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1 Introduction

The recent release of the Planck satellite data has had important and profound consequences
for our understanding of primordial cosmology. These data clearly support the idea that
inflation is the correct description of the physical conditions that prevailed in the early uni-
verse since they are in agreement with several important and generic predictions made by the
inflationary theory. For instance, a basic property of inflation is that spatial curvature should
vanish. And one indeed finds that 100ΩK = −0.05+0.65

−0.66 by combining Planck with Wilkinson
Microwave Anisotropy Probe (WMAP) large-scale polarisation (denoted WP in ref. [1]) and
Baryon Acoustic Oscillations (BAO) measurements. Another important consequence of the
Planck data is the detection of a spectral tilt, nS = 0.9603±0.0073 thus ruling out scale invari-
ance at more than 5σ, a level of significance predicted in ref. [2], and convincingly confirming
a crucial inflationary prediction. Moreover, the Planck data seem to point to the simplest
(but non-trivial) version of inflation. Indeed, neither a significant running nor a significant
running of the running have been detected since it is found that dnS/d ln k = −0.0134±0.009
(Planck+WP) and d2nS/d ln2 k = 0.02 ± 0.016 (Planck+WP), with a pivot scale chosen at
k∗ = 0.05Mpc−1. The data are also compatible with adiabaticity at 95% CL. If one de-

fines α
(`min,`max)
ab ≡ (∆T )2

ab (`min, `max)/ (∆T )2
tot (`min, `max), with a, b = R, I, where I stands

for Cold Dark Isocurvature (CDI), Neutrino Density Isocurvature (NDI) or Neutrino Ve-
locity Isocurvature (NVI) and (∆T )2

X (`min, `max) =
∑`=`max

`=`min
(2`+ 1)CTT`,X , then one obtains

α
(2,2500)
RR ∈ [0, 98, 1.07] and α

(2,2500)
RI ∈ [−0.093, 0.014] for I = CDI, α

(2,2500)
RR ∈ [0, 99, 1.09]

and α
(2,2500)
RI ∈ [−0.18, 0.0] for I = NDI, α

(2,2500)
RR ∈ [0, 96, 1.05] and α

(2,2500)
RI ∈ [−0.09, 0.026]
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for I = NVI. This implies that isocurvature modes are compatible with zero although the
analysis is done with one isocurvature mode at a time only. A quite large non-adiabatic
contribution remains possible but, as discussed in ref. [3], this is in fact driven by the data in
the range ` ≤ 40. The Planck data also imply that primordial non-Gaussianity is compatible
with zero, namely f loc

NL = 2.7±5.8, f eq
NL = −42±75 and fortho

NL = −25±39 [4]. Some anomalies
or “glitches” have also been reported but the corresponding statistical significance is unclear
and, in any case, not yet sufficient to claim a detection.

Therefore, the overall picture that emerges is that the inflationary mechanism is non-
trivial but, at the same time, “non-exotic”. In particular, the complicated scenarios that
were considered, at some point, as attractive are now disfavoured (but not necessarily ruled
out). Therefore, in accordance with an Occam’s razor principle, that the simplest viable
explanation for the observations at hand ought to be preferred, it is appropriate to consider
— at least for the moment — the simplest scenarios, namely single field slow-roll inflation
with a standard kinetic term. This type of scenarios is characterised by one free function, the
potential V (φ). Therefore, identifying the “best model of inflation” boils down to determining
the potential V (φ) which fits the data the best with the smallest number of free parameters
and the least fine-tuning.

In order to achieve this task, it is first necessary to identify all the scenarios belonging
to the above-mentioned class. This is not so easy since, even if restricted to a small part
of the inflationary landscape, the “single-field region” remains densely populated. This was
accomplished recently in the “Encyclopædia Inflationaris” of ref. [5]. Once all the single-
field models have been identified, one needs to quantify statistically whether a model is
“better” than another. This question can be addressed in the framework of Bayesian model
comparison, which requires the computation of the Bayesian evidence, or global likelihood,
i.e. the integral of the likelihood over the prior space for each model. The ratio of such
evidences then gives the Bayes factor, representing the degree by which the Planck data have
modified our a priori relative belief in each pair of models. From the Bayes factors, one can
then evaluate the posterior probability for each model, and thus identify the “best” (in a
Bayesian sense) model of inflation. The calculation of the Bayesian evidence of each of the
Encyclopædia Inflationaris scenarios constitutes the main subject of the present paper.

This article is organised as follows. In the next section, section 2, we briefly present
the theory of Bayesian inference and how it can be used to perform model comparison. In
sub-section 2.1, we recall the definition of the Bayesian evidence and, in sub-section 2.2, we
discuss how this quantity depends on the prior choices. In sub-section 2.3, we also introduce
the Bayesian complexity and explains its meaning. In section 3, we discuss how the Bayesian
evidences and complexities can be calculated efficiently and rapidly from the ASPIC1 library.
In sub-section 3.1, we present the idea behind the method introduced in ref. [6] (and used in
the present article) and, in sub-section 3.2, we detail how the effective likelihood, which is the
crucial tool of the method of ref. [6], can be determined from the Planck 2013 data. In sub-
section 3.3, we describe the numerical methods used in order to calculate the evidences from
the effective likelihood. We also specify the priors chosen on the non-primordial parameters.
In sub-section 3.4, we briefly discuss the accuracy of our calculations and its limitations.
Then, in section 4, we present our results, namely the numerical values of the evidence and
complexity for all the models considered and we discuss the physical implications of our
calculations. In section 5, we summarise our findings and present our conclusions. Finally,

1http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html.

– 2 –

http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html


J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

in appendix A, we review in detail how the priors, for each model, have been chosen. Special
attention has been paid to their physical origin and we discuss how the Bayesian evidence
would be modified if the priors were changed.

2 Bayesian inference and model comparison

In this section, we briefly review Bayesian inference theory and Bayesian model comparison,
which we adopt to compare the performance of the Encyclopædia Inflationaris scenarios.

2.1 Bayes factor and posterior model probability

LetMi be a collection of Nmod models (i = 1, · · · , Nmod) describing a given physical situation.
In this paper, we will denote by “model” a choice of inflationary potential, together with
the specification of a prior distribution for its parameters. A given shape of the potential
can support different prior choices, and we call the selection of a potential shape (without
specification of a prior for its parameters) a “scenario”. Thus within a given inflationary
scenario there can be multiple models. The following considerations are however fully general.
A model Mi is specified by a set of Ni parameters θij (with j = 1, · · · , Ni) and by the
prior probability distribution of each of its parameters, namely π(θij |Mi). In the context of
inference on the model’s parameter (where the model is assumed to be correct), the prior can
be set from the posterior of a previous observation. However, if one is interested in assessing
a model’s performance via Bayesian model comparison, it is preferable to understand the
priors in terms of the a priori available parameter space under the theory represented by
model Mi (see e.g. refs. [7–15] for further details).

Bayesian inference uses Bayes’ theorem to update our degree of belief in hypotheses
when some new data D becomes available (here, we think of D as the Cosmic Microwave
Background - CMB - Planck data but the formalism is generic). Assuming that modelMi is
true, from Bayes’ theorem, the posterior probability of its parameters θij ’s can be expressed as

p (θij |D,Mi) =
1

E(D|Mi)
L (θij)π (θij |Mi) , (2.1)

where L(θij) = p (D|θij ,Mi) is the likelihood function for the parameters of model Mi.
The quantity E(D|Mi) is just a normalisation factor, called the Bayesian evidence or model
likelihood, and it is given by

E (D|Mi) =

∫
dθijL(θij)π (θij |Mi) . (2.2)

If we are only interested in constraining the parameters θij of the model, then the Bayesian
evidence can be neglected. However, in the following we shall focus on the question of assess-
ing the posterior model’s probability, for which the Bayesian evidence plays a central role.

Using again Bayes’ theorem, one obtains the posterior probability of the model Mi,
which is given by

p(Mi|D) =
E(D|Mi)π(Mi)

p(D)
, (2.3)

where π(Mi) is the prior belief in model Mi. The quantity p(D) is a normalisation factor
(which only depends on the data but not on the model under consideration), given by

p(D) =
∑
i

E(D|Mi)π(Mi). (2.4)

– 3 –
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| lnBi
REF| Odds Strength of evidence

< 1.0 . 3 : 1 Inconclusive
1.0 ∼ 3 : 1 Weak evidence
2.5 ∼ 12 : 1 Moderate evidence
5.0 ∼ 150 : 1 Strong evidence

Table 1. Jeffreys’ scale for evaluating the strength of evidence when comparing two models,Mi versus
a reference model MREF, here slightly modified following the prescriptions given in refs. [15, 16].

When comparing two models against each other, this factor cancels. If one defines a “reference
model”, MREF, against which all other models are compared, the posterior odds between a
model Mi and the reference model are given by

p(Mi|D)

p(MREF|D)
= Bi

REF

π(Mi)

π(MREF)
. (2.5)

Here, we have introduced the Bayes factor Bi
REF which can be expressed as the ratio of the

evidences, namely

Bi
REF ≡

E(D|Mi)

E(D|MREF)
. (2.6)

Under the principle of indifference, we can assume non-committal model priors, i.e. we give
all models the same a priori probability, π(Mi) = 1/Nmod, in which case the Bayes factor
becomes identical with the posterior odds. With this assumption, a Bayes factor larger
(smaller) than one means a preference for the modelMi over the reference model (a preference
for the reference model over Mi). The “Jeffreys’ scale”, see table 1, gives an empirical
prescription for translating the values of Bi

REF into strengths of belief.
With non-committal model priors, the posterior probability for model Mi is then

given by

p(Mi|D) =
Bi

REF∑
j B

j
REF

. (2.7)

This implicitly further assumes that the list of Nmod is reasonably complete — i.e. that there
isn’t a yet undiscovered better models that have not been considered a priori (see ref. [17]
for a Bayesian method leading to the discovery of such unknown models).

