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Abstract. The connection between a hidden nonthermal sector and a thermal plasma can be
established by a light thermal fermion mediator. When the fermion mediator is much lighter
than the hidden species, kinematically forbidden decay of the mediator can be opened at
finite temperatures to produce the hidden species. Unlike bosons having quartic couplings,
renormalizable forbidden fermion decay generically shares the same order of couplings with
the scattering. We present a dedicated investigation into the freeze-in dark matter produc-
tion via a thermal fermion mediator. We demonstrate that the plasma-induced decay rate
differs from that calculated via the tree-level amplitude, but the former can be obtained from
the latter via constant rescaling. Furthermore, we find that the relative effect of the forbid-
den decay and the scattering on the dark matter relic density can be simply estimated via
the thermal coupling between the plasma and the mediator. Applying to different thermal
interactions, we show that the forbidden decay contribution can reach the level of 4%−45%
for a thermal coupling at 0.1−1.
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1 Introduction

A hidden nonthermal species can be created in the early universe from the thermal plasma
via a light mediator [1]. If the hidden sector consists of feebly interacting dark matter (DM),
the direct DM detection could be challenging. However, a light mediator connecting the DM
with the standard model (SM) can provide a striking avenue to test the feeble DM scenarios
if the connection between the mediator and the SM is relatively strong and/or the mediator
is relatively light [2].

DM production via mediators have received great interests over the past years. For in-
stance, the millicharged DM production from a vector mediator [3–6] and the sterile neutrino
DM production via a scalar mediator [7–11]. There are also interesting DM scenarios via a
fermion mediator. A typical example is that the sterile neutrino itself can be the mediator
to connect a stable dark sector with the SM particles [12–22].

The phenomenology of DM production via mediators is fruitful. The annihilation from
DM to the mediator could generate secondary fluxes consisting of SM particles via subsequent
mediator decay [23, 24]. If the mediator is sufficiently light, it can contribute to the energy
density of the early universe, thereby leaving imprints in the epochs detectable by the big bang
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nucleosynthesis and the cosmic microwave background [25]. Furthermore, if the mediator is
long-lived, it can generate displaced vertices and could be detected at the LHC [26–29].

Generally, if the mediator particle is heavier than the dark sector in vacuum, the medi-
ator decay to DM plays the dominant role in generating the DM relic density, unless there is
sufficient mass mixing between the mediator and the DM [30]. If the mediator is much lighter
than the dark sector, the decay channel is kinematically forbidden in vacuum and the scatter-
ing/annihilation would be naturally considered as the dominant production channel. In this
latter case, however, if the mediator has a strong connection with the thermal particles, the
mediator will acquire non-negligible corrections from the plasma and such thermal corrections
can open up DM production channels which are kinematically forbidden in vacuum.

Forbidden channels in generating the observed DM relic density were considered in
the thermal freeze-out paradigm [31, 32], where the relic density is determined by the DM
annihilation channel forbidden in vacuum. In the freeze-in paradigm [7, 8, 33–35], forbidden
decay was considered in refs. [5, 36–38] for a vector mediator and in refs. [11, 39–41] for a
scalar mediator. For a fermion mediator, on the other hand, the mediator heavier than the
DM is usually considered so that the forbidden decay contributes only as a subdominant or
negligible correction to the vacuum decay (see e.g. [13, 16, 21]), while few attention is drawn
to the light mass regime where forbidden decay and scattering could coexist to generate the
relic density. Filling in this gap underlies the purpose of this work.

A thermal fermion mediator differs by several aspects from a boson mediator. Since
the boson can have a renormalizable self-interaction, such as the gluons and an SM scalar
singlet, the forbidden decay rate can carry lower-order couplings with respect to the scat-
tering so that the former becomes the dominant production channel [37, 39, 40], unless the
quartic interactions are suppressed with respect to Yukawa or trilinear-boson interaction [41].
For fermion mediators, renormalizable interactions imply that there is no tree-level quartic
fermion interaction, and the forbidden fermion decay rate would generically carry the same
order of couplings with respect to the scattering, as will shown in this work. Given that
the rates from the forbidden decay and the scattering have the same order of couplings, it
becomes less clear to see the relative effect of the forbidden decay and the associated scat-
tering on the DM relic density and hence worth examining in detail the interplay between
the two channels.

On the other hand, the modified dispersion relation of a scalar at finite temperatures
retains the vacuum form in the Hard-Thermal-Loop (HTL) approximation [42–46], which
allows the calculation of forbidden scalar decay to follow a tree-level amplitude [11, 41]. For
fermion mediators, however, the modified dispersion relation is more involved due to the
helicity structure [47–49]. It then becomes nontrivial to see if and how the forbidden decay
can be simply obtained via a tree-level amplitude, where the thermal fermion mass is put in
by hand. Such an issue was considered in leptogenesis [50] and in this paper, we bring it for
the first time to the freeze-in DM production and provide a comprehensive analysis on the
difference between the tree-level and one-loop results.

This work is concerned with a dedicated analysis of freeze-in DM production via a
light thermal fermion mediator which cannot decay to DM at zero temperature. We will
concentrate on the computation of the DM relic density from the forbidden fermion decay
and the scattering. We will calculate the forbidden decay rates from a thermal one-loop
amplitude and a vacuum tree-level amplitude, respectively, and find that the former can be
simply obtained from the latter with some constant rescaling. The comparison between the
forbidden decay and the scattering shows a rather simple dependence on the thermal coupling
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constant, which enables us to include the plasma-induced decay in the scattering channel
efficiently. This work complements the studies of nonthermal DM production through a light
fermion mediator and provides a simple and comprehensive method to treat the forbidden
decay for a wide range of fermion mediator scenarios. In particular, the results shown here
can help us to gain a clear insight into the importance of forbidden fermion decay.

The remainder of this paper is outlined as follows. In section 2, we present a simplified
but general scenario to illustrate the freeze-in DM production via a light thermal fermion me-
diator. Within the simplified scenario, we calculate the forbidden decay rate in section 3 and
make a comparison with the rate derived from the vacuum tree-level amplitude. In section 4,
we first point out some subtleties concerning the double-counting issue and the s-channel
resonant enhancement, and then evaluate the scattering rate without thermal corrections.
In section 5, we determine the DM relic density from the forbidden decay and scattering
channels respectively. We then apply the relation between the two channels to some specific
thermal interactions in section 6. Conclusions are made in section 7 and some technical
details are relegated to the appendix.

2 The Yukawa portals

We first consider a simplified scenario in which the nonthermal dark sector consists of a
Dirac fermion χ and a scalar φ. The connection between the dark sector and a Dirac fermion
mediator ψ is realized by the following Yukawa interaction:

LDM = yχψ̄RχLφ+ h.c. (2.1)

To ensure a thermal history of ψ, we consider a typical Yukawa interaction between the
mediator and the thermal plasma, i.e.,

Lψ = yψψ̄RηLϕ+ h.c. , (2.2)

where both the fermion η and the scalar ϕ live in the thermal plasma. For clarity, we assume
that the fermion mediator is right-handed in (2.1), but it should be mentioned that a left-
handed fermion mediator is also possible. In section 6, we shall discuss some specific models
for both right- and left-handed fermion mediators.

