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Abstract
In silico experiments bear the potential for further understanding of biological transport processes by
allowing a systematicmodification of any spatial property and providing immediate simulation
results. Cell polarization and spatial reorganization ofmembrane proteins are fundamental for cell
division, chemotaxis andmorphogenesis.We chose the yeast Saccharomyces cerevisiae as an exemplary
model systemwhich entails the shuttling of small RhoGTPases such as Cdc42 andRho, between an
activemembrane-bound form and an inactive cytosolic form.We used partial differential equations
to describe themembrane-cytosol shuttling of proteins. In this study, a consistent extension of a class
of 1D reaction-diffusion systems into higher space dimensions is suggested. Themembrane is
modeled as a thin layer to allow for lateral diffusion and the cytosol ismodeled as an enclosed volume.
Twowell-known polarizationmechanismswere considered. One shows the classical Turing-
instability patterns, the other exhibits wave-pinning dynamics. For bothmodels, we investigated how
cell shape and diffusion barriers like septin structures or bud scars influence the formation of signaling
molecule clusters and subsequent polarization. An extensive set of in silico experiments with different
modeling hypotheses illustrated the dependence of cell polarizationmodels on localmembrane
curvature, cell size and inhomogeneities on themembrane and in the cytosol. In particular, the results
of our computer simulations suggested that for bothmechanisms, local diffusion barriers on the
membrane facilitate RhoGTPase aggregation, while diffusion barriers in the cytosol and cell
protrusions limit spontaneousmolecule aggregations of active RhoGTPase locally.

Introduction

Fundamental processes of living cells such as cell
division, chemotaxis and morphogenesis depend on
prior polarization and breaking of spatial symmetry.
Spatial reorganization of membrane-bound and cyto-
solic proteins is required to establish an axis of polarity
with a distinct direction (i.e. ‘front and back’) to guide
directed processes. In these processes, cells have to
adapt and react according to multiple and often
conflicting cues of the environment.

Rapid technical development makes it possible to
observe these processes in great detail in vivo. Advances in
imaging techniques such as total internal reflection

fluorescence (TIRF) and confocal and electron micro-
scopy [1–4] provide quantitative data for spatial cellular
structures such as diffusion barriers on the membrane,
organelles andmembranes in the cytosol. To enhance the
experiment-theory feedback loop, new computational
tools have to be developed, to reconstruct the observed
cell shapes, spatial inhomogeneities and structures at dif-
ferent levels of biological detail and mathematical com-
plexity [5]. Quantitative modeling of intracellular
asymmetries and inhomogeneities is essential for testing
hypotheses, for obtaining an intuition of the process as
well as formotivatingnewexperimental studies.

The theoretical treatment of cell polarization has
been devoted to biological model organisms such as
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yeast, fish keratocytes, Dictyostelium discoideum or
neutrophils. Much recent work is concerned with
reaction-diffusion (RD) models which are often
described by partial differential equations (PDEs) in
time and space as in [6–15]. Such models may vary
greatly in complexity. Some of them are based on bio-
chemical networks with many components
[11, 12, 14, 15] gathered from signaling pathway data-
bases. Other models focus on only a few components
to accurately describe cell behavior. Detailed reviews
ofmodels for yeast cell polarity can be found in [5, 16].

The above sets of models pursue different goals.
Since biochemical complexity can become over-
whelmingly large, the experimental validation of gen-
erated models of high complexity is basically
impossible [17, 18] and an accurate spatial simulation
becomes prohibitively costly. The alternative is to
reduce signaling pathways to very few interacting con-
stituents which still exhibit the specific behavior one is
interested in. This simplified system can then be simu-
lated subject to a spatio-temporalmathematicalmodel
which also includes (some) geometrical properties
encountered in living cells. Ideally, in vivo or in vitro
phenomena can be reconstructed, rates and con-
centrations can be compared andmatched.

Since Meyers et al [19] showed the potential influ-
ence of cell shape and size on signaling, a growing
number of models take into account the interaction of
biochemical signaling and cell geometry [20, 21].
More recently, some studies investigated the interplay
of cell motility and signaling [22–25] in a 2D or 3D
environment. There have been a lot of advances in
computational frameworks for complex simulations
in 2D and 3D. In particular, we want tomention VCell
[26] dedicated to cell biology and DUNE [27] as a gen-
eral purpose framework; the latter was used in this
work. An interesting review onmultiphysics models at
different levels of complexity can be found in [28].
Examples where microscopic imaging and spatial
modeling of cell shape and signaling are connected are
shown in [29–31]. However, there are still a lot of
aspects that need physical and computational analysis,
among them inhomogeneous diffusion caused by
organelles and other cellular inclusions.

Spatial structures such as organelles, diffusion bar-
riers on the membrane and cell shape are expected to
have a considerable influence on cell polarization. In
[19, 32, 33], it was shown that high intracellular cyto-
solic gradients can be generated. Even though diffu-
sion in the cytosol might be fast in theory, it can differ
a lot from the effective diffusion rate due to obstacles
such as large organelles, membrane stuctures or a
crowded environment [34]. Therefore, it is important
to incorporate intracellular gradients and diffusion as
a spatial process in the cytosol [35–37]. Furthermore,
membrane inhomogeneities are likely to have an effect
on signaling as well [38].

To include thementioned spatial properties in our
modeling, we present an advanced computational

approach to simulate RD models which take into
account important aspects of spatial complexity. In
our modeling approach spatial inhomogeneities such
as organelles or bud scars are represented by an inho-
mogeneous diffusion coefficient or as inner bound-
aries in the computational domain. The RD model
equations connect membrane and cytosol by coupling
terms which represent reaction kinetics on the mem-
brane and depend on the concentration ofmembrane-
bound and cytosolic species. In comparison to the
cytosol, the cellmembrane ismodeled as a thin layer to
allow for diffusion in lateral direction only [39]. Fur-
thermore, we are not restricted to a circular or ellip-
tical geometry but can choose any shape.

Our computational approach relates to recent
advances in surface finite element methods (SFEM)
[29, 40]which also take into account surface curvature
of the membrane. With these methods, the RD model
equations can be solved with high accuracy and great
flexibility regarding the spatial geometry.

Modeling yeast cell polarity

A prominent example for cell polarization is the yeast
budding process. The location of bud formation is
specified by cortical landmark proteins Rsr1/Bud1,
which are inherited from the previous cell division.
One key molecule during this process is the Rho
GTPase Cdc42. In the absence of Cdc42, cells fail to
polarize, remain circular and are, therefore, unable to
form a bud [41]. As known from all Rho GTPases,
Cdc42 cycles between an active GTP-bound and an
inactive GDP-bound state. A prenyl group anchors
Cdc42 into the membrane where it can diffuse slowly.
Cdc42 can be pulled out of the membrane by Rdi1, its
guanosine nucleotide dissociation inhibitor (GDI).
Active Cdc42-GTP levels can be upregulated by
guanine nucleotide exchange factors (GEFs) or
reduced by GTPase-activating proteins (GAPs). In the
course of these interactions, a unique polarization cap
of active Cdc42 is generated on the cell membrane
which initiates the emerging bud on the site of the
polarization cap [14]. A sketch of this process is shown
infigure 1.