The fundamental idea underpinning Bayesian model comparison is that “economic”
models that fit well the data while exhibiting strong predictivity are rewarded, while mod-
els with a large number of free parameters that turn out not to be required by the data
are penalised for the wasted parameter space. Therefore, in a Bayesian sense, the “best”
model is the one that achieves the best compromise between quality of fit and simplicity
(see ref. [15, 18] for further details and ref. [19, 20] for a discussion of issues in Bayesian-
frequentist calibrations). One of the attractive features of Bayesian model comparison is
that it automatically embodies a quantitative version of Occam’s razor, that is to say, the
principle of simplicity (see ref. [21] for a critical discussion and comparison with frequentist
methods). The price to pay is that the Occam’s razor effect depends in an irreducible way
on the choice of prior (and particularly on its range) hence the latter must be set according
to physical considerations stemming from the model. We now turn to the crucial question of
prior sensitivity.

– 4 –
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2.2 Prior sensitivity considerations

As mentioned above, since the priors π(θij |Mi) play a crucial role, a detailed description on
how they have been chosen is provided for each model in appendix A. We also discuss how
the evidence is affected by alternative prior choices within various theoretical scenarios. For
this reason, the number of evidences presented in this paper is much larger than the number
Encyclopædia Inflationaris scenarios. Indeed, a given field potential can support several
prior choices motivated by different theories, each of them leading to different evidences. We
thus consider them as different models.

For each field potential, physical considerations have been used to determine the shape
of the prior. If a parameter is small but its order of magnitude is unknown, as it is typically
the case for a coupling constant used in a perturbative expansion, then a Jeffreys’ prior
(uniform in the logarithm of the parameter) is the most uninformative. If, on the contrary,
we deal with a parameter whose order of magnitude is known, then this is a scale parameter
and a uniform prior on the parameter itself is appropriate. As priors must be proper (i.e.,
normalised), the support of the prior [θmin, θmax] must also be chosen according to the natural
values allowed by the underlying physical scenario. Indeed, the strength of the Occam’s razor
effect depends on this range, as generically the Bayesian evidence scales as (for uniform priors)

E(D|Mi) ∝
1

θmax − θmin
, (2.8)

for cases where the support of the likelihood is much smaller than the support of the prior.
However, since the Jeffreys’ scale is logarithmic in the Bayes factor, the dependence on the
prior range is relatively mild. Still, there are many cases in which θmin and θmax remain
unspecified by the model. When this happens, attention has been paid on how the evidence
is affected when this range is modified.

From the above argument it follows that one can estimate the variation in the evidence
that one would get from a change of the range of the prior simply by rescaling it proportionally
to the ratio of the prior volumes in the parameter space. This holds approximately true as
long as the support of the likelihood is well within that of the prior. This is more detailed in
appendix A where, if necessary, we discuss for each model how this calculation can be done
in practice.

Another often-encountered situation is when the likelihood is flat along the θik direction,
i.e. the data are insensitive to one of the parameters of the model under consideration. In
this case, the posterior for that parameter is identical to the prior and the Bayes factor
reduces to unity — the Bayesian evidence is insensitive to the number of unconstrained
parameters in a model. For such flat directions in parameter space, the prior boundary does
not matter (as long as the likelihood stays flat), and the evidence is unchanged by a rescaling
of the boundaries of the prior. A second quantity is thus required to measure the number of
effective parameters that the data can constrain in a given model. This can be implemented
in various way, as for instance by using Kullback-Leiber divergence between the prior and
the posterior, leading to the notion of model complexity that we now discuss [15, 22, 23].

2.3 Bayesian complexity

The number of parameters in a model is a poor description of its “complexity”, as parameters
that are not constrained by the data should not be counted. A better evaluation of complexity
(in a Bayesian sense) has been introduced by [24], who advocates using the relative entropy

– 5 –
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between the prior and the posterior distribution (i.e. , the Kullback-Leibler divergence) as a
better suited measure of the number of free parameters in a model that the data can actually
constrain.

As shown in ref. [23], such an effective number of parameters, or Bayesian complexity,
C, can be written as

Ci = 〈−2 logL (θij)〉+ 2 logL
(
θML
ij

)
, (2.9)

where 〈·〉 denotes averaging over the posterior p(θij |D,Mi) and θML
ij is the maximum-

likelihood estimate of the model’s parameters which can be approximately obtained from
the posterior samples used to map out the posterior distribution2. The Bayesian complexity
is thus not an absolute measure of the number of constrained parameters — rather it assesses
the constraining power of the data with respect to the measure provided by the prior.

The use of model complexity together with the Bayesian evidence allows us to distinguish
between cases where E(D|Mi) ' E(D|Mj) (i.e. , two models exhibiting approximately the
same Bayesian evidence) but Ci ' Cj , in which case the data is insufficient to distinguish
between the two models (as their effective complexities are the same); or the case where
Ci > Cj , which means that the data are sufficient to measure extra parameters of model i
but that those parameters are not required by the evidence, in which case we ought to prefer
model j, as the one with the smallest (measured) complexity.

3 Fast Bayesian evidence calculation

The computation of the Bayesian evidence can be a numerically demanding task, as it requires
the evaluation of the multi-dimensional integral of eq. (2.2). This is particularly computa-
tionally intensive for Markov Chains Monte-Carlo (MCMC)-based methods. In recent years,
a powerful tool has emerged in the shape of nested sampling, and its implementation in the
MultiNest code [26, 27]. Even with such a highly efficient algorithm, the Bayesian evidence
requires hundreds of thousands of likelihood evaluations for each model. A typical analysis
based on the Planck likelihood coupled with an exact inflationary code to integrate the per-
turbations requires roughly 3 × 105 CPU hours (or 3.4 CPU years) of computing time on
modern x86 64 processors. Performing this for each model considered here would become
prohibitively time consuming, even with high-performance computing.

In this section, we briefly describe the method introduced in ref. [6] which allows us
to calculate the Bayesian evidences in a fraction of the time that would be required using
conventional tools. We also mention the limitation of the method, especially the fact that
the very low evidences may be poorly approximated.

3.1 Effective likelihood via slow-roll reparameterisation

Let us denote by aobs
`m the CMB temperature map recently observed by the Planck satellite.

From this map, one can estimate the measured multipole moments Cobs
` = 〈aobs

`m a
obs
`m

?〉. From
the ΛCDM model (or any other post-inflationary history) and the scenario of inflation, one
can compute the theoretical prediction for those multipole moments, Cth

` (θs, θreh, θinf) as a
function of the parameters in the model. Here, θs represents a set of parameters describing
post-inflationary physics, see eq. (3.12) for a precise definition, θreh are the parameters of
reheating and θinf describe the shape of the potential V (φ). The reheating epoch can be

2See however ref. [25] for the caveats that apply when one wants to derive maximum likelihood estimates
from Bayesian posterior maps.

– 6 –
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described either with θreh = (ρreh, wreh), namely the energy density of the universe at the
end of reheating and the mean equation of state parameter during reheating; or with the
completely generic rescaled reheating parameter θreh = ln(R), defined by

R ≡ Rrad
ρ

1/4
end

MPl

, Rrad ≡
aend

areh

(
ρend

ρreh

)1/4

. (3.1)

Here the indices “end” and “reh” denote the end of inflation and end of the reheating era
(i.e. the beginning of the radiation dominated era, see ref. [5] for further details), ρ and a
being the energy density of the universe and the FLRW scale factor, respectively. Here,
we have chosen to sample over the same optimised set discussed in refs. [6, 28–30], see
also refs. [31, 32]. All possible reheating histories are sampled using the rescaled reheating
parameter and with a prior uniform in its logarithm,

π(θreh) = π[ln(R)] = U(−46, 15). (3.2)

The boundaries of the prior support encompass all reheating histories satisfying the con-
straints that the mean equation of state during reheating verifies −1/3 < wreh < 1, and
ρnuc < ρreh < ρend. The last inequality enforces that reheating takes place after inflation and

before Big-Bang Nucleosynthesis (BBN). Practically, we have chosen ρ
1/4
nuc ≡ 10 MeV. More

details can be found in refs. [28–30, 33–37].

The expression for Cth
` can be written as

Cth
` (θs, θreh, θinf) =

∫ +∞

0

dk

k
j`(kr`ss)T (k; θs)Pζ(k; θreh, θinf), (3.3)

j` being a spherical Bessel function, r`ss the comoving radial distance to the last scattering
surface, T (k; θs) the transfer function which describes the evolution of cosmological perturba-
tions during the standard Friedmann-Lemâıtre eras and Pζ the inflationary power spectrum.

