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1 Introduction

One of the great mysteries of our universe is the origin of the excess of matter over antimatter.
The three basic ingredients for creating baryon number in the early universe was laid out
by Sakharov [1], and since then various proposals for baryogenesis have been put forward.
Among them, the idea of spontaneous baryogenesis [2] is unique in the sense that it does
not require Sakharov’s third condition of a departure from thermal equilibrium. Instead,
it invokes spontaneous breaking of the CPT symmetry, which shifts the energy of baryons
relative to that of antibaryons, thus allowing baryon number production even in equilibrium.

A general class of theories of spontaneous baryogenesis involves a scalar field that is
derivatively coupled to the baryon current as (∂µφ)jµB. When the scalar field velocity ∂0φ
can be treated as a classical background, the CPT symmetry is spontaneously broken and
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thus a baryon asymmetry can be produced. For implementation of this mechanism in particle
physics models, see e.g. [3–13]. It should be noted that a theory of spontaneous baryogenesis
does not have to be specifically designed to yield a velocity ∂0φ that does not vanish when
averaged over space. This is because cosmic inflation [14–16] can support spontaneous baryo-
genesis by providing a coherent motion of the φ-condensate that gives rise to a net baryon
number in the observable universe. In this sense, the mechanism of spontaneous baryogenesis
fits well into inflationary cosmology.

However we note that a consistent embedding of spontaneous baryogenesis into the
early universe calls for a careful examination of the dynamics of the φ field. This includes the
dynamics during baryogenesis; here one has to verify whether there is significant backreaction
from the produced baryons on φ. The fate of the φ-condensate after baryogenesis is also
important. After creating the baryons the φ field oscillates about its potential minimum and
behaves as pressureless dust; if φ dominates the universe before decaying, it would dilute the
baryon asymmetry, as well as impact the cosmological expansion history. Furthermore, the
dynamics of φ before baryogenesis also has observational consequences, as during inflation
the φ field obtains fluctuations which lead to baryon isocurvature perturbations, as was
originally pointed out in [17]. There are now strong bounds on isocurvature perturbations
from measurements of the comic microwave background (CMB), which add further conditions
to be met by a successful spontaneous baryogenesis scenario. These cosmological constraints
on the φ field have not necessarily been fully taken into account in models studied in previous
works, and thus a systematic analysis of the cosmology with spontaneous baryogenesis is
required in order to verify the validity of the mechanism.

In this paper we consider the broad class of theories of spontaneous baryogenesis driven
by a scalar field derivatively coupled to baryon currents. By investigating the backreac-
tion of the generated baryons on the scalar, the expansion history of the universe after
baryogenesis, and the baryon isocurvature perturbations, we present general conditions for
spontaneous baryogenesis to create the baryon asymmetry in our universe. In particular, for
the minimal model with a quadratic potential for the scalar field, we show that cosmological
constraints alone restrict the model parameters, including the inflation scale, to lie within a
rather narrow window.

We also suggest possible directions for extending the minimal setup, to introduce new
possibilities for spontaneous baryogenesis. For example, it has been known that the isocur-
vature constraint makes it difficult for spontaneous baryogenesis to be compatible with high-
scale inflation. This issue is made sharper in this paper by combining the constraints on
isocurvature perturbations with various other conditions. However, we also propose some
ideas for ameliorating this issue with the aid of a nonquadratic potential for the scalar. In
particular, we point out that the baryon isocurvature perturbations can be suppressed for lin-
ear potentials, or potentials with inflection points such as cosine potentials. We also discuss a
rather exotic but topical possibility that the baryon isocurvature perturbations are compen-
sated by cold dark matter (CDM) isocurvature perturbations, which can happen if the oscil-
lating scalar is allowed to survive until the present and constitute (a fraction of) the CDM.1

The paper is organized as follows: we start in section 2 by giving a brief review of
spontaneous baryogenesis and setting our notations. We then discuss the scalar dynamics
during and after spontaneous baryogenesis in section 3 and section 4, respectively. General

1Some previous works also discussed ways to suppress baryon isocurvature perturbations. For example, [11]
considered stabilizing the scalar in a false vacuum during inflation. Issues with baryon isocurvature can also
be evaded when spontaneous baryogenesis is driven by domain walls [13], or if the baryon current is coupled
instead to a derivative of the Ricci scalar, i.e. (∂µR)jµB [18].
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discussions on the baryon isocurvature perturbations are presented in section 5. We then
summarize the constraints for spontaneous baryogenesis in section 6, and also illustrate the
considerations with a case study of a minimal model. In section 7 we discuss possible ex-
tensions to the minimal scenario in order to alleviate constraints on baryon isocurvature.
Finally, we conclude in section 8. We also provide comments and bounds on spontaneous
baryogenesis induced by the decay of the scalar in appendix A.

2 Brief review of spontaneous baryogenesis

Let us start by reviewing the basic mechanism of spontaneous baryogenesis [2]. This section
also serves to set our notation.

2.1 Basic setup

As we mentioned in the introduction, in this paper we examine spontaneous baryogenesis
driven by a real scalar field φ with a derivative coupling to the baryon current,

S =

∫
d4x
√−g

{
−1

2
gµν∂µφ∂νφ− V (φ)−

∑
i

ci
∂µφ

f
jµi + · · ·

}
. (2.1)

Here jµi represents the current of a particle/antiparticle pair i, whose baryon number is Bi
for the particle and −Bi for the antiparticle. The time component of the current represents
the difference in the number density between the particle and antiparticle, i.e., j0

i = ni − n̄i.
For example, the current could be jµ = q̄γµq with the quarks q. The sum

∑
i runs over all

particle species coupled to φ. Moreover, ci is a dimensionless constant, f is a mass scale,
and the dots represent terms that are independent of φ. Typically, φ would be a pseudo-
Nambu-Goldstone boson (PNGB) of an approximate symmetry corresponding to the baryon
number, and f would be the associated symmetry breaking scale (e.g. [2, 6, 7].) In this paper,
to keep the discussions general, we do not specify the identity of φ beyond what appears in
the (effective) Lagrangian (2.1). However with a slight abuse of language, we will refer to f
as the “decay constant.”

With the action (2.1), spontaneous baryogenesis proceeds as follows (each stage will be
discussed in more detail in the subsequent sections):

1. Cosmic inflation sets φ to be (almost) spatially homogeneous throughout the observable
universe.

2. After inflation, the universe eventually undergoes reheating and becomes dominated
by radiation. Supposing some baryon number nonconserving processes to be in equi-
librium, the baryon asymmetry is produced through the (∂µφ)jµ term.

3. The baryon number nonconserving processes eventually fall out of equilibrium, and
from then on the baryon number freezes in. We use Tdec to represent the decoupling
temperature for the baryon violating interactions, where the subscript “dec” will also
be used for any quantity evaluated at decoupling.

4. The scalar φ has been slowly rolling along its potential while the baryon asymmetry was
being produced. After decoupling, as the Hubble friction becomes weaker, φ begins to
oscillate about its potential minimum. We denote values at the onset of the φ oscillation
by the subscript “osc.”

5. The oscillating φ eventually decays away through the (∂µφ)jµ term.

See figure 1 for a schematic of the φ-dynamics.
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Figure 1. Schematic of the scalar field dynamics in spontaneous baryogenesis (not to scale).

Note that in the case where φ is identified as the PNGB, the symmetry breaking should
happen prior to inflation, which indicates that f should be larger than the inflationary
Hubble rate and the reheat temperature. Otherwise, unless with a specifically designed
potential V (φ), the scalar velocity ∂0φ would be close to zero when spatially averaged over
the observable universe, resulting only in an extremely tiny baryon asymmetry.

We should also remark that baryon number can also be produced while the coherent
oscillation of φ decays, as was originally pointed out in [2]. However this effect is sup-
pressed [6, 7]. Moreover, using the constraints discussed in the following sections, we show
explicitly in appendix A that the baryon asymmetry from the decay of φ is typically much
smaller than that in our universe. Therefore, in this paper we focus on the baryon number
produced in equilibrium, while the scalar φ is slowly rolling.

2.2 Energy shift

The effect of the spontaneous CPT breaking is clearly seen in the energy density sourced
by the φ-related terms in the action. Here, let us express the three terms in (2.1) as
Sφ =

∫
d4x
√−gLφ.

When the particle species i are all bosons (such as jµi = i(ϕ∗i ∂
µϕi − ϕi∂

µϕ∗i ) with
complex scalars ϕi), the energy-momentum tensor is obtained by varying the action in terms
of the metric,

Tµν = gµνLφ − 2
∂Lφ
∂gµν

. (2.2)

Then, considering a flat FRW background

ds2 = −dt2 + a(t)2dx2, (2.3)

with a homogeneous φ, i.e.,

φ = φ(t), (2.4)

the energy density is obtained as

ρ = −T 0
0 =

1

2
φ̇2 + V (φ)−

∑
i

ci
φ̇

f
j0
i , (2.5)

where we use an overdot to denote a derivative in terms of the cosmological time t.
In the case where the species i are fermions (such as jµi = ψ̄iγ

µψi), we vary the action
in terms of a vierbein eaµ (here the metric is constructed as gµν = ηabe

a
µe
b
ν , and a, b are the
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indices in the local Minkowski space.) Rewriting the fermion current as jµ = eaµja, we can
compute the energy-momentum tensor as

Tµν = gµνLφ − eaν
∂Lφ
∂eaµ

, (2.6)

which, under a homogeneous background yields

ρ = −T 0
0 = −Lφ + φ̇2 −

∑
i

ci
φ̇

f
j0
i . (2.7)

Here, after imposing the equations of motion of the fermion fields, the φ̇j0
i terms included

in Lφ should be cancelled by other fermion contributions to the energy density (i.e. those
arising from (· · · ) in the action (2.1).) Hence we obtain the same expression for the energy
density as we did for the boson currents in (2.5).

For both boson and fermion currents, the coupling to ∂µφ gives a contribution to the
energy density of −ci(φ̇/f)j0

i = −ci(φ̇/f)(ni − n̄i). This indicates that when the φ field
can be considered as a classical background, the spontaneous CPT breaking assigns for each
particle/antiparticle pair i an extra energy of

∆Ei = −ci
φ̇

f
(2.8)

per particle, and −∆Ei per antiparticle. When in equilibrium, this can alternatively be
interpreted as particles obtaining a chemical potential of

µi = ci
φ̇

f
, (2.9)

while −µi for antiparticles.

