbb Real-bogus quality score from machine-learned vetting
stridc Primary key from Stars table, if match is available
luidc Primary key from LU (Local universe) table, if match is

available
cvsidc Primary key from CVs (Cataclysmic Variable Stars) table,

if match is available
qsoidc Primary key from QSOs (Quasi-Stellar Objects) table, if

match is available
lcidc Primary key from LCs (Light Curves) table, if match is

available

Table 7
(Continued)

Metrica Description

rockidc Primary key from Rocks (Asteroids) table, if match is
available

Notes.
a A majority of these are loaded into the candidates and features relational
database tables (Section 5) to support trending and machine-learned vetting
(Section 6).
b The real-bogus score is assigned following the loading of of all source
metrics, features, and difference image-based metrics (Table 6).
c This is assigned following an association with a pre-loaded static database
table (See Figure 13).
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corresponds to a false positive rate of 1% (see Section 6). A
noteworthy feature in Figure 11(b) is the significant reduction
in the number of initial candidates at relatively high source
densities following simple 1D filtering (yielding ncandgood) or
machine-learned vetting. In the end, the number that are
visually scanned and subject to scrutiny before further follow-
up are those that were machine-learned vetted (diamonds in
Figure 11).

We have constructed animations of difference-images for
two PTF CCD footprints made from image data acquired at
>200 observation epochs. These can be accessed from the
following URLs:

1. Field containing the M13 Globular Cluster: http://web.
ipac.caltech.edu/staff/fmasci/home/idemovies/
d4335ccd8f2movie.html

2. Field heavily used for supernova searches: http://web.
ipac.caltech.edu/staff/fmasci/home/idemovies/
d4450ccd2f2movie.html

Each epochal difference image is annotated with the two
candidate numbers mentioned above (and shown in Figure 11):
ncandfilt (or Nraw in the animation frames) and the number
following machine-learned vetting above a realbogus (rb)
cut: >N rb 0.73( ).

4.9.6. Photometric Performance

One way to assess the photometric accuracy of the
difference-image extractions is to examine the repeatability in

their photometry under different observing conditions and/or
input noise assumptions. Instead, we explore the photometric
repeatability empirically at prior source positions across a stack
of difference images generated from spatially overlapping
exposures acquired over a range of observation epochs.
Unfortunately we cannot perform this test on real flux-
transients and variables because they intrinsically vary and
will confuse repeatability statistics. We have resorted to
exploring the scatter in photometric measurements from forced
photometry on a list of prior source positions detected in a
reference image co-add. The majority of the sources here will
be non-variable and non-detected in the difference images.
Even though undetected, their photometric residuals will
persist, therefore providing sensitive probes of all random
(and systematic) errors affecting the end-to-end difference
image construction process in a relative sense across epochs.
These residuals would arise from image misalignments,
erroneous photometric-gain matching, flat-fielding errors,
PSF-matching errors, Poisson noise from the science and
reference images, and other instrumental/detector noise. At
some level, there are also airmass-dependent color-refraction
effects and astrometric scintillations.
It is important to note that these residuals will also include

systematics from the forced-photometry process itself. For
example, for forced PSF-fit photometry, these would include
errors in the PSF estimates for each epochal image and their
placement on the purported source positions in the difference
image (the prior positions selected from the reference image).

Figure 11. Number of transient candidates extracted per positive difference image as a function of (a) seeing FWHM and (b) integrated source density to R 20.5PTF

mag in the corresponding science image exposure. Extractions are from ;30,000 difference images. To estimate the number of candidates per deg2, multiply the
vertical axes by ;1.56 deg−2. See Section 4.9.5 for details.
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Therefore, the photometric variance inferred using forced PSF-
fit photometry is likely to overestimate the true variance (or
relative photometric accuracy) of detected transients in a
difference image. As a reminder, the primary photometry
measured for detected transients in PTFIDE is PSF-fit
photometry (Section 4.9.2) where both flux and position are
estimated per source. In forced photometry on prior positions,
only fluxes are estimated.