The posterior distribution for the parameters of interest is given by

p
(
θs, θreh, θinf |aobs

`m

)
=

1

E
L (θs, θreh, θinf)π (θs, θreh, θinf) , (3.4)

where L (θs, θreh, θinf) = p
(
aobs
`m |θs, θreh, θinf

)
∝ e−χ

2(θs,θreh,θinf)/2 is the likelihood function
(and the normalisation constant in front is irrelevant), χ2 being the effective chi-squared.
The prior distribution π (θs, θreh, θinf) describes our a priori state of knowledge about the
values of the parameters before our information is updated. Notice that, for clarity, we have
dropped the dependence on the model M under scrutiny. In eq. (3.4), E is the Bayesian
evidence discussed in the previous section and reads

E =

∫
dθsdθrehdθinfL (θs, θreh, θinf)π (θs, θreh, θinf) . (3.5)

It is the quantity we need to calculate for the 193 models considered here.

The effective chi-squared, and, therefore, the likelihood function, is a function of Cth
`

and of the data, namely

χ2 (θs, θreh, θinf) = χ2
[
Cth
` (θs, θreh, θinf) , a

obs
`m ,Σ

]
, (3.6)
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where Σ is the noise covariance matrix of the measurement. The above expression is only
illustrative — in practice one has to deal with more complex issues, including foregrounds, in-
strumental systematics and the measurements of polarisation in addition to temperature [38].
Assuming that the post-inflationary physics is the same for all inflationary scenarios, different
models have different evidences because they have a different power spectrum Pζ(k; θreh, θinf).
In order to calculate the evidence of a given inflationary model, one must therefore evalu-
ate Pζ(k; θreh, θinf) for the sampled values of θreh and θinf , then perform the integral (3.5).
In general, Pζ(k; θreh, θinf) is only known numerically and this procedure is computationally
intensive.

It is, however, possible to speed up dramatically this calculation if one uses the fact
that the inflationary models under consideration here are all slow-roll models. In that case,
there exists a general parametrisation of the power spectrum which is given by (k∗ is the
pivot scale)

Pζ(k) = P0

[
a0 (εn) + a1 (εn) ln

(
k

k∗

)
+

1

2
a2 (εn) ln2

(
k

k∗

)
+ . . .

]
= P∗

[
1 +

a1(εn)

a0(εn)
ln

(
k

k∗

)
+
a2(εn)

a0(εn)
ln2

(
k

k∗

)
+ . . .

]
,

(3.7)

where εn are the Hubble-flow parameters evaluated at Hubble exit and P0 represents the
overall normalisation [39, 40]. We have rendered explicit the well-measured quantity P∗ =
a0(εn)P0 = Pζ(k∗) which fixes the amplitude of the CMB anisotropies. The explicit form of
the ai’s as functions of εn is known [41].

Furthermore, one can express the Hubble flow parameters as a function of the more
fundamental inflationary parameters for every scenario. The explicit functionals εn(θreh, θinf)
are all provided in the ASPIC library and in the Encyclopædia Inflationaris.

The central idea, introduced in [6], is that the likelihood function entering the evidence
is invariant under a reparameterisation of the primordial power spectrum parameters. We
can thus rewrite the multipole moments (and hence the likelihood function which depends
on them) as Cth

` (θs, θreh, θinf) = Cth
` [θs, P∗(θreh, θinf), εn(θreh, θinf)]. The evidence of eq. (3.5)

becomes

E =

∫
dθsdθrehdθinfL [θs, P∗(θreh, θinf), εn(θreh, θinf)]π(θs)π(θreh, θinf) (3.8)

=

∫
dθrehdθinfLeff [P∗(θreh, θinf), εn(θreh, θinf)]π(θreh)π(θinf), (3.9)

where we have defined the effective likelihood, marginalised over the post-inflationary pa-
rameters, θs, as

Leff [P∗(θreh, θinf), εn(θreh, θinf)] ≡
∫

dθse
− 1

2
χ2[Cth

` (θs,P∗,εn),aobs`m ,Σ]π (θs) . (3.10)

In eq. (3.9) we have made the reasonable assumption that the prior on the post-inflationary,
reheating and primordial parameters are separable,3 i.e.

π(θs, θreh, θinf) = π(θs)π(θreh)π(θinf). (3.11)

3More precisely, it is sufficient to require that π(θs, θreh, θinf) = π(θs)π(θreh, θinf). However, it is sensible
to assume that the reheating and inflationary parameters are separable, too, thus leading to eq. (3.11).
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The effective likelihood, eq. (3.10), can be computed as a function of the slow-roll parameters,
P∗, εn, using machine-learning algorithms to interpolate the functional form of Leff(P∗, εn).
Seen as a function of the slow-roll parameters, Leff needs only to be computed once for
all inflationary models considered here. To then use it for a specific inflationary model,
it is sufficient to map its potential parameters θinf and reheating parameters θreh onto the
corresponding functionals, P∗(θinf , θreh), εn(θinf , θreh).

The computational advantages of our method are twofold. First, the evaluation of
the effective likelihood is very fast, since it is obtained as the output of a neural network
interpolator (typically, one evaluation requires less than a µs of CPU-time on standard x86 64

processor). Second, by integrating out once and for all the post-inflationary parameters from
the likelihood, we are left with a much reduced parameter space over which the Bayesian
evidence integral has to be computed. The dimensionality of θinf is at most three, while the
reheating is described by just one parameter, so that the Bayesian evidence integral is at
most four-dimensional. Thanks to this vastly increased efficiency, we were able to compute
a large number of Bayesian evidences with a much reduced numerical effort. More details
about the method can be found in ref. [6].

3.2 Effective likelihood from Planck 2013

In order to determine Leff, we have used the Planck 2013 data [42] together with the sec-
ond order slow-roll expansion of the primordial power spectra for both the scalar and tensor
perturbations. The full Planck likelihood is provided by the Planck collaboration [38]. Con-
cerning the post-inflationary universe, it is assumed to be a flat ΛCDM model such that the
parameters θs are:

θs =
(
Ωbh

2,Ωdmh
2, τ, 100θMC, A

PS
100, A

PS
143, A

PS
217, r

PS
143×217, A

CIB
143, A

CIB
217, r

CIB
143×217, γ

CIB,

AtSZ, AkSZ, ξ
tSZ×CIB, c100, c217, β

1
1

)
.

(3.12)

The usual ΛCDM parameters are the density of baryons Ωb, of cold dark matter Ωdm, the
reduced Hubble parameter today h, the Thompson optical depth τ to last scattering and an
angle, θMC, related to the angular size of the sound horizon on the last scattering surface [43].
The remaining parameters describe astrophysical signals on top of the CMB and any relevant
instrumental distortions, as they have been modelled by the Planck collaboration [1]. They
are the power contribution at ` = 3000 of unresolved point sources at 100 GHz, at 143 GHz, at
217 GHz and their cross correlation (APS

100, APS
143, APS

217, rPS
143×217). The next are their equivalent

for the Cosmic Infrared Background (CIB), namely ACIB
143, ACIB

217, rCIB
143×217, and γCIB stands for

the spectral index of the CIB angular power spectrum. The Sunyaev-Zel’dovich (SZ) signals,
either thermal or kinetic, and their correlations with the CIB are encoded in the parameters
AtSZ, AkSZ, ξtSZ×CIB. Finally, calibration and beam uncertainties are taken into account in
the last three parameters. More details on how these signals are accounted for can be found
in ref. [38].

Using the Planck likelihood and its associated public code CLIK, we have performed
a MCMC exploration of the parameter space (θs, P∗, ε1, ε2, ε3). In order to do so, we have
used the public code COSMOMC [43] complemented by a modified version of the CAMB code [44]
in order to implement as initial conditions the slow-roll primordial power spectra discussed
above. All εn in these equations are evaluated at the conformal time η∗ defined by k∗η∗ = −1,
k∗ = 0.05 Mpc−1 being the pivot scale.

The prior choices for the parameters θs have been chosen as in ref. [1]. For the primordial
parameter space, we have chosen a Jeffreys’ prior for P∗ such that ln(1010P∗) ∈ [2.7, 4.2],
i.e. centred around its well-measured value. The order of magnitude of the tensor-to-scalar
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Figure 1. Two-dimensional marginalised posterior distributions of the slow-roll parameters (P∗, ε1,
ε2, ε3) using the Planck 2013 data.

ratio being unknown, we have chosen a wide Jeffreys’ prior on ε1 as log(ε1) ∈ [−5,−0.7], the
upper bound being such that ε1 < 0.2 to be within the slow-roll approximation. Finally, for
ε2 and ε3 we have chosen uniform priors in [−0.2, 0.2]. The MCMC exploration has been
stopped once the total number of samples reached two millions, which corresponds to the
R-statistics convergence of COSMOMC (the Gelman-Rubin criterion) to be less than 10−3 (see
ref. [43]). The thus obtained two-dimensional marginalised posterior probability distributions
for the slow-roll parameters are shown in figure 1. More details on the analysis can be found
in ref. [6]. In particular, all the posteriors are compatible with those obtained by the Planck
Collaboration in refs. [1, 3].

These MCMC samples have then be used to determine the effective likelihood for infla-
tion Leff according to eq. (3.10), i.e. by marginalisation over all the θs. However, as shown
in figure 1, ε3 is not well constrained. Therefore, following ref. [6], it is more convenient to
fit a three-dimensional likelihood Leff(P∗, ε1, ε2) by additionally marginalising over ε3. Notice
that doing so renders our analysis robust with respect to any uncertainties that are associ-
ated with the unconstrained second order terms. The fit itself have been implemented by
a multivariate interpolation using a modified quadratic Shepard’s method [45, 46]. Discus-
sions on the method’s accuracy can be found in ref. [6] and we emphasise that the effective
likelihood is only well approximated within the bounds ln(Lmin

eff /Lmax
eff ) = −10. Lower values
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of the likelihood have been extrapolated by assuming Gaussian tails. As a result, for a given
model, the contribution to the Bayesian evidence from regions in parameter space where
the likelihood is smaller than this value are not reliable. In practice, this is unlikely to be
problematic because the contribution of regions with exceedingly small likelihood values to
the evidence integral is minimal. Furthermore, models that never achieve a large value of the
likelihood are in any case clearly ruled out, even though the value for their Bayesian evidence
is only approximate.