Note that the fermion mediator can also have gauge interactions, e.g.,

Vµψ̄Rγ
µψR , (2.3)

with Vµ a U(1) gauge boson. Nevertheless, when the mediator is thermalized via the gauge
interaction, gauge invariance requires that either χ or φ should be also charged under the
gauge U(1) symmetry. In this case, either χ or φ will reach thermal equilibrium in the early
universe, which can lead to significant difference from the situation where both χ and φ are
far from equilibrium. For instance, when φ is in thermal equilibrium, the decay φ → χ + ψ
and the scattering φ + ψ → χ + Vµ can dominate the production of χ, both of which are
suppressed instead when φ is far from equilibrium. Besides, the Landau-Pomeranchuk-Migdal
effect induced by soft vector boson exchange would also be of leading-order contribution [51]
and should be taken into account consistently. Throughout this work, we will consider for
simplicity a dark sector consisting of nonthermal χ and φ, leaving a thermal χ or φ for future
studies.
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χ
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Figure 1. Forbidden fermion decay due to the thermal contact with the plasma (P).

We will consider the situation where all the relevant thermal particles, i.e., ψ, η, and
ϕ have vacuum masses much lighter than the dark sector, which is readily applicable to
super-heavy DM [52, 53]. In this light mass regime, the freeze-in temperature of the DM is
determined by the highest scale in the dark sector. Besides, without a mild mass difference
between the initial and final states, as implemented in forbidden annihilation channels [31, 32],
the nonrelativistic annihilation of ψ, η, and ϕ to the dark sector is essentially disallowed.
Consequently, the DM relic density would basically be independent of the vacuum masses
of the thermal particles. In the following discussions, we assume mχ < mφ for clarity. In
this mass regime, either χ can be the only DM candidate or both χ and φ contribute to the
observed DM relic density, though the later case is ruled out if mφ � 1GeV.

Before going into the detailed calculation, let us take a diagrammatic view of the relation
between the forbidden fermion decay and the scattering. In figure 1, the fermion ψ receives a
thermal mass correction from the self-energy diagram, where P denotes the plasma. Such a
correction opens the kinematic space so that the decay ψ → χ+φ becomes possible at finite
temperatures. Dimensional analysis implies that the squared amplitude scales as y2

χm
2
ψ at

sufficiently high temperatures, where mψ denotes the thermal mass. The interaction given
in (2.2) implies that m2

ψ ∼ y2
ψT

2. Therefore, the forbidden decay rate at high temperatures
scales as

γdecay ∼ y2
χy

2
ψT

4 . (2.4)

The thermal self-energy amplitude in general has an imaginary part, which corresponds to
on-shell thermal particles running in the loop. In this case, figure 1 also presents a scattering
channel η + ϕ → ψ → χ + φ. It is easy to see that the squared amplitude of the scattering
also depends on yχ and yψ quadratically, and the scattering rate at high temperatures would
scale as

γscat ∼ y2
χy

2
ψT

4 ∼ γdecay . (2.5)

It should be mentioned that the self-energy correction for relativistic fermions generically
predicts a thermal mass with a form ∼ yT , where y is the dimensionless coupling between the
fermion mediator and the plasma.1 Such a fermion mediator in renormalizable interactions
differs from a vector/scalar boson mediator which has a strong quartic self-coupling λ. The
leading-order thermal mass for such bosons scales as ∼

√
λT and the resulting forbidden

boson decay has a rate γdecay ∝ λT 4 while the associated scattering rate gives γscat ∝ λ2T 4.

1We are concerned with IR-dependent freeze-in so that the production of DM comes from renormalizable
interactions. The conclusions drawn in this paper are hence responsible for renormalizable interactions. For
non-renormalizable interactions, the freeze-in production of DM is not IR but UV dependent [54].
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In such situations, the forbidden decay can dominant the DM production, as considered in
refs. [37, 39, 40].

Therefore, unlike the forbidden boson decay, the scattering is present at the same order
of couplings whenever forbidden fermion decay is opened in renormalizable interactions, and
vice versa. They coexist to produce the DM at finite temperatures. We will show in the
subsequent content that there is a close relation between the two channels, which allows us
to see the relative effect on the DM production in a simple way.

3 Forbidden decay

3.1 Boltzmann equation
The decay process ψ → χ + φ is kinematically forbidden in vacuum but opened at finite
temperatures. The forbidden decay rate that determines the density evolution in the dark
sector can be calculated in the finite-temperature field theory [46]. Concerning the production
of χ, the Boltzmann equation can be written as

dnχ
dt

+ 3Hnχ =
∫

d3pχ
(2π)3 (f eq

χ − fχ)Γχ , (3.1)

where f eq
χ (Eχ) = (eEχ/T + 1)−1 is the Fermi-Dirac distribution function of χ and H ≈

1.66√gρT 2/MPl is the Hubble parameter with the effective number of relativistic degrees of
freedom gρ for energy density and the Planck mass MPl ≈ 1.22× 1019 GeV.

The production rate Γχ at finite temperatures is related to the one-loop retarded self-
energy of χ via [55]

Γχ(P ) = −gχ
Tr[(/P +mχ)ImΣχ

R(P )]
2Ep

, (3.2)

with Pµ = (Ep, ~p) the 4-momentum of χ and ImΣχ
R the imaginary part of the one-loop

retarded amplitude. It should be mentioned that the factor of 2 in the denominator of
eq. (3.2) results from the spin sum and average over the Dirac spinor χ. Therefore, the
collision rate in the Boltzmann eq. (3.1) should be further multiplied by the spin degrees of
freedom gχ = 2 [56] so as to obtain a collision term without spin average. For a nonthermal
DM in the freeze-in paradigm, we expect fχ � f eq

χ so that fχ can be neglected in the
determination of the DM relic density. In the end, the relic density should be multiplied by
a factor of 2 to take into account the antiparticle (χ̄) contribution.

In the real-time formalism, the imaginary part of the retarded amplitude Σχ
R can be

computed from the one-loop self-energy diagrams shown in figure 2, with

ImΣχ
R(P ) = i

2
[
Σχ

+−(P )− Σχ
−+(P )

]
. (3.3)

Using the expressions of Σχ
+−,Σ

χ
−+ from appendix A.1, we obtain

ImΣχ
R(P ) =

y2
χ

2(2π)2

∫
d4Ksign(k0 − p0)fψ(k0)δ[(K − P )2 −m2

φ]ρψ(K) , (3.4)

where sign(k0 − p0) denotes the sign function and fψ(k0) = (ek0/T + 1)−1. In the above
equation, we have neglected the scalar distribution function fφ since φ is sparse during the
freeze-in production. ρψ(K) is the spectral density that encapsulates the thermal corrections
to ψ, as we shall derive below.
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χ χψ

ϕ

++

ϕ

ψ χ χ −−

Σχ
−+Σχ

+−

Figure 2. The one-loop self-energy diagrams of χ that contribute to the imaginary part of the
retarded amplitude ImΣχR in the forbidden decay. Here ± in the vertices denote the thermal indices
in the doubled space of real-time formalism and the red blob denotes the resummed ψ propagator at
finite temperatures.