2.3 Baryon asymmetry

Supposing the particles and antiparticles to be in thermal equilibrium after reheating,
and also baryon number nonconserving processes to be occurring rapidly, then the energy
shift (2.8) gives rise to a baryon asymmetry. Hereafter we assume all the species i to be rela-
tivistic fermions, and ignore their masses.2 Further supposing there are no other symmetries
that restrict their thermal distributions, then the difference in the number densities between
the particles and antiparticles is computed from the chemical potential (2.9) as

j0
i = ni − n̄i =

gi
(2π)3

∫
d3p

[{
exp

(
p− µi
T

)
+ 1

}−1

−
{

exp

(
p+ µi
T

)
+ 1

}−1
]

=
gi
6
µiT

2

{
1 +O

(µi
T

)2
}
.

(2.10)

Here gi is the internal degrees of freedom of the (anti)particle i, and in the second line we
carried out an expansion in terms of the ratio µi/T , assuming it to be tiny,(µi

T

)2
� 1. (2.11)

2In the case with boson species, if the induced energy shift |∆E| is larger than their masses, then naively,
the bosons are expected to be produced explosively, until they back react on φ and slow down the velocity. It
would be interesting to understand explicitly what happens in such cases.
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Thus a baryon asymmetry has been produced, with number density

nB =
∑
i

Bi(ni − n̄i) =
∑
i

Bicigi
6

T 2φ̇

f
. (2.12)

The baryon number freezes in when the baryon nonconserving processes fall out of
equilibrium. Thus its ratio to the entropy density

s =
2π2

45
gs∗T

3, (2.13)

freezes at the value upon decoupling of the baryon violating interactions as

nB
s

∣∣∣
dec

=
15

4π2

∑
iBicigi
gs∗

φ̇

Tf

∣∣∣∣∣
dec

. (2.14)

If there is no further baryon nor entropy production afterwards, and neglecting sphaleron
processes which give order-unity corrections, then this ratio remains constant and so should
match the present day value (nB/s)0 ≈ 8.6 × 10−11 measured by Planck [19]. (We use the
subscript “0” to denote values today.)

3 Dynamics of φ during baryogenesis

We now move on to investigate the dynamics of the scalar field φ. We start by discussing
the dynamics during baryogenesis in this section.

It should be stressed that, for the baryon asymmetry to be spontaneously generated in
thermal equilibrium, the φ field should not starts its oscillation until the baryon violating
processes decouple. In terms of the Hubble rate H = ȧ/a, this condition is written as

Hdec > Hosc. (3.1)

Otherwise, at the time of decoupling, which is when the time scale of the baryon violating
interaction τB becomes comparable to the Hubble time, the φ field would be oscillating with
a time period much shorter than τB, as τB ∼ H−1

dec � m−1
φ . Then the chemical potential

should be obtained as (2.9) averaged over the oscillations, and would vanish.
Here we note that the decay of the oscillating φ can also produce a baryon number,

which may even start from the early stages of the oscillations. However such effects are likely
to be tiny, as we discuss in appendix A.

Therefore, we consider the scalar field to be slowly varying along its potential while the
baryons are being produced.3

3.1 Slow-varying attractor

The homogeneous equation of motion of φ is obtained from the action (2.1) as

φ̈+ 3Hφ̇+ V ′(φ) =
∑
i

ci
f

∂t(a
3j0
i )

a3
, (3.2)

3Since the slow variation of the φ-condensate is required after reheating, φ could not have played the role
of the inflaton.
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where we have dropped the spatial components of the currents. Let us first ignore the source
term in the right hand side. As the spontaneous baryogenesis takes place after reheating,
here we are interested in a radiation-dominated universe, where

Ḣ

H2
= −2. (3.3)

Then while the field’s effective mass is smaller than the Hubble rate as∣∣∣∣V ′′(φ)

5H2

∣∣∣∣� 1, (3.4)

the equation of motion is approximated by

5Hφ̇ ' −V ′(φ). (3.5)

This is an attractor solution which is similar to the inflationary slow-roll approximation,
except for that the numerical coefficient in the left hand side is a 5 instead of a 3. This is
due to the time-dependence of the Hubble friction in a radiation-dominated universe (3.3);
in fact, φ accelerates on this attractor as

φ̈ ' 2Hφ̇, (3.6)

as is clearly seen by comparing (3.5) with the original (3.2). For detailed discussions on
attractor solutions in an expanding universe, see, e.g., [20] or appendix A of [21].

The relation (3.6) sets the rate of change of the chemical potential (2.9) as
µi/µ̇i = (2H)−1. Hence we see that while the time scale for the baryon violating interac-
tions τB is shorter than the Hubble time, the chemical potential varies slow enough so that
the particles and antiparticles can follow their thermal distributions of (2.10).

Using the slow-varying approximation (3.5), and rewriting the temperature of the
radiation-dominated universe in terms of the Hubble rate as

π2

30
g∗T

4 = ρr = 3M2
pH

2, (3.7)

where ρr is the radiation energy density, then the baryon number density (2.12) is expressed as

nB = −
∑

iBicigi

π (10 g∗)1/2

MpV
′(φ)

f
, (3.8)

and the final baryon-to-entropy ratio (2.14) becomes

nB
s

∣∣∣
dec

= −
(

9

2560π6

)1/4∑
i

Bicigi
g

1/4
∗ (Tdec)

gs∗(Tdec)

V ′(φdec)

fM
1/2
p H

3/2
dec

. (3.9)

Let us also rewrite the assumption of a tiny chemical potential (2.11) as

(µi
T

)2
=
πc2

i g
1/2
∗

75
√

10

(V ′(φ))2

f2MpH3
� 1, (3.10)

which is now a condition on the shape of the scalar potential compared to the Hubble rate.
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3.2 Backreaction

Now let us estimate the right hand side of the equation of motion (3.2) which we have been
ignoring, ∑

i

ci
f

∂t(a
3j0
i )

a3
=

3
√

10

2π

∑
i c

2
i gi

g
1/2
∗

MpH

f2
Hφ̇. (3.11)

Here we computed the time-derivative of the particle density (2.10) using (3.3), (3.6),
and (3.7). (We ignored the derivative of g∗.) As each of the terms in the left hand side
of (3.2) is ∼ Hφ̇, we see that the source term is negligible in the equation of motion when

3
√

10

2π

∑
i c

2
i gi

g
1/2
∗

MpH

f2
� 1 (3.12)

is satisfied. This is roughly the same as requiring the cosmic temperature T ∼ (MpH)1/2

to be smaller than the decay constant f . Otherwise, if T & f , the backreaction from the
particles in the thermal bath would be relevant, which is likely to slow down the scalar
velocity and thus suppresses baryogenesis. Note also that in the case where φ is a PNGB of
a symmetry corresponding to the baryon number, the symmetry would be recovered if the
temperature were high enough to violate (3.12); this would spoil spontaneous baryogenesis
as was discussed in section 2.1.

4 Dynamics of φ after baryogenesis

After decoupling, the scalar field eventually starts to oscillate as the Hubble friction becomes
weaker. The time when the field actually starts to oscillate depends on the detailed form of
the scalar potential V (φ); hence to keep the discussions general, we proceed by representing
the field value at the onset of the oscillations by φosc. However, we suppose that V (φ) is
well-approximated by a quadratic around its minimum, and that the oscillation of φ quickly
settles down to a harmonic once the oscillation begins. Then the energy density of the
oscillating φ can be estimated as

ρφ = V (φosc)
(aosc

a

)3
, (4.1)

where we ignored the kinetic energy of φ at the beginning of the oscillation. Since the
oscillating φ behaves as pressureless dust, its energy density relative to that of radiation
grows in time. On the other hand, the derivative coupling (∂µφ)jµ provides the oscillating φ
with a decay channel. So the important question here is, does the φ-condensate dominate
the universe before decaying away?

In the case where φ dominates the universe, the universe will have to be heated up again
(which is most likely to be initiated by the decay of φ), in order to connect to the standard
Hot Big Bang cosmology. Hence the produced baryon asymmetry would be diluted by the
entropy production during the second reheating.

We also remark that, since φ has super-horizon field fluctuations obtained during infla-
tion, a φ that dominates or comes close to dominating the universe would produce adiabatic
density perturbations à la curvatons [22–25]. However, such adiabatic perturbations pro-
duced after baryogenesis should only be a small fraction of the entire adiabatic perturbations

– 8 –



J
C
A
P
0
8
(
2
0
1
6
)
0
5
2

in order to keep the baryon isocurvature within observational bounds;4 we shall come back
to this point in the next section.

4.1 Hypothetical relic abundance

In order to see whether φ ever dominates the universe, let us temporarily assume that φ
survives until the present, and compute its relic abundance. From the entropy conservation
s ∝ a−3, the φ density (4.1) can be rewritten as

ρφ = V (φosc)
s

sosc
. (4.2)

Then using the relation between the entropy and the radiation density (cf. (2.13) and (3.7)):

s =
2π2gs∗

45

(
30 ρr

π2g∗

)3/4

(4.3)

to evaluate sosc, and considering the universe at the onset of the oscillation to still be domi-
nated by radiation, i.e.,

V (φosc)� ρr osc ' 3M2
pH

2
osc, (4.4)

one obtains the hypothetical φ abundance today as

Ωφh
2 ≡ ρφ0 h

2

3M2
pH

2
0

=
45

2π2gs∗(Tosc)

(
π2g∗(Tosc)

30 · 3M2
pH

2
osc

)3/4
V (φosc)s0h

2

3M2
pH

2
0

≈ 2.9× 1026 g∗(Tosc)
3/4

gs∗(Tosc)

V (φosc)

M
5/2
p H

3/2
osc

.

(4.5)

If this Ωφ is larger than the measured matter abundance Ωm, then φ would dominate the
universe before the standard matter-radiation equality, unless it decayed at earlier times.