Let us also stress that, for our purpose, Leff(P∗, ε1, ε2) is now numerically known for any
input values of P∗, ε1 and ε2 within the prior bounds mentioned earlier. As can be seen in
the posterior of ε1 (see figure 1), Leff has a flat direction for very small values of ε1. As a
result, and only for ε1, Leff has been extrapolated by a constant along its flat direction for
log(ε1) < −5, without loss of accuracy.

3.3 Computing the evidences

From the effective likelihood, and within a given model of inflation, we have used the nested
sampling algorithm MultiNest [26, 27] to perform the multidimensional integral of eq. (3.9).
For each slow-roll scenario of the Encyclopædia Inflationaris, the analytic form of the func-
tionals εn(θreh, θinf) have been derived in ref. [5] and they have been numerically evaluated
using the public code ASPIC. The evidences reported below have been obtained by requiring
a MultiNest target accuracy of 10−4 on the evidence and a number of live points equals
to 30000. Typically, this amounts to a few hundred thousand samples for each model and
around one hour of CPU time. We have not reported any numerical error on the evidences
because, with such a target accuracy, they remain completely negligible with respect to the
prior sensitivity effects.

Moreover, for all of the models, we have traded the parameter M , namely the mass scale
giving the normalisation of the potential V (φ), by the amplitude P∗ of the scalar primordial
power spectrum at the pivot wavenumber. Both of these parameters are indeed in one-to-one
correspondence once the functionals εn(θreh, θinf) are given, but using P∗ instead of M has the
advantage of minimising superfluous degeneracies in the parameter space, as does the choice
of using the rescaled parameter R instead of Rrad. From the Friedmann-Lemâıtre equation,
one indeed has [6]

M4 = 24π2 ε1
v∗
P∗, (3.13)

at first order in slow-roll. Here v∗ ≡ V (φ∗)/M
4, and φ∗ = φ(η∗).

These prior choices have important consequences for the evidence calculation. They
imply that, for all models tested, the prior space on both the reheating, and the potential
normalisation are the same. As a result, the Occam’s razor factors for those parameters
cancel out when computing the Bayes’ factor between two models (this can be seen at once
by employing the Savage-Dickey density ratio, see [14, 15]). In other words, we assume that
all models have the same ability to reheat the universe after inflation and to produce the
observed amplitude of the CMB anisotropies. As definite reheating predictions are almost
absent in all the models we have explored, and those same models do not predict definite
values of M , this is a fair assumption.

However, if one imagines a situation in which M is an actual output of the model under
scrutiny, its evidence should be reviewed. One may envisage two cases. Either the predicted
values for M (and ε1) yield a prior on P∗ whose support is outside the range we have used,
i.e. ln(1010P∗) ∈ [2.7, 4.2] (see figure. 1), which is compatible with the data — in which
case such a model would be ruled out; or it overlaps with it and the evidence should be
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recomputed by sampling the parameter space directly over M . In the situation for which
the model’s predictions for M would actually match very well the observed amplitude of
the CMB anisotropies, one should expect the Bayesian evidence of that precise model to be
boosted in accordance with the Occam’s razor principle. The same remarks hold concerning
the reheating parameter [47]. Let us stress, however, that we have not encountered such a
situation in all the models tested here.

3.4 Fine-tuning issues

For some of the models presented here, the slow-roll regime of inflation takes place only for a
very limited range of values for some of their parameters. Such “fine-tuning” of parameters
which have, a priori, no reason to take exactly such specific values, is disfavoured by the
Occam’s razor penalty in-built into the Bayesian evidence. From a technical point of view, the
likelihood can reliably be worked out only in regimes where the slow-roll is (at least roughly)
valid. Otherwise, the inflationary dynamics is very difficult to track and not described by
our modelisation. On the other hand, when the slow-roll is completely violated, one knows
that the associated predictions are ruled out by observations, and that the likelihood in this
region of parameter space, being essentially 0, does not contribute to the the total evidence.
Therefore such situations result into an Occam’s razor effect which suppresses the evidence
computed over “compatible” parameters (the ones for which slow-roll inflation exist) by a
factor equal to the ratio of the volume of compatible parameters over the whole prior volume.
For the models in which this occurs, we have added some discussions in the appendix.

4 Results and discussion

For all the models listed in the appendix A, i.e.Nmod = 193, we have computed the Bayes
factors Bi

HI with respect to the Starobinsky model [48–50] or Higgs Inflation (HI), which is
our reference model. We have also evaluated each model’s Bayesian complexity Ci.

Our main results are displayed in figure 2, which represents all the Bayes factors. Each
model is represented by a horizontal bar indicating the value of lnBi

HI. A bar extending to
the left corresponds to lnBi

HI < 0 and the model under consideration is disfavoured with
respect to the the reference model. If, on the contrary, the bar extends to the right, then
lnBi

HI > 0 and the model is preferred to Higgs inflation. Obviously, the Bayes factor of the
reference model is one and, therefore, its logarithm vanishes: this is why there is no bar for
HI. In front of (or inside) each bar, we have reported the exact numerical value of lnBi

HI.
We have also included the Jeffreys’ scale of table 1, as dashed vertical lines, as an indication
of the viability of a given model compared to HI.

Bars are colour-coded according to the Schwarz-Terrero-Escalante (STE) classification
associated with the slow-roll parameters of the model under consideration [40]. Following the
notation used in ref. [5], region 1 are models predicting ε2 > 2ε1 > 0, i.e. the kinetic energy
increases during inflation as well as the ratio of the kinetic energy to the total energy. Region
2 stands for potentials associated with 0 < ε2 < 2ε1 for which the kinetic energy decreases
while the ratio of the kinetic energy to the total energy still increases. Finally, region 3 is
such that both quantities decrease during inflation. As shown in ref. [5], the Planck 2013
results disfavour models living in regions 2 and 3 and the Bayes factors also reflect this. Let
us stress that the parameter space of some models may span more than one region, i.e. for
some values of its parameters the predictions of a model can fall in region 1 (say) while, for
some other regime, they can be in region 2. It is referenced in the captions of figure 2 where
the colour code takes this fact into account.
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Finally, for each model, we have also calculated the maximum value of the evidence, that
is to say the value that is obtained when all the prior mass for the model under consideration
is concentrated in a delta-function centred at the maximum likelihood location. Clearly, in
that case, one has Emax = Lmax. It represents an absolute upper bound on the evidence: any
choice of priors necessarily leads to a value of the evidence smaller than Emax. This upper
bound is represented by black left-pointing arrows in figure 2. Let us also remark that this
quantity would be relevant in a frequentist analysis where the p-value obtained from the
maximum likelihood ratio would be used to compare the performances of different models.

Let us now analyse our results in more detail. Firstly, the answer to the central question
of this paper, namely “what is the best model of inflation given the Planck 2013 data?” is
KMIII inflation [51–53], whose Bayes factor with respect to Higgs inflation is lnBKMIII

HI =
0.07 > 0. However, the preference is extremely mild, so much so that it is within the margin of
uncertainty of our analysis, and for all practical purposes KMIII inflation has to be regarded
as being on the same footing with Higgs inflation, from the point of view of the Planck data.

We can use the Jeffreys’ scale as an indication for which of the models remain viable,
and which are disfavoured at various levels of evidence with respect to the best models.
We find 52 models in the “inconclusive” region (with respect to the best model), 41 in
the “weakly disfavoured” region, 34 in the “moderately disfavoured” region and 66 in the
“strongly disfavoured”. Therefore, our analysis concludes that surviving models (i.e. those in
the “inconclusive” region) represent 26% of the total. On the contrary, the number of models
that are conclusively ruled out (i.e. those in the “strong” region) represent 34% of the total
numbers of models. The models in the “inconclusive region”, which are to be considered the
best models of inflation after the Plank data, are (in alphabetical order):4 AI, BIph, BIs, BI1s,
BI2s, BI3s, BI4s, BI5s, BI6s, BIstg, ESI, ESIl, ESI√

2/3
, ESI√2, ESIo, HI, KKLTI, KKLTIs,

KKLTIstg, KMIII, KMII, KMIIV >0, LI, LIα>0, MHI, MHIl, MHIs, PSNIft1, PSNIft2, PSNIft3,
PSNIoA, PSNIoB, PSNIoC, PSNIepA, PSNIepB, RGI, RGIs, RGIl, RGI1/16, SBI, SBIαmin , SFI,
SFI3l, SFI4, SFI4l, SFI4s, SFIl, SFIs, SSBI2, SSBI4, TWIφ0 and TWIr

φ0
. As explained above,

there are more models than potential shapes because a given potential can support different
priors, which are considered as separate model choices. As a consequence, the above 52
models in the “inconclusive region” encompass only 15 different potentials or scenarios.