3.2 Spectral density of the fermion mediator

The spectral density is defined via the resummed ψ propagators,

S+− = −fψ(G̃R − G̃A) ≡ −2πifψ(k0)ρψ(K) , (3.5)
S−+ = [1− fψ(k0)](G̃R − G̃A) ≡ 2πi[1− fψ(k0)]ρψ(K) , (3.6)

where G̃R/G̃A are the resummed retarded/advanced propagators. Since the spectral density
defined above encapsulates the thermal corrections in the form of G̃R − G̃A, we should first
be aware of how the thermal corrections appear in the resummed retarded and advanced
propagators.

In general, the retarded amplitude for fermion self-energy can be parameterized as2 [47]

−Σψ
R(K) ≡ (aLPL + aRPR) /K + (bLPL + bRPR)/U , (3.7)

where PL,R are the chirality projection operators and Uµ is the four-velocity of the plasma
with UµU

µ = 1. In the rest frame, Uµ = (1, 0, 0, 0). Since the parity of the fermion me-
diator from the interactions given in section 2 is explicitly broken, and at sufficiently high
temperatures ψ is effectively massless,3 we are essentially working in a chirality-symmetric
and parity-broken theory, where aL, bL are nonzero while aR, bR = 0. The coefficients aL, bL
can be calculated by left-multiplying Σψ

R(K) with /K and /U , and then evaluating the trace.
The general expressions read:

aL = 1
2k2

(
Tr[ /KΣψ

R(K)]− k0Tr[ /UΣψ
R(K)]

)
, (3.8)

bL = − 1
2k2

(
k0Tr[ /KΣψ

R(K)]−K2Tr[ /UΣψ
R(K)]

)
, (3.9)

with K2 = k2
0 − k2.

Given eq. (3.7), the resummed retarded propagator in the chirality-symmetric and
parity-broken regime can be written as

G̃R = PR
(1 + aL) /K + bL /U

[(1 + aL)k0 + bL]2 − [(1 + aL)k]2 + isign(k0)εPL , (3.10)

2The minus sign is defined for convenience, which results in 1 + a in the denominator of propagators.
3If ψ acquires its vacuum mass via the Higgs or Higgs-like mechanism, then ψ is exactly massless above

the cross-over or phase-transition temperature.
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and the advanced propagator can be similarly obtained by using Σψ
A = Σψ∗

R . The difference
G̃R − G̃A can be conveniently written in terms of the helicity eigenstates [48, 49],

G̃R − G̃A =
∑
±

−2i(Im∆+ ∓ sign(k0)ε)
[Re∆±]2 + [Im∆± + ε]2 P̂± , (3.11)

where ∆±(K) ≡ (1 + aL)k0 + bL ± (1 + aL)k, and the helicity operators are defined by

P̂± ≡ PR
γ0 ± ~ek · ~γ

2 PL , (3.12)

with ~ek ≡ ~k/k.
The spectral density ρψ can be decomposed into the on-shell and off-shell parts,

ρψ(K) ≡ ρψ,on(K) + ρψ,off(K) . (3.13)

The kinematically forbidden decay stems from the on-shell part ρψ,on(K), as will be derived
in this section, while the off-shell part ρψ,off(K) arises from nonzero Im∆± and corresponds
to the scattering channels. Note that the on-shell propagation of the fermion mediator could
also result from the scattering channel. To avoid potential double counting, ρψ,on(K) defined
above corresponds to Im∆± = 0. Then, from eq. (3.11) the on-shell part is given by

ρψ,on(K) =
∑
±
±sign(k0)

∣∣∣∂Re∆±
∂k0

∣∣∣−1[
δ(k0 − ω±1 ) + δ(k0 − ω±2 )

]
P̂± . (3.14)

In general, there are two solutions ω1,2 to Re∆i = 0 for each helicity operator P̂i. In the free
limit, aL = bL = 0 and ∆± = k0 ± k. It can be verified that S+−, S−+ given in eqs. (3.5)
and (3.6) reduce to the known forms [46]:

S+−(K) = 2πisign(k0)fψ(k0)δ(K2) /K , (3.15)
S−+(K) = −2πisign(k0)[1− fψ(k0)]δ(K2) /K . (3.16)

To proceed with eq. (3.4), the remaining task is to evaluate the real part of the resummed
amplitude Σψ

R, which depends on the thermal interaction specified in section 2.
The one-loop retarded self-energy diagram of ψ from (2.2) is similar to figure 2, with

the resummed fermion propagators replaced by the free ones given in eqs. (3.15) and (3.16).
The inclusion of resummed propagators for thermal η, ϕ in figure 2 is of higher order under
the perturbative HTL technique. Substituting eqs. (A.7) and (A.8) into eqs. (3.8) and (3.9),
we obtain the real part of the coefficients aL, bL as

ReaL =
m2
ψ(T )
k2

(
1 + k0

2k ln
∣∣∣∣k0 − k
k0 + k

∣∣∣∣) , (3.17)

RebL = −
m2
ψ(T )
k

(
k0
k
− 1

2

(
1− k2

0
k2

)
ln
∣∣∣∣k0 − k
k0 + k

∣∣∣∣
)
, (3.18)

where the thermal mass is defined by

m2
ψ(T ) =

y2
ψ

16T
2 ≡ κ2T 2 , (3.19)

where κ is defined as a thermal parameter quantifying the amount of thermal corrections.
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The results given in eqs. (3.17) and (3.18) are consistent with ref. [47] except that
the logarithmic function is expressed by the modulus of momentum. The modulus arises
when we integrate cos θ in eq. (A.8) without restricting ourselves to the timelike regime
K2 = k2

0 − k2 > 0. Nevertheless, we will see below that an on-shell fermion with eqs. (3.17)
and (3.18) cannot propagate in the spacelike region. The modified dispersion relation is
given by

[(1 + ReaL)k0 + RebL]2 − [(1 + ReaL)k]2 = 0 . (3.20)

For a weak-coupling theory yψ . 1, we expect ReaL < 1. Neglecting the higher-order terms
Rea2

L and Reb2L, we obtain the approximate dispersion relation:

k2
0 − k2 ≈ − 2k0RebL

1 + 2ReaL
. (3.21)

Then given eqs. (3.17) and (3.18), it is straightforward to verify that there is no solution to
the above equation for k2

0 − k2 < 0. Therefore, the absolute symbol in eqs. (3.17) and (3.18)
should be removed.