Figure 12(a) shows an example of the robust rms in repeated
forced PSF-fit photometry using 26,385 targets selected to
R;22 mag from the reference image co-add. A portion of this
reference image is shown in Figure 12(d) where it contains part
of the North America Nebula. This was created from 20 good-
seeing CCD images. Note that the complexity of this field is
atypical of iPTF in general, but it provides a good test of image
differencing in complex environments. Each reference-target
position probes >150 difference images, generated from CCD
images acquired over several months. The robust stack rms is
based on half the 84.13–15.86 percentile difference in all
photometric measurements per target position. This measure is
relatively immune to outliers. This rms is shown as a function
of reference image magnitude and can be interpreted in the
context of real transients extracted from difference images as
follows. A real transient with PSF-fit magnitude RPTF is
expected to have a 1-σ uncertainty in the frequentist sense no
larger than the rms shown in Figure 12(a) (i.e., relative to
repeated measurement if the same event with the same intrinsic
flux were re-observed).

Figure 12(b) shows stack-rms estimates for the same prior
target positions, but using forced aperture photometry instead.
A fixed aperture of radius 6″ was used throughout. Comparing
with the forced PSF-fit photometry in Figure 12(a), there are
two noteworthy differences: first, aperture photometry results
in a higher photometric precision at bright fluxes; and second,
aperture photometry has a shallower limiting magnitude (5-σ
limits are depicted by the vertical dashed lines). The converse
of these applies to PSF-fit photometry. PSF-fit photometry
lacks precision (relative to aperture photometry) at bright fluxes
because knowledge of the underlying PSF is more critical.
Systematic errors in the shape of the PSF-template and/or its
centroiding will inflate errors in the photometry by a greater
amount. Aperture photometry is more immune to these effects.
The encouraging observation is that PSF-fit photometry leads
to a fainter sensitivity limit (or more accurate photometry at
fainter fluxes), in this case by ;0.7 magnitudes.

For comparison, Figure 12(c) shows the performance of
PSF-fit photometry extracted directly from a set of science
image CCD exposures falling in a field flanking the North
America Nebula. This has a background that is not as complex.
As expected, the precision at bright fluxes is considerably
higher that that inferred from forced PSF-fit photometry on
difference images (Figure 12(a)). This is also higher than that
achieved by forced aperture photometry (Figure 12(b)).

Furthermore, the limiting magnitude from PSF-fitting on single
CCD exposures is in general deeper (by at least 0.8 mag) than
all other types of photometry performed for iPTF, for example
SExtractorʼs mag_auto measure (Section 3.3; Ofek et al. 2012).

4.10. Forced, Sub-image (archival) Mode

PTFIDE can be executed in a mode where it operates
exclusively on square sub-image cutouts. This is enabled if the
–forced switch is specified. The science and reference image
cutouts have a center (equatorial) position and side-length
(pixels) specified by –forceparams (Table 2). In this mode,
PTFIDE also expects as input a pre-computed (archived) PSF-
matching kernel image FITS-cube, for example initially
generated with suffix _pmtchkerncube.fits from a prior run of
PTFIDE. The planes of this cube store the convolution kernels
corresponding to partitions of the parent image (Section 4.7)
and is supplied via the –kerlst input. This cube also stores
metadata on each kernel, for example, the parent-image
partition pixel ranges to which these apply, including all
gain-correction factors. The appropriate kernel image for the
parent-image partition containing the image cutouts (science
and reference) is then applied (as in Section 4.8) to match their
PSFs. Image-differencing is then performed on the cutouts.
Only a positive (science—reference) difference image stamp

with accompanying uncertainty and mask image are generated
in this mode. There is no source detection. Further outputs are
generated if the debug switch was set (see end of Table 4). The
purpose of this mode is to support later forced photometry on a
target position of interest. This position would be the same used
to generate the initial image cutouts. Operating on stamp
cutouts using pre-existing kernel images is very fast,
particularly when difference-images containing specific source
positions over a historical observation range are needed. This
avoids regenerating entire difference images, including all
associated PSF-matching kernels and corrections. It also avoids
archiving entire difference images in the first place.