Further insight can be garnered by considering the Bayesian complexity for each En-
cyclopædia Inflationaris model. We are particularly interested in evaluating the number of
unconstrained parameters for the best models identified via the Bayesian evidence, i.e. the
ones that are in the “inconclusive region”. Since the Bayesian complexity measures the num-
ber of effective parameters supported by the data, one can define a measure of the number
of unconstrained parameters by

Nuc
i ≡ Ni − Ci, (4.1)

where Ni is the total number of free parameters of the model under consideration, i.e. the
inflationary potential parameters, plus the reheating parameter. For models providing a
reasonable good fit to the Planck data, one expects Nuc

i ≥ 0. However, if the best-fit log-
likelihood of a given model is very poor, then the Bayesian complexity can be arbitrary large,
as the second term in eq. (2.9) is large. This means that for such models Nuc

i < 0. So we
expect a negative measure of the number of unconstrained parameters to be correlated with
a small value of the Bayes factor.

4The meaning of the different acronyms and the precise definition of the corresponding models can be
found in appendix A.
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Figure 3. Logarithm of the Bayes factor versus the number of unconstrained parameters Nuc for
all the inflationary models investigated. The Nuc dimension allows us to disambiguate models with
the same evidence, by preferring those with the smallest number of unconstrained (i.e. , unnecessary)
parameters. Optimal models are clustered around Higgs Inflation and have Nuc ' 0 together with
BHI & 0. The four plots (from upper left to bottom right) increasingly zoom into the “best region”.
Each model is represented by a filled circle for illustration purposes only, and the radius of a circle
has no meaning.

In figure 3, we have plotted the location of all models in the two-dimensional plane
(Nuc, lnBHI). Models appearing along the same horizontal lines have thus the same Bayes
factor but different number of unconstrained parameters Nuc. Models with the smallest,
non-negative number of unconstrained parameters are to be preferred in that they can be
deemed to be simpler, even if they have the same evidence as other models with a larger
value of Nuc.

We can observe in figure 3 that models with Nuc < 0 do have poor values of the
evidence as well (lnBi

HI � 0), as expected from the above argument. Focusing on the models
having the best evidences together with a minimal number of unconstrained parameters,
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Figure 4. Histogram of the Encyclopædia Inflationaris models within the four Jeffreys’ categories
(inconclusive: blue, weakly disfavoured: red, moderately disfavoured: green and strongly disfavoured:
yellow) and for different number of unconstrained parameters. The number of preferred models is 17,
corresponding to 9 different types of potential.

i.e. 0 < Nuc
i < 1 narrows down the slow-roll landscape to a few preferred models: AI, BI1s,

BI2s, ESIl, ESI√
2/3

, ESI√2, HI, LIα>0, MHI, MHIl, RGI, RGIs, RGIl, SBIαmin , SFI3l, SFI4

and SFI4l. We have now 17 preferred models, that is to say roughly 9% of the initial numbers
of models. They correspond to only 9 types of potential or scenarios. It is also interesting
to notice that KMIII is not in this set of preferred models since it has Nuc

KMIII ' 2.3. While
it cannot be concluded that the models with the best Bayes factors and 0 < Nuc

i < 1 are
the “true” models, they are the simplest and most effective inflationary hypotheses that are
compatible with the Planck 2013 CMB data. Obviously, allowing for more unconstrained
parameters increases this list as displayed in figure 3.

Another interesting remark is that the 9 potentials mentioned above all belong to re-
gion 1 in the Schwarz-Terrero-Escalante classification (i.e. there are all “green”). This is of
course consistent with the findings of ref. [5] which has shown that this region is the re-
gion favoured by the Planck data. This means that the corresponding models all belong to
“plateau inflation” for which the potential does not necessarily grows to infinity when the
vev of the field increases [54]. This type of potentials clearly appears to be the winners given
the Planck data.

5 Conclusions

Let us now recap our main findings. Although this paper deals with slow-roll single-field
inflation only, we do not expect multifield inflationary models to perform better than the
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optimal subset of single-field models that have been delineated in this work. This is because
adding a field necessarily introduces extra-parameters encoding the shape of the potential
in this new direction. Therefore, even if a multifield scenario would fit as well the Planck
2013 data as the best slow-roll single-field models, such a model would be penalised by its
larger number of unconstrained parameters (in terms of complexity). This conclusion could
be modified if a multifields model was able to fit the large scales glitches in the Planck data,
thus achieving a better evidence. However, those glitches are of relatively weak statistical
significance and cannot, currently, greatly improve the overall fit. Furthermore, the fit im-
provement would have to be sufficient to offset the extra Occam’s factor penalty implied by
additional free parameters. Such a situation may however change by considering additional
and independent data sets which could not be fitted by the class of slow-roll models discussed
in this paper such as, for instance, a small, but non-vanishing, level of non-Gaussianities. The
same remarks also apply for single-field scenarios with non-minimal kinetic terms (or with
features in the potential). These models are not necessarily ruled out. However, either they
predict observable non-Gaussianities and the fact that Planck sees a Gaussian sky implies
that those models will be penalised for this wasted parameter space. Or, they genuinely do
not predict non-Gaussianities but introduce additional parameters that increase the model
complexity (see for instance ref. [55–57]). Let us stress that, if we are not considering the
small gain that might be associated with fitting Planck’s glitches, the favoured models we
have singled out in this paper already saturate the maximal possible value for the likelihood.
As a result, even in the situation in which we would have missed an extremely good fitting
and simple model, its Bayesian evidence would still be in the “inconclusive region”.

Therefore, from a Bayesian point of view, it appears perfectly legitimate to focus on
single-field slow-roll inflation (with a minimal kinetic term). These models have been studied
and compared to the recent Planck data in ref. [5] which, therefore, represents a complete
cartography of the inflationary landscape compatible with the most recent data. In the
present article, we have computed the Bayes factors and the Bayesian complexity for all
these Encyclopædia Inflationaris models. Our results are summarised in an histogram in
figure figure 4, which gives the number of models in each Jeffreys’ category (defined with
respect to the best model) and for each number of unconstrained parameters with n <
Nuc < n + 1, where n is an integer. This plot illustrates the power of the Planck data and
allows us to summarise our main results: from a large number of models, one is able to
single out a relatively small subset corresponding to the “best models”. We rule out ' 34%
of the models at a strong level of evidence and ' 26% of the models (9% if one includes
the complexity) are preferred. All the favoured scenarios belong to the category 1 of the the
Schwarz-Terrero-Escalante classification and have a shape consistent with “plateau inflation”.

It is also worth pointing out that a few Bayesian evidences have been calculated in ref. [3].
The comparison is, however, difficult to carry out since the priors on reheating assumed in
that paper greatly differ from those considered here.5 Indeed, in ref. [3], a prior on ∆N∗ is
chosen while the reheating energy density is arbitrarily fixed. There is no physical motiva-
tions for picking up particular values of the reheating energy density. Moreover, choosing a
prior on ∆N∗ is surprising since this does not guarantee the validity of the physical prior,

5Let us also stress that the description made by refs. [3] of the work of ref. [29] on reheating is incorrect.
It is claimed that the study of ref. [29] is restricted to equations of state of the form wreh = (p− 2)/(p + 2),
which emerges in the case of a potential with the shape ∝ φp. This situation was indeed considered in ref. [29]
but only as a particular example. The completely generic case −1/3 < wreh < 1 was in fact the main concern
of ref. [29].
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namely ρnuc < ρreh < ρend. Another side effect is that this obviously modifies the calculation
of the Bayesian evidences and, for this reason, comparing the two approaches does not lead
to interesting insights.

To conclude this paper, let us present some speculations regarding what we have learnt
about the physics of inflation. Firstly, let us stress that we have finally carried out one of
the long standing task of primordial cosmology, namely put constraints on the shape of the
inflationary potential. In some sense, this represents quite an impressive achievement since we
are able to say something about physics at energy scales unreachable in accelerators. Indeed,
with the Large Hardron Collider (LHC), it would obviously be impossible to establish the
existence, at the Grand Unified Scale (GUT) scale, of a scalar field with a potential having a
plateau shape. This perfectly illustrates the fact that cosmology can teach us something about
high energy physics. On the other hand, this conclusion should be toned down: certainly, we
have learnt a lot about the early Universe but, clearly, this does not give us the Lagrangian
of particle physics at the GUT scales (i.e. the field content, their interactions etc . . . ). As
a consequence, our knowledge of physics at such a high energy scale remains very limited.
Hopefully, future analysis will help us to learn more about these questions. In this respect,
constraining the reheating temperature of all the Encyclopædia Inflationaris models seems
promising since this can tell us something about the interaction of the inflaton field with the
rest of the world.

Finally, one cannot help making the connection between the results obtained here and
the recent works about “conformal inflation” [49, 50, 58–66]. It is well-known that it is
difficult to control the flatness of the inflaton potential that can easily be destroyed by
quantum corrections. However, if one starts with any shape of V (φ), not necessarily very
flat, and assumes a non-minimal coupling (for instance, of the form ξφ2R), then, in the
Einstein frame, the potential automatically flattens out and, precisely takes the form of
plateau inflation for some range of the field. A striking example is provided in figure 4
of ref. [61]: far from the origin, the potential automatically acquires the typical shape found
in the present article to be favoured by the Planck data (see in particular right bottom of
figure 4). Let us stress at this point that, although non-minimally coupled to gravity, this
class of models belong to the ASPIC category since, after a conformal transformation to the
Einstein frame, these models are in fact equivalent to single-field slow-roll inflation. In this
representation, the non-triviality of the non-minimal coupling has been “transferred” to the
complicated, non-minimal, interaction of φ with the other degrees of freedom present in the
early Universe. In fact, Higgs inflation is the prototypical example of this class of scenarios
and the ingredients necessary to describe the reheating phase in this case have been described
in ref. [5]. Therefore, we are in a situation where two strong theoretical arguments (the
flatness of the potential and the presence of a non-minimal coupling to gravity — recalling
that, according to the standard lore, a term that is not forbidden by a symmetry must be
present in the theory) point precisely to the models that appear favoured by recent data.
Whether this is just a coincidence or whether we are starting to understand something deeper
about Nature will hopefully be answered in the near future when even more accurate data
become available.
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A Choice of priors for inflationary models

In this appendix we detail the priors used in this article, and report the corresponding
Bayesian evidences, complexities, number of parameters and likelihoods at the best fit point
of all Encyclopædia Inflationaris scenarios. The priors are directly transcribed from consid-
erations presented in ref. [5], which is assumed to be known to the reader.