Interestingly, the normal bud site selection
machinery, in which the bud scar from the previous
cell division determines the direction of budding,
could be perturbed systematically in a number of
experiments. First, it could be shown that over-
expression of the active form of Cdc42 leads to pheno-
types that polarize randomly at multiple spots and also
grow more than one bud [42]. Second, deleting the
landmark protein Rsr1 still yields a polarization cap
which randomly explores the cell periphery. Addi-
tional treatment with latranculin A, an actin-depoly-
merizing drug, causes cells to spontaneously polarize
and establish a random but stable axis of polarity [7].
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This indicates that polarization is possible without
actin-driven rearrangements of Cdc42.

In S. cerevisiae, an alternative pathway that leads to
Cdc42 activation is induced by the heterotrimeric G
protein signaling during the mating process [43].
Here, shallow pheromone gradients cause the yeast
cell to grow a projection (called shmoo) in the direc-
tion of a mating partner. In this case, Far1p associates
with theGβγsubunits which leads to the accumulation
of Cdc42p at the site of receptor stimulation. Even
when stimulated with conflicting or noisy pheromone
signals, cells are still able to form a single shmoo in an
arbitrary direction [30].

The cell-type specific details of the spatial mole-
cule cycling can be very complex. For instance, signal-
ing molecules can associate to the plasma membrane
through membrane anchoring, binding to phospholi-
pid headgroups or docking with transmembrane
receptors. To be able to find generic properties of cell
polarization, we aim to investigate abstractedmechan-
isms that represent generic features of eukaryotic cell
polarization. A detailed review of polarization models
for various cell types can be found in [16]. We are
going to investigate basic mechnisms of Turing-type
[8, 11] and wave-pining type [7, 10], which have both
been suggested for yeast.

As the first mechanism of Turing-type, we tested
the model from Goryachev and Pokhilko [11] and
refer to it as GOR model. This model was derived in a
bottom-up approach that takes all actin-independent
components of the yeast polarization machinery into
account. Analysis and reduction of the model led to a
Turing-type mechanism for yeast polarization with
just two components. The system starts in a homo-
geneous steady state which is unstable with respect to
minute spatial perturbations and runs into a spatially
inhomogeneous polarized state. Such perturbations
may be small localized cues or spontaneous associa-
tion of activemolecules to themembrane.

As the secondmechanism, we tested the wave-pin-
ning (WP) model which was first suggested in Mori
et al [10]. This model is an abstracted caricature of the
shuttling of Rho GTPases. It has been used to char-
acterize the polarization behavior of various cell types
from neutrophils toDictyostelium discoideum and also
yeast. Experimental evidence for traveling waves of
active Cdc42 were observed for instance in Ozbudak
et al [7]. In the WP model, the corresponding homo-
geneous system has two stable and one unstable
transient steady state. The steady state at lower
concentration of active membrane-bound molecules
corresponds to an unexcited state, while the steady
state at higher surface concentration corresponds to

Figure 1.A sketch of the cycling process of signalingmolecules between cytosol andmembrane: (1) lateral diffusionwith coefficient
Dm of active signalingmolecules along themembrane; (2) free cytosolic diffusionwith coefficientDc of inactive signalingmolecules;
(3) association of cytoplasmicmolecules to themembrane; (4) positive feedback, i.e. enhanced recruitment of cytoplasmicmolecules
to the location of active signalingmolecules; (5) dissociation of signalingmolecules from themembrane.

3
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an excited state. Stimulation of the system causes tra-
veling waves on the cell surface that are pinned into a
polar stable state due to global mass conservation.
However, the stimulation needs to exceed a certain
threshold to drive the system from a homogeneous
unpolarized state into a polar state.

In this work, we examined and illustrated the
importance of spatial properties such as cell shape, cell
size, inhomogeneities on the membrane and the loca-
tion of (large) organelles in the cytosol for the two
models described above. There is still a debate about
which kind of model is most appropriate to capture
the main features of yeast polarization and which is
best suited to develop an intuition of the polarization
process in various situations [5]. Bothmodels,WP and
GOR, were tested in setups relevant to the polarization
behavior of mating and budding yeast Saccharomyces
cerevisiae.

Modeling approach for a class ofmass
conservative reaction-diffusion
mechanisms

A traditional way to understand basic mechanisms of
cell polarity is the investigation of RD models where
the geometry of the cell is reduced to one space
dimension. With models of this kind, basic features of
the reaction-diffusion dynamics can be captured. The
cell is represented by an interval L0,[ ] which can be
either interpreted as the circumference [44] of the cell
or as a cell diameter transect [16].

In the first case, the ends of the interval are glued
together and periodic boundary conditions are
employed. In the second case, the boundary of the
interval represents front and back of the cell. In the fol-
lowingmodel, the concentration of active RhoGTPase
(GTP, membrane-bound) is denoted by u(x, t) and the
concentration of inactive Rho GTPase (GDP, cyto-
solic) is denoted by v x t, .( ) Using the interpretation as
a cell diameter transect, the set of RD equations to
describe the spatial dynamics reads

u
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D
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A comparison and analysis of different reduced
models can be found in [16, 45].

A drawback of these 1Dmodels is that they neglect
potentially important details of the cell geometry,
whereas models in 2D or 3D can also account for the

spatial structure of a cell. We thus investigate higher
dimensional models and focus on the 2D case in this
article.

In the geometric representation of the cell, we
incorporate the cell membrane, the cytosol and inner
membranes that enclose organelles like the vacuole or
the nucleus. We assume free diffusion of molecules in
the cytosol which is limited by the outer cell mem-
brane, Mcell, and the inner membranes, Morg, of the
organelles. The cytosolic volume is denoted by V cyt

and its boundary surface is V M Mcyt cell orgÈ¶ = (see
figure S1).

Here, ∂ D denotes the boundary of some domain
D. The active membrane-bound form of the signaling
molecule is represented by its concentration u x t,( )

and the inactive cytosolic form is represented by its
concentration v x t, .( )

These are both functions of
space x Mcell 2Î Ì


or x V cyt 2Î Ì


and time

t T0, ,[ ]Î where T 0> is the end time. In brief, in
the two-dimensional case, the plasma membrane is
represented as a one-dimensional curve enveloping
the two-dimensional cytosolic domain.

With this geometric representation of the cell, the
shuttling between membrane-bound and cytosolic
signaling molecules is naturally described by a flux at
the membrane-cytosolic interface which follows spe-
cific reaction kinetics depending on concentrations u
and v. The model is formulated as the system of partial
differential equations

u

t
D u

f u v M T, on 0, , 4

m

cell

( )·

( ) [ ] ( )

¶
¶

=  

+ ´

G G

v

t
D v V Tin 0, . 5c

cyt( )· [ ] ( )¶
¶

=   ´

The boundary conditions for the cytosolic equation (5)
read

D v n f u v M T, on 0, , 6c
cell· ( ) [ ] ( )-  = ´



D v n M T0 on 0, . 7c
org· [ ] ( )-  = ´



Here, n

denotes the vector field of outer unit normals

on Mcell and M ,org respectively. Moreover, the initial
concentrations at time t= 0 are given by

u x u x v x v x, 0 and , 0 . 80 0( ) ( ) ( ) ( ) ( )= =
   

These equations comprise three types of processes
which occur simultaneously: (a) Diffusion of u x t,( )

on the curved membrane where the diffusion coeffi-
cient D xm ( ) is a function in space in order to allow for
position dependent diffusivity and G denotes the
surface gradient operator in x


which accounts for

curvature of Γ, see [40]. (b)Diffusion of v x t,( )
in the

cytosol with diffusion coefficient D xc ( ) where ∇
denotes the usual gradient operator in x


with respect

to standard Cartesian coordinates in Euclidean space.
(c)The reaction processes on themembrane described
by a flux at the membrane-cytosolic interface with
density J f u v,( )= are modeled as a source term for
the membrane-bound complex in equation (4) and as
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a Robin-like boundary condition for the cytosolic
concentration v x t,( )

in equation (6). The cytosolic
species v only interacts with the membrane-bound
species u on the cell membrane M .cell Hence, there is
no extra reaction term in the volume equation(5).
Note that the typical units of the membrane-bound
species u are molecules per area and for the cyosolic
species vmolecules per volume. Thus, the flux f u v,( )
naturally obtains the unitmolecules per area and time.

