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Topologically induced swarming phase transition on a 2d percolated lattice

David A. Quint∗ and Ajay Gopinathan†

Physics Department, University of California Merced

(Dated:)

The emergence of collective motion, or swarming, in groups of moving individuals who orient them-
selves using only information from their neighbors is a very general phenomenon that occurs at
multiple spatio-temporal scales. Swarms that occur in natural environments typically have to con-
tend with spatial disorder such as obstacles that can hinder an individual’s motion or can disrupt
communication with neighbors. We study swarming agents, possessing both aligning and mutually
avoiding repulsive interactions, in a 2D percolated network representing a topologically disordered
environment. We numerically find a phase transition from a collectively moving swarm to a disor-
dered gas-like state above a critical value of the topological or environmental disorder. For agents
that utilize only alignment interactions, we find that the swarming transition does not exist in
the large system size limit, while the addition of a mutually repulsive interaction can restore the
existence of the transition at a finite critical value of disorder. We find there is a finite range of
topological disorder where swarming can occur and that this range can be maximized by an optimal
amount of mutual repulsion.

INTRODUCTION

Collective motion of self propelled individuals is a well
studied emergent phenomenon [1–20] that spans many
different length and time scales. Within the literature
that is aimed at studying collective motion in systems of
self-propelled agents, a main underlying assumption has
been that the environment is obstacle free, isotropic and
ordered. In the natural world there are many examples of
environments that possess physical obstacles where col-
lective motion can exist. Examples include bats that
navigate natural caverns via echolocation, schools of fish
that maneuver through dark and light areas [21], micro-
bial colonies that move about in heterogeneous soil [22],
crowds of people that are evacuating a building [23] and
traffic flow in major cities [24]. Environmental or topo-

logical disorder is manifested in the form of obstacles or
regions of space that either hinder movement or disrupt
the flow of communication or both. Given that natu-
ral environments can be intrinsically topologically disor-
dered which is due to the obstacles that prevent motion,
it is interesting to consider how self-propelled individu-
als maintain an organized state of collective motion with-
out knowledge of a global “road map”. Recent models
that have included the effects of environmental disorder
have found a multitude of different swarm state behav-
iors, which are attributed to the effects that topological
disorder has at the local agent level [25–27]. In the pres-
ence of fixed obstacles in the environment, swarms can
benefit from an optimal thermal noise value that allows
agents to maintain a collectively moving state [27]. The
optimal noise, in this context, is akin to annealing the
defects in the collective caused by the heterogeneities in
the environment. We compliment these previous studies,
which have focused on the classical thermally induced

∗ dquint@ucmerced.edu
† agopinathan@ucmerced.edu

phase transition by examining the phase transition that
is associated with tuning the topological order of the en-
vironment at fixed thermal noise and how it is coupled
to inter-agent repulsion. We are interested in the nature
of such a topological noise driven swarming transition
and its relation to the underlying topology of the back-
ground space [18]. Given that swarming cannot persist
at reasonable values of obstacles [27], are there physi-
cal mechanisms that agents can control to facilitate the
collective movement of agents across a topologically dis-
ordered network?

MODEL AND SIMULATION

In order to understand the effect of topological dis-
order on the swarm dynamics of locally coupled self-
propelled agents the introduction and the implementa-
tion of the heterogeneities (obstacles) in the environ-
ment must be done in a more controlled and quantitative
manner. To do so we implement a Monte Carlo lattice
gas model [2, 28–30] that consists of Np interacting self-
propelled agents that occupy a 2d periodic triangular lat-
tice with L2 ≡ N lattice sites. Idealizing obstacles in the
environment utilizing ordinary bond-percolation allows
for a simple and controllable method that is suited for
studying disorder. Moreover, this type of study can be
generalized to network topologies that aren’t restricted
to Euclidean embeddings [18]. The diagram contained in
Fig. 1a represents a typical unit cell within the lattice
with agents (red filled circles) that occupy some of the
lattice sites. We introduce topological disorder by vary-
ing p, the probability that a bond exists between two
lattice (grey broken bond in Fig. 1a) sites as in usual
bond percolation theory [31]. Local interactions between
agents have energies associated with them. The first is a