Now let us further suppose Ωφ � Ωm, and evaluate when φ would dominate the universe.
Here, during the times between the onset of the oscillation and the φ-domination, we only
need to consider φ and radiation as the major components of the universe. Let us represent
values at the hypothetical φ-radiation equality by the subscript “dom,” i.e.,

ρφ dom = ρr dom =
3M2

pH
2
dom

2
. (4.6)

Then combining this with (4.2), (4.3), and (4.4), one finds

Hdom =

√
2

9

(
g∗(Tosc)

g∗(Tdom)

)3/2(gs∗(Tdom)

gs∗(Tosc)

)2 V 2(φosc)

M4
pH

3
osc

. (4.7)

4Although, we also mention that the baryon isocurvature due to the curvaton-like φ can in principle be
cancelled by the isocurvature produced during spontaneous baryogenesis, as both perturbations originate from
the same field fluctuations of φ. If such cancellation happens, and if sufficiently large baryon asymmetry still
remains after the second reheating, then φ could be responsible for the generation of the baryon number as
well as the entire adiabatic perturbations in our universe.
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4.2 Fate of φ

We now restore φ’s decay channels provided by the (∂µφ)jµ/f coupling. Let us parameterize
the decay rate by

Γφ = β
m3
φ

f2
, (4.8)

where mφ is the mass of φ around its potential minimum, i.e. m2
φ = V ′′(φmin), and β is a

dimensionless constant. The explicit value of β depends on the particle physics model, but is
much smaller than unity in many cases. The derivative term (∂µφ)jµ in the Lagrangian typ-
ically includes baryon couplings of the φ field, as well as anomalous couplings to WW̃ , ZZ̃.
The former becomes irrelevant when the baryon violating interactions go out of equilibrium
below Tdec, so the latter would provide the most important decay modes of φ → WW,ZZ,
with β ∼ 10−6. Further decay channels could also exist if there are other sources of baryon
violation contributing to ∂µj

µ, or additional couplings in the Lagrangian other than the
derivative term. To keep our discussions general, we collectively describe all the decay chan-
nels of φ by the expression in (4.8), and we proceed without specifying the value of β.

Cosmological constraints on the decay rate depend on whether the would-be abun-
dance Ωφ (4.5) is larger or smaller than the CDM abundance ΩCDM.

Case with Ωφ > ΩCDM

If the would-be φ abundance exceeds the CDM abundance, then φ obviously needs to decay
prior to the standard matter-radiation equality in order not to spoil the Big Bang expansion
history. Moreover, the φ density at the time of Big Bang Nucleosynthesis is strictly restricted,
so it is preferable for φ to decay before then.

However even if φ decays long before nucleosynthesis, if it had dominated the universe
before decaying, then the already produced baryon asymmetry would have been greatly
diluted; see discussions below (4.1). In order to avoid φ from dominating the universe in the
first place, the condition

Γφ > Hdom (4.9)

is required, where Hdom was obtained in (4.7).5

Case with Ωφ ≤ ΩCDM

In this case the φ density is guaranteed to be subdominant at least until the matter-radiation
equality. If further Ωφ is close to ΩCDM, then φ should either decay prior to the standard
matter-radiation equality so as not to drastically modify the Big Bang evolution, or alterna-
tively φ may survive until today and constitute (a fraction of) CDM. The latter possibility
is discussed in section 7.2.

Before closing this section, we should also comment on the thermal production of φ.
We have analyzed the energy density of the φ-condensate, however, a thermal distribution
of the φ-particles can also be produced through the (∂µφ)jµ term while the baryon violat-
ing processes are occurring rapidly, depending on the nature of the processes. The energy
density of the relativistic φ-particles in equilibrium would be much larger than that of the
φ-condensate. After decoupling, the φ-particles would fall out of equilibrium and redshift ini-
tially as radiation, and then as pressureless dust after the temperature of the universe drops

5Strictly speaking, Hdom in (4.7) was obtained assuming Ωφ � Ωm; so in the case of Ωm & Ωφ > ΩCDM,
the condition (4.9) should be corrected by a factor of order unity.
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below the particle mass. Hence the φ-particles, if they start from a thermal distribution, can
dominate the universe long before the φ-condensate would, and more strongly suppress the
baryon asymmetry. Therefore the conditions in this section which were obtained by studying
the φ-condensate, such as (4.9), should be regarded as conservative bounds.

5 Baryon isocurvature perturbations

As was discussed at the beginning of section 3, the φ field starts its oscillation after the
decoupling. This indicates that during inflation, the effective mass of φ is much lighter than
the Hubble rate, and therefore φ obtains super-horizon field fluctuations. Such fluctuations
source isocurvature perturbations in the baryon density, as is clear from the expression (3.8).
Let us compute the baryon isocurvature perturbations for general scalar potentials V (φ) in
this section.

The gauge-invariant isocurvature perturbation between the baryons and photons (see
e.g. [26] for a review) is defined as

SBγ ≡
δnB
nB
− 3

4

δργ
ργ

, (5.1)

which is clearly conserved while the baryon number and photon energy densities redshift

locally as nB ∝ ρ
3/4
γ ∝ a−3. Hence let us consider SBγ at temperatures a bit below T =

1 MeV when the universe is dominated by the photons and the decoupled neutrinos; we refer
to this radiation-dominated epoch as the “late RD.” Supposing there are no isocurvature
perturbations between the photons and neutrinos, then the uniform-photon density slicings in
the late RD epoch coincide with uniform-total density slicings. Thus the baryon isocurvature
perturbation (5.1) is rewritten as

SBγ =
δnB
nB

∣∣∣∣
ρ=const., late RD

(5.2)

where the right hand side is evaluated on a uniform-photon/total density slice.

In order to compute SBγ as a function of φ, we would like to know how δnB/nB during
the late RD epoch relates to that at the time of decoupling. Here we consider the decoupling
temperature Tdec to be a constant value set by the microphysical parameters of the baryon
violating interactions. Then, since the universe at decoupling is also radiation-dominated,
the decoupling surface where T = Tdec can be viewed as a uniform-density slice as well.

To see how δnB/nB on super-horizon scales evolves between two uniform-density slices,
we consider the baryon number to be locally conserved since decoupling; then the baryon
number density at a comoving spatial coordinate x satisfies

nB(t2,x) = nB(t1,x)

(
a(t1,x)

a(t2,x)

)3

, (5.3)

where t1 and t2 describe some arbitrary uniform-density slices that are after decoupling. The
scale factors on these slices are written as

a(ti,x) = ā(ti)e
ζ(ti,x), (5.4)
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where the bar denotes the unperturbed value, ζ is the curvature perturbation on uniform-
density slicings, and i = 1, 2. Then one finds that, at the linear order in the fluctuations
around the unperturbed background,

δnB(t2,x)

n̄B(t2)
=
δnB(t1,x)

n̄B(t1)
+ 3 (ζ(t1,x)− ζ(t2,x)) . (5.5)

Thus, taking one of the uniform-density slices to be during the late RD epoch and the other
one at decoupling, (5.2) becomes (dropping the bars again for simplicity)

SBγ =
δnB
nB

∣∣∣∣
T=Tdec

+ 3 (ζdec − ζlate RD) . (5.6)

Here we have obtained the familiar result that any change in the curvature perturbations
after baryon number production gives rise to baryon isocurvature perturbations. (This is the
reason why φ should not be a curvaton responsible for the entire adiabatic perturbations, as
was discussed below (4.1).) In the following, we assume that ζ has approached its final value
prior to decoupling and drop the second term in (5.6).

The baryon number fluctuations arise from the field fluctuations of φ. Hence from (3.8),
the baryon isocurvature is written as

SBγ =
V ′′(φdec)

V ′(φdec)
δφdec, (5.7)

where δφdec denotes the field fluctuation on the T = Tdec surface. Considering φ to have
followed an attractor solution of the sort discussed in (3.5) since during inflation, then φ’s
field value (including fluctuations) at decoupling can be viewed as a function of that on some
initial flat slice during inflation, at around or after the modes of interest exited the horizon.6

Thus we rewrite (5.7) as

SBγ =
V ′′(φdec)

V ′(φdec)

∂φdec

∂φini
δφini, (5.8)

where φini denotes the unperturbed field value and δφini the fluctuation on an initial
flat surface.

Let us now go to Fourier space, and take the initial flat surface as when a pivot scale k∗
exits the horizon during inflation. Denoting this time by an asterisk, i.e. k∗ = a∗H∗, then
the Fourier component of the isocurvature is

(SBγ)k∗ =
V ′′(φdec)

V ′(φdec)

∂φdec

∂φ∗
(δφ∗)k∗ . (5.9)

From the power spectrum of the field fluctuations upon horizon exit,7

Pδφ∗(k∗) =

(
H∗
2π

)2

, (5.11)

6The adiabatic perturbation ζ may further source field fluctuations on the decoupling surface, however we
ignore this effect assuming it to be tiny.

7The power spectrum P(k) is defined as

〈δφ∗(x)δφ∗(y)〉 =

∫
d3k

4πk3
eik·(x−y)Pδφ∗(k). (5.10)
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we arrive at our final expression for the baryon isocurvature perturbation spectrum,

PBγ(k∗) =

(
V ′′(φdec)

V ′(φdec)

∂φdec

∂φ∗

H∗
2π

)2

. (5.12)

This expression which is a function of φ is the main result of this section. We will explic-
itly compute the right hand side in later sections when we discuss specific examples. The
isocurvature spectrum is nearly scale-invariant, as φ’s effective mass is much lighter than the
Hubble rate during inflation. Furthermore, supposing φ not to contribute to the adiabatic
perturbations, then the baryon isocurvature is uncorrelated with the adiabatic perturbation.

Isocurvature perturbations are well constrained by measurements of the CMB
anisotropies. However, since CMB does not distinguish between baryon and CDM isocur-
vature modes at linear order, the baryon isocurvature is constrained as an effective CDM
isocurvature,

Peff
CDMγ(k) =

(
ΩB

ΩCDM

)2

PBγ(k) ≈ 0.034× PBγ(k). (5.13)

The Planck limit on a scale-invariant and uncorrelated isocurvature perturbation reads [27]

Peff
CDMγ(k∗) . 0.040× Pζ(k∗) (95% C.L., TT,TE,EE + lowP) (5.14)

on the pivot scale k∗/a0 = 0.05 Mpc−1, where the adiabatic power is Pζ(k∗) ≈ 2.2× 10−9.