For f u v, 0( ) > we obtain a flux from the cytosol
onto the membrane whereas for f u v, 0( ) < the
active form u dissociates into the cytosol. We use the
term

f u v f u v k v, , , 9S
cyc( ) ≔ ( ) ( )+

where f u v,cyc ( ) represents the reaction kinetics of the
model’s basic reaction mechanism. The function kS is
positive and depends on space and time, i.e.
k x t, .S ( ) Î +

It accounts for signals that excite the
system and cause a flux from cytosol to membrane.
The signal settings in this paper vary from conflicting
localized stimuli, graded signals to external noise (see
Methods section).

Since the source term in equation (4) and bound-
ary condition (6) balance each other, this system of
equations is mass conservative. This means that the
total mass of the considered signaling molecule is con-
stant in time, i.e.

u A v V Md d 10
M V

mass on the cell membrane mass in the cytosol

cell cyt
( )ò ò+ =

     

for each t T0, ,[ ]Î where M .Î A derivation can
be found in supplementary material S1. Note that in
the two-dimensional case, which is considered in this
work, the surface integral is an integral along the one-
dimensional curve enveloping the cell and the volume
integral is an integral over a two-dimensional domain,
which represents a slice of the cell. Therefore, the unit
forM becomes molecules per height. To obtain actual

molecule numbers in the cell slice, M needs to be
integrated along the height of the cell slice.

In the general framework for cell polarization
models, the reaction kinetics f u v,cyc ( ) incorporates a
self-amplifying feedback on the active membrane-
bound species u. The location where most active sig-
naling molecules are accumulated also recruits the
most inactive signaling molecules from the cytosol.
This has to be understood as a competition between
different polarization sites since the cytosolic pool of
inactive molecules is limited. There are several differ-
ent model realizations for f u v,cyc ( ) with different
properties [8, 10, 11].

We employ the kinetics of the GOR [11] and WP
[10] models in the remainder of this study. The GOR
model [11, 14, 16] represents a Turing-type mechan-
ism and was derived as a simplification of a detailed
biochemical signaling pathway involved in the yeast
budding process. It employs the reaction kinetics

f u v f u v

E u v E uv u

, ,

. 11

GOR

c c

cyc

2

( ) ( )
≔ ( )a b g

=
+ -

The termsαEc u
2 v andβEc u v account for the positive

feedback loop of Rho GTPase activation mediated by
the corresponding GEFs. The first nonlinear term
additionally assumes a cooperative effect of the active
form of the Rho GTPases onto its own production.
The dissociation of the membrane-bound Rho
GTPase mediated by its GAPs and GDIs is described
by the degradation term γu. The factors α, β and γ are
constants. Ec accounts for the Bem1-Cdc24 complex
occuring in yeast and it is assumed constant for
simplicity, see also [16]. For a cell of 5 μm diameter,
Cdc42 molecule numbers in the order of 105 are
assumed in [11]. However, recent measurements
[9, 15, 46] have reported lower Cdc42 molecule
numbers in the order of 103 to 104. Therefore, we
rescaled the parameter values from [11] (see table 1).
The function f u v,GOR ( ) is plotted in figure S2 (see

Table 1.Overview of variables and constants. Note that M mol molec1 10 m 602 m21 3 3m m m= »- are the units for the cytosolic
species v in the bulk and M mol molec1 m 10 m 602 m21 2 2m m m m= »- are the units for themembrane-bound species u.

Model Parameter/entity Value Unit Description

GOR&WP u — μmμM concentration of themembrane-bound species

v — Mm concentration of the cytosolic species

f u v,( ) — M smm m density offlux at themembrane-cytosolic interface

Dm — sm2m diffusion coefficient for themembrane-bound species

Dc — sm2m diffusion coefficient for the cytosolic species

GOR α 3.3 M sm 1 2 1m m- - - cooperative positive feedback

β 0.67 M s1 1m - - noncooperative binding tomembrane

γ 0.017 s1 rate of basal dissociation frommembrane

Ec 0.1 - membrane-boundCdc24-Bem1 complex

WP k0 0.067 smm rate of basal activation

δ 1.0 s1 rate of basal dissociation

γ 1.0 smm maximal rate of auto-activation of u

K 0.1 Mmm m concentration of u resulting in

half-maximal rate of auto-activation

5
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supplementary material S1) for fixed values of v. We
chose v M0.20 mº and u0 ≡ 0.054 μm μM as initial
conditions for the GORmodel throughout this paper.
This corresponds to the non-zero homogeneous
steady state of the system.

The WP model was thoroughly investigated in
[10, 16, 47, 48]. Its reaction kinetics reads

f u v f u v

v k
u

K u
u

, ,

. 12

cyc WP

0

2

2 2(
( ) ( )

≔ ( )
⎞
⎠⎟

g
d

=

+
+

-

The nonlinear Hill-Term u K u2 2 2( )g + accounts for
cooperative effects of membrane-bound Rho GTPase
activation which is mediated by its GEFs. Here, the
constants γ and K represent the maximal activation
rate and the concentration of half occupation. The
basal GEF activation rate is expressed by k0. The
inactivation and dissociation of the membrane-bound
Rho GTPase mediated by its GAPs and GDIs is
described by the degradation term δu. As with the
GOR model, the reaction kinetics is plotted in figure
S2 for fixed values of v and the kinetic parameters are
shown in table 1. In the original work of Mori et al
[10], both u and v were treated as effective concentra-
tions with the same units anlong a 1D cell transect.
Here, u represents a surface concentration on the
membrane and v a bulk concentration in the cytosol.
Therefore, we adapted the units of the parameters k0, γ
and K accordingly. Furthermore, we rescaled the
parameter K to be in a comparable regime of
concentrations as with the GOR model. In all experi-
ments we used v0≡ 0.2 μM and u0≡ 0.026 μm μM as
initial conditions for the WP model, which corre-
sponds to the stable unexcited homogeneous steady
state of the system. It should be noted that for fixed
cytosolic concentration v M0.2 ,0 mº the kinetic term
f v u,0( ) has three roots u u u .T< <- + The first
corresponds to a stable unexcited, the second to an
unstable transient and the third to a stable and excited
state of the system.

In the original works from Goryachev and
Pokhilko [11], and Mori et al [10], different values for
the diffusion coefficients were used even though both
refer to measured values in the model organism yeast.
Each set DGOR

*
and D WP

*
of considered diffusion coef-

ficients can be compared using table 2. Themembrane
diffusion coefficients vary about a factor of 40. These
discrepancies have been inherited in recent literature.