Page 1 of 6 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  PB-100292.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

velocity alignment interaction energy,

Ea
i = −αui ·

6
∑

j=1

ηj

n(j)
∑

k=1

vk

/∣

∣

∣

∣

6
∑

j=1

ηj

n(j)
∑

k=1

vk

∣

∣

∣

∣

, (1)

where the magnitude is controlled by the parameter α
and vk is the velocity of the kth agent at nearest neighbor
site j. Here n(j) refers to the number of agents at a site
j and this can be larger than 1. The second type of
energetic interaction is a repulsive one,

Er
i = ǫηi(n(i)− n(0)), (2)

that is controlled by the parameter ǫ and is proportional
to the difference in local density (agent number), n(i)−
n(0) along a lattice direction ui.

Bond disorder enters into the calculation of both inter-
actions via the bond occupation parameter ηi, which is
unity when a bond is present and zero when it is missing.
Motion as well as information flow across a deleted bond
is prohibited, hence in Fig. 1a the central agent will
most likely move along the white arrow in the absence
of any repulsive interaction with the neighboring agents,
whereas if the bond were present the most likely direc-
tion of travel would be along the gray arrow. In this way
topological disorder directly couples into the agents dy-
namics at the local level. Thermal effects are introduced
by the parameter T that enters during the METROPO-
LIS Monte Carlo update. Updates were accomplished by
selecting an agent at random on the lattice then preform-
ing the Monte Carlo update to select their new possible
velocity direction ui. The update consists of constructing
a probability, P (ui), for each possible direction present
locally to each agent using the energies given in Eqns. 1, 2
(P (ui) = exp(−(Er

i + Ea
i )/kT ), kT = 1). These prob-

abilities are then mapped to the interval [0, 1] and new
directions are accepted by selecting a random number
0 ≤ r ≤ 1 on this interval.
After a new direction is selected the agent moves along

that lattice bond to the next lattice site. In this way
the only degrees of freedom that are affected by thermal
noise are rotational (See Supplementary information).
The data we present below was taken for system sizes
no larger than ∼ 104, this was due to the slow relaxation
of our system for larger system sizes.

RESULTS

Results I - Topological disorder driven phase

transition.

In general, the existence of intrinsic thermal noise in a
system of mobile interacting agents can drive the depar-
ture from a collectively moving ordered swarm state to
a completely disordered gas-like state [1–5, 8, 9, 32, 33].
Intuitively we expect that the introduction of topological

(b).

ui

vk

(a).

FIG. 1. (a) Diagram of a lattice unit cell with agents (red) occu-
pying lattice sites and currently moving in the direction of the blue
arrows. Here a lattice bond is labeled by ui and the velocity of the
nearest neighbor is denoted vk. The grey broken line represents a
missing bond, the grey arrow represents the most probable veloc-
ity direction of the central agent, if the deleted bond were present,
and the white arrow represents the most probable velocity direc-
tion of the central agent when the bond is not present. (b) Top;
A snapshot of a typical simulation showing finite sized groups of
agents which are collectively moving in a disorder free (1− p = 0)
lattice. Bottom; A snapshot of a simulation of a system with dis-
order (1 − p = 0.05), where missing bonds are not drawn. Black
filled circles are agents that are temporarily stuck at a lattice bond
defect.

disorder will effect the ability of agents to move collec-
tively. Fig. 1b (top) shows a typical simulation snap-
shot of a collectively swarming group of agents moving
through a disorder free lattice. In contrast, Fig. 1b (bot-
tom) shows for the same system but with 5% disorder the
effect of missing bonds in the lattice on the formation of
a swarming state. Temporarily stuck agents (Fig. 1b -
black filled circles) at the location of a missing bond are
causing neighboring agents to move around them, and
thus causing the entire group of agents to move in differ-
ent directions within the lattice. To quantitatively study
the transition from an ordered state to a disordered one,
we propose using the average velocity order parameter,

〈v〉 =
1

Np

∣

∣

∣

∣

Np
∑

i

vi

∣

∣

∣

∣

, where |vi| = 1. (3)