5. Transients Database Schema

This section describes the schema and related workings of
the iPTF Transients Database in current operations, along with
how it will be improved for ZTF in future. Figure 13 depicts a
simplified snapshot of the schema, in which each box
represents a separate database table with a given name and
some number of columns. The major table columns are listed.
The columns in bold font are the table’s primary keys. The
columns in bold-italicized font are the alternate primary keys.
The columns in regular font are not-null columns, and those in
regular-italicized font are null columns (in which null values
may also be stored). F.K. represents a foreign key and “11*..”
indicates a relationship of one record to many records.
The Subtractions table stores a variety of metadata for both

the positive and negative difference images generated for each
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processed CCD image. The boolean isdiffpos discriminates
between the two subtraction types. Many of the QA metrics
from PTFIDE defined in Table 6 are included in this database
table. Associated with each record are the observation time

( jd is the Julian date) and foreign-key database IDs of the
corresponding field, filter, chip, reference image, and pre-
processed science image. A stored difference-image filename
contains the full pathname, and in its record, is accompanied by

Figure 12. (a) rms in photometric repeatability from forced PSF-fit photometry on difference images overlapping a ¢ ´ ¢35 70 CCD footprint falling on the North
America Nebula. Prior positions used to seed the forced photometry are from the reference-image (co-add); (b) Same as (a) but using forced aperture photometry on
the same positions; (c) rms in photometric repeatability from single-exposure PSF-fit extractions (not forced on prior positions) from a nearby CCD footprint; (d) A

¢ ´ ¢30 55 portion of the reference image containing part of the North America Nebula and from which source positions where used for (a) and (b). The vertical
dashed lines in (a), (b), and (c) indicate the approximate 5-σ magnitude limits. The linked solid circles are binned medians.
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an MD5 checksum, a timestamp for when the record was
created, and a status flag for whether the subtraction satisfied a
number of QA criteria: status=1 if so, status=0 if not (see
Section 4.8.2). Multiple versions of difference images are
possible if the pipelines are rerun, and therefore the version

number and vbest flag for which version is best (generally the
latest) are also stored. The primary key for this table is subid,
while the alternate primary keys are pid, isdiffpos, and version.
The Candidates and Features tables hold metadata for all

transient candidates extracted from difference images with

Figure 13. Schema design for the iPTF Transients Database in current operations. See Section 5 for details.
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status=1 only. The records in these tables store many of
PTFIDE’s source-based metrics and features, which are listed
in Table 7. Included are null columns for storing the foreign-
key database IDs of the closest positional matches to
astronomical objects of interest (as discussed below). These
are updated after the corresponding record is loaded, where a
null value indicates either there is no match or no match was
attempted. While candid is a unique candidate index assigned
in sequence by the database, tblid is a relative number assigned
to each candidate for a given difference image. The versioning
mechanism in the Features table is not used at this time.

The RealBogus table stores the scores computed by the
machine-learned classifier for all transient candidates (see
Section 6). The RB score is a value in the range [0, 1] where a
higher value indicates the candidate is more likely to be a real
transient. Improved versions of the classifier are forthcoming,
and a mechanism for tracking them in this database has been
implemented.

The KnownRocks table contains the predicted positions
(ephemerides) and magnitudes of all known numbered
asteroids through the end of year 2019. The predictions are
spaced 1day apart. This table contains ≈400,000 asteroids and
≈1500 epochs for each, giving a total of ≈600 million rows.
For each positive subtraction, the known rocks within its sky-
footprint are found and loaded into the Rocks table. A 30″ cone
search (accounting for uncertainty) is used to find the nearest
rock to each candidate, and the corresponding rockid is updated
in the Candidates record.