In [14], for instance, the membrane diffusion coeffi-
cient D s0.0025 mm

GOR 2m= was used, while in
[15, 46] a 15-fold larger value D s0.037 mm

2m= was
employed for the same model organism yeast. How-
ever, in this work it is not our aim to resolve reported
parameter variations, or different modeling choices,
but to illustrate systematically that the behavior of two
common RD-based polarization models can be dra-
matically influenced by cell shape and diffusion inho-
mogeneities. In the experiments shown in this work,
we thus simulated bothmodels with a set Dcons

*
of con-

sensus diffusion coefficients which are approximately
the geometric mean of extreme values of diffusion
coefficients found in the references (see table 2).

To get a first impression of our higher dimensional
formulation of the GOR model and the WP model, it
is reasonable to perform 1D simulations of the original
models and comparable 2D simulations. We
employed a fully circular cell without any inhomo-
geneities for the 2D simulations. It could be shown
that both higher dimensional models are capable of
qualitatively reproducing the 1D simulations which
are performed in review article [16] with parameters
given therein. A comparison of 1D and 2D simulations
with two competing stimuli, for example, can be
found infigure S3 in supplementarymaterial S1.

In silico experiments

(A)Protrusions in a cell locally limitmolecule
aggregations
In a first setup, we strive to understand the influence of
the cell shape on the polarization behavior by the
introduction of a protrusion to an otherwise fully
circular cell. In [19], it was shown that the cell shape
potentially influences signaling within the cell for one
cytosolic species, neglecting the membrane-cytosol
shuttling. In a computational study [25] for models of
motile cells like neutrophils or Dictyostelium, the
polarization was also examined in the case of a static
geometry. For an elliptical geometry, cells repolarized
along the major axis when initially polarized along the
minor axis without further stimulus or bias. For the
MinCDE system, a similar effect was observed in a
model with membrane-cytosol coupling and an ellip-
tical cell shape [49]. There, pole-to-pole oscillations of
Min proteins predominantly occured along the major

Table 2. Sets of diffusion coefficients.

model parameter value description

GOR Dm
rmGOR 0.0025 sm2m diffusion coefficients used in [11]

Dc
rmGOR 1.0 10.0- - sm2m

WP Dm
WP 0.1 sm2m diffusion coefficients used in [10]

Dc
WP 10.0 sm2m

GOR&WP Dm
cons 0.015 sm2m consensus diffusion coefficients used in this work

Dc
cons 3.0 sm2m (geometricmean of extreme values found in the references)
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axis as well. However, for a non-oscillatory polariza-
tion model as used in our study and a more complex
geometry, it was not obvious what effect to expect. In
the following experiments, we incorporate a protru-
sion into a circular cell as shown in figure 2. The cell
shape is motivated by the shape of a yeast cell during

mating with the protrusion representing a mating
projection. However, similar shapes can also be found
in other cell types like dendritic spines [50].

First, a homogeneous signal was employed
to excite the cell from its resting homogeneous
steady state. Using the mechanism introduced in

Figure 2. Simulations of theGOR and theWPmodel for different signals and cell shapes. (A)TheGOR and theWPmodel were
excitedwith a spatially homogeneous signal for t s100 ,D = k 0.03 m s.S mº Since no spatial perturbations were present in the
circular cell, it did not polarize. However, homogeneous excitation of the non-circular cell led to cluster formation opposite to the
protrusion. (B)TheGOR and theWPmodelwere simulated for a cell with a protrusion and a circular cell. The signal comprised two
competing stimuli S1 and S2. The amplitude of S1was chosen 10% larger than the amplitude of S2 (seeMethods section). Note: The
non-circular cell has a length of 7 μmand awidth of 5 μm; the circular cell has a diameter of 5.4 μm. For both cell shapes the cytosolic
volume is the same, while the total arc length of the circumference is slightly larger for the non-circular cell.
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equation (9), the signal k s0.03 mS mº was applied
for a time period ofΔ t= 100 s on the surface of a cir-
cular cell with a diameter of 5 μm and a cell which has
a protrusion with length 2 μm (see figure 2(a)). As
expected, the circular cell did not polarize since there
were no asymmetries in the signal or in the cell shape.
Once the signal vanished, the cell returned to its unex-
cited resting state. For the non-circular cell, we
observed a different effect. A flux was induced from
the cytosol to the membrane. This created a cytosolic
gradient from the protrusion (lower concentration) to
the opposite side of the cell (higher concentration)
since the ratio surface to volume was larger in the pro-
trusion than in the circular part. The concentration of
the surface constituent, therefore, also grew faster on
the opposite side of protrusion. Due to the positive
feedback, the concentration gradient on the surface
was amplified and a unique cluster was established.
The positive feedback in bothmodels also led to a dra-
matically reduced concentration of inactive molecules
in the cytosol which reverses the cytosolic gradient
(shown in figure 2(a)). The membrane-cytosolic flux
was still positive in the cluster region but negative else-
where. The geometry effect was more pronounced for
theWPmodel where polarization was established very
fast (less then 100 s) while the GOR model polarized
much slower (∼1000 s).

Second, we imposed a signal comprising two sti-
muli S1 and S2 on the cell surface. The stronger stimu-
lus S1 was located at the protrusion while the weaker
stimulus S2 was located at the opposite side of the cell
(see figure 2(b)). For the circular cell, we observed the
expected outcome: the stronger stimulus S1 induces a
cluster of active membrane-bound molecules which
dominated the smaller cluster induced by S2. Even-
tually, the smaller cluster vanished and the system
reached a polarized steady state for bothmodels. How-
ever, we observed that the protrusion reversed the out-
come. As in the former setup with a homogeneous
signal, the cytosolic concentration decreased faster in
the protrusion and therefore limited the cluster
growth at the site of S1. Eventually, the cell was orien-
ted toward the opposite side of the protrusion.

The effect that we observed in the simulations can
be described as a kind of ‘bottle neck’ caused by the
protrusion at the site of S1. In particular, diffusive
transport into the protrusion was slightly hindered
when compared to diffusion on the unperturbed
membrane. Thus, the location with the stronger sti-
mulus S1 at the protrusion was not able to ‘win the
competition’ against the initially smaller cluster at the
site of S2 due to insufficient transport of inactive sig-
naling molecules to the site of S1. This effect might be
intepreted in the context of the narrow escape pro-
blem [50]. The emerging cluster acts as an absorber of
cytosolic molecules since there is a flux from the cyto-
sol to the membrane at the emerging cluster. The

mean time for a molecule in the cytosol to reach the
cluster (or absorber) is greater at the protrusion than
in the circular part of the cell surface. Slow cytosolic
diffusion or narrowing of the protrusion increases the
mean time and, hence, slows down molecule aggrega-
tion in the protrusion. For analytical results of the nar-
row escape time applied to dendritic spines, we refer
to [51].

In [30], we stimulated yeast cells with pheromone
where yeast cells formed protrusions toward a spatial
gradient. When the gradients were almost uniform or
the gradients were perturbed by small rapid changes,
the yeast cell still polarized and grew a protrusion sev-
eral times, but not in the same direction. This effect
has also been observed in other experimental works
for yeast [52–54]. Moreover, in experiments withDic-
tyostelium cells and neutrophils it was reported, that
unless gradients were very steep, new pseudopods
steered cells away from the direction of the old pseu-
dopod [55]. In a dynamic cell shape model [29], the
effect was explained by the dilution of the activator by
surface expansion of the cell surface in the pseudopod
region. Our study suggests that this effect can alter-
natively be explained by a narrowing of the volume
that occurs when a pseudopod is extended.