Here vi is the velocity of the ith agent and Np is the
total number of agents in the system, which has been
implemented in previous studies [1–5, 8, 9, 27, 32, 33] for
the disorder free case.
To isolate the effects of topological disorder on the for-

mation of a collective swarm we fix the magnitude of
thermal noise such that an ordered swarming state would
naturally occur without any environmental disorder. Fig.
2a shows the effect of increasing environmental disorder
on the formation of a collective swarm for a system that
only utilizes alignment interactions (Eqn. 1). As we vary
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the density we find that swarming is not perfect (〈v〉 < 1)
even for a perfectly ordered lattice at low densities of
agents (ρ ≤ 0.2), consistent with earlier studies [2, 33]
(See supplementary information).

At higher densities, for low values of the lattice disor-
der, we find a coherent swarming state where the order
parameter is near unity (v ∼ 1). This state exhibits a
phase transition to a disordered state when the fraction
of missing bonds exceeds a critical value (1− p∗), where
we define the location of the transition by the inflection
point in the order parameter versus disorder curve. This
order-disorder transition is completely determined by the
amount of topological disorder, which is unrelated to the
standard Vicsek model transition that is induced by ei-
ther thermal or vectorial noise [1, 2, 5, 9, 27, 32–34].
It should be noted that there exists a controversy as to
the order of this phase transition in the standard Vicsek
model driven by thermal noise with different numerical
studies ascribing a different order of the phase transi-
tion depending on the parameter regimes examined, sys-
tem size and how intrinsic noise is introduced into the
model [5, 8, 34–36]. We will address the critical features
of our phase transition later in this paper.
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FIG. 2. (a) Global alignment, in the absence of repulsion, as
measured by Eqn. 3 as a function of the disorder fraction in the
lattice for different densities [ρ = 0.8 (red), ρ = 1.0 (blue), ρ = 2.0
(green)]. (b) Global alignment for a system of agents that interact
with both a local alignment and repulsive fields for ρ = 1.0 and ǫ =
[5.0∗10−3 (black), 10−2 (red), 5.0∗10−2 (green), 10−1 (blue)]. (c)
Finite system size critical disorder fraction (1−p∗(N)) for systems
without/with repulsion [ǫ = 0 (green filled circles)] [ǫ = 10−1 (blue
filled circles)] with finite size scaling fits (red dashed line) and (black
dashed line). (d) The order parameter for particular values of the
disorder fraction [1 − p = 0 (red), 0.10 (blue), 0.20 (green)] over
the the log of the repulsion strength. All further log data is to the
base 10 unless stated otherwise. (See supplementary information
for more simulation details)

To understand if our transition occurs at a critical dis-
order fraction, as we increase the system size N = L2,
we characterized the location of the critical disorder frac-
tion (1 − p∗(N)) for finite systems as a function of the

system size. We will use the finite size scaling ansatz
(p∗(N) − p∗(∞) ∼ N−λ), where we have extracted the
critical disorder fraction, 1−p∗(∞) from our simulations.
This type of finite size scaling has been used to character-
ize a thermally induced phase transition in a recent study
of a continuous swarming model with spatial hetero-
geneities [27]. Fitting the locations of the critical disorder
fractions for each of the system sizes we studied revealed
that in the large system size limit, 1− p∗(N → ∞) → 0
(Fig. 2b (green filled circles, black dashed line)).
This result suggests that, with solely alignment inter-

actions between agents, the phase transition from an or-
dered state to a disordered one does not exist in the large
system size limit. We must point out that in other studies
of swarming behavior it has been reported that there can
be more complex system wide swarming patterns. More-
over, these patterns display no globally ordered state (i.e
quasi long range order - moving bands, traffic jams and
asters) and have been seen in both on and off lattice
simulations [30, 37]. While we do see certain types of
patterns in our simulations, which we plan to explore in
the future, here we are only interested in the existence of
global order in the presences of topological defects.