As discussed in section 2.2, there are cases where it is difficult to numerically estimate
the evidences. In particular, this happens when one tries to extend the prior ranges in order
to study the impact of the prior choices on our physical conclusions. However, most of
the time, this prior sensitivity can be trivially accounted for by means of simple analytical
calculations that we now briefly review. There are few instances in the following where they
are concretely used.

A common situation is when the support of the likelihood is included in the prior range
[θmin, θmax], i.e.L(D|θ,M) ' 0 for θ /∈ [θmin, θmax]. The evidence of a model M is given by

E(D|M) =

∫ θmax

θmin

dθL(D|θ,M)π(θ|M), (A.1)

where, for simplicity, we have assumed that there is only one parameter, θ (the argument
can be generalised to any dimensions). For any proper (i.e. , normalised) prior distribution
π(θ|M), one has

π(θ|M) =
Π(θ)∫ θmax

θmin

dθΠ(θ)

, with

∫ θmax

θmin

dθ π(θ|M) = 1. (A.2)

Let us assume that we change the prior range for the parameter θ and consider a new upper
bound θ̄max. The new prior is now given by

π(θ|M) =
Π(θ)∫ θ̄max

θmin

dθΠ(θ)

, (A.3)

where, in accordance with the above discussion, the likelihood is vanishing in [θmax, θ̄max].
As a consequence, the value of the evidence for the larger prior range is given by

Ē(D|M) =

∫ θ̄max

θmin

dθL(D|θ,M)π(θ|M) = E(D|M)

∫ θmax

θmin

dθΠ(θ)∫ θ̄max

θmin

dθΠ(θ)

, (A.4)

and is obtained from the previous evidence value by simply rescaling it by the ratio of the
prior volumes.

If instead the likelihood is flat along the θ direction, i.e. the data do not constrain
the parameter under consideration, L(D|θ,M) = L0, then the evidence is unchanged by
modifying the prior bounds

Ē(D|M) =

∫ θ̄max

θmin

dθL(D|θ,M)π(θ|M) = L0

∫ θ̄max

θmin

dθ π(θ|M) = L0 = E(D|M), (A.5)

and one should evaluate the Bayesian complexity to distinguish between the models.
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Let us notice that the complexity may also be modified when the prior range is extended
to regions where the likelihood is known to be negligible. However, contrary to the evidence,
there is no simple analytical treatment of how the complexity should be extrapolated in this
case. One can nevertheless make further simplifying assumptions to roughly estimate how
the complexity is sensitive to the choice of priors.

Assuming that the prior and likelihood distributions are Gaussian, the complexity is
given by [23]

C =
N∑
i=1

1

1 +

(
σiL
σiΠ

)2 '
N

1 +

(
σL
σΠ

)2 , (A.6)

where N is the number of parameters, σiΠ and σiL are the prior width and the standard
deviations of the likelihood covariance matrix along its eigendirections i, respectively. The
last approximation in the above equation assumes that one can define the averaged values
σΠ and σL over all the eigendirections. If the prior is widened along n directions (chosen
among the N parameters), its averaged volume σnΠ gets multiplied by the same ratio Ē/E as
computed above, i.e.

σΠ̄ = σΠ

(
E
Ē

) 1
n

. (A.7)

Plugging back this relation in eq. (A.6), one gets

C̄ =
N

1 +

(
Ē
E

)2/n(
N

C
− 1

) , (A.8)

where Ē/E is given by a volume ratio of the type eq. (A.4).

In the next subsections, we discuss, for each Encyclopædia Inflationaris scenarios, our
choice of priors. We also give the definition of all the acronyms used in the paper, in particular
in figure 2.

A.1 Higgs inflation (HI)

The Higgs inflation model the potential of which is given by [5]

V (φ) = M4
(

1− e−
√

2/3φ/MPl

)2
, (A.9)

which contains only one parameter: the mass scale M . However, as discussed in section 3.3,
this one has been traded for P∗ in our analysis and there are no other free parameter in this
potential. In total, including the reheating parameter, one ends up with a two-parameters
model. For this reason, and besides the fact that it was actually the first model of inflation
ever proposed, we have chosen to take HI as the “reference model”.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

HI − 0.00 1.73 2 2.22
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A.2 Radiatively corrected Higgs inflation (RCHI)

This model is a one-parameter model. The shape of the potential reads [5]

V (φ) = M4

(
1− 2e−2/

√
6φ/MPl +

AI

16π2

φ√
6MPl

)
. (A.10)

The parameter AI controls the amplitude of the radiative corrections to the, tree level, HI
potential. The one-loop expansion is valid under the condition AI � 64π2, hence the physical
prior AI ∈ [−100, 100]. However, numerically, when AI < −65, the likelihood is so small that
it cannot be calculated in a reliable way. As a consequence, we choose the numerical prior
to be AI ∈ [−65, 100]. Anyhow, as already mentioned, the range AI ∈ [−100,−65] does not
contribute to the likelihood. On the other hand, as discussed in ref. [5], particle physics
implies −48 < AI < −20 and this defines a new model, the “original” one, that we denote
RCHIo in the following. We thus have two possible priors for this scenario as indicated by
the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RCHI AI ∈ [−65, 100] −1.50 3.07 3 2.26
RCHIo AI ∈ [−48,−20] −36.16 4.29 3 −28.87

A.3 Large field inflation (LFI)

Large field inflation is characterised by the following potential [5]

V (φ) = M4

(
φ

MPl

)p
. (A.11)

This potential depends on a mass scale M fixed by the CMB normalisation and a free index
p of O(1) that can also take specific integer or rational values. Hence, one may assume a
general prior on p such that one can calculate the evidence of this class of model. Here
one takes p ∈ [0.2, 5] because, for p > 5, one already knows that the models are ruled out
and p > 0.2 instead of p = 0 for numerical reasons (in addition, the potential cannot be
completely flat since one needs to stop inflation). Another possibility is simply to fix p to
some interesting values: p = 2/3 corresponds to monodromy inflation [67] while p = 1, · · · , 4
represents interesting phenomenological scenarios.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

LFI p ∈ [0.2, 5] −2.36 4.06 3 1.93
LFI2/3 p = 2/3 −1.19 2.16 2 1.24

LFI1 p = 1 −1.53 1.94 2 0.79
LFI2 p = 2 −2.62 1.66 2 −0.08
LFI3 p = 3 −4.31 2.59 2 −1.02
LFI4 p = 4 −6.20 3.38 2 −2.91

A.4 Mixed large field inflation (MLFI)

This model possesses the following potential [5]

V (φ) = M4

(
φ

MPl

)2(
1 + α

φ2

M2
Pl

)
. (A.12)
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Beside the usual mass scale M fixed by the CMB normalisation, MLFI contains only one
parameter, α. Since the order of magnitude of this parameter is a priori unknown, a Jeffreys
prior on α is assumed. In practice, when α < 10−5, the likelihood is numerically very close
to that of LFI2 and when α > 10, the likelihood is numerically very close to that of LFI4.
As a consequence, we take the prior given in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

MLFI log (α) ∈ [−5, 1] −3.77 2.39 3 −0.09

A.5 Radiatively corrected massive inflation (RCMI)

The potential of this model is given by [5]

V (φ) = M4

(
φ

MPl

)2 [
1− 2α

φ2

M2
Pl

ln

(
φ

MPl

)]
. (A.13)

It depends on one parameter, α, which represents the amplitude of the radiative corrections
to the potential of the LFI2 scenario. Since the one-loop correction can vary over many orders
of magnitude, it is meaningful to choose a Jeffreys prior on α. Then, clearly one must require
α � 1 in order for the perturbative expansion to be under control. On the other hand, the
shape of the potential has been derived under the assumption that fermion loops dominate
over self-interaction loops. This implies a lower bound on α, namely α > 10−15 [5]. However,
when α < 10−7, the likelihood is numerically very close to that of LFI2 and, therefore, it is
not necessary to consider smaller values of α. There also exists an upper bound on α coming
from the requirement of having a sufficient number of e-folds during inflation, α < 6× 10−4.
Moreover, when α > 10−3, the likelihood is so small that the evidence cannot be properly
computed. As a consequence, an upper bound on α of ' 10−3 seems to be an appropriate
choice. Our choice is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RCMI log (α) ∈ [−7,−3] −2.32 4.19 3 1.77

A.6 Radiatively corrected quartic inflation (RCQI)

This model is a quartic large field model LFI4 plus radiative corrections [5]. The potential
reads

V (φ) = M4

(
φ

MPl

)4 [
1− α ln

(
φ

MPl

)]
. (A.14)