Based on these observations, we complemented
our simulations with stimuli that act as gradients on
the cell surface. Again, the protrusion acted as a nega-
tive feedback and even if the protrusion was aligned
toward the gradient, the polarization occured on the
opposite side of the cell if the gradient was very shallow
(see figure S7 in supplementary material S1). This
demonstrated nicely that small perturbations in the
cell shape may lead to a qualitative difference in the
behavior of both models. One interpretation of this
observation is that the growth of a protrusion evokes a
direct feedback on the underlying biochemical pro-
cess, i.e. spatial geometrical changes cause changes in
the biochemical properties of signaling pathways. This
effect might be a generic feature of cell polarization
that damps spurious deformations and promotes
reorientation in case of ambiguous signals.

(B)There is an optimal cell size for polarization
In the previous experiments in (A), we simulated a cell
with constant diameter of 5 μm. A variation of the
cell’s diameter directly determines the distances
that molecules have to travel within the cell. For
instance, the mean square displacement of a molecule
in the cytosol in some time interval Δt can be
calculated from 4Dc Δt for unconstrained 2D diffu-
sion. Assuming a diffusion coefficient in the range
1 m 10 m2 2m m- [11, 16, 56], we can conclude that

the root-mean square distance D t4 cD varies
between 2 μm—6.32 μm in a time interval ofΔt= 1s.
For a small cell with a diameter of 3 μm, which can be

8

Phys. Biol. 12 (2015) 066014 WGiese et al



assumed for small yeast cells, this means that one
molecule typically travels from one end of the cell to
the other in less than one second. It thus is apparent
that passive transport processes are much more
efficient in small cells than in larger volumes. How-
ever, higher concentration differences as well asmulti-
directional gradients that interfere with each other are
expected in larger cells.

There are several mathematical approaches for the
analysis of RD models. These can be used to obtain
parameter studies of crucial model parameters such as
cell size, intial conditions kinetic parameters and dif-
fusion coefficients. A classicalmethod is linear stability
analysis (LSA)which was performed in [15, 57, 58] for
bulk-surface RD systems. In this approach, the
equations are linearized around a homogeneous
steady state and the polarization behavior of themodel
is studied in the linear regime. There is also a more
recent approach called local perturbation analysis
[59, 60] which characterizes the nonlinear regime and
reduces complex reaction-diffusion equations to a
small set of ordinary differential equations. However,
the analysis is based on the assumption of very fast
cytosolic diffusion coefficients (e.g. Dc  ¥) and
very slow diffusion coefficients on the membrane (e.g.
D 0m  ) and, hence, the interdependence of fast and
slow diffusion is not investigated. Therefore, we per-
formed the classical LSA which was complemented
with numerical simulations in the nonlinear regime.
We point out that there is also a possibility to extend
the LSA into the nonlinear regime [45], however, this
analysis goes beyond the scope of this study and could
be addressed in future studies.

In the following analysis, we consider circular cells
of radius R. The surface constituent u was decom-
posed into a Fourier series with summands

kexp cosk( ) ( )l f and kexp sink( ) ( )l f , where k is the
wave number and λk the corresponding growthmode.
The volume constituent was expanded into a series
using the fundamental solutions for the radial part, i.e.
modified Bessel functions of the first kind (see supple-
mentary material S1 for details). The fundamental
solutions for both the surface and the volume con-
stituent are shown in figure 3(a) for different wave
numbers k. Note that the wave numbers k 1 corre-
spond to the number of polarization sites of the cell.
We derived an analytical expression for the corre-
sponding growth modes λk. These are depicted in
figure 3(b) in dependence on the cell size. For larger
cell sizes, multiple peaks become unstable, while for
small cells all λk are negative and, therefore, no polar-
ization occurs in the linear regime. A phase portrait for
the influence of cytosolic and membrane diffusion
coefficients is shown in figure 3(d). To get an under-
standing of the interplay of postive feedback, cell size
and diffusion coefficients, the following estimate for
λkwas derived:
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where u v,0 0( ¯ ¯ ) denotes a steady state of the system (see
Text S1 for a derivation). For large cytosolic diffusion
coefficients Dv, the term (∗) is very small and the
approximation f u v D k R,k u r R m0 0

2 2( ¯ ¯ ∣ )l » -= can
be used. From this approximation it can be seen
immediately how the membrane diffusion rate Dm

counteracts the positive feedback f u v,u r R0 0( ¯ ¯ ∣ )= with
respect to themembrane concentration. It follows that

for small cell sizes R
D

f u v,
m

u r R0 0( ¯ ¯ ∣ )
<-

=
there are

no growing eigenmodes and, hence, no spontaneous
cluster formation takes place. However, for cell sizes

R
D

f u v
2

,
m

u r R0 0( ¯ ¯ ∣ )
>+

=
there ismore than one grow-

ing eigenmode and multiple transient polarization
sites are possible. For the GORmodel, we investigated
the stable non-zero homogeneous steady state, while
for the WP model, we investigated the transient
homogeneous steady state v u, ,T

0 0( ¯ ¯ ) where phase
seperation occurs.

In experiments [42], it was shown that over-
expression of Cdc42 led to multiple polarization sites
and the dependency on the GEF was reduced. Moti-
vated by these experiments, we varied the total mole-
cule number of signaling molecules with respect to the
positive feedback mediated by its GEF. In the case of
the GOR model, we varied the crucial parameter Ec
and for the WP model the parameter γ as shown in
figure 3(c). The steady state u v,0 0( ¯ ¯ ) for the stability
analysis depended on changing Ec and γ for the GOR
and WP model, respectively. The number of mole-
cules was deduced from the mass of the steady state as
given in equation (10) by assuming a slice of the cell
with height 1 μm. For the GOR model, we observed
the expected effect that higher molecule numbers led
to multiple clusters. Furthermore, polarization
occured already for a slow positive feedback Ec if the
molecule number was high. For the WP model, there
was an upper bound for the molecule number that led
to polarization. Here, a strong positive feedback led to
a wider range of molecule numbers. For further analy-
sis of theWPmodel, we refer to [47].

Simulations for circular cells with cell diameters in
the range of one order of magnitude from 1.5 μm up
to 15 μmwere performed to demonstrate the behavior
of both models in the nonlinear regime. For all cell
sizes, we first imposed one single stimulus and second
two conflicting stimuli S1 and S2 on the cell mem-
brane. The amplitudes of the stimuli were fixed while
the membrane areas of the stimuli were scaled pro-
portionally to the cell size to make simulations with
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Figure 3.Parameter study based on linear stability analysis. (A) Schematic illustration of the fundamental solutions for different wave
numbers k. Here, high and low concentration on themembrane is indicated by yellow and blue, respectively. High and low
concentration in the cytosol is indicated by light gray and dark gray, respectively. (B)Dependence of growthmodes on the cell size. If
all growthmodes are negative (white region), the homogeneous steady state is stable. In caseλ1 > 0 andλ2,λ3< 0 (light gray region),
exactly one cluster emerges. If alsoλ2 > 0 orλ3 > 0 (dark gray region), multiple transient polarization sites can occur in the linear
regime. (C)Phase portrait of positive feedback and totalmolecule number variation in a slice through the cell of height 1μm. (white:
no polarization; light gray: exactly one cluster; dark gray:multiple transient clusters possible). (D) Interdependence of polarization
behavior and diffusion coefficients (same color coding as in (B) and (C)). Black dots show the extreme values used in the literature
[10, 11].
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different diameters comparable. In general, two clus-
ters emerged and competed with each other. It is of
interest which influence the cell’s diameter has on this
competition.