Results II - Repulsion enhances swarming in

disorder

Consider the effect of adding repulsive interactions be-
tween neighboring agents (Eqn. 2). In Fig. 2b, we see
that the ability of agents to form a collectively moving
swarm is significantly enhanced compared to Fig. 2a even
for moderately high values of the disorder fraction. Thus
adding a repulsive interaction between agents appears
to have shifted the location of the order-disorder transi-
tion (1 − p∗(N)) for finite systems. Using the finite size
analysis again, we find that there exists a phase transi-
tion (Fig. 2c (blue filled circles, red dashed line )) oc-
curring at a non-zero value of the topological disorder
fraction. For a specific value of the repulsive interaction,
(ǫ = 10−1), and temperature (T = 10−2), this turns
out to be 1 − p∗(N → ∞) = 0.13(4)(Fig. 2c (black
solid line)). Finally, we find that there is an optimal re-
pulsive magnitude, where collective motion is enhanced
in the presence of disorder, that is reflected in the non-
monotonic behavior in Fig. 2d. This behavior is con-
sistent with previous studies for systems without disor-
der [33] and is not to be confused with optimal noise as-
sisted swarming in the presence of obstacles [27] as here
we focus on how the inter-agent repulsion can be tuned
to optimally enable swarming.
Intuitively one can understand the nature of this non-

monotonic behavior from the following argument. When
an agent becomes temporarily stuck at a defect (i.e. a
missing bond) other agents can also become stuck at that
same location with little energy cost and they can pile
up at a lattice defect. As the repulsive magnitude is in-
creased agents will tend to avoid regions where the agent
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number density is high (Eqn. 2). At moderate values
of repulsion agents can avoid sites that are temporar-
ily occupied by another agent, causing the local num-
ber density per lattice site to decrease. If a lattice site
near a missing bond is occupied the repulsive interac-
tion between the two agents makes it less favorable for
them to occupy the same lattice site. Thus, the local
repulsive interaction is, in some way, mediating the lo-
cal bond disorder and allowing agents to avoid lattice
defects more efficiently, which can be seen in the peak
in Fig. 2d. However, as the repulsive interaction is fur-
ther increased individual agent motion will become more
randomized because any movement toward another agent
will be highly unlikely as can be seen in Fig. 2d even for
the case where this is no lattice disorder (1 − p = 0) for
log(ǫ) ≥ 0. We will explore these dynamics more in a
following publication.
Now we can clearly see that repulsive interactions re-

store the ability of the agents to swarm collectively in a
finite amount of disorder, it is now interesting to specu-
late to which universality class our system belongs to. We
probe this question by utilizing finite size scaling analy-
sis to extract the critical exponents of the relevant ther-
modynamic quantities. We fix our system at ǫ = 10−1

and examine the behavior of the critical disorder frac-
tion defined by 1− p ∗ (L), while varying the system size
L (Fig 2c). The system size dependence of the critical
point (ξ ∼ L → (p∗(L) − p∗(∞)) ∼ L−1/ν) provided an
estimate for the correlation length exponent ν, yielding
ν ≈ 1.19 ± 0.09 (Fig 3a. green dashed line). Measur-
ing the susceptibility of the order parameter to p by an-
alyzing the fluctuations in 〈v〉 as a function of system
size, χv = Nσ2

v(p
∗) ∼ Lγ/ν [9] provided an estimate for

the susceptibility critical exponent, γ ≈ 2.20± 0.29 (Fig.
3a, red dashed line). Using the values for both ν and
γ as well as the finite size hyper-scaling (FH) relation
(2β + γ = dν) gave and estimate order parameter expo-
nent βFH ≈ 0.098. In order to test the universal nature
of the exponents we then fixed our system at a particu-
lar system size and particle density (N = 322, ρ = 1.0)
and examine the behavior of the order parameter critical
exponent over the range of repulsive interactions where
swarming occurs (−3 ≤ log(ǫ) ≤ −1). We measured the
scaling of the order parameter near the critical point for
each value of repulsive strength (〈v〉 ∼ (p∗(ǫ)− p)β) and
found an excellent agreement between both methods of
estimation (Fig. 3b grey dashed line & solid data points
), and the value of β was also insensitive to the variation
over the range of repulsive magnitudes giving an average
β̄ = 0.094, which compares well with the value obtained
from finite size scaling βFH ≈ 0.098.