6 Summary of constraints and a case study

We now put together the constraints discussed in the previous sections.

6.1 Generic conditions for spontaneous baryogenesis

The generic conditions for spontaneous baryogenesis to operate are as follows:

During spontaneous baryogenesis, the φ field is required not to start its oscillation until
after decoupling (3.1), and in particular its effective mass should be lighter than the Hubble
rate (3.4). Furthermore, the backreaction from the produced particles, or the thermal friction,
has to be suppressed (3.12) for sufficient baryogenesis. Then, assuming a tiny chemical
potential (3.10), the final baryon-to-photon ratio is computed as (3.9), which should give the
present day value of (nB/s)0 ≈ 8.6× 10−11.

After baryogenesis, the φ density is supposed to be subdominant at least until the
onset of the oscillations (4.4). In the case where the hypothetical φ abundance (4.5) exceeds
the CDM abundance, if one would like to avoid the baryon asymmetry from being diluted
and thus desires to prevent φ from dominating the universe, then φ is required to decay
before domination (4.9), where Hdom is given in (4.7). This condition becomes stronger if
a thermal distribution of φ-particles is produced during baryogenesis, as discussed at the
end of section 4.

Another restriction comes from the baryon isocurvature perturbations (5.12), which is
constrained by Planck as (5.14).

We should also remark that there are further constraints if φ is a PNGB. As was
discussed towards the end of section 2.1, the symmetry breaking needs to happen prior to
inflation, thus

f > H∗. (6.1)
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For the PNGB case, the backreaction condition (3.12) can also be understood as the require-
ment that thermal fluctuations do not recover the symmetry. The field range of a PNGB φ
is also restricted by the decay constant f , typically as

|φ∗ − φmin| . f, (6.2)

where φmin is the minimum of the scalar potential. The explicit field range bound, e.g.
whether it is f or πf , depends on the individual models. We also note that the field bound
can apply not only for PNGBs but for general cases, as from an effective field theory point of
view, the violation of (6.2) would, at least naively, indicate a breakdown of the perturbative
description.8

6.2 Case study: quadratic potential

Having laid out the general conditions, in this subsection we study how they actually constrain
the minimal model with a quadratic potential,

V (φ) =
1

2
m2
φφ

2. (6.3)

If, for example, φ is a PNGB of an approximate U(1) symmetry, then quadratic potentials
are realized in the vicinity of one of the minima of the periodic potential.

For quadratic potentials, the Hubble rate at the onset of oscillations can simply be
estimated as when the slow-varying condition (3.4) breaks down, i.e.,

Hosc =
mφ√

5
. (6.4)

Since φ varies only slowly while on the attractor (3.5), we make the approximation of

φ∗ ' φdec ' φosc. (6.5)

This in particular gives ∂φdec/∂φ∗ ' 1 in the expression for the isocurvature spectrum (5.12).9

In the following analyses we further impose the field bound, discussed around (6.2), as

|φ∗| < f. (6.7)

Here we have fixed the field bound to f , however, changing the bound by an order-unity
factor (say, to πf) gives only minor corrections to our discussions below.

As for the particle content of the theory, we consider the number of species i to be of
order unity, with parameters of order unity as well, i.e., Bi ∼ ci ∼ gi ∼ 1. The relativistic

8However it may be possible to extend the field range while controlling the corrections to the effective
action by, for instance, invoking monodromy [28, 29].

9An alternative definition of the onset of oscillations was given in [21] as when the field variation during
one Hubble time becomes comparable to the distance to the potential minimum, i.e.∣∣∣∣ φ̇

H(φ− φmin)

∣∣∣∣
osc

= 1. (6.6)

For a quadratic potential, this definition combined with the slow-varying approximation (3.5) gives the same
result as (6.4). However for nonquadratic potentials, Hosc given by (6.6) generally does not coincide with
that estimated as when (3.4) is violated. The use of Hosc and φosc defined by (6.6) is suitable for accurate
calculations of density perturbations with nonquadratic potentials, as was demonstrated in e.g. [21, 34].
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degrees of freedom g∗, gs∗ in the early universe are considered to be of ∼ 100. We bear
in mind these numerical values in the following analyses, although for completeness, we
explicitly display the dimensionless constants as well as the ratio |φ∗|/f in the results. For
this purpose, let us introduce the normalized relativistic degrees of freedom

g̃∗ ≡
g∗

100
, g̃s∗ ≡

gs∗
100

. (6.8)

6.2.1 Constraints

The requirement of slow-variation of φ until decoupling, cf. (3.4), reads

m2
φ

5H2
dec

� 1, (6.9)

from which Hdec > Hosc (3.1) is automatically satisfied. On the other hand, the condition
for negligible backreaction (3.12), evaluated at decoupling, gives

0.2×
∑

i c
2
i gi

g̃
1/2
∗dec

MpHdec

f2
� 1. (6.10)

Recall that the sum
∑

i runs over all particles species coupled to φ. Normalizing the baryon-
to-photon ratio (3.9) to the present day value (nB/s)0 ≈ 8.6 × 10−11 (ignoring sphaleron
processes) yields ∑

i

Bicigi
g̃

1/4
∗dec

g̃s∗dec

m2
φ φ∗

fM
1/2
p H

3/2
dec

≈ −6× 10−8. (6.11)

Under this constraint, it can be checked that the assumption of a tiny chemical poten-
tial (3.10) is satisfied. One can also obtain a lower bound on the decoupling temperature by
solving (6.11) for mφ and substituting it into (6.9), which yields

Hdec � 400 GeV × 1

(
∑

iBicigi)
2

g̃2
s∗dec

g̃
1/2
∗dec

(
f

φ∗

)2

. (6.12)

Note here that the (f/φ∗)
2 factor in the right hand side is at least of order unity due to the

field bound (6.7). The existence of the lower bound on the decoupling scale can be understood
from the fact that a somewhat large mass mφ is required in order to provide the sufficient
φ velocity for creating the baryon asymmetry, while Hdec should be even larger than mφ to
prevent φ from oscillating.

The constraints can be combined to further give a lower bound on the hypothetical
φ abundance (4.5),

Ωφh
2 ≈ 2× 1026 g̃

3/4
∗osc

g̃s∗osc

m
1/2
φ φ2

∗

M
5/2
p

(6.13)

� 70× g̃
3/4
∗osc g̃

3
s∗dec

g̃s∗osc g̃
5/4
∗dec

∑
i c

2
i gi

|∑j Bjcjgj |3
f

|φ∗|
, (6.14)

where upon moving to the second line, we first substituted (6.11) for φ∗, then used the
inequalities (6.9) and (6.10) respectively for mφ and f , and finally used the lower bound (6.12)
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for Hdec. We clearly see that if φ did not decay, it would readily overclose the universe.10

Thus in order to avoid φ from dominating the universe and diluting the baryon asymmetry,
we require φ to decay before domination, cf. (4.9), which yields a condition

β

(
g̃∗dom

g̃∗osc

)3/2( g̃s∗osc

g̃s∗dom

)2 m2
φM

4
p

f2φ4
∗

& 0.4. (6.15)

Here, to be conservative, we have ignored the possibility of the thermal production of φ
during baryogenesis.

On the other hand, the constraint on baryon isocurvature perturbation, cf. (5.12)
and (5.14), yields (

H∗
φ∗

)2

. 1× 10−7. (6.16)

This combined with the field bound (6.7) requires f to be much larger than the infla-
tionary Hubble rate, and thus in the case where φ is a PNGB, the symmetry breaking
is guaranteed to have happened before inflation, cf. (6.1). On can also check by combin-
ing (6.10), (6.11), (6.15), and (6.16) that, unless β is much greater than unity, then |φ∗| �Mp;
therefore the condition (4.4) for the φ density to be subdominant at the onset of oscillations
is satisfied. The isocurvature constraint further sets an upper bound on the inflation scale;
substituting (6.11) for mφ into (6.15), and further combining with (6.16) yields

H∗ . 2× 1012 GeV

(
β

|∑iBicigi|
g̃s∗dec g̃

3/2
∗dom g̃

2
s∗osc

g̃
1/4
∗dec g̃

3/2
∗osc g̃2

s∗dom

)2/9( |φ∗|
f

)2/9(Hdec

H∗

)1/3

, (6.17)

where it should be noted that the factor Hdec/H∗ in the right hand side is smaller than unity.
Alternatively, one can combine (6.10), (6.11), (6.15), and (6.16) to obtain a φ∗-independent
bound,

H∗ . 3× 1012 GeV

(
β

|∑iBicigi|(
∑

j c
2
jgj)

1/2

g̃s∗dec g̃
3/2
∗dom g̃

2
s∗osc

g̃
3/2
∗osc g̃2

s∗dom

)1/4(
Hdec

H∗

)1/4

. (6.18)

Which of the two bounds (6.17) and (6.18) is stronger depends on the explicit choice of the
model parameters.

Thus we have discussed all the conditions laid out in section 6.1. To summarize our find-
ings for the quadratic case, it turns out that there are six independent conditions under which
the others are automatically satisfied; these are the constraints from the field bound (6.7),
slow-variation of φ until decoupling (6.9), negligible backreaction (6.10), normalization from
the baryon-to-photon ratio today (6.11), requirement for φ to decay before dominating the
universe (6.15), and the limit on baryon isocurvature perturbation (6.16). Combining the
six conditions also yields bounds on the decoupling (6.12) and inflation scales (6.17), (6.18);
when ignoring the coefficients and supposing β . 1, the bounds read roughly as

102 GeV� Hdec < H∗ . 1012 GeV. (6.19)

One can further check that, once the values of Hdec and H∗ are chosen within the bounds,
the scalar mass mφ and the decay constant f are constrained to lie within a rather narrow
window. Let us now show this explicitly.