The thermal mass defined in eq. (3.19) is proportional to the quadratic Casimir invariant
of the fermion mediator representation in gauge interactions, as well as the gauge degeneracy
of the loop particles in Yukawa interactions [47]. For the freeze-in DM production considered
here, the fermion mediator should be a SM singlet so there is no gauge contribution to the
thermal mass. However, the loop particles could be gauge multiplets. For instance, if the
scalar ϕ and the fermion η are gauge SU(2)L doublets, then an additional factor of 2 arises
in m2

ψ(T ). This is readily seen by the fact that there are two gauge components in the loop.
On the other hand, if ϕ and η are gauge SU(3)c triplets, a factor of 3 due to the color degrees
of freedom arises in m2

ψ(T ).
It should also be mentioned that the results given in eqs. (3.17)–(3.19) (see also the

appendix) are obtained in the HTL approximation which keeps the leading-order coupling
(yψ) contributions. Under the perturbative region yψ <

√
4π, there is no definite upper

limit of the coupling for the HTL validity. It was pointed out in ref. [57] that a coupling
at ∼ 1 can still give qualitatively correct result under the HTL approximation. In general,
larger couplings lead to a poorer accuracy under the HTL approximation. Therefore, we will
impose yψ < 1 as a conservative upper limit for the Yukawa interaction when applying the
HTL approximation. In particular, we will consider a weak-coupling regime where

0.1 < yψ < 1 , (3.22)

in subsequent discussions.
In the following analyses, we will take κ as a free thermal parameter. It it noteworthy

that the upper bound of κ from the condition in eq. (3.22) depends on the specific thermal-
ization interaction between the mediator and the plasma, as well as the flavor effects from
Yukawa interactions. For instance, if the fermion mediator couples comparably to three SM
quark doublets via a leptoquark doublet, the upper bound of κ is given by κ < 1.1. In
section 6, we will consider some specific examples and present the corresponding limit of κ
and its impact on forbidden decay contribution.
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3.3 Collision rate
3.3.1 One-loop retarded amplitude
Given the expressions of ReaL,RebL in eqs. (3.17) and (3.18), the on-shell spectral density
from eq. (3.14) can be simplified as

ρψ,on(K) =
∑
±
± k

2
0 − k2

2m2
ψ(T )

sign(k0) [δ(k0 ∓ ω1) + δ(k0 ± ω2)] P̂± , (3.23)

where ω1,2 are the solutions to the modified dispersion relation (3.20) and can be analytically
expressed in terms of the Lambert W-function [50]:

ω1 = −kW0(−e−2k2/m2
ψ−1)− 1

W0(−e−2k2/m2
ψ
−1) + 1

, ω2 = k
W−1(−e−2k2/m2

ψ−1)− 1
W−1(−e−2k2/m2

ψ
−1) + 1

, (3.24)

with ω1,2 > k.
Substituting eqs. (3.4) and (3.2) into the collision term in eq. (3.1), we arrive at the

decay rate

Cχ,dec =
y2
χ

32π3m2
ψ(T )

∫ ∞
mχ

dp0f
eq
χ (p0)

×
∫ ∞

0
dk

∑
i=1,2

∓Θi(ω2
i − k2)fψ(ωi)(±k2 ∓ ω2

i + 2p0(k ± ωi)∓ δm2) , (3.25)

where δm2 ≡ m2
χ − m2

φ < 0 and the symbol Θi imposes a restriction on the momentum
integration from eq. (3.4). Integrating the angle via the Dirac δ-function δ[(K − P )2 −m2

φ]
in eq. (3.4), we find that in the timelike region K2 > 0 the restriction turns out to be

K2 + δm2

2(k0 + k) < p0 <
K2 + δm2

2(k0 − k) , k0 − p0 > 0 . (3.26)

Therefore, Θi is given by the Heaviside θ-function with

Θi = θ
[
(2p0k)2 − (ω2

i − k2 + δm2 − 2p0ωi)2
]
. (3.27)

The solutions ω1,2 from the modified dispersion relation are shown in figure 3 for k/T < 1
and k/T > 1, respectively. It can been seen that when k becomes larger, the ω1-mode ap-
proaches a dispersion relation ω1 ≈ k while the ω2-mode approaches a vacuum-like dispersion
relation with an asymptotic mass

√
2mψ(T ) [50, 58–60]. It allows us to compute eq. (3.25)

with the following approximations:

ω2
1 − k2 ≈ 0 , ω2

2 − k2 ≈ 2m2
ψ(T ) . (3.28)

Note that when the thermal coupling κ becomes smaller, the above approximations can
already be accurate at lower momenta, as can be seen from the top of figure 3. With
eq. (3.28), the collision rate of the forbidden decay Cχ,dec reads

Cχ,dec ≈
y2
χ

16π3

∫ ∞
mχ

dp0f
eq
χ (p0)

∫ ∞
0

dkΘ2fψ(ω2)
(
2m2

ψ(T ) + 2p0(k − ω2) + δm2
)
. (3.29)
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Figure 3. The behavior of dispersion relation (3.20) at k/T < 1 (top) and k/T > 1 (bottom), where
the thermal parameter is set by κ = 0.01, 0.1, respectively.

3.3.2 Tree-level amplitude
To see whether we can directly use the vacuum tree-level amplitude to compute the collision
rate with the fermion thermal mass put in by hand, let us now calculate the relevant tree-
level amplitude. As can be seen from figure 3, the ω1-mode quickly turns massless while the
ω2-mode has an asymptotic mass

√
2mψ(T ) so that sufficient momentum space is opened

in this mode for the forbidden decay. In the following, we will use the dispersion relation
ω2 − k2 = 2m2

ψ(T ) to calculate the decay rate from the tree-level amplitude.
The squared amplitude of ψ → χ+ φ is given by∑

s

|M|2 ≈ y2
χ(2κ2T 2 −m2

φ) , (3.30)

where the approximation is obtained in the limitmχ � mφ. Note that the squared amplitude
for the dispersion relation ω2−k2 = m2

ψ(T ) can be simply obtained by replacing
√

2κ with κ.
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Figure 4. The comparison of forbidden decay rates from the one-loop retarded and vacuum tree-
level amplitudes. Here C̃χ,dec ≡ y−2

χ T−4Cχ,dec. For κ < 1, the rates from the tree-level amplitude are
overestimated by a factor of 1–4.

The collision rate is given by

Cχ,dec =
∫

d3pψ
(2π)32Eψ

f eq
ψ

∫
d3pχ

(2π)32Eχ
d3pφ

(2π)32Eφ
(2π)4δ4(Pψ − Pχ − Pφ)

∑
s

|M|2ψ→χφ

≈
y2
χκ

3K1(
√

2κ)
8
√

2π3

(
1−

m2
φ

2κ2T 2

)2

T 4 , (3.31)

where K1 is the modified Bessel function with K1(x) ≈ 1/x for x < 1. In the last approxima-
tion we have used the Boltzmann distribution fψ(Eψ) = e−Eψ/T and kept the highest scale
mφ from the dark sector.