Results III - Universality classes

To gain perspective on which universality class best
describes the order-disorder transition due to topo-
logical noise, we compared our exponents to those of

two dimensional percolation [38] and those that have
been associated with the thermal noise induced phase
transition in the standard Vicsek model [1, 9] for finite
systems. Our choice for this comparison is suggested
by the underlying physics governing our model. On one
hand we are using a variant of the standard Vicsek model
as defined in Eqn. 1, while on the other hand, there is
a geometric background (percolated quenched disorder)
associated with ordinary percolation. We found that
our system follows a universality class that is closer to
that of percolation (Fig. 3b red dashed line) than the
Vicsek type (Fig. 3b green dashed line). This similarity
may be due to the fact that the phase transition in our
system is driven by a source of noise (topological noise
due to percolation effects) that is physically different
from thermal noise as in the standard Vicsek model.
It is interesting to note while this system is more akin
to the percolation type universality class, the critical
disorder fraction (1 − p∗(∞) = 0.13(4)) for a repulsive
strength of ǫ = 10−1 is vastly different than that of
ordinary connectivity percolation (1 − pc ≈ 0.66)) for
a triangular lattice [39]. This comparison suggests that
swarming phenomena in such systems maybe extremely
sensitive to the effects of ordinary percolation far from
the percolation critical point while retaining the critical
behavior of a percolation type system.
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FIG. 3. (a) Finite size scaling fit (red dashed line) of the suscepti-
bility, χv , (blue filled circles) and the correlation length, ξ, (green
dashed line) at finite repulsion (ǫ = 10−1) as a function of the sys-
tem size L. The critical exponents γ and ν = 1/λ are estimated
at 2.20± 0.29 and 1.19± 0.09 respectively and βFH = (dν − γ)/2.
(b) Extracted critical exponents with error bars for β (light blue
circles and black bars) from scaling analysis near the critical dis-
order fraction transition (1− p∗(L)) plotted against the log of the
repulsion magnitude. The grey dashed line is the predicted value
of βFH from the hyper-scaling relation compared with βV M (green
dashed line) and βPerc (red dashed line) the scaling exponents for
both the standard Vicsek model and 2d percolation respectively.

DISCUSSION

Systems of self propelled agents using local nearest
neighbor alignment interactions can form a collectively
moving swarm. However, in the presence of environmen-
tal topological disorder, we have shown that alignment
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alone is insufficient for agents to form a swarm. They
need to possess information not only about local neigh-
bors directions of travel but also about the surrounding
environment. In summary, we showed that repulsive
forces, while seemingly antagonistic to alignment, allow
agents to communicate local environmental topological
features to their neighbors and restores the ability of the
individuals to form a swarm that collectively navigates
the intrinsically disordered environment. We have
shown that there exists a new type of dynamical phase
transition from an ordered co-moving swarm to a disor-
ganized collection of individuals driven by environmental
disorder. It is of interest to note that this collective
phase transition occurs at a critical point that is far from
the underlying geometric percolation transition of the
background environment, while still sharing some of it’s
critical features [38–40]. Furthermore, collective motion
in these disordered environments can be optimized by
tuning the magnitude of the repulsive interaction for a
given amount of disorder. Thus, repulsion or maintain-
ing separations in finite flocks is a simple, tunable and
robust mechanism to deal with environmental disorder.
In nature there may exist evolutionary pressures that
select for better swarming ability within a group of
individuals. For finite flocks in an infinite space our

results imply that cohesive interactions required to keep
the flock stable may need to be reduced, leading to a
larger separation between agents, in order to successfully
navigate disorder. More generally, topological disorder
poses a significant challenge to systems that engage in
any collective decision making process such as slime
molds solving mazes [41, 42] and quorum sensing
bacteria [43, 44]. Topological disorder is also intrinsic
in virtual environments where collective processes are
important such as social networks, the internet and
scientific citation networks [45–47] as well as artificial
groups in real environments such as robotic drones
exploring unknown territory [48, 49]. It is interesting
to speculate whether such general collective decision
making systems can benefit from tempering purely
consensus driven decisions with moderate amounts of
antisocial behavior to overcome topological disorder.
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