10However, we should also remark that it is in principle possible to suppress Ωφ below ΩCDM, by having a
large number of particle species i of more than ∼ 100. We will discuss this possibility in section 7.2.2.
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6.2.2 Parameter space

We present the window for the parameters in figure 2. Here, we have supposed there is one
species i coupled to φ, and specified its parameters as

Bi =
1

3
, ci = 1, gi = 2. (6.20)

We also fixed the relativistic degrees of freedom at the times of decoupling, onset of φ oscil-
lation, and the hypothetical φ domination to the total number in the Standard Model,

g∗ = gs∗ = 106.75. (6.21)

As for the β parameter for the decay rate (4.8), note that a smaller β gives a smaller parameter
window as it would delay the time of decay and make it easier for φ to dominate the universe,
cf. (6.15). For presenting conservative bounds, we fixed it to

β = 1. (6.22)

Then there are five dimensionful parameters remaining, namely, (H∗, Hdec, mφ, f , φ∗).
Among them, we fixed φ∗ from the nB/s normalization (6.11), and displayed the allowed
window in the mφ-f plane in figure 2. We have chosen some values for the inflation scale
from within its bound, which now read 0.9 × 103 GeV � Hdec < H∗ . 2 × 1012 GeV.
Here we remark that the allowed window becomes smaller when there is a larger hierarchy
between Hdec and H∗; thus conservative bounds are obtained by assuming the two scales
to be the same.

In the figures, the yellow regions denote the allowed window for the conservative case of
Hdec = H∗. The various constraints are represented by the solid lines setting the boundaries;
red: (6.7), blue: (6.9), orange: (6.10), green: (6.15), purple: (6.16). (Recall that (6.11) is used
for fixing φ∗.) It is firstly seen that, for each choice of the inflation scale, mφ and f are
constrained to lie within ranges of at most a few orders of magnitude.

The lower and upper bounds for mφ are mostly set by the field bound (red) and the
requirement of slow-variation (blue). These two bounds approach each other as H∗ is lowered,
until they vanish the window; hence also setting the lower bound on the inflation scale. Note
also from (6.11) that |φ∗|/f ∝ m−2

φ , thus as one moves away from the red boundary towards
larger mφ, the value of |φ∗|/f becomes much smaller than unity. There one would need to
fine tune φ’s initial position, unless there is some dynamical mechanism that sets exactly the
right value for φ∗.

The decay constant f , at low inflation scales, is bounded from below by the backreaction
condition (orange), and from above by the requirement that φ does not dominate the universe
(green). As one goes to higher inflation scales, the isocurvature constraint (purple) becomes
relevant and eventually eliminates the window. When β is smaller than unity, the green lines
shift downwards in the figures, and thus further shrink the windows, although the dependence
on β is not so strong. After fixing φ∗ with (6.11), the upper bound on f from (6.15) scales as
∝ β1/6; thus e.g. when β = 10−6, the green lines in the figures are lowered by ∆(log10 f) = −1.
We should also remark that even if φ dominates, a sufficient baryon asymmetry may remain
if φ decays not so long after dominating the universe. (Although one should also consider
effects on the adiabatic perturbations in this case, see discussions below (4.1).) Thus the
allowed window can actually extend beyond the green line to a certain degree, however we
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(d) H∗ = 1011 GeV

Figure 2. Mass mφ and decay constant f of the scalar driving spontaneous baryogenesis with a
quadratic potential. For each value of the inflation scale H∗, the window for the parameters allowing
sufficient baryogenesis is shown as the yellow region for the conservative case of Hdec = H∗. The
solid lines setting the boundaries represent the various constraints; red: field bound (6.7), blue:
slow-variation (non-oscillation) of scalar at decoupling (6.9), orange: insignificant backreaction from
produced baryons (6.10), green: scalar decay before dominating the universe (6.15), purple: limit on
baryon isocurvature perturbation (6.16). For comparison, windows for Hdec = 10−2H∗ are also shown
as the regions bounded by gray dashed lines.

do not expect this to drastically expand the parameter space. (Note that a larger f , while
delaying the φ decay, cf. (4.8), also suppresses the baryon number production, cf. (3.8).)

We also plot windows for the case with Hdec = 10−2H∗ for comparison, as the regions
bounded by gray dashed lines. (In figure 2a, the dashed line close to the left edge denotes
a very thin band for mφ.) It can be clearly seen that the windows shrink when Hdec is
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lowered compared to H∗. This indicates that, even though H∗ itself may vary over 10 orders
of magnitude, cf. (6.19), the energy scales of inflation, reheating, and decoupling all have to
lie within a rather narrow range of, at the very most, a few orders of magnitude. (Here, note
also that ρ1/4 ∝ H1/2.) Therefore an efficient (p)reheating is a prerequisite for a successful
spontaneous baryogenesis.

7 Evading isocurvature constraints with nonquadratic potentials

In the previous section we laid out the general conditions required for spontaneous baryo-
genesis, then studied the minimal scenario with a quadratic potential. There we saw that
spontaneous baryogenesis is strictly constrained by the CMB limits on baryon isocurvature
perturbations, especially with high inflation scales. In this section, we remark that the isocur-
vature constraints can be alleviated by nonquadratic scalar potentials, for instance with a
cosine. Such potentials actually do arise when φ is a PNGB of an approximate U(1) sym-
metry; as then V (φ) is a periodic potential, so one can imagine φ at the time of symmetry
breaking to roll down to a region away from the minima, where the potential cannot be
approximated by a quadratic.

We discuss two possible solutions for evading the isocurvature constraints; one is to
suppress the baryon isocurvature, and the other is to compensate the baryon and CDM
isocurvature perturbations.

7.1 Suppressing baryon isocurvature

From the expression (5.12), one notices that the baryon isocurvature perturbation vanishes
at linear order if V ′′(φdec) is zero. This is because of φ̇ ∝ V ′(φ), thus a vanishing second
derivative of the potential makes the φ velocity insensitive to the field value of φ. In such cases,
the large-scale field fluctuations do not lead to inhomogeneities in the φ velocity at decoupling
and thus no baryon isocurvature modes are induced. The simplest way to realize this is to
consider a linear potential. Alternatively, one can invoke potentials with inflection points.

In the following, with a PNGB φ in mind, let us consider a cosine potential of the form

V (φ) = m2
φf

2

[
1− cos

(
φ

f

)]
, (7.1)

which asymptotes to the quadratic potential (6.3) in the vicinity of φ = 0. As the cosine
potential has the periodicity 2πf set by the decay constant, we can focus on the field range
|φ| ≤ πf without loss of generality.

The baryon isocurvature perturbation from the cosine potential can be analytically
computed using (5.9). Considering φ to be effectively frozen until decoupling and thus using
the approximation of φdec ' φ∗, we get

(SBγ)k∗ = tan−1

(
φ∗
f

)
(δφ∗)k∗

f
. (7.2)

Let us split the Fourier mode

(SBγ)k =

√
2π2

k3
(S̃Bγ)k ak (7.3)
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into the amplitude (S̃Bγ)k and a stochastic variable ak that satisfies 〈aka∗p〉 = (2π)3δ(k−p),
and likewise for the field fluctuation (δφ∗)k∗ . Note here that the square of the amplitude
corresponds to the power spectrum,

PBγ(k) =
∣∣∣(S̃Bγ)k

∣∣∣2 . (7.4)

Thus (5.11) gives, up to an unimportant phase,

(δ̃φ∗)k∗ =
H∗
2π
, (7.5)

which is combined with (7.2) to yield

(S̃Bγ)k∗ = tan−1

(
φ∗
f

)
H∗
2πf

. (7.6)

One clearly sees that the baryon isocurvature is suppressed if |φ∗|/f is close to π/2.
We have also carried out numerical computations to check this behavior: we numerically

solved the equation of motion of φ (3.2) (ignoring the source term) in an FRW background
universe, from the inflationary epoch to the radiation-dominated epoch when decoupling
happens. By varying the initial position of φ when the pivot scale exits the horizon by
H∗/2π, we computed the resulting variation in the φ velocity at decoupling, then evaluated
the baryon isocurvature using SBγ = (δφ̇/φ̇)T=Tdec (cf. (2.12), (5.6).) Note that the baryon
isocurvature computed in this way corresponds to the amplitude of the Fourier mode (S̃Bγ)k∗ ,
defined in (7.3) and analytically computed as (7.6). Squaring the amplitude yields the the
power spectrum at the pivot scale PBγ(k∗).

For the computations, we used the parameters

H∗=1.0×1012 GeV, Hdec =1.0×1011 GeV, mφ=2.2×109 GeV, f=1.0×1015 GeV. (7.7)

Note here that for a quadratic potential, this choice of H∗ and f with |φ∗| < πf would
violate (6.16), producing too much baryon isocurvature. However this is not necessarily
the case for the cosine potential. In figure 3, we show the resulting baryon isocurvature
perturbation at the pivot scale k∗, as a function of the scalar position φ∗/f when the mode k∗
exits the horizon. The blue lines show the results from the numerical computations, while
the yellow dashed lines are from the analytic result (7.6); the lines are on top of each other
and thus one sees that the two analyses agree quite well.

The left panel shows the Fourier mode amplitude (S̃Bγ)k∗ . Here we should note that,
although the arbitrary phase which was fixed in (7.5) does not affect physical observables, the
sign of the prefactor tan−1(φdec/f) in (S̃Bγ)k∗ does have a physical meaning, as it specifies
whether the φ velocity increases or decreases for a larger field value. This will be particularly
important in the next subsection, when we discuss compensated isocurvature perturbations.