In the left panel of figure 4, we compare the decay rates obtained from eq. (3.29) and
eq. (3.31) with different thermal parameter κ. Note that the rates from the two approaches
share the same critical temperature

Tc ≈
mφ√

2κ
, (3.32)

after which the decay is kinematically closed. We can see that the rate from the tree-level
amplitude with an effective mass

√
2mψ(T ) is overestimated with respect to that from the

one-loop retarded amplitude.
In the right panel of figure 4, we also show the ratios of various decay rates by evaluating

the vacuum tree-level amplitude with an effective massmψ(T ) and taking the full Fermi-Dirac
statistics for f eq

ψ . Noticeably, a larger discrepancy between the retarded rate CR
χ,dec and the

vacuum one appears when the tree-level amplitude is evaluated with the asymptotic mass√
2mψ(T ), as seen from the C

√
2FD

χ,dec /C
R
χ,dec and C

√
2MB

χ,dec /CR
χ,dec curves. Instead, the vacuum

rates with the dispersion relation ω2 − k2 = m2
ψ(T ) are more compatible with the retarded

one. We found that for κ < 0.2 the ratios become constants and reach

CFD
χ,dec

CR
χ,dec

' 1.4 ,
CMB
χ,dec

CR
χ,dec

' 1.7 , (3.33)
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in which CFD
χ,dec and CMB

χ,dec denote the vacuum rates with the Fermi-Dirac and Maxwell-
Boltzman statistics, respectively, together with the dispersion relation ω2 − k2 = m2

ψ(T ). In
particular, a smaller discrepancy can be seen between CFD

χ,dec and CR
χ,dec, since the latter is

also derived from the full Fermi-Dirac statistics.
Since the ratios shown in the right panel of figure 4 are predicted via a common thermal

parameter κ, the forbidden fermion decay rate can then be simply obtained from the tree-level
amplitude with the approximate dispersion relation ω2−k2 ≈ m2

ψ(T ) and rescaling the latter
by a constant read from the figure. It enables us to obtain a rather precise forbidden fermion
decay rate within the simple tree-level approach by κ-dependent constant rescaling. The
results shown in this section not only confirm that using ω2 − k2 ≈ m2

ψ(T ) in the tree-level
amplitude for forbidden decay is a good approximation [50, 61], but also provide quantitative
differences characterized only by the thermal parameter.

4 Scattering

4.1 Double counting and resonant enhancement

The scattering rate directly calculated from figure 2 is much more involved. The imagi-
nary parts Im∆± appear both in the numerator and denominator of the off-shell spectral
density ρψ,off , making the final three-dimensional integration (dpdk0dk) difficult even with
a numerical approach. For most situations, the thermal corrections to the scattering pro-
cesses are significant only when there are IR singularities or resonance. For example, the IR
singularity is known in neutrino and electron chirality-flipping processes at finite tempera-
tures [56, 62–64], and the resonant effect from thermal corrections is also known in neutrino
oscillations at finite temperature and density [65, 66].

In dealing with the IR singularity or resonance, we can also use a more convenient
approach in which the cross section is calculated from a tree-level diagram with a resummed
mediator propagator [51, 67, 68]. When applying the effective approach, however, we should
take care of the double-counting issue. There are in general two methods to remove the
double counting. When the full thermal width of the mediator propagator is unknown, it is
convenient to subtract the on-shell point directly from the cross section, and then calculate the
forbidden decay rate separately. On the other hand, if the thermal width is known in a given
model, a modified Breit-Wigner approximation can be applied to do the subtraction [69, 70],
where the decay is automatically included in the cross section.

Nevertheless, the double-counting issue depends on the existence of the resonance, which
requires a careful inspection under the perturbative HTL resummation. In the following, let
us concentrate on the s-channel double counting and on the hard particle scattering with
incoming momenta phard ∼ O(T ). Generically, hard scattering suffices to be responsible for
the nonthermal DM production from thermal particles, since the thermally averaged collision
rate 〈σv〉n is proportional to the particle-number densities of incoming thermal particles,
which are expected to be dominated in the hard-momentum regime:

nsoft ∝
∫ psoft

0
d3pf eq(p) ∼ p3

soft, nhard ∝
∫ ∞
psoft

d3pf eq(p) ∼ T 3 � p3
soft , (4.1)

with psoft ∼ O(yψT ).
At leading order, the mediator is resummed while the external particles are treated

effectively massless. At this order, it is usually expected to have an s-channel resonance
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when the momentum transfer is near the scale of the effective mediator mass. However,
when we go beyond the leading order, the external particles are resummed, which also carry
effective masses from the plasma. If the thermal masses from the external particles are larger
than from the mediator, the resonance expected at leading order would be erased. This is
interpreted as the fact that the inverse decay X + Y → Z is always kinematically forbidden
at all temperatures. This is particularly the case when the mediator is a fermion and the
incoming particles contain a scalar boson. For instance, the resummed scalar ϕ has a thermal
correction parameter κ = yψ/

√
12 [41] from the ψ-η loop, which is larger than the value given

in eq. (3.19).
The above conclusion differs from two fermion scattering mediated by a thermal scalar.

As seen from figure 3, there is a nearly massless state for a resummed fermion so that the
initial fermions can have an approximate dispersion relation ω2

i −k2 ≈ 0 while the resummed
scalar mediator carries a large thermal mass. When the momentum transfer is at the order of
the scalar thermal mass, there is in principle an on-shell crossing and including the resummed
scalar mediator in the fermion-pair scattering can enhance the scattering rate by a factor of
O(1) [41].

Since in current scenario the initial particles contain a fermion and a scalar boson, it is
not necessary to use the resummed fermion mediator and the scattering rate from a vacuum
computation suffices to describe the DM production to a good approximation.

4.2 Tree-level scattering amplitude without thermal correction
The general 2→ 2 scattering rate for the DM production is given by

C12→χφ =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

d3pχ
(2π)32Eχ

d3pφ
(2π)32Eφ

f1f2|M|212→χφ(2π)4δ4 , (4.2)

where δ4 ≡ δ4(P1 +P2−Pχ−Pφ) and |M|212→χφ is the squared amplitude with spin sum but
without spin average. The Pauli blocking and Bose enhancement from the nonthermal DM
sector are neglected.

For Yukawa interaction, the scattering is η + ϕ → χ + φ. The squared amplitude is
given by

∑
s

|M|2ϕη→χφ ≈
y2
χy

2
ψ

2 (1−
m2
φ

s
)(1 + cos θ) , (4.3)

where we have only kept the highest mass scale frommφ and θ is the angle between the spatial
momenta of the incoming and outgoing particles in the center-of-mass frame. Following the
conventional phase-space reduction [71], we obtain the collision rate

Cϕη→χφ = T

32π4

∫ ∞
m2
φ

dsσϕη→χφs
3/2K1(

√
s/T ) , (4.4)

where the cross section without spin average is given by

σϕη→χφ =
y2
χy

2
ψ

32πs

(
1−

m2
φ

s

)2

. (4.5)

In the high-temperature limit T � mφ, the collision rate reduces to

Cϕη→χφ ≈
y2
χy

2
ψ

256π5T
4 . (4.6)
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Figure 5. A comparison between the forbidden decay and scattering rates for different thermal
parameter κ. Here C̃χ ≡ y−2

χ T−4Cχ.

In figure 5, we show the rates from the forbidden decay and scattering channels. In
general, Cχ,dec is larger than Cχ,scat when T > Tc. Nevertheless, the duration of the forbidden
decay is determined by the critical temperature Tc, while the scattering η + ϕ → χ + φ is
sufficiently closed only after the freeze-in temperature T ∼ mφ > Tc. It makes the scattering
contribution to the final DM relic density generically larger than the forbidden decay, as we
shall discuss below.