The amplitude of these corrections is controlled by the parameter α. As discussed in the
previous subsection, the order of magnitude of α is not known and, therefore, a Jeffreys prior
must be chosen. Moreover, the perturbative expansion making sense only if the radiative
correction is small, one must have α � 1. The physical prior is therefore log(α) ∈ [−∞, 0].
However, in practice, when α < 10−3, the likelihood is numerically very close to that of LFI4

and when α > 10−0.1, the likelihood is so small that it cannot be computed in a reliable way.
Hence, the prior that we choose is the one indicated in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RCQI log (α) ∈ [−3,−0.1] −5.36 6.62 3 1.27
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A.7 Natural inflation (NI)

This is a one parameter model and the potential is given by [5]

V (φ) = M4

[
1 + cos

(
φ

f

)]
. (A.15)

The order of magnitude of the free parameter f is not known and, therefore, a Jeffreys prior
is chosen. Moreover, the model is compatible with the CMB only if the mass scale f is
super-Planckian. It is not clear whether this condition makes sense at the fundamental level
but, from the effective field point of view, several mechanisms have been invented such that
this condition can be realised. In this situation f can scale from a few MPl to ∼ 100MPl,
hence the prior log(f/MPl) ∈ [0, 2.5], see the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

NI log (f/MPl) ∈ [0, 2.5] −2.30 4.16 3 2.05

A.8 Exponential SUSY inflation (ESI)

The potential of this model can be written as [5]

V (φ) = M4
(

1− e−qφ/MPl

)
, (A.16)

where q is a free parameter. A priori, different priors on q are possible and this gives rise
to different versions of this scenario. If we view ESI as a phenomenological model, then one
can assume that the parameter q is a free O(1) quantity. In that case, a natural prior is
q ∈ [0.1, 6]. But one can also assume that the order of magnitude of q is not known (in the
following, we denote the corresponding version of the scenario by ESIl). In this situation, we
must choose a Jeffreys prior, typically log(q) ∈ [−3, 3]. However, when q > 1, the model is
numerically difficult to track since it produces a too weak level of gravity waves. Moreover,
in this regime, the likelihood reaches a stationary value. Therefore, as explained before, one
can restrict ourselves to the numerical prior log(q) ∈ [−3, 1].

Another possible prior is based on the original derivation of the ESI scenario (we denote
this version by ESIo in what follows). Indeed, in that case, the model is based on supergravity
and one has q =

√
2/β, where β is the coefficient which appears in front of the Kähler

potential of the model. Hence, it seems reasonable to assume that this quantity is a coefficient
of order one. This justifies our choice for the “original” prior, namely β ∈ [1, 4]. Of course,
specific values of β are also very relevant. In particular, β = 1 or β = 3 represents the
cases where the inflaton field is either a dilaton or a moduli (β = 3 corresponds to the “no
scale” structure). In the following, we denote these versions of the ESI scenario by ESI√2

and ESI√
2/3

, respectively.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

ESI q ∈ [0.1, 6] 0.03 1.77 3 2.29
ESIl log (q) ∈ [−3, 1] −0.54 2.58 3 2.29
ESIo β = 2/q2 ∈ [1, 4] 0.01 1.81 3 2.25

ESI√2 q =
√

2 0.05 1.70 2 2.25

ESI√
2/3

q =
√

2/3 0.00 1.77 2 2.22
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A.9 Power law inflation (PLI)

The potential of this class of models can be expressed as [5]

V (φ) = M4e−αφ/MPl , (A.17)

where α is a positive coefficient. A priori, it is a small quantity the order of magnitude of
which is not known. As a consequence, a Jeffreys prior seems to be the most natural choice
and we take log(α) ∈ [−4, 0]. On a more phenomenological viewpoint, inflation occurs when
α <
√

2 only and, therefore, it makes also sense to choose a flat prior on α, namely α ∈ [0,
√

2]
(in the following, we denote this version of power law inflation by PLIp). However, when
α > 1.1, the likelihood is so small that it cannot be properly calculated. Hence, we will
restrict ourselves to the prior α ∈ [0, 1.1].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

PLI log (α) ∈ [−4, 0] −7.04 5.56 3 −2.54
PLIp α ∈ [0, 1.1] −7.23 3.25 3 −2.54

A.10 Kähler moduli inflation (KMII)

The potential of KMII inflation is given by [5]

V (φ) = M4

(
1− α φ

MPl

e−φ/MPl

)
, (A.18)

where α is a free positive coefficient. As discussed in detail in ref. [5], in order for inflation
to end by slow-roll violation, one must have α & 2.4095. On the other hand, the order of
magnitude of this parameter is unspecified and this suggests a Jeffreys prior on α. Combining
these two pieces of information, we are led to the prior log(α) ∈ [log(2.4095) ' 0.382, 4].

On the other hand, one can also choose α such that the potential is positive everywhere,
as opposed to the previous situation where, for some values of the field, the potential can be
negative and where one makes use of a finite portion of it only (the corresponding version
of the scenario is denoted by KMIIV >0 in the following). In that case, one has the extra
condition α < e ' 2.7183. Since e is close to 2.4095, a Jeffreys prior no longer makes sense and
a linear prior now seems a sensible choice. Hence our second choice α ∈ [2.4095, e ' 2.7183].
Everything is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

KMII log (α) ∈ [0.382, 4] 0.00 1.75 3 2.22
KMIIV >0 α ∈ [2.4095, 2.7183] 0.01 1.69 3 2.22

A.11 Horizon flow inflation at first order (HF1I)

The potential of HF1I inflation reads [5]

V (φ) = M4

(
1 +A1

φ

MPl

)2
[

1− 2

3

(
A1

1 +A1φ/MPl

)2
]
. (A.19)

This model is obtained by an integration of the horizon flow equations truncated at a given
order (here at second order). As such, this scenario is in fact purely phenomenological.
Moreover, it turns out that the observational predictions are not very sensitive to the value
of the free parameter A1. Therefore, since its order of magnitude is not fixed, it makes sense
to choose a Jeffrey prior on A1 and we take log(A1) ∈ [−3, 3] as indicated below:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

HF1I log (A1) ∈ [−3, 3] −2.60 1.65 3 −0.08

A.12 Coleman Weinberg inflation (CWI)

Coleman Weinberg inflation is based on the following potential [5]

V (φ) = M4

[
1 + α

(
φ

Q

)4

ln

(
φ

Q

)]
, (A.20)

with α = 4e in order to have a vanishing minimum. The shape of V (φ) is therefore char-
acterised by only one parameter, Q. In the original version of the scenario, Q is fixed by
the GUT scale, Q ∼ 1014 − 1015GeV. Therefore, in this case, it is natural to choose a flat
prior on Q (we denote this version of the scenario by CWIf). On the other hand, if one
considers a more general situation, then there is a priori no criterion to fix the value (or the
order of magnitude) of Q and, therefore, this justifies the choice of a Jeffreys prior, namely
log(Q/MPl) ∈ [−5,−3] (we denote this version of the scenario by CWIl).

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CWIf Q/MPl ∈ [5× 10−5, 5× 10−4] −2.35 2.62 3 1.49
CWIl log (Q/MPl) ∈ [−5,−3] −2.51 3.02 3 1.60

A.13 Loop inflation (LI)

The potential of LI inflation can be written as [5]

V (φ) = M4

[
1 + α ln

(
φ

MPl

)]
, (A.21)

where the parameter α controls the strength of the one loop correction to the tree level V (φ)
(here the constant term) and must therefore be such that α � 1. When α < 0, in order
to have a sufficient number of e-folds, one must require α > αmin ' −0.3 [5]. In principle,
the model makes sense only if inflation proceeds at sub-Planckian vev ’s which is, strictly
speaking, not possible in this regime. If we allow vev ’s larger than the Planck mass, typically
up to φ/MPl ' 1000, then this sets an additional condition, namely α < −0.1. When α > 0,
there is no extra condition on α except, as already signaled, that α must be small in order
for the perturbative expansion to make sense.

From the previous considerations, we assume a flat prior α ∈ [−0.3,−0.1] in the case
where α < 0 (we denote this version of the scenario by LIα<0). We have seen that, when
α > 0, there exists no restrictions on this parameter. In particular, its order of magnitude
is not specified and, therefore, it makes sense to choose a Jeffreys prior, namely log (α) ∈
[log(0.003), log(0.3)] (in the following, this version of the scenario is denoted by LIα>0).
Finally, when the sign is left unspecified, we simply consider a flat prior α ∈ [αmin,−0.1] ∪
[0, 0.3]. These priors are summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

LI α ∈ [αmin,−0.1] ∪ [0, 0.3] −0.87 3.03 3 2.27
LIα>0 log (α) ∈ [log(0.003), log(0.3)] −0.51 2.38 3 2.27
LIα<0 α ∈ [αmin,−0.1] −1.74 2.29 3 0.79
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A.14 R+R2p inflation (RpI)

The potential of R+R2p inflation can be expressed as

V (φ) = M4e−2
√

2/3φ/MPl

∣∣∣e√2/3φ/MPl − 1
∣∣∣2p/(2p−1)

, (A.22)

which depends on the parameter p. The case p = 1 is peculiar and corresponds to Higgs
Inflation (HI). It has been shown in ref. [5] that, if p takes integer values different from p = 1,
then the model is ruled out since it leads to values of r and nS that are not compatible with
the Planck data. As a consequence, p must be sufficiently close to 1, and therefore must be
a real number. When p > 1, the potential possesses a maximum located at

φmax

MPl

=

√
3

2
ln

(
2p− 1

p− 1

)
. (A.23)

and two regimes of inflation exist (denoted by RPI1 and RPI2 in what follows) depending on
whether inflation takes place in φ ∈ [0, φmax] or in φ ∈ [φmax,∞]. In the first case, inflation
stops by slow-roll violation and the model is therefore a one parameter model. In the second
case, however, inflation must stop by instability at φend and, hence, the corresponding model
is in fact a two parameters model, p and φend. Since p must be close to one, we choose the
flat prior p ∈ [1, 1.5]. In the case of RPI2, the order of magnitude of φend being unspecified,
we take the following Jeffreys prior on φend: log(φend/φmax) ∈ [0.5, 2].