In the right panel we display the effective CDM isocurvature power (5.13), and the
Planck limit (5.14) is shown as the horizontal line. The isocurvature perturbation is
seen to fall below the Planck bound given that the initial field value lies in the range of
1.3 . φ∗/f . 1.9.11 For example, under the parameter set of (7.7), together with one species i
of Bi = 1/3, ci = −1 (here a negative ci is chosen in order to create a positive Baryon number

11Strictly speaking, the Planck limit of (5.14) is for a scale-invariant isocurvature perturbation; if φ∗ happens
to lie exactly where (S̃Bγ)k∗ crosses zero, then the scale-dependence should be taken into account.
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Figure 3. Baryon isocurvature perturbation at the pivot scale, as a function of the initial field
value along a cosine potential. Left: Fourier component amplitude of the baryon isocurvature. Right:
power spectrum amplitude of the effective CDM isocurvature. See the text for the precise definition
of both quantities. Results from our analytic calculation eq. (7.6) (yellow dashed) agree quite well
with numerical computations (blue solid). The horizontal line in the right figure shows the Planck
upper bound on the effective CDM isocurvature. The isocurvature perturbation is suppressed below
the Planck bound for field values within 1.3 . φ∗/f . 1.9.

at φ∗ > 0), gi = 2, with relativistic degrees of freedom g∗ = gs∗ = 106.75, and the decay rate
parameter β = 1, then one can check that the initial field value of φ∗/f ≈ 1.5 or 1.6 satisfy all
the conditions discussed in section 6.1. Note here that the nB/s normalization (3.9) gives two
solutions within the range |φ∗|/f < π for a cosine potential. We should also mention that for
the parameters given in (7.7), the field excursion starting from φ∗/f ≈ π/2 during 10 e-folds
of inflation is as tiny as |∆φ|/f ∼ 10−5; thus if the baryon isocurvature is suppressed at the
pivot scale, then it would also be suppressed over the entire CMB scales.

Thus we have seen that the isocurvature constraint can be alleviated with cosine poten-
tials, allowing high-scale inflation to be compatible with spontaneous baryogenesis. In par-
ticular, one can check that a parameter window exists even with H∗ as high as ∼ 1014 GeV,
which produces large enough primordial gravitational waves to be observed in the near future
(or already been ruled out by current bounds on tensor perturbations.) On the other hand,
cosine potentials do not expand the window for mφ and f as one would expect. This is
because, as φ∗ goes beyond the inflection point, the allowed window in the mφ-f plane folds
back and partially overlaps with the window for φ∗ in the quadratic region.

7.2 Compensating baryon isocurvature with CDM isocurvature

If the scalar φ is allowed to survive until the present, and further if its abundance can be
made comparable to that of CDM, then one can expect φ to not only produce the baryons
but also to serve as CDM. As we have seen in the previous sections this possibility requires
a rather specific setup. In order to suppress the φ abundance, for example, a large number
of particles species i should be introduced. As for φ’s life time, recall from the discussions
below (4.8) that the (∂µφ)jµ coupling typically provides a decay channel into the W ’s due
to the chiral anomaly; even if φ is lighter than W , it can still decay into quarks through
off-shell W ’s. However it may be possible to suppress the derivative coupling term with, e.g.,
a running coupling constant.

Despite the required tunings, a long-lived φ has the benefit of, in addition to explaining
dark matter, being able to alleviate the isocurvature constraint. This is because the CDM
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consisting of φ would also obtain isocurvature perturbations originating from the same field
fluctuations δφ as the baryon isocurvature; thus it opens up the possibility of the baryon
isocurvature being compensated for by the CDM isocurvature. Such a perturbation is often
referred to as a compensated isocurvature perturbation, and is poorly constrained from ob-
servations as it has no impact on the CMB at linear order. For detailed discussions of current
limits on compensated isocurvature, see e.g. [30–32], which also discuss constraints from non-
CMB probes as well as with future experiments. In this section, we investigate the possibility
of realizing compensated isocurvature perturbation within spontaneous baryogenesis.

7.2.1 General discussions of φ density isocurvature

Let us for the moment assume that φ survives until today and constitute (a fraction of)
CDM, and compute its density isocurvature perturbations:

Sφγ ≡
δρφ
ρφ
− 3

4

δργ
ργ

. (7.8)

Considering the φ density to redshift locally as ρφ ∝ a−3 since the onset of oscillations, we
can proceed in a similar fashion as we did for the baryon isocurvature in section 5. The main
difference is that, instead of the decoupling surface, here we need to consider the hypersurface
of H = Hosc where φ starts its oscillations. However we should also remark that, unlike the
decoupling surface, the Hosc-surface is generically not a uniform-density slice; the simplest
way to understand this is to note that the second derivative of the scalar potential is not
necessarily a constant. The exceptional case is the quadratic potential (6.3), where Hosc is
set merely by the constant mass mφ (cf. (6.4)) and thus the Hosc-surface coincides with a
uniform-density slice. However for nonquadratic potentials, the time when φ starts to oscillate
also depends on the field value itself, and therefore the field experiences an inhomogeneous
onset of oscillations [21]. Hence for the φ density isocurvature perturbations, let us write

Sφγ =
δρφ
ρφ

∣∣∣∣
H=Hosc

+ · · · , (7.9)

where (· · · ) represents the contribution to the φ density fluctuation that arise when Hosc is
space-dependent. Here it should be noted that this extra contribution also originate from
the scalar field fluctuation obtained during inflation, hence should be proportional to δφ. On
the other hand, the first term can be rewritten using ρφ osc ' V (φosc) as

δρφ
ρφ

∣∣∣∣
H=Hosc

=
V ′(φosc)

V (φosc)
δφosc, (7.10)

where δφosc is the field fluctuation on the surface of H = Hosc. Therefore, moving to Fourier
space and considering the initial flat surface when the pivot scale k∗ exits the horizon, we
can express the total φ density isocurvature perturbation as

(Sφγ)k∗ =

{
V ′(φosc)

V (φosc)

∂φosc

∂φ∗
+ X

}
(δφ∗)k∗ . (7.11)

Here X is introduced to represent the perturbations induced by the inhomogeneous onset of
the oscillations. X itself consists of unperturbed quantities, and can be calculated analytically
following the techniques developed for the curvaton scenario in [21]. However here we will
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not derive its explicit form and instead numerically compute the isocurvature perturbations.
Nevertheless, the analytic form (7.11) will be useful for obtaining a qualitative overview.
Using the field fluctuation amplitude (5.11), we obtain a general expression for the φ density
isocurvature power spectrum,

Pφγ(k∗) =

{
V ′(φosc)

V (φosc)

∂φosc

∂φ∗
+ X

}2(H∗
2π

)2

. (7.12)

However, since the baryon and CDM (φ) isocurvature perturbations are hardly distin-
guished by CMB observations, we should refer to the two collectively as the effective CDM
isocurvature,

Seff
CDMγ =

ΩB

ΩCDM
SBγ +

Ωφ

ΩCDM
Sφγ , (7.13)

whose power is bounded by Planck as (5.14). Here, it is important to notice that the baryon
isocurvature perturbation (5.9) and the φ density perturbation (7.11) both originate from
the same field fluctuation δφ, and thus they are perfectly correlated. Therefore the power
spectrum of the effective CDM isocurvature is not a simple sum of the individual power
spectra (5.12) and (7.12), but instead is

Peff
CDMγ(k∗) =

[
ΩB

ΩCDM

V ′′(φdec)

V ′(φdec)

∂φdec

∂φ∗
+

Ωφ

ΩCDM

{
V ′(φosc)

V (φosc)

∂φosc

∂φ∗
+ X

}]2(H∗
2π

)2

. (7.14)

Looking at this expression, one can imagine cases where the terms inside the [ ] parentheses
cancel each other, thereby the baryon isocurvature perturbation being compensated for by
the CDM isocurvature. When ignoring X and assuming φ∗ ' φdec ' φosc for simplicity, then
it is further seen that the cancellation can happen only with negatively curved potentials, i.e.
V ′′ < 0. This can be understood as follows: since V is by definition an increasing function
of |φ−φmin|, an initial position for φ that is further away from the potential minimum leads
to a larger energy density at late times, unless there is an overtaking.12 On the other hand,
|φ̇| is set by the local tilt of the potential, and thus increases with |φ−φmin| when V ′′ > 0, and
decreases when V ′′ < 0. Thus with a negatively curved potential, the φ density isocurvature
and baryon isocurvature fluctuations have opposite signs.

7.2.2 An example with compensated isocurvature perturbation

Now let us focus again on the cosine potential (7.1), and study the resulting baryon and
CDM (φ) isocurvature perturbations, supposing that φ survives until now.

Using the analytic expression (7.14), we can make a crude estimate of the isocurvature
perturbations by assuming φ∗ ' φdec ' φosc, and further ignoring effects from the inhomoge-
neous onset of oscillations X . Then, in terms of the Fourier mode amplitude defined as (7.3),
one obtains

(S̃eff
CDMγ)k∗ ∼

{
ΩB

ΩCDM
tan−1

(
φ∗
f

)
+

Ωφ

ΩCDM
tan−1

(
φ∗
2f

)}
H∗
2πf

. (7.15)

We can expect this approximation to work well at small |φ∗|/f , where the potential ap-
proaches a quadratic and thus X is actually absent.

12This is also the reason why axion isocurvature perturbations can be enhanced by anharmonic effects, but
cannot be eliminated [33, 34].
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Figure 4. Baryon and CDM isocurvature perturbations at the pivot scale, as functions of the initial
field value along a cosine potential. Left: Fourier component amplitudes. Right: power spectrum am-
plitudes. See the text for the precise definition of both quantities. The solid lines show numerically
computed results for the normalized baryon isocurvature (ΩB/ΩCDM)SBγ (blue), φ density isocurva-
ture Sφγ (red), and effective CDM isocurvature Seff

CDMγ with Ωφ/ΩCDM = 0.1 (green), 0.3 (orange),
1 (magenta). In the left panel we also show the analytic estimates of the normalized baryon isocur-
vature (yellow dashed), and φ density isocurvature (pink dashed). The horizontal line in the right
figure shows the Planck upper bound on the effective CDM isocurvature. The baryon isocurvature is
compensated for by CDM isocurvature in the region φ∗/f > π/2, where the Planck constraint can be
evaded even though the individual baryon and CDM isocurvature perturbations are large.

We have also numerically computed the isocurvature perturbations, as was done in
section 7.1. However here we also computed the φ density isocurvature perturbations via
Sφγ = (δρφ/ρφ)ρ=const., by evaluating the density fluctuations on some arbitrary uniform-
density slice when φ is harmonically oscillating.