5 DM relic density

There are in principle two possibilities for DM relic density. If the scalar φ is unstable, it can
decay to χ at late times after the dark sector freezes in. Consider first the situation where φ
has been depleted away. χ is the DM candidate and the relic density is given by

ΩDMh
2 =

(Y I
χ + Y II

χ )s0mχ

ρc/h2 . (5.1)

where Y I
χ ≡ nI

χ/sSM is the yield produced by forbidden decay and scattering while Y II
χ is

the yield produced by scalar decay φ → ψ + χ at late times. sSM = 2π2gsT
3/45 is the SM

entropy density with gs the effective number of relativistic degrees of freedom. The current
value of entropy density is given by s0 = 2891.2 cm−3 and the current critical energy density
ρc is given by ρc = 1.05× 10−5 h2 ·GeV · cm−3 [72].

The Boltzmann equation for Y I
χ is given by

Y I
χ =

∫ ∞
Tc

2Cχ,dec
sSMHT

dT +
∫ ∞

0

2Cχ,scat
sSMHT

dT , (5.2)

where the factor of 2 accounts for the CP -conjugated production so that Yχ is the sum of
χ+ χ̄. The forbidden decay ends at T = Tc while the scattering basically ends at T = O(mφ)
as the freeze-in temperature is determined by the highest scale in the dark sector. In the
second term of eq. (5.2), we use T = 0 as the lower integration limit, which does not cause
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significant difference after T drops below mφ/5. Since both χ+ χ̄ and φ are produced with
the same amount from the forbidden decay and scattering, we have Y I

χ = Y I
φ . Further given

that the amount of χ+ χ̄ in late-time production is inherited from Y I
φ , we have Y II

χ = Y I
φ .

Consider the second possibility where φ is sufficiently long-lived so that it has a lifetime
comparable with or longer than the age of the observed universe. The DM relic density in
this case consists of φ and χ, which is given by

ΩDMh
2 = s0

ρc/h2 (Y I
χmχ + Y I

φmφ) . (5.3)

To see the relative effect of the forbidden decay and the scattering channel, we estimate
the ratio Yχ,scat/Yχ,dec, which reads:

Yχ,scat
Yχ,dec

≈
∫ xφ,fi
0 C̃χ,scatdxφ∫√2κ
0 C̃χ,decdxφ

, (5.4)

where xφ ≡ mφ/T with xφ,fi corresponding to the freeze-in temperature. The evolution of
C̃χ,dec and C̃χ,scat can be seen in figure 5. Simply taking C̃χ,dec and C̃χ,scat as constants,
we obtain Yχ,scat/Yχ,dec ∝ 1/κ. It points out that the DM relic density from the forbidden
decay basically carries an additional power of κ higher than from the scattering channel,
even though both the decay and scattering rates share the same order of κ (see eqs. (3.31)
and (4.4)), as also found in refs. [39, 41] in the case of forbidden scalar decay.

The behavior of eq. (5.4) is shown in the left panel of figure 6 as a function of the
thermal parameter κ. Note that only the highest scale mφ is kept in the yield so that both
Yχ,dec and Yχ,scat are proportional to the inverse scalar mass, as expected from the IR freeze-
in mechanism. We can see from the left panel of figure 6 that for the fermion mediator the
forbidden decay can only be neglected for a very small κ. For a large κ, the contributions
from the forbidden decay and the scattering could be comparable. For instance, about 41%
of the DM relic density from eq. (5.1) comes from the forbidden decay if κ = 0.5, while
about 8% of the DM relic density is obtained from the forbidden decay if κ = 0.05. As
already mentioned in section 3.2, we have taken a conservative limit for a Yukawa coupling
yψ < 1, and the upper limit of κ depends on the gauge degeneracy of thermal particles η, ϕ
and on possible flavored Yukawa couplings. These effects could further enhance the decay
contribution, which is the subject of section 6.

An interesting feature from such a comparison is that we can estimate the effect of the
forbidden decay by rescaling the scattering rate, since the ratio given in eq. (5.4) basically
depends on the thermal coupling κ, or the interaction coupling yψ. Once the thermal in-
teraction of the fermion mediator is known, we can calculate the scattering rate and simply
rescale it by a κ- or yψ-dependent factor to obtain the forbidden decay. As shown in the left
panel of figure 6, when κ . 0.2, the ratio is approximately given by 0.56/κ and the total DM
relic density given in eq. (5.1) can then be estimated by

ΩDMh
2 ≈ 2 s0mχ

ρc/h2 (1 + 1.79κ)Yχ,scat , (5.5)

where Yχ,scat comes from the second term in eq. (5.2).
In the right panel of figure 6, we plot the correlation between the DM coupling yχ and

the thermal parameter κ by fitting the observed DM relic density ΩDMh
2 = 0.12 [25]. The

long-lived line corresponds to the second possibility from eq. (5.3), where we have neglected
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Figure 6. Left: a comparison of DM relic densities from the forbidden decay and scattering channels.
Right: the correlation between the DM coupling yχ and the thermal parameter κ for the observed
DM relic density. Here xD ≡ mχ/mφ.

the contribution from the light χ. In this approximation, the DM relic density is independent
of mφ since Y I

φ ∝ m
−1
φ . However, the DM relic density from eq. (5.3) requires that the scalar

should have a lifetime longer than the age of the universe, which is translated into an upper
limit of the DM coupling yχ . 10−20(mφ/GeV)−1/2. Therefore, we can conclude from the
right panel of figure 6 that for a dark scalar heavier than 1GeV, the DM relic density results
from the lighter fermion χ. For instance, with yχ ' 10−11 and mφ ' 10GeV, the scalar
lifetime is around τφ ' 0.03 s. Thus the unstable heavy scalar has decayed away well before
the big bang nucleosynthesis epoch.

For the short-lived case from eq. (5.1), the DM relic density depends on yχ, κ and the
mass ratio in the dark sector xD ≡ mχ/mφ. We show in the right panel of figure 6 for three
representative values xD = 0.1, 0.01, 0.001. We can see that when the mass ratio xD and the
thermal parameter κ decrease, a larger DM coupling yχ is required to match the relic density.
However, a large DM coupling could make the dark sector thermalized. To check this, recall
that the nonthermal condition, which requires that the thermally averaged scattering rate
should be smaller than the Hubble parameter at the freeze-in temperature, is given by

Cχ,scat
neq
χ

< H , (5.6)

where neq
χ ≈ 0.09T 3 denotes the thermal particle-number density of χ. The above condition

can be translated into an upper limit of the DM coupling yχ . O(10−4). Therefore, for the
thermal parameter κ and the mass ratio xD shown in the right panel of figure 6, the dark
sector is indeed far from thermal equilibrium.

When κ is much smaller but still able to keep the fermion mediator in thermal equi-
librium, the scattering channel for the DM production can also come from the mediator
scattering/annihilation, e.g., ψ + ψ̄ → χ + χ̄ mediated by the scalar φ and ψ + ψ̄ → φ + φ
mediated by χ, both of which are not included in previous calculations since we are concerned
with a relatively large κ. These scattering channels have rates at O(y4

χ) and could be com-
parable with the thermal particle scattering ∼ O(y2

χy
2
ψ) if yχ ∼ yψ. For example, when the

fermion mediator ψ is a GeV-scale right-handed neutrino in the type-I seesaw framework, the
scattering ψ+ ψ̄ → χ+ χ̄ that can generate the observed DM relic density predicts a nonther-
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mal DM coupling yχ ∼ O(10−6) while the coupling for a GeV-scale right-handed neutrino to
keep in thermal equilibrium via neutrino oscillation is required to be yψ > O(10−8) [22, 73].
Therefore, for a much smaller thermal parameter κ, the DM production from the mediator
scattering/annihilation could be significant. A large thermal parameter κ, on the other hand,
is usually more favorable as the strong connection between the SM and the fermion mediator
enables us to have more opportunities of DM detection via the very fermion messenger, and
is widely predicted in specific scenarios that can explain experimental anomalies, as to be
discussed in the following.