In order to evaluate the influence of cell size, we
introduced two measures to compare the degree of
polarization on the membrane (see Methods section).
The first was the mean polarization (POL) which rela-
ted the highest concentration to the total mean con-
centration on the surface normalized by the surface
area. The second was the polarization factor (PF)
which was calculated from the area of the smallest sur-
face patch that comprised half of the mass on the sur-
face. For the steady states of the simulations, we
calculated PF and POL for varying cell sizes, see
figure 4.

The GOR and WP models exhibited essentially
different polarization behaviors. For the GOR model,
the clusters grew mainly in ‘height’ (i.e. locally high
concentrations), while for the WP model a traveling
wave could be observed where the cluster grew in
width but not in height.

For the GOR model, we observed that the POL
measure slightly decreased, since the cluster height did
not grow proportionally to the cell diameter (compare
figure 4). On the other hand, the relative cluster width

was decreasing and therefore the PF measure was
increasing with cell size. The development of the rela-
tive cluster width in relation to the cell size is shown in
figure S5 in supplementary material S1. It should be
noted that for a cell with a diameter smaller than
4.5 μm, polarization was not achieved for the
employed parameters.

For the WP model, the POL measure decreased
with increasing cell size since the cluster height was the
same for smaller and larger cells. The PF measure
decreased as well. The surface to volume ratio scales
with 2/R. Hence, if the maximum concentration of
the cluster is fixed, the cluster width grows with cell
size. An explicit formula for the cluster width is
derived in supplementary material S1. The formula
was in almost exact agreement with the numerical 2D
simulation and predicts that the relative cluster grows
linearly with R. For a cell with a diameter of 15 μm,
more than 80% of the cell surface was polarized (see
figure S6 in supplementarymaterial S1). For a cell with
a diameter smaller than 3 μm, polarization was not
achieved in the case of one and two stimuli. In the case
of two stimuli at opposite sites, no steady state was
reached in a time frame of less than t= 2000 s for a cell
with a diameter larger than 6 μm.

Figure 4.The influence of cell size on polarization for one single stimulus (A) and two stimuli (B). Themaxima of the polarization
measures PF and POL are plotted for different cell sizes [left column] in (A) and (B), respectively.Moreover, the polarization time, i.e.
the timewhen 90%of themaximal (PF) value is reached, is shown [right column] in (A) and (B), respectively.
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We also compared the duration for the build-up of
polarization by measuring the time until 90% of the
final PF value was reached. The increase for larger cells
was especially significant. In case of one single stimu-
lus, we observed an increase from 21 s for a cell with
diameter 4.5 μm to 55 s for a cell with diameter 15 μm
for the GOR model. For the WP model, we observed
an increase from 17 s (cell diameter 3 μm) to 80 s (cell
diameter 15 μm). Much more pronounced was the
increase in case of two stimuli. In fact, for the WP
model the polarization time increased from 43 s (cell
diameter 3 μm) to 953 s (cell diameter 6 μm) and a sin-
gle site of polarity was not established within 2000 s for
cells with a diameter larger than 6 μm. For the GOR
model, the polarization time for a cell with diameter
15 μmmore than doubled compared to a cell with dia-
meter 6 μm.

For both models, we observed that polarization is
either not possible for very small cells or takes very
long for larger cells. Regarding the chosen parameter
values, we could demonstrate that there is indeed an
optimal cell size for bothmechanisms.

(C)Membrane barriers can amplify cluster
formation
Interior subdomains such as organelles and diffusion
barriers on the membrane potentially play an impor-
tant role in the signaling process. In budding yeast,
bud and birth scars occur after cell division and may
influence subsequent cell polarization. Furthermore,
it is known that during cell division diffusion barriers
are established to separate material of mother and
daughter cells while they still share a contiguous
membrane [61–63]. In a recent study [14], it was
shown that septin structures in yeast are formed in the
early phase of polarization and that Cdc42 clusters can
be trapped in these regions. Furthermore, septins also
play an important role in steering the direction during
chemotropic growth [52]. We introduced membrane
diffusion barriers into the model to examine the
influence of these inhomogeneities on polarization
behavior, seefigure 5.

As in the previous setups, a signal comprising two
stimuli S1 and S2 was applied on the cell surface, but
this time with the same magnitude to compare the
effect of cell shape with the effect of slow membrane
diffusion (see figure 5(a)). The cell geometry was
exactly the same as in section (A). First, we simulated
the effect of diffusion barriers surrounding the loca-
tion of stimulus S1 (see left column in figure 5). Inter-
estingly, the cluster induced by S1 grew steadily while
the cluster induced by S2 vanished. Hence, the diffu-
sion barriers compensated for the negative feedback
caused by the protrusion as examined in (A). A similar
effect was observed when applying a gradient on the
cell surface. Again polarization was enhanced for both
models. For theWPmodel the steady state was almost
the same but was achieved in a shorter time frame. The

effect was much more pronounced for the GOR
model. Here, polarization was only achieved with
added diffusion barriers.

This effect can be attributed to an accumulation of
signaling molecules at the site of S1 since the transport
away from S1 is blocked by the introduced barriers.

We repeated the same setup with the same para-
meters and cell shapes. However, this time we
employed only one single diffusion barrier which was
placed next to stimulus S1 at the protrusion, see center
column in figure 5. In yeast cells, such impermeable
regions on the membrane corresponded to septin
structures or bud scars which emerged after cell divi-
sion. It is a topic of current research how septin struc-
tures influence the budding process and chemotropic
growth. For the GOR model, we observed that due to
restricted diffusion caused by the barrier, the cluster at
the weaker stimulus S1 grew much stronger than the
cluster at S2. We thus had the same effect as for sur-
rounding diffusion barriers. However, the influence of
a single diffusion barrier on one side was weaker. In
the case of theWPmodel, it could not compensate for
the negative feedback induced by the protrusion. For
the GOR model, we observed that the direction of
polarity moved toward the diffusion barrier, an effect
that was used to explain the occurance of bending
shmoos during chemotropic growth of yeast cells [52].
The effects of barriers surrounding the protrusion and
impermeable regions in the vicinity of the signal were
qualitatively similar. During cluster formation on the
membrane, active membrane-bound molecules dif-
fuse laterally from high concentrations to low con-
centrations with diffusion coefficientDm. The effect of
diffusion barriers introduced in a 2D model as shown
in this work can be different from those in a 3Dmodel,
since in 2D diffusion barriers block diffusion while in
3D there are more possible shapes of barriers. For
example in 3D a ring shaped diffusion barrier around
the neck of the shmoo is more constraining than a
spot-shaped or circular diffusion barrier at the side of
the shmoo. However, in both cases 2D and 3D, redu-
cing the diffusion diminishes the diffusive flux which
counteracts the growth of the cluster. Therefore, diffu-
sion barriers on the membrane have the potential to
accelerate, stabilize and steer cell polarization.