The model parameters here should be chosen to suppress the φ abundance as Ωφ≤ΩCDM,
so that φ can be the CDM. The analysis of Ωφ for the quadratic case (6.14) indicates that, for
instance, a number of particle species i greater than ∼ 100 can be used for suppressing Ωφ.
Recall also that the bound of (6.14) was derived using the lower bound (6.12) on Hdec,
thus a low decoupling scale is further needed. (Hence, while the scenario with compensated
isocurvature can alleviate the isocurvature constraint, it will typically still disfavor high-scale
inflation.) For the numerical computations, we chose

H∗ = 1.0× 107 GeV, Hdec = 1.0× 10−2 GeV, mφ = 1.3× 10−2 GeV, f = 3.2× 109 GeV.
(7.16)

Such a choice, especially with the large hierarchy between H∗ and Hdec, was prohibited in
section 6.2 where we considered a ‘reasonable’ set of particle species. However here we are
interested in the extreme case with Ωφ ≤ ΩCDM, which is allowed only under specific setups
in the particle content, such as with a large number of species. By fine tuning the parameters
in the particle content, it is in principle possible to adopt the parameters of (7.16). We also
note that with this parameter set, if φ is a PNGB with f being the symmetry breaking scale,
then the reheating temperature needs to be close to the decoupling temperature to avoid the
symmetry from being restored at reheating.

We show the resulting baryon and CDM (φ) isocurvature perturbations at the pivot scale
in figure 4, where the amplitudes of the Fourier mode (S̃)k∗ and the power spectrum P(k∗)
are shown in the left and right panels, respectively. The numerically computed results are
shown as the solid lines. The blue lines represent the baryon isocurvature SBγ normalized
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by the abundance ratio ΩB/ΩCDM, and the red lines are for the φ density isocurvature Sφγ
without any normalization factor. In the left panel we also show the crude estimates given by
the analytic expression of (7.15), whose first term gives the normalized baryon isocurvature
(shown as the yellow dashed line in the figure), and the second term without Ωφ/ΩCDM gives
the φ density isocurvature (pink dashed line). As for the baryon isocurvature, the numerical
(blue) and analytic (yellow dashed) results are seen to agree quite well, as was also the case in
figure 3. On the other hand for the φ density isocurvature, as we have expected, the numerical
(red) and analytic (pink dashed) results agree well only at φ∗/f < 1. While the analytic
estimate asymptotes to zero as φ∗ approaches the hilltop (i.e. πf), the numerical results
turn into an increasing function above the inflection point. In particular, the φ density
fluctuations are strongly enhanced close to the hilltop. These behaviors arise due to the
inhomogeneous onset of oscillations, which is known to produce large perturbations especially
for hilltop potentials. Effects of the inhomogeneous onset of oscillations have been studied
both numerically and analytically in previous works in the context of curvatons [21, 35], and
QCD axions [33, 34].

In the figures we also display the effective CDM isocurvature Seff
CDMγ (7.13). In order

to see how the presence of the φ density isocurvature affects the total effective isocurvature,
here we have taken the φ density fraction Ωφ/ΩCDM as a free parameter;13 we have chosen
Ωφ/ΩCDM = 0.1, 0.3, and 1, which are respectively shown as the green, orange, and ma-
genta lines. As Ωφ/ΩCDM is varied between 0 and 1, the effective CDM isocurvature shifts
between the normalized baryon isocurvature and the φ density isocurvature. The effective
isocurvature with Ωφ/ΩCDM = 0, i.e. the pure baryon isocurvature (blue), is suppressed at
around the inflection point φ∗/f = π/2, as we already studied in section 7.1. For nonzero
values of Ωφ/ΩCDM, the baryon isocurvature is compensated for by CDM isocurvature in
the region φ∗/f > π/2. As Ωφ/ΩCDM increases, the value of φ∗ where Seff

CDMγ crosses zero
shifts towards larger values; there the isocurvature constraints from CMB measurements are
evaded, even though the individual baryon and CDM isocurvature perturbations are large. At
Ωφ/ΩCDM & 0.8, the effective CDM isocurvature closely follows the φ density isocurvature,
hence is nonzero for all values of φ∗.

8 Conclusions

The goal of this paper was to investigate the cosmological aspects of spontaneous baryogenesis
driven by a scalar field. We have provided general requirements for a successful spontaneous
baryogenesis that are independent of the particle physics model. The particularly important
constraints were obtained by studying the backreaction of the produced baryons on the
scalar field during baryogenesis, the cosmological expansion history after baryogenesis in the
presence of the oscillating scalar, and the baryon isocurvature perturbations. The various
constraints are summarized in section 6.1.

We then performed a comprehensive study of the minimal scenario with a quadratic
scalar potential, and demonstrated that cosmological considerations alone tightly restrict
the model parameters. It was shown that the energy scales of inflation, reheating, and
decoupling cannot be separated by more than a few orders of magnitude, and thus an efficient
(p)reheating is required for spontaneous baryogenesis. Furthermore, for a given inflation

13Here we are treating the fraction Ωφ/ΩCDM as a free parameter, however we should note that the φ abun-
dance actually depends on φ∗. The abundance increases especially as φ∗ moves towards the hilltop, as the
onset of the oscillation is delayed.
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scale, the mass and the decay constant of the scalar are constrained to lie within ranges of at
most a few orders of magnitude. This in turn suggests that, once any of the model parameters
is fixed by other considerations such as from particle physics, then the inflation scale can be
predicted. As the minimal scenario is thus tightly constrained from cosmology, it would be
interesting to explore its phenomenological consequences. It is also very important to study
explicit constructions of spontaneous baryogenesis in particle physics models, taking into
account our cosmological constraints. We also note that the generalization of our discussions
to scenarios of baryogenesis via spontaneous leptogenesis is straightforward.

As an extension to the minimal setup, we further explored spontaneous baryogenesis
with a nonquadratic scalar potential. We particularly focused on periodic potentials with
inflection points, such as a cosine potential, which can arise if the scalar is a PNGB of
an approximate U(1) symmetry corresponding to the baryon number. We showed that the
baryon isocurvature perturbation vanishes in the vicinity of the inflection point, and thus
the tension between high-scale inflation and spontaneous baryogenesis can be alleviated.

We also explored a possibility that the scalar survives until now and constitutes
(a fraction of) CDM. We explicitly demonstrated that in such cases, the baryon isocur-
vature perturbation can be compensated by the CDM isocurvature, and therefore escapes
the CMB constraints.

One of the general lessons of this work is that any scenario that exploits scalar con-
densates in the early universe can leave non-negligible traces in the subsequent cosmology,
therefore requires careful considerations. Cosmological constraints on such scenarios are es-
pecially powerful when the scalar field dynamics in the very early times is related to that in
later times in a rather straightforward way. On the other hand, the presence of a strongly
time-dependent scalar potential, or a strong renormalization group running, or multi-field
dynamics can complicate the relation between the physics at early and late times. It would
also be interesting to extend our analysis to study such cosmological scenarios.
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A Comments on spontaneous baryogenesis from decay of φ

In the main text, we have analyzed spontaneous baryogenesis driven by a scalar field that
slowly varies along its potential while baryon violating interactions are in thermal equilibrium.
However, as was pointed out in [2], there can also be baryogenesis after the interactions have
decoupled, when the scalar decays through the (∂µφ)jµ coupling into particles that carry
baryon numbers. The works [6, 7] further studied this effect in a flat spacetime, by treating
the decaying φ as a classical field with damped oscillations. Through Bogoliubov calculations,
they found the net baryon density produced by the time the oscillation has damped away to
be proportional to the cube of the initial field amplitude,

|nB| ∼ Γφf
2

(
φ̄

f

)3

, (A.1)

where φ̄ is the initial oscillation amplitude of φ. Here, whether a net baryon or antibaryon
number is produced is set by the initial phase of the oscillation.
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We can expect the result (A.1) in flat space to be generalized to an expanding universe
by taking φ̄ as the oscillation amplitude right before the decay of φ, i.e. when H = Γφ. Here,
as φ already begins to slowly decay once it starts to oscillate, one may expect to use the
field amplitude at the onset of oscillation |φosc|, instead of at later when H = Γφ. However
it should be noted that while H � Γφ, the change in the oscillation amplitude due to the
decay of φ during one Hubble time is suppressed as

|∆φ̄3| ∼ φ̄2|∆φ̄| ∼ Γφ
H
φ̄3. (A.2)

Thus during the early stages of the oscillation, the field amplitude is damped mainly due
to the expansion of the universe. In other words, in an expanding universe, only a tiny
fraction of the φ density at the onset of the oscillations can be used for creating baryons
(unless φ decays soon after starting to oscillate.) Therefore one cannot simply substitute
|φosc| into (A.1) to estimate the baryon number produced from the oscillating scalar while
H � Γφ. The baryon production at the beginning of the oscillations is expected to be
suppressed due to the factor of Γφ/H, but it would be worthwhile to compute this effect
explicitly by including the expansion of the universe in the calculations.