6 Application to different thermal Yukawa interactions

We have considered a typical example in section 2 where both the DM-mediator and SM-
mediator connections are realized by Yukawa portal interaction. In this section, we shall
discuss some specific models to which previous calculations can be applied. The aim of this
section is to calculate the DM relic density, following previous sections which combine the
forbidden fermion decay and the associated scattering in terms of the thermal parameter
κ. We specify some typical thermal interactions with different gauge representations for
the thermal particles, and discuss the significance of forbidden fermion decay that could be
readily overlooked in the scenarios of light fermion mediators.

It should be mentioned that the observational signatures of these specific scenarios
depend not only on the thermal coupling, but also on the masses of thermal particles and the
mediator. However, the analyses presented in previous sections only assume that the relevant
thermal species are lighter than the heaviest scale in the dark sector. Given that the scale
of the dark sector is not known a priori, there is no definite mass limit that can be inferred
from the interplay between the mediator and the DM. On the other hand, we can infer from
the right panel of figure 6 that increasing the thermal coupling κ and the mass hierarchy
xD in the dark sector can open up the DM parameter space towards smaller values, which
could help to evade severe observational constraints whenever the detection of DM via the
light fermion mediator is concerned. In doing so, i.e., increasing the thermal parameter, the
forbidden decay cannot be overlooked. In the following analysis, we commonly assume that
there is only one fermion mediator that connects the dark sector to the SM thermal plasma.

6.1 Right-handed fermion mediator

Presumably, the most known example is the Majorana neutrino portal DM [12–22], but ψR
can also be identified as the right-handed Dirac counterpart of the SM left-handed neutrinos.
Both the Majorana and Dirac neutrino mediators allow a dark sector to be produced via the
freeze-in mechanism, as long as ψR does not have strong gauge interactions. A noticeable
difference between the Majorana and Dirac portals is that the latter naturally predicts a very
light fermion mediator with mass readily well below the dark scale.

For right-handed neutrino mediators, the left-handed fermion in (2.2) is identified as
the SM lepton doublet, while the scalar can either be the SM Higgs doublet or a new Higgs
doublet. In the former case, a light right-handed Majorana neutrino with small Yukawa
couplings can already be in thermal equilibrium via fast neutrino oscillation [22, 73]. So if
the active-sterile neutrino mixing is small, the thermal corrections to the Majorana neutrino
would be suppressed. Consequently, the duration of the forbidden decay channel would be
quite short and the scattering becomes the dominant channel to generate the DM relic density.
Certainly, large Yukawa couplings are still allowed for Majorana neutrinos, in particular, if
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they couple to a new Higgs doublet. In this latter case, an O(1) Yukawa coupling between
the right-handed neutrino and the new Higgs doublet was interesting, as considered in Dirac
neutrino mass origin [74–76] and in explanations of flavor anomalies observed at low-energy
experiments [77–80].

With large Yukawa interactions, the forbidden right-handed neutrino decay cannot be
neglected. Applying the calculation in section 3 , we can readily obtain the thermal mass for
the right-handed neutrino,

m2
ψ(T ) =

y2
ψ

8 T 2 , (6.1)

and hence κ = yψ/
√

8. Note that the different thermal mass in eq. (6.1) does not modify the
ratio Yχ,scat/Yχ,dec in terms of a free κ. To see this, recall that the calculation of forbidden
decay is given in terms of mψ ≡ κT . From eq. (3.19) to eq. (6.1), we have mψ ≡ κT → κ̃T ,
with κ̃ =

√
2κ. On the other hand, the scattering cross section is now enhanced by a factor

of 2 due to the gauge degeneracy, so the yield from eq. (3.19) to eq. (6.1) is changed as
Yχ,scat ∝ y2

ψ = (4κ)2 → 2y2
ψ = (4κ̃)2. Therefore, for a thermal mass different from eq. (3.19),

the updated ratio Yχ,scat/Yχ,dec can still be given by a free κ but with an enhanced maximum.
For example. the thermal coupling in eq. (3.19) indicates 0.025 < κ < 0.25 under the
condition (3.22), and it is enhanced to be 0.035 < κ < 0.35 in eq. (6.1).

From the left panel of figure 6, we can now obtain the portion from the forbidden decay
channel to the DM relic density in the following range:

fdecay ≡
Ωdecay
Ωtot

' 6%− 35% . (6.2)

It should be emphasized that we have not taken into account the flavor effects from (2.2).
With a single right-handed neutrino mediator, there are in general three coupling constants
in (2.2), corresponding to the interactions with three lepton flavors. It is possible that all
the three couplings are comparably large. In this case, y2

ψ = y2
ψ,1 + y2

ψ,2 + y2
ψ,3 can further

enhance the thermal mass effect within the condition 0.1 < yψ,i < 1. The fraction given in
eq. (6.2) can then reach a maximal value fmax

decay = 43%.
A right-handed fermion mediator can also couple to quark doublets. This can be realized

by introducing leptoquarks, which were considered as promising candidates to explain flavor
anomalies [81–83].4 With a scalar leptoquark, the Yukawa interaction is given by

yψ,iQ̄i,LψRϕ+ h.c. , (6.3)

where QL = (uL, dL)T is the quark doublet and the leptoquark scalar doublet ϕ carries a
hypercharge Y = 1/6. In this case, the thermal mass of ψ is given by

m2
ψ(T ) =

3∑
i=1

3y2
ψ,i

8 T 2 , (6.4)

where the factor of 3 accounts for the color degrees of freedom. If only one coupling is
significant, the condition 0.1 < yψ,i < 1 would be translated into 0.061 < κ < 0.61. If three
couplings are comparably large yψ,1 ≈ yψ,2 ≈ yψ,3, the range of κ is given by 0.11 < κ < 1.1.
In this case, the fraction fdecay is estimated to be

fdecay,1f = 10%− 43% , (6.5)
4Note that, in such leptoquark scenarios, the Yukawa couplings are generically predicted at O(1).
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with a one-flavor (1f) dominated coupling and

fdecay,3f = 16%− 45% , (6.6)

with three-flavor (3f) comparable couplings.