The Stars table holds the positions and magnitudes derived
from PTF R-band reference-image catalogs for sources that
have been classified to be stars by a star/galaxy classifier
(Miller et al. 2016). Candidates are matched to stars in this
table to within 1″, and the resulting Candidates record is
updated with primary key strid of the match.

A typical database query would be for transient candidates
within an observation-time and RB-score range, with an
additional constraint that each be associated with at least
another candidate (potentially from the same source) at
approximately the same sky position, but with observation-
times and magnitudes that differ by specified tolerances.
Transients that have been spectroscopically confirmed and
classified are inserted into the Transients table. The iPTF
Transients Marshal, which is a web-based tool for analyzing
lightcurves, is updated continuously with records from this
table. Approximately 64 thousand classified transients are
currently stored.

The database schema will be streamlined in future for ZTF
so that it is scalable and more efficient. Sets of complete
Candidates records will be fully constructed ahead of time for
bulk database-loading. This will require the unique candidate
IDs to be formed predictively rather than from a database
sequence. Any redundant and unnecessary columns in the
Features table will be eliminated. Also, the Candidates

and Features tables may be combined into a single table.
Partitioning the Candidates, Features, and perhaps other tables
into child tables that isolate different observation-time ranges
will also be considered, as this will allow for faster queries by
taking advantage of constraint exclusion in the PostgreSQL
database.

6. Machine-learned Vetting

The machine-learned vetting of sources is necessitated by the
overwhelming number of artifacts produced by image subtrac-
tion and subsequently extracted during source finding. The true
ratio of real astronomical sources (referred to as reals) versus
artifacts generated by image subtraction (referred to as
boguses) is unknown since the majority of sources extracted
are unexamined. We estimate the bogus to real ratio for
PTFIDE is typically greater than 10 to 1. This necessitates the
use of automated systems to discriminate between boguses and
reals in order to filter out unreliable candidates and prioritize
detections for further study.
We refer to systems that perform this task as “RealBogus”

systems, a term coined by Bloom et al. (2012). The use of
machine learning for the vetting of astronomical transients
extends back to PTF (Bloom et al. 2012). Machine learning
systems are typically statistical classifiers that are able to score
candidates on a spectrum from zero (bogus) to one (real).
Classifiers are trained with annotated data exemplars as
opposed to expert-specified rules. Three machine learning
systems are currently in use for iPTF (Brink et al. 2013;
Woźniak et al. 2013; Rebbapragada et al. 2015) for vetting
outputs from the image differencing pipeline at NERSC. The
results therefrom are combined to minimize missed detections.
Machine-learned vetting is also being used for other surveys
that use image differencing for transient discovery, for
example, the Dark Energy Survey (Goldstein et al. 2015) and
Pan-STARRS (Wright et al. 2015).
Here we briefly describe the construction and evaluation of

the RealBogus system for PTFIDE and leave the details to a
future paper.

6.1. Classifier Description

The RealBogus system for PTFIDE, like all its predecessors,
is based on a random forest classifier. For an overview of
random forests, see Breiman (2001), Hastie et al. (2009), and
Masci et al. (2014). We use an ensemble of 300 trees trained on
10,000 real and 10,000 bogus candidates. The proportion of
trees reporting a classification of real is reported as the
candidate’s score. Each candidate is described via a set of
features that forms an input vector into the classifier. The
current set of 89 features are outputs from PTFIDE and consist
of both image-based and source-based features (Tables 6 and 7
respectively). This excludes irrelevant and trivial information
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such as source IDs, database counters, positions (i.e., R.A.,
decl.), and the constant photometric zeropoints.