Let us now give an order-of-magnitude estimate of the baryon asymmetry produced
from the scalar decay, by using (A.1) with φ̄ taken to be the oscillation amplitude when
H = Γφ, i.e.,

|nB| ∼ Γφf
2

(
φ̄decay

f

)3

. (A.3)

Here we focus on the case with a quadratic potential for the scalar,

V (φ) =
1

2
m2
φφ

2, (A.4)

under which the field amplitude of an oscillating φ redshifts as φ̄ ∝ a−3/2. In this appendix
we are interested in spontaneous baryogenesis induced by the decay of φ, thus we do not
necessarily have to require reheating to have taken place prior to the decay (although, the
oscillation still should start after inflation, otherwise the field amplitude would be damped
away and the produced baryon number (A.3) would be extremely tiny.) However we will soon
see that in a matter-dominated universe, the resulting baryon asymmetry would be smaller
compared to that in a radiation-dominated universe. Hence let us consider a radiation-
dominated background and use H ∝ a−2, where for simplicity we ignore the time-variation
of the relativistic degrees of freedom. Then the field amplitude upon decay is expressed in
terms of the field value at the onset of oscillations as

φ̄decay = |φosc|
(

Γφ
Hosc

)3/4

. (A.5)

Further using Hosc ∼ mφ, φosc ∼ φ∗ (as in the main text, asterisks are used for values when
the pivot scale k∗ exits the horizon during inflation), and also sdecay ∼ (MpΓφ)3/2 for the
entropy density at φ-decay, we obtain the baryon-to-photon ratio as∣∣∣nB

s

∣∣∣
decay

∼ f2

M
3/2
p Γ

1/2
φ

( |φ∗|
f

)3( Γφ
mφ

)9/4

∼
β7/4m3

φ

M
3/2
p |φ∗|3/2

( |φ∗|
f

)9/2

. (A.6)

Upon moving to the far right hand side, we have parameterized the decay rate in terms of β
as we did in (4.8).
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The baryon isocurvature perturbation is estimated as PBγ(k∗) ∼ (H∗/2πφ∗)
2, hence the

Planck limit on isocurvature (5.14) yields (H∗/φ∗)
2 . 10−7. Further using mφ < H∗, the

field bound |φ∗| . f (cf. discussions around (6.2)), and β . 1 (cf. below (4.8)), we obtain an
upper bound on the ratio (A.6) as

∣∣∣nB
s

∣∣∣
decay

. 10−5

(
H∗
Mp

)3/2

. (A.7)

As current observational limits on primordial gravitational waves indicate an upper bound
on the inflation scale of H∗ . 1014 GeV [27], the baryon asymmetry produced at the decay
is bounded as ∣∣∣nB

s

∣∣∣
decay

. 10−12. (A.8)

This bound becomes stricter if the φ-decay happens during an (effectively) matter-dominated
epoch (e.g. while the universe is dominated by an oscillating inflaton, or if φ comes to dom-
inate the universe before decaying), as then the power of the suppression factor Γφ/Hosc

in (A.5) would become larger. We also mention that the produced baryon asymmetry is
smaller if φ also has decay channels into particles without a baryon number. Thus we con-
clude that, at least with quadratic potentials, spontaneous baryogenesis induced by the decay
of φ is insignificant.

References

[1] A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the
Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

[2] A.G. Cohen and D.B. Kaplan, Thermodynamic Generation of the Baryon Asymmetry, Phys.
Lett. B 199 (1987) 251 [INSPIRE].

[3] A.G. Cohen and D.B. Kaplan, Spontaneous baryogenesis, Nucl. Phys. B 308 (1988) 913
[INSPIRE].

[4] M. Dine, P. Huet, R.L. Singleton, Jr and L. Susskind, Creating the baryon asymmetry at the
electroweak phase transition, Phys. Lett. B 257 (1991) 351 [INSPIRE].

[5] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Spontaneous baryogenesis at the weak phase
transition, Phys. Lett. B 263 (1991) 86 [INSPIRE].

[6] A. Dolgov and K. Freese, Calculation of particle production by Nambu Goldstone bosons with
application to inflation reheating and baryogenesis, Phys. Rev. D 51 (1995) 2693
[hep-ph/9410346] [INSPIRE].

[7] A. Dolgov, K. Freese, R. Rangarajan and M. Srednicki, Baryogenesis during reheating in
natural inflation and comments on spontaneous baryogenesis, Phys. Rev. D 56 (1997) 6155
[hep-ph/9610405] [INSPIRE].

[8] M.-z. Li, X.-l. Wang, B. Feng and X.-m. Zhang, Quintessence and spontaneous leptogenesis,
Phys. Rev. D 65 (2002) 103511 [hep-ph/0112069] [INSPIRE].

[9] T. Chiba, F. Takahashi and M. Yamaguchi, Baryogenesis in a flat direction with neither baryon
nor lepton charge, Phys. Rev. Lett. 92 (2004) 011301 [Erratum ibid. 114 (2015) 209901]
[hep-ph/0304102] [INSPIRE].

[10] S.M. Carroll and J. Shu, Models of baryogenesis via spontaneous Lorentz violation, Phys. Rev.
D 73 (2006) 103515 [hep-ph/0510081] [INSPIRE].

– 28 –

http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://inspirehep.net/search?p=find+J+%22Sov.Phys.Usp.,34,392%22
http://dx.doi.org/10.1016/0370-2693(87)91369-4
http://dx.doi.org/10.1016/0370-2693(87)91369-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B199,251%22
http://dx.doi.org/10.1016/0550-3213(88)90134-4
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B308,913%22
http://dx.doi.org/10.1016/0370-2693(91)91905-B
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B257,351%22
http://dx.doi.org/10.1016/0370-2693(91)91711-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B263,86%22
http://dx.doi.org/10.1103/PhysRevD.51.2693
http://arxiv.org/abs/hep-ph/9410346
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9410346
http://dx.doi.org/10.1103/PhysRevD.56.6155
http://arxiv.org/abs/hep-ph/9610405
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610405
http://dx.doi.org/10.1103/PhysRevD.65.103511
http://arxiv.org/abs/hep-ph/0112069
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112069
http://dx.doi.org/10.1103/PhysRevLett.92.011301
http://arxiv.org/abs/hep-ph/0304102
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304102
http://dx.doi.org/10.1103/PhysRevD.73.103515
http://dx.doi.org/10.1103/PhysRevD.73.103515
http://arxiv.org/abs/hep-ph/0510081
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510081


J
C
A
P
0
8
(
2
0
1
6
)
0
5
2

[11] A. Kusenko, L. Pearce and L. Yang, Postinflationary Higgs relaxation and the origin of
matter-antimatter asymmetry, Phys. Rev. Lett. 114 (2015) 061302 [arXiv:1410.0722]
[INSPIRE].

[12] A. Kusenko, K. Schmitz and T.T. Yanagida, Leptogenesis via Axion Oscillations after
Inflation, Phys. Rev. Lett. 115 (2015) 011302 [arXiv:1412.2043] [INSPIRE].

[13] R. Daido, N. Kitajima and F. Takahashi, Axion domain wall baryogenesis, JCAP 07 (2015)
046 [arXiv:1504.07917] [INSPIRE].

[14] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
Lett. B 91 (1980) 99 [INSPIRE].

[15] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not.
Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].

[16] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

[17] M.S. Turner, A.G. Cohen and D.B. Kaplan, Isocurvature Baryon Number Fluctuations in an
Inflationary Universe, Phys. Lett. B 216 (1989) 20 [INSPIRE].

[18] H. Davoudiasl, R. Kitano, G.D. Kribs, H. Murayama and P.J. Steinhardt, Gravitational
baryogenesis, Phys. Rev. Lett. 93 (2004) 201301 [hep-ph/0403019] [INSPIRE].

[19] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters,
arXiv:1502.01589 [INSPIRE].

[20] T. Chiba, Slow-Roll Thawing Quintessence, Phys. Rev. D 79 (2009) 083517 [Erratum ibid.
D 80 (2009) 109902] [arXiv:0902.4037] [INSPIRE].

[21] M. Kawasaki, T. Kobayashi and F. Takahashi, Non-Gaussianity from Curvatons Revisited,
Phys. Rev. D 84 (2011) 123506 [arXiv:1107.6011] [INSPIRE].

[22] A.D. Linde and V.F. Mukhanov, NonGaussian isocurvature perturbations from inflation, Phys.
Rev. D 56 (1997) R535 [astro-ph/9610219] [INSPIRE].

[23] K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology,
Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

[24] D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys.
Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

[25] T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave
background, Phys. Lett. B 522 (2001) 215 [Erratum ibid. B 539 (2002) 303] [hep-ph/0110096]
[INSPIRE].

[26] D.H. Lyth and A.R. Liddle, The primordial density perturbation: Cosmology, inflation and the
origin of structure, Cambridge University Press, Cambridge, U.K. (2009), pg. 497.

[27] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation,
arXiv:1502.02114 [INSPIRE].

[28] E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation,
Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

[29] L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion
Monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

[30] G.P. Holder, K.M. Nollett and A. van Engelen, On Possible Variation in the Cosmological
Baryon Fraction, Astrophys. J. 716 (2010) 907 [arXiv:0907.3919] [INSPIRE].

[31] D. Grin, O. Dore and M. Kamionkowski, Compensated Isocurvature Perturbations and the
Cosmic Microwave Background, Phys. Rev. D 84 (2011) 123003 [arXiv:1107.5047] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevLett.114.061302
http://arxiv.org/abs/1410.0722
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0722
http://dx.doi.org/10.1103/PhysRevLett.115.011302
http://arxiv.org/abs/1412.2043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2043
http://dx.doi.org/10.1088/1475-7516/2015/07/046
http://dx.doi.org/10.1088/1475-7516/2015/07/046
http://arxiv.org/abs/1504.07917
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07917
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B91,99%22
http://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,195,467%22
http://dx.doi.org/10.1103/PhysRevD.23.347
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D23,347%22
http://dx.doi.org/10.1016/0370-2693(89)91362-2
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B216,20%22
http://dx.doi.org/10.1103/PhysRevLett.93.201301
http://arxiv.org/abs/hep-ph/0403019
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0403019
http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1103/PhysRevD.79.083517
http://arxiv.org/abs/0902.4037
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4037
http://dx.doi.org/10.1103/PhysRevD.84.123506
http://arxiv.org/abs/1107.6011
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.6011
http://dx.doi.org/10.1103/PhysRevD.56.R535
http://dx.doi.org/10.1103/PhysRevD.56.R535
http://arxiv.org/abs/astro-ph/9610219
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9610219
http://dx.doi.org/10.1016/S0550-3213(02)00043-3
http://arxiv.org/abs/hep-ph/0109214
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109214
http://dx.doi.org/10.1016/S0370-2693(01)01366-1
http://dx.doi.org/10.1016/S0370-2693(01)01366-1
http://arxiv.org/abs/hep-ph/0110002
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0110002
http://dx.doi.org/10.1016/S0370-2693(02)02070-1
http://arxiv.org/abs/hep-ph/0110096
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0110096
http://arxiv.org/abs/1502.02114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02114
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://arxiv.org/abs/0808.0706
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0706
http://dx.doi.org/10.1088/0004-637X/716/2/907
http://arxiv.org/abs/0907.3919
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3919
http://dx.doi.org/10.1103/PhysRevD.84.123003
http://arxiv.org/abs/1107.5047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5047


J
C
A
P
0
8
(
2
0
1
6
)
0
5
2

[32] D. Grin, D. Hanson, G.P. Holder, O. Doré and M. Kamionkowski, Baryons do trace dark
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