6.2 Left-handed fermion mediator
A left-handed fermion mediator can couple to the right-handed DM χR via chiral Yukawa
interaction. For a nonthermal dark sector via the Yukawa interaction ψ̄LχRφ, the left-handed
mediator cannot have strong gauge interaction. There are some possibilities. For instance,
ψL can couple to the SM charged-lepton singlet `R via [84]

yψ,iψ̄L`i,Rϕ+ h.c. , (6.7)

where yψ,i in general have three couplings to the charged-lepton flavors, ψL is a neutral lepton
and ϕ is electrically charged. Here ψ is a SM singlet so that the dark sector does not carry
SM gauge charges. Since both ϕ and `R are SM gauge singlets, the thermal mass of ψL would
be given by

m2
ψ(T ) =

3∑
i=1

y2
ψ,i

16 T 2 , (6.8)

leading to

fdecay,1f = 4%− 29% , fdecay,3f = 7%− 39% , (6.9)

for 1f and 3f dominated couplings, respectively.
A left-handed fermion mediator singlet can also couple to right-handed quarks. For

instance, the down-quark singlet dR couples to ψL with a leptoquark scalar ϕ [85–89]:

yψ,id̄i,RψLϕ+ h.c. , (6.10)

where the scalar ϕ is now an SU(3)c triplet and SU(2)L singlet, carrying the hypercharge
Y = −1/3 so that ψ is a SM singlet. The thermal mass in this case is given by

m2
ψ(T ) =

3∑
i=1

3y2
ψ,i

16 T 2 , (6.11)

where the factor of 3 accounts for the color degrees of freedom. It then leads to

fdecay,1f = 7%− 39% , fdecay,3f = 12%− 45% . (6.12)

The thermalization interactions and the portion of forbidden decay are summarized in
table 1. A general expectation is that, for a Yukawa coupling at 0.1–1, the contribution from
the forbidden decay can range from 4% to 45%. The largest contribution comes from (6.3)
with comparably large Yukawa couplings, where the thermal loop correction to the fermion
mediator is enhanced by the gauge degeneracy and the color degrees of freedom.

There is no doubt that a phenomenological study of each pattern deserves comprehensive
analyses, especially given that they can arise from crossed areas, ranging from neutrino
physics, flavor anomalies to DM physics. The results obtained in this section serve to underlie
the detailed investigations when a heavy dark sector is generated by a light fermion mediator.
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Thermalization patterns Range of fdecay,1f (%) Range of fdecay,3f (%)
L̄iϕψR [6,35] [10,43]
Q̄iϕψR [10,43] [16,45]
ψ̄Lϕ`i,R [4,29] [7,39]
ψ̄Lϕdi,R [7,39] [12,45]

Table 1. Different thermalization interactions for a right- or left-handed fermion mediator ψ with a
Yukawa coupling in the regime: [0.1, 1]. 1f assumes that the interaction is dominated by a SM fermion
flavor while 3f considers comparable interactions among the three flavors.

7 Conclusions

In this work we have concentrated on the freeze-in DM production via a light fermion mediator
once thermalized in the early universe. We have used Yukawa portal interactions to capture
the basic properties of such a class of DM models, where the scattering and forbidden fermion
decay rates carry the same order of coupling constants. The results can be applied to the
scenarios of right-handed Majorana/Dirac neutrino portals, as well as the right- and left-
handed fermion mediators coupling to the SM fermions, provided that the dark sector is
heavier than the mediator and the relevant thermal particles.

The full forbidden decay rate should in general be calculated from the one-loop retarded
amplitude at finite temperatures, and is generically overestimated by a tree-level amplitude.
Nevertheless, we found that the forbidden decay rate can still be simply obtained from the
tree-level amplitude after being rescaled by some constants that depend only on the thermal
parameter.

Both the scattering and forbidden fermion decay coexist to generate the DM relic den-
sity. The contribution from the forbidden decay is significant when the interaction between
the fermion mediator and the thermal plasma is strong. For a Yukawa coupling in the
range: 0.1–1, the forbidden decay can contribute to the total DM relic density at the level of
4%–45%, depending on the gauge representations of thermal particles and flavored Yukawa
interactions, and hence cannot be neglected in precise calculation of the DM relic density.
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A Thermal one-loop amplitudes

A.1 The DM part

The amplitudes from figure 2 are given by

Σχ
+−(P ) = −iy2

χ

∫
d4K

(2π)4G−+(K − P )S+−(K)

=
iy2
χ

(2π)2

∫
d4Ksign(k0 − p0)[1 + fφ(k0 − p0)]fψ(k0)δK−Pρψ(K) , (A.1)
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Σχ
−+(P ) = −iy2

χ

∫
d4K

(2π)4G+−(K − P )S−+(K)

=
−iy2

χ

(2π)2

∫
d4Ksign(k0 − p0)fφ(k0)[1− fψ(k0 − p0)]δK−Pρψ(K) , (A.2)

where δK−P ≡ δ[(K − P )2 −m2
φ] and the free scalar propagators G−+, G+− are given by

G+−(K) = −2πisign(k0)fφ(k0)δ(K2 −m2
φ) , (A.3)

G−+(K) = −2πisign(k0)[1 + fφ(k0)]δ(K2 −m2
φ) , (A.4)

while the resummed fermion propagators S+−, S−+ are given by eqs. (3.5) and (3.6).

A.2 The fermion mediator part
The real part of the retarded amplitude Σψ

R(K) is equivalent to the time-ordered one Σψ
++(K),

which in the massless limit is given by

Σψ
++(K) = iy2

ψ

∫
d4Q

(2π)4G++(Q−K)PLS++(Q)PR

= iy2
ψ

∫
d4Q

(2π)4

( 1
Q2 + iε

+ 2πifη(|q0|)δ(Q2)
)
PL /QPR

×
( 1

(Q−K)2 + iε
− 2πifϕ(|q0 − k0|)δ[(Q−K)2]

)
, (A.5)

The zero-temperature part is UV divergent, which can be renormalized as usual in zero-
temperature QFT. For the finite-temperature part, it reads

ReΣψ
R(K) =

y2
ψ

(2π)3

∫
d4Q

(δ[(Q−K)2]
Q2 fϕ(|q0 − k0|)−

δ(Q2)
(Q−K)2 fη(|q0|)

)
PL /QPR

=
y2
ψ

(2π)3

∫
d4Q

δ(Q2)
(Q−K)2

(
fϕ(q)PL(−/Q+ /K)PR − fη(q)PL /QPR

)
, (A.6)

where (Q−K)2 6= 0 and the second equation is obtained by replacing Q→ −Q+K in the first
term of the first equation. The above integration can be done as follows. Integrate q0 first
via δ(Q2), then expand the denominator (Q−K)2 = K2− 2K.Q in the HTL approximation:
K2 � q2,5 after that integrate the angle cos θ, and finally integrate the momentum q.

In the HTL approximation, the trace given in eqs. (3.8) and (3.9) are evaluated to be

tr[ /KReΣψ
R(K)] =

2y2
ψ

(2π)2

∫
q[fϕ(q) + fη(q)]dq +O(K2/q2)

≈
y2
ψ

8 T 2 , (A.7)

tr[ /UReΣψ
R(K)] =

y2
ψ

(2π)2

∫
q[fϕ(q) + fη(q)]dq

∫
d cos θ k0

k2
0 − k2 cos θ2 +O(K2/q2)

≈
y2
ψ

16k ln
∣∣∣∣k0 + k

k0 − k

∣∣∣∣T 2 . (A.8)

5The forbidden decay primarily stems from a hard ψ propagating near the lightcone. It implies that
when using the HTL approximation, the terms from K2/q2 have a higher-order yψ but k0/q and k/q are at
leading order.
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