Figure 14 shows a feature importance diagram that provides
an estimate of the relative importance of each feature to the
classification process. Only the twenty most important features
are displayed. Despite the high number of features, the top two
features for discriminating between real and bogus candidates
are sigmagpsf (the 1-σ uncertainty in the PSF-fit magnitude)
and status (a flag for whether the difference image satisfied a
number of QA criteria; see Section 4.8.2). It is important to
note that the relative feature importance ranking in Figure 14
does not account for any correlation between features. For
example, the chi and sharp features are expected to be highly
correlated. Removal of one of these features will still result in a
good classifier, while removing both will not. I.e., the presence
of either one but not necessarily both is important for overall
classifier performance.

6.2. Training Data

The training data must be well sampled with respect to the
true distributions of real and bogus candidates on any given
night. The RealBogus system for PTFIDE benefited from
predecessor systems at NERSC in that we could reprocess
images containing real candidates discovered at NERSC and
recover them with PTFIDE. We queried the NERSC database
for all objects that were spectroscopically confirmed to be a
supernova, variable star, gap transient, cataclysmic variable or
nova. This resulted in 372 candidates. We augmented this set
with data belonging to the lightcurves of these candidates at all
observation epochs. This resulted in 15,168 real candidates in
total. All images containing this candidate set were reprocessed
with PTFIDE. Of these 15,168 candidates, 2153 were lost due

to PTFIDE failures, of which 11 were spectroscopically
confirmed. Of the remaining recoverable 13,015 candidates,
we recovered matching transients for 11,075 (;85.1%) with
PTFIDE. 361 of these were spectroscopically confirmed of
which we recovered 310 (;85.8%). We reserved 10,000 of the
11,075 for training and reserved the remaining 1075 as an
independent test set for final validation.
Bogus candidates are pipeline artifacts that must be sampled

directly from the PTFIDE database. We randomly sampled
20,000 candidates exclusive of known reals and declare them
as bogus. We reserve 10,000 for training and another 10,000 as
an independent test set. Figure 15 shows an example of the
various kinds of bogus transients extracted. Some are induced
from bad or inaccurate upstream instrumental calibrations,
while others are due to inadvertently unmasked detector
glitches or artifacts from the optical system.
It is impossible to ensure the purity of our samples without

examining each candidate individually. The bogus set may
include missed detections while our labeled sets of real
candidates may contain artifacts. Future work includes plans
to assess training set contamination via a machine learning
technique called active learning (e.g., Richards et al. 2012).

6.3. Evaluation and Setting Decision Thresholds

We have two methods of evaluation. The first is to use ten-
fold cross-validation in order to form a receiver operating
characteristic (ROC) curve that measures the false positive rate
(FPR) and false negative rate (FNR) at a continuum of decision
thresholds from 0 to 1. In ten-fold cross-validation, all 20,000
labeled examples (exclusive of the independent test sets) are
randomly split into 10 groups, where one fold is held out as the
test fold and the classifier is trained on the remaining nine. The
test fold is rotated and the predicted outcomes from the ten
classifiers are averaged across the folds. Methodologically,
cross-validation usually assumes examples are independent and
identically distributed. That is not the case here, since light
curve observations from the same source (especially variable
stars) may span both the training and test folds. We use cross-
validation as a guide when comparing competing versions of
the classifier, rather than for assessing the system’s overall
performance. In fact, cross-validation is prone to overfitting if
the labeled population does not well represent the general
population of candidates. Figure 16 shows the ROC curve for
the classifier using cross-validation, where the y-axis shows the
true positive rate (TPR=1 −FNR). The FNR at 1% FPR, the
maximum FPR tolerated by the science teams, was 3.51% from
cross-validation.
The second evaluation of the system looks at score

distributions on the two independent test sets of real and
bogus examples. This gauges performance and determines the
system’s decision threshold. Candidates that score above the
decision threshold are presented to the science teams for