(D)Organelles in the cytosol can alter polarization
preferences
Cells accommodate many structures of different sizes,
for instance large membrane structures like the
endoplasmatic reticulum, the nucleus and other
organelles. Thanks to recent advances in imaging
technologies, very detailed microscopic images of the
cytoplasma can be produced, see for example
[2, 3, 64]. Intracellular structures certainly influence
diffusive but also vesicular transport in the cell
[35, 65, 66]. During cell division, the spatial position of
the organelles has to be organized and is most likely
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Figure 5.The influence of diffusion barriers on themembranewas investigated for theGOR and theWPmodel. (A) In contrast to
section (A), the stimuli S1 and S2were chosen equally strong in order to compare the influence of the shapewith the effect of the
barriers. Two diffusion barriers with 10-fold slowermembrane diffusionwere placed around the location of stimulus S1 [left column].
A single barrier with 10-fold slower diffusionwas placed at the left-hand side next to the location of stimulus S1 [center column]. (B)A
graded signal was used to trigger cell polarization. Againwe examined two diffusion barriers [left column], one diffusion barrier
[center column] and no barrier for comparison [right column].
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controlled by signaling, but effectively also influences
signaling itself [67]. Even for small cells, the calculation
of effective diffusion coefficients usually is inferred
frommolecule properties and viscosity of themedium.
However, these derivations do not incorporate intra-
cellular diffusion barriers such as organelles or
impermeable membranes in general. Therefore, we
examined the effects of obstacles in the medium on
intracellular gradients.

To address this goal, we performed computational
experiments with organelles of different size and
shape. In a first setup, we placed a large organelle with
elliptical shape in the vicinity of the membrane. In a
second setup, we added a smaller circular obstacle
opposite to the large organelle near the membrane. In
each case, a vast number of simulations with different
noisy signals on the cell membrane was carried out. To
assess the influence of the organelles, the cell surface
was devided into twelve equal parts. For each simula-
tion, the observed steady state polarization direction
was assigned to the respective part in order to obtain a
likelihood distribution of preferred polarization sites,
see figure 6.

The effect of the large organelle is very clear and
polarization close to the organelle turned out to be
very unlikely for both models WP and GOR. In 100
simulations for each setup andmodel, at most 3 polar-
ization events could be observed in one of the

segments next to the organelle for the GORmodel and
0 for the WP model. However, in a circular cell with-
out diffusion barriers, the expectation value of polar-
ization events for each area segment is 100/12≈ 8.3. A
similar but much less pronounced effect was induced
by the small circular organelle. In particular, an inter-
esting pattern could be observed for the WP model.
Most polarizations occured in the neighborhood of
(but not behind) the large organelle or at the opposite
side. This can be explained by the complex cytosolic
gradients that form due to the cytosolic barriers. In
case of polarization, the growing cluster acts as an
absorber of cytosolic molecules. If aggregation occurs
behind the organelle, an initial cluster is quite likely to
vanish due to the limited transport. If polarization
takes place further away from the organelle, molecule
transport is hindered by the organelle and a cytosolic
gradient toward the organelle is formed which leads to
a movement of the cluster toward the organelle. This
effect was much more pronounced for the WP model
but it could also be observed for the GOR model. To
complement the experiments, a deterministic investi-
gation of the effect for organelles of different sizes is
shown infigure S4 (in supplementarymaterial S1).

We conclude that the GOR model is more gradu-
ally influenced by the shape of the organelles in the
cytosol, while the steady state of the WP model

Figure 6.The influence of cytosolic diffusion barriers was investigated for theGOR and theWPmodel, see results section (D).
‘Organelles’ (represented by circles or ellipses)which serve as diffusion barriers were placed at different positions. Simulationswith
different noisy signals were performed for each geometry andmodel. The number of polarization events is plotted on the cell surface.
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behaves rather like a switch with respect to the intro-
duction of different cytosolic diffusion barriers.

Discussion

Cell polarization is a fundamental process during cell
division, cell differentiation and directed growth. In
this paper, we focused on the crucial initial phase of
polarization when a polarization site is established.
Since spatial aspects are often neglected in computa-
tional as well as experimental investigations, our main
question was whether and how spatial parameters like
cell size, cell shape and spatial inhomogeneities
influence the polarization process.

Our study is based on a class of conceptual two
component models which describe the shuttling of
molecules from the cytosol to the membrane and
vice versa. Various models of this type can be found in
the literature. Since many of these models have been
formulated and simulated only in a 1D environment,
we suggest a consistent expansion of this class of mod-
els to 2D and 3D. In the framework presented in this
study, different cell shapes, curved membranes, diffu-
sion inhomogeneities and barriers were integrated.
This allowed us to go beyond the variation of kinetic
parameters to the introduction of several crucial spa-
tial properties and their influence on the polarization
process. For this, it is essential to perform simulations
at least in 2D so that differences in surface to volume
ratio, cell shape and organelles placed in the cytosol
can be represented and taken into account.

In our study, we illustrated that the influence of
cellular inhomogeneities can be quite dramatic and
should certainly be considered in modeling and simu-
lation of spatial intracellular processes. For the reac-
tion kinetics, we chose the GORmodel with a Turing-
type mechanism on the one hand, and the WP model
with a wave-pinning mechanism on the other hand.
With these two kinetics, a vast number of computa-
tional experiments were carried out in order to exam-
ine the influence of (A) the cell shape, (B) the cell size,
(C) inhomogeneities on the membrane and (D) orga-
nelles in the cytoplasm.

Importance for cell polarization in yeast
For the first setup (A), we illustrated that protrusions
act as a negative feedback for bothmechanisms, which
led to a lower sensitivity to external signals in this
region. In the presence of high pheromone concentra-
tion (≈1μM) for a long time period (t> 2h), yeast
cells form multiple shmoos in distinct directions
[30, 54, 68, 69]. The periodic formation of mating
projections has been explained by a downregulation
and termination of polarized growth meditated by
Sst2 [68, 70], a regulator of G protein signaling (RGS).
After termination of the growth of the first mating
projection, the system polarizes again in the presence
of high pheromone concentration. The secondmating

projection forms in a distinct direction than the first
one. It would be interesting to investigate experimen-
tally whether the reorientation is mediated by a time
delayed memory e.g. localization of Sst2 in the first
mating projection, or by the geometry dependence of
theCdc42 polarizationmodule as shown in this study.

Furthermore, we demonstrated in setup (B) that
using fixed kinetic parameters there exists an optimal
cell size for the GOR and the WP model. For both
mechanisms, the polarizationmeasured by the average
polarization (POL) decreases for larger cells, while
polarization times increase dramatically. Opposite to
that, small cells were unable to polarize at all. We
derived estimates for theoretical upper and lower
bounds for the cell size depending on the kinetic para-
meters that control the postive feedback of Rho
GTPase activation (see setup (B) or Text S1 for a deri-
vation). It is an interesting question whether the size
limits that hold for the theoretical models can be mat-
ched with experimental investigations in yeast. An
experimental study on size dependent mating partner
selection in yeast can be found in [71].

Diffusion inhomogeneities on the membrane are
investigated in setup (C). We showed that diffusion
barriers can act as a positive feedback on cluster for-
mation. Diffusion on the membrane usually counter-
acts cluster formation. Hence, local obstruction of
membrane diffusion yields an amplification of the sig-
nal. Diffusion barriers in yeast are mediated for
instance by cytoskeletal scaffolding proteins known as
septins. A recent experimental study [52] investigated
the interplay of septins and the turning of the polariza-
tion cap in life cell imaging upon stimulation with low
pheromone concentration. The authors could show
that the propability of turning the Cdc42 polarization
cap in a short time scale of a few minutes is limited for
wild type cells, where the septins form at the edge of
the polarization cap. However, deleting the Sst2 resul-
ted in cells, where the polarization capwandered along
the cell periphery and cells failed to grow persistently.