Figure 14. Relative importance of the first twenty most-important features. A
higher “importance value” implies the feature is better at discriminating
between real and bogus transients.
(A color version of this figure is available in the online journal.)
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inspection, while those below will likely remain unexamined.
We classify the candidates in the test set of randomly selected
candidates and note the threshold that admits only 1% of the set
as false positives. Similarly, using the independent test set of
known reals, we classify this set and note the threshold that
admits only 5% as false negatives (or missed detections). The
thresholds resulting in a 1% FPR and 5% FNR were 0.735 and
0.724 respectively. As a result, the decision threshold for the
RealBogus classifier was set to 0.73. Figure 17 shows the
distribution of RealBogus scores obtained from PTFIDE run on
iPTF data. As seen in Figure 17(a), the decision threshold of
0.73 corresponds to a plateau followed by a knee in the
distribution above which the FPR falls below 1%.

6.4. Further Work on Machine-learned Vetting

Areas of future work include plans for identifying and
eliminating training set contamination. We have built an active
learning prototype that identifies candidates that are likely
mislabeled, and present those to the science teams for cleaning.
We have also developed a new way to randomly sample against
the PTFIDE candidates database to ensure our bogus sample is

not overly biased toward certain types of artifacts and is
representative of the full distribution of observing conditions.
Finally, we have used machine learning to analyze the
frequency of certain types of bogus artifacts produced by
PTFIDE in order to understand the software and faciliate

Figure 15. A sample of “bad” difference images with “bogus” transients. Their causes are as follows: (a) bad astrometric calibration; (b) bad photometricthroughput
(gain) matching brought about by spatial variations in either atmospheric transparency or bad flat-fielding; (c) bad astrometric calibration in a high source-density field;
(d) bad PSF-matching brought about by bad seeing and inability of the PSF-matching kernel to accommodate the disparity between science and reference image
FWHM values; (e) same as (d); (f) moving-object streak; (g) bright-source halo artifact; (h) bright-source glint; (i) incomplete masking of a saturated source; (j)
incomplete masking of a bright source and its halo and charge bleed artifacts; (k) bad background matching and photometric-throughput (gain) matching; (l)
incomplete masking of the edges of a bad-pixel column.

(A color version of this figure is available in the online journal.)

Figure 16. Receiver operating characteristic (or ROC) curve. See Section 6.3
for details.

44

Publications of the Astronomical Society of the Pacific, 129:014002 (48pp), 2017 January Masci et al.



improvements. Details on these methods will be published in a
forthcoming paper.

7. Lessons Learned

The iPTF realtime processing system has evolved consider-
ably over the last few years through feedback received from the
various science programs. The system was developed by a
small team with limited resources. Communication between the
development team and users of the products was paramount.
The success of a large astronomical survey requires (i) a clear
definition of the science goals and deliverables needed to
achieve these; (ii) a tractable system engineering plan to enable
(i), given the available resources. Below we list some of the
challenges and pitfalls encountered over the course of
development and how these were addressed. We also present
thoughts on how specific aspects could have been improved if
resources allowed.

1. Tuning and optimization of all processing components is
an iterative process that requires real on-sky data acquired
with your survey instrument. Do not rely on the
commissioning period to optimize everything to perfec-
tion. Resources (and schedule) are limited. More eyes on
the data, the better, and this can only occur by harnessing
the expertise of the scientific community. Immediate
visibility to data products is therefore crucial in the early
phases of the survey.

2. Implement offline versions of your primary production
pipelines to allow for experimentation and ongoing
tuning. This ensures minimal disruption to the production
system that is serving users. Communicate all planned
updates in advance and only deploy when the stake-
holders have confirmed and understood the updates.

3. Allow versioning control of all pipeline software para-
meters and instrumental calibrations together with the
software versions they were optimized for. This will allow
for easier traceability and reproducibility of specific
science products in future.

4. Have a well defined quality-assurance plan for the entire
observing and data-processing system. This entails
implementing QA metrics for each subsystem and a
means to communicate these across all subsystems. For
example, implementing automated checks at the raw-data
level (close to realtime) alerts the team of bad data and
that no products are expected downstream. A modular
and visible end-to-end QA/alerting system allows for
easier accountability of missing products, traceability of
errors, and recovery.

5. Related to the previous point, routine monitoring should
include overall performance of the network, data-transfer
rates, and all aspects of the compute cluster.

6. Assign ownership and responsibility of key components
of the system to individuals of the team. For example, this
may consist of collecting performance metrics, analysis

Figure 17. (a) Histogram of the RealBogus (RB) scores for transient candidates extracted from ;22,000 R-band (positive) difference images down to S/N;4. These
are from exposures acquired from 2015 December to 2016 February, mostly at moderate to high galactic latitude; (b) Cumulative fraction as a function of RB. See
Section 6.3 for details.

(A color version of this figure is available in the online journal.)
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reports, and/or providing feedback for improving aspects
of the data-processing system. Having all communication
channels defined at the outset will allow priorities to be
better managed.

7. Time-domain surveys are dynamic, literally. For exam-
ple, science goals or their priorities may change over
time in response to scientific outcomes or analyses early
in the survey. Goals may also change in response
to unforeseen problems in instrumentation, hardware,
and/or algorithmic or processing details. Be prepared to
adapt. Modularity in all pipeline software and hardware
components to accomodate change and growth is there-
fore crucial.

8. In the context of realtime discovery using image-
differencing, the accuracy of upstream calibrations is
crucial. This primarily refers to astrometric and photo-
metric calibration. Flat-fielding in particular is important
for the latter. Proper trending and QA of all calibration
products prior to use is therefore necessary to avoid a
flood of false-positives downstream. Early notification of
bad calibrations and a means to either recreate them on-
the-fly or fallback to archived versions should be planned.

9. Have a plan to assess the overall performance of image-
differencing and transient-discovery over the course of
the survey. This may involve for example tracking the
relative efficiency and reliability of candidates extracted
from pre-defined survey fields known to contain a good
statistical sample of variable stars. Alternatively, one
could inject synthetic episodic transients for offline
analysis. The important thing is that the appropriate
metrics and methodologies to enable this monitoring be
identified and implemented prior to commencement of
the survey.

10. Image-differencing is a game of (i) minimizing false-
positives at the expense of also maintaining a low false-
negative rate, and (ii) maximizing the photometric
accuracy. These sensitively depend on the initial extrac-
tion S/N. The power of using machine learning to
probabilistically classify candidates into either real or
bogus cannot be overstated. False-positives are inevita-
ble. We advise setting a maximum tolerable threshold for
their occurence to enable tuning of the relevant extraction
and scoring thresholds. These will evolve as algorithms
and software improve.

11. The efficacy of a machine-learned vetting infrastructure
crucially depends on the data it was trained on (in the
context of supervised learning). This should be kept in
check over the course of a survey according to the
different science applications and possible changes in
survey design. For example, if a decision is made to
survey more of the galactic plane, the machined-learned
classifier should be retrained accordingly using data from

the same region. This minimize biases when predicting
the reliability of transient candidates.

12. A supervised machine-learned classifier will have been
trained on products from a specific version of pipeline
software. Any algorithmic or parameter changes in the
pipeline usually requires a retraining of the classifier. This
dependency will incur a delay in the software delivery
cycle and must be accommodated. We have not yet
streamlined this delivery and integration process since
classifier (re)training can be time-consuming. We advise
that any classifier-retraining be performed on a stable
version of the pipeline software. Both can then be
updated as shortcomings are identified during the survey.

13. Plan on reprocessing any or all of your data, for example,
to recover from failures in processing and/or hardware
outages. This also enables one to regenerate products for
a future archive using a consistent set of pipeline
parameters and software. These may have evolved over
the course of the survey.