The behavior of the WP model for gradient track-
ing on short time scales, which is not a feature of the
GOR model, might be more suitable to explain the
mutant behavior of sst2Δ cells. However, with diffu-
sion barriers both models seem to behave roughly the
same, e.g. cluster formation is promoted and stabilized
by septins. Both setups (A) and (C) encourage further
investigation of the temporal and spatial localization
of septins and RGS proteins like Sst2. We point out
that diffusion barriers induced by the cytoskeleton can
also be modeled as local energy barriers that modulate
the obstacle strength dynamically. A model describing
the interplay of slow diffusion induced by the cytoske-
leton and active transport was investigated in [72],
which could a be useful a approach for mating and
budding yeast as well.

In experimental setup (D), we introduced different
organelles into the cytosol. We illustrated that reduced
transport due to obstacles led to a change of the
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polarization behavior despite fast cytosolic diffusion.
In particular, placing an organelle in the vicinity of a
cluster limited the membrane-cytosolic shuttling and,
therefore, also limited the possible growth of the clus-
ter. We observed that the WP model was more sensi-
tive to obstacles and organelles than the GOR model.
We suggest that cell polarity and the organization of
organelles should be investigated in two directions;
experimentally, by observing the orchestration of
molecule aggregations and the postioning of orga-
nelles [64]; computationally, by incorporating active
transport and the cytoskeleton as suggested in [59, 73].
However, the incorporation of the effect of inclusions
and organelles in a comprehensive model with active
transport and cytoskeleton has to be addressed in
future research.

Outlook and relevance for other organisms
The results of this paper are based on static geometries
which can be assumed for the initial establishment of
polarization or for cells that grow slowly in compar-
ison to the diffusion and polarization processes. These
assumptions are valid for many fungi, but also plant
cells or neurons. Apart from this, the observation that
spatial inhomogeneities may significantly influence
intracellular transport processes is generically applic-
able to most cells and requires further research. For
instance, we believe that our approach could be
beneficially embedded in forward-looking multiphy-
sics frameworks as presented in [74] or [59], where
deformable cell geometries are combined with signal-
ing on the cellmembrane.

The application of our approach for spatial model-
ing and simulation in a 3D setting is obvious since it
only needs straightforward reformulation. We expect
the influence of the cell shape to be even stronger in
3D. As in the 2D results, the local ratio of membrane
and cytosol volume will be a key to characterize the
influence of the cell shape. Therefore, we expect clus-
ter emergence to preferentially occur in regions of
minimal mean curvature in case of a uniform or noisy
signal as also hypothesized in [10].

In the case of migratory cells such as neutrophils,
fibroblasts orDictyostelium discoideum, the underlying
mechanism differs from yeast. Here, it is well-known
that phosphatidylinositol-3,4,5-trisphosphate (PIP3),
a membrane lipid that promotes Rho GTPase activa-
tion, increases sensitivity at the pseudopods through
active transport. However, in experiments with Dic-
tyostelium discoideum and neutrophils it was shown
that the leading edge of the pseudopod splits into two
and the new pseudopod steers the cell away from the
direction of the old pseudopod [55]. In a theoretical
study [29] this effect was explained by the dilution of
signaling molecules on the cell surface due to surface
expansion. Our study motivates two other possibly
explanations. First, we clearly expect that narrowing
and extending the leading edge increases the surface to

volume ratio locally and limits the recruitment of
molecules onto the cell surface. Second, we suggest
that extending the volume in a dynamic geometry cau-
ses a dilution of signalingmolecules in the cytosol.

Recent advances in imaging techniques such as
TIRF as well as confocal and electronmicroscopy have
the potential to provide quantitative data for the spa-
tio-temporal organization of cellular structures and
spatial inhomogeneities. Computer tomographic ima-
ges of cells can be translated into computational
meshes and could serve as a basis for spatial modeling
and simulation using real cell data in the future.

Our results suggest many spatial effects that could
be investigated with the aid of such methods. There-
fore, we hope that our approach leads to experimental
investigations that give more insight into fundamental
processes such as cell differentiation, directed growth
and cell division.

Methods

Signal repertoire
To qualitatively compare the influence of different
spatial effects, the GOR and the WP models were
excited and probed with different kinds of signals
which are described in more detail in the following
subsection.

1)Conflicting localized stimuli
In this setting, two different regions of the cell were
excited simultaneously. The imposed signal comprises
two localized stimuli and is given by

k x t

S t t

S t t,

, if and dist x , x w,

, if and dist x , x w,

0, otherwise.
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Here, dist x , x1 2( ) 
denotes the Euclidian distance

between two points x1

and x2


andw specifies the width

of the excited surface area. We excited the system with
two competing stimuli at positions xS1


and xS2


on the

cell membrane, where each stimulus covers 5% of the
cell surface. We set different amplitudes for both
stimuli, namely S s0.44 m1 m= and S s0.4 m2 m=
in setup (A) as well as (B), and equal amplitudes
S S s1 2 0.4 mm= = in setup (C). Both stimuli were
applied for a time period of t s10 ,D = i.e.
t t s10 .1 2= =

2)Graded signal
In this setting, the system was excited with a persistent
graded signal in the x1–x2 plane. It is defined by

k x t c c x x, , 15S min0 1 2
2( )( ) ( )· ( )= + -

 

where xmin


is the lowest point along the x2-direction
of the two-dimensional cell (opposite side of
the protrusion). We used c s0.01 m0 m= and
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c s3.0 10 m1
5· m= - in the experiments in setup (C),

and c s0.03 m0 m= and c s0 m1 m= in setup (A).

3)External noise
The external noise used in setup (D)was assumed to be
spatially uncorrelated. Thus, the noise at each location
on the cell surface was generated by selecting indepen-
dent and identically distributed stationary random
variables at each time period t t, .1 2[ ] This realization of
the noise was then assigned to k x t, .S t t t,1 2

( )∣ [ ]Î


We
tested a normal and a log-normal distribution with
mean 0m = and standard deviation 0.1.s = The two
distributions produced approximately the same
results. The noisy signal was changed in time by
regenerating k x t,S ( )

each t s5 .D =

Polarizationmeasures
For a comparison of the models, we employed
different polarization measures [12, 75] which pro-
vided an indication about the localization and strength
of a polarization. The first measure is related to the
largest value of the surface concentration which is
denoted by u u xmax .f x Mcell ( )= Î

 For the comparison
of varying concentrations, we define the average
polarization by

M

u u

u

u
M

u A

POL u
1

,

1
d . 16

f

M

cell

cell cell

( ) ≔ ·
¯

¯

¯ ≔ ( )ò

-

This measure gives us information on direction and
magnitude of polarization. However, the size of the
cluster and its relativemass is not reflected. To account
for this information, we employed a second measure
called the ‘polarization factor’. It is defined by

M x

M

M x x M u x u

x x

PF u 1 ,

:

and , 17
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where x Mf
cellÎ


such that u u xf f( )=


and ρ is

choosen small enough so that only the cluster around
xf is taken into account.

Numericalmethods
Simulations were performed using the Distributed
andUnifiedNumerics Environment (DUNE) [27, 76].
We used a conforming finite element method of first-
order Lagrange elements on triangular meshes. The
equation for the membrane-bound species was solved
on the boundary of the mesh while the equation for
the cytosolic species was solved in the entire meshed
domain. The finite element meshes were generated
with Gmsh [77]. All of our meshes comprise several
thousand elements to guarantee a high precision of the
simulation results, see the examplemeshes in figure S4

in supplementary material S1. More detailed informa-
tion regarding the utilized numerical methods can be
found in supplementarymaterial S1.
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