8. Enhancements and Future Work

A number of shortcomings were identified over the course of
development of the iPTF Discovery Engine. Some of these are
at the algorithmic level and some relate to data management
practices. In 2017, iPTF will be replaced by the Zwicky
Transient Facility (ZTF; see Section 1). The higher data rates
and volumes will require a redesign of some of the subsystems
to minimize processing latencies and the delivery of transient
candidates for scanning. The planned upgrades are as follows:

1. Improve the efficiency of loading and retrieval of
candidates into/from the Transients Database described
in Section 5. The plan is to periodically construct lists of
pre-machine-vetted candidates ahead of time at intervals
throughout a night and batch-load them. Source features
and metrics will be consolidated into single (flatter)
database tables. We will also consider retaining only
candidates and associated metadata for the last 30 nights
or more to enable more efficient near real-time discovery
and lightcurve generation. Older transient candidates will
roll-off to a growing archival database. The reason for
this is to keep the number of candidate records for active-
querying (close to their discovery epoch) relatively small.

2. Transient candidates and image-cutouts for human
scanning will need to be delivered for external viewing
using pre-defined (or cached) database queries submitted
by an automated process at regular intervals throughout a
night. Currently for iPTF, there is no limit on how many
queries can be submitted. Having many scanners submit
similar queries in an uncoordinated manner has led to
severe bottlenecks.
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3. Astrometric calibration needs to be made more robust
against changes in source density, seeing, depth, atmo-
spheric refraction, and telescope tracking. This includes
the ability to properly model and capture time-dependent
distortion effects from the optical system and atmosphere.

4. Absolute photometric calibration will need to be
performed on a per-image basis in the realtime pipeline.
The use of PSF-fit photometry in particular is paramount.
PSF-fitting will automatically account for seeing varia-
tions and regions with high source-confusion through its
de-blending ability. This will ensure that photometric
zeropoints can be accurately determined for a larger
fraction of the images. As discussed in Section 4.2.1, the
zeropoints are refined using big-aperture photometry to
enable more accurate gain-matching prior to image-
differencing. This method is fragile and has not been
reliable.

5. Extend PTFIDE to include some of the optimal methodol-
ogies for co-addition, image-differencing, source detection,
and photometry presented in the detailed study by Zackay
et al. (2016).

6. Consider using pre-classified star catalogs constructed
initially from reference image catalogs (e.g., via machine-
learning) to properly seed inputs for deriving PSF-
matching kernels.

7. Consider dynamic updates to reference image products as
the survey proceeds in order to use the best-quality
epochal data acquired to date. In other words, the
reference-image library can be progressively refined to
ensure optimal image-differencing.

9. Conclusions

We have described a transient-discovery engine (IDE),
currently in use to support near real-time discovery for iPTF at
IPAC/Caltech. A refined version will be used for ZTF in
future. Guided by previous implementations of the image-
subtraction problem, this paper reviews our algorithms,
optimization strategies and machine-learned vetting scheme.
Once tuned, the pipeline requires little intervention and is
resilient to bad input data and/or inaccurate instrumental
calibrations. Our development approach was to make all
processing steps as modular as possible to allow for easier
debugging and tractability.

Our goal has been reliable transient discovery and robust-
ness. The methods were refined using the knowledge gained
from 6+ years of archived science-quality PTF data. The
elements we find that are most crucial to image-differencing
performance, and hence the efficiency and reliability of
transient discoveries are: (i) astrometric calibration; (ii) flat-
fielding; and (iii) related to this, photometric calibration (either
relative or absolute). Having these calibrations optimized (in
the maximal S/N sense) paves the way to more accurate PSF-

matching and image-differencing. This also relieves the amount
of work needed downstream to weed out false positives, by
both human and machine. Despite differences in the details of
instrumentation, image quality and/or survey design, IDE
provides a testbed for future large time-domain surveys.
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