If p < 1, then there is a single regime where inflation can proceed. It is denoted by
RPI3 in what follows. In that case, inflation stops by violation of the slow-roll conditions
and, therefore, the model is a one parameter model. As a consequence, we choose to consider
the following flat prior on p: p ∈ [0.8, 1].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RPI1 p ∈ [1, 1.5] −3.69 1.86 3 2.26

RPI2
p ∈ [1, 1.5] −6.08 8.82 4 1.80

log(φend/φmax) ∈ [0.8, 1]

RPI3 p ∈ [0.8, 1] −2.28 2.84 3 2.22

A.15 Double well inflation (DWI)

Double Well inflation is a one parameter model characterised by the following potential

V (φ) = M4

[(
φ

φ0

)2

− 1

]2

. (A.24)

As shown in ref. [5], slow-roll inflation takes place only if φ0/MPl > 2
√

2. On the other hand,
COBE normalising the model allows us to express the mass scale M in terms of the free
parameter φ0 . Then, the requirement M/MPl < 1 leads to to the constraint φ0/MPl . 105. As
a consequence, a Jeffreys logarithmic prior on φ0 is chosen, namely log(φ0/MPl) ∈ [log(2

√
2) '

0.45, 5].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

DWI log (φ0/MPl) ∈ [log(2
√

2), 5] −2.09 4.56 3 2.14

– 26 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

A.16 Mutated hilltop inflation (MHI)

The potential of Mutated Hilltop inflation is given by

V (φ) = M4

[
1− sech

(
φ

µ

)]
, (A.25)

and depends on one free parameter, µ. This model is phenomenological although it is sup-
posed to emerge from supergravity considerations. In this last case, only sub-Planckian values
for µ probably make sense. This is the reason why it seems interesting to consider different
priors. Given that the order of magnitude of µ/MPl is not specified, we take three Jeffreys pri-
ors corresponding to situations where µ is sub-Planckian (denoted by MHIl), super-Planckian
(denoted by MHIs) or not specified. Those choices are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

MHI log (µ/MPl) ∈ [−2, 2] −0.30 2.01 3 2.29
MHIl log (µ/MPl) ∈ [−2, 0] −0.82 2.64 3 2.23
MHIs log (µ/MPl) ∈ [0, 2] 0.04 1.70 3 2.29

A.17 Radion gauge inflation (RGI)

The potential of Radion Gauge inflation can be expressed as

V (φ) = M4 (φ/MPl)
2

α+ (φ/MPl)
2 , (A.26)

where α is a dimensionless positive parameter. A priori, smaller than unity values are pre-
ferred but, at the same time, α > 1 is not forbidden. This is why it is interesting to study
how the Bayesian evidence of the model depends on the range of variation of α. Let us also
notice that the order of magnitude of this parameter is not specified. As a consequence, we
choose three Jeffreys priors, one such that log(α) ∈ [−4, 4], one corresponding to a situation
where α < 1, namely log(α) ∈ [−4, 0] (and we denote this version of the model by RGIs) and
one corresponding to α > 1, namely log(α) ∈ [0, 4] (this version being referred to as RGIl).
Finally, in ref. [68], the potential of Radion Gauge inflation was also obtained in the context
of S-dual superstring models. In that case, the value of α is fixed and given by α = 1/16
which leads to a fourth choice of prior. Everything is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RGI log (α) ∈ [−4, 4] −0.39 2.36 3 2.29
RGIs log (α) ∈ [−4, 0] −0.11 2.09 3 2.29
RGIl log (α) ∈ [0, 4] −0.77 2.70 3 2.20
RGI1/16 α = 1/16 −0.16 2.02 2 2.20

A.18 MSSM inflation (MSSMI)

In this scenario, inflation occurs along a flat direction of the MSSM potential. This flat
direction is usually lifted by higher order non-renormalisable operators and SUSY soft terms.
As a consequence, one can show that the potential takes the form [5]

V (φ) = M4

[(
φ

φ0

)2

− 2

3

(
φ

φ0

)6

+
1

5

(
φ

φ0

)10
]
, (A.27)

– 27 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

where φ0 is a free parameter which can be expressed as

φ8
0 =

M6
Plm

2
φ

10λ2
6

. (A.28)

The quantity λ6 is a coupling constant that is taken to be of order one while mφ is a
soft breaking mass and, thus, is chosen to be around ' 1TeV. As a consequence, one has
φ0 ' 1014GeV. In this original form of the scenario (denoted in what follows by MSSMIo),
it is therefore natural to take a flat prior on φ0 such that φ0/MPl ∈ [2× 10−5, 2× 10−4].

This model can also be viewed as a phenomenological inflection point potential (denoted
by MSSMIp) where the value of φ0 is not fixed by high energy physics considerations. In
that case, a Jeffreys prior on φ0 is appropriate and, here, we take log(φ0/MPl) ∈ [−3, 3].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

MSSMIo φ0/MPl ∈ [2× 10−5, 2× 10−4] −10.27 0.76 3 −7.40
MSSMIp log (φ0/MPl) ∈ [−3, 3] −3.28 4.61 3 1.72

A.19 Renormalisable inflection point inflation (RIPI)

This model is derived in the same context as MSSM inflation except that an additional term
in the superpotential involving right handed neutrinos is considered. The amplitude of this
new term is controlled by the dimensionless coupling constant h ' 10−12. This gives rise
to a new flat direction parametrised by the inflaton field φ. This flat direction is lifted by
the same mechanism discussed previously in the context of MSSM inflation and leads to the
following potential [5]

V (φ) = M4

[(
φ

φ0

)2

− 4

3

(
φ

φ0

)3

+
1

2

(
φ

φ0

)4
]
, (A.29)

where

φ0 =
√

3
mφ

h
, (A.30)

mφ, as a soft breaking mass, being between 100GeV and 10TeV. As a consequence, one has
φ0 ∼ 1014GeV. For this version of the model (denoted as the “original version”, RIPIo), a
flat prior on φ0 represents the preferred choice, φ0/MPl ∈ [2× 10−5, 2× 10−4]. As for MSSM
inflation, however, one can also see this scenario as a phenomenological scenario where φ0

is not specified (denoted by RIPIp in what follows). In this case, a Jeffreys prior on φ0 is
natural and we take log(φ0/MPl) ∈ [−3,−3]. Finally, the above potential can also arise in a
supergravity framework with shift symmetry in the Kähler potential (denoted by RIPIsugra)
which allows for super-Planckian vev of the inflaton field φ. For this reason, we also consider
the prior φ0/MPl ∈ [10, 50].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RIPIo φ0/MPl ∈ [2× 10−5, 2× 10−4] −9.94 2.01 3 −6.76
RIPIp log (φ0/MPl) ∈ [−3, 3] −2.31 3.60 3 2.19
RIPIsugra φ0/MPl ∼ [10, 50] −0.96 2.87 3 2.19
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A.20 Arctan inflation (AI)

The potential of AI can be expressed as

V (φ) = M4

[
1− 2

π
arctan

(
φ

µ

)]
, (A.31)

where µ is a free parameter. As shown in ref. [5], inflation stops by slow-roll violation only
if µ/MPl < 0.512378. This model is purely phenomenological and, as a consequence, the
scale µ is not fixed by any high energy physics considerations. As a consequence, its order
of magnitude is a priori unspecified. Therefore, we choose a Jeffreys logarithmic prior on µ,
namely log(µ/MPl) ∈ [−3, log(0.51 · · · ) ' −0.29].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

AI log (µ/MPl) ∈ [−3,−0.29] −0.20 2.18 3 2.29

A.21 Constant ns A inflation (CNAI)

The potential of CNAI is given by the following expression

V (φ) = M4

[
3−

(
3 + α2

)
tanh2

(
α√
2

φ

MPl

)]
, (A.32)

where α is a dimensionless free parameter. It was demonstrated in ref. [5] that slow-roll
inflation takes place provided α < αmax ' 0.66. This model is phenomenological and is not
based on high energy physics. It is in fact designed to produce an exact power law spectrum
of density perturbations. As a consequence, the order of magnitude of α is not specified and
one chooses to work with a Jeffreys prior log(α) ∈ [−4, log(αmax) ' −0.18].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CNAI log (α) ∈ [−4,−0.18] −1.96 2.22 3 0.79

A.22 Constant ns B inflation (CNBI)

This model is very similar to CNAI inflation. It is also a phenomenological scenario designed
to produce a constant spectral index and also depends on one dimensionless parameter α.
The corresponding potential can be expressed as

V (φ) = M4

[(
3− α2

)
tan2

(
α√
2

φ

MPl

)
− 3

]
. (A.33)

It was shown in ref. [5] that slow-roll inflation takes place if α < αmax ' 0.2975. If one
CMB normalises the model, then one can express the mass scale M in terms of α. It follows
that the requirement M/MPl < 1 implies α . 10−9. As a consequence, we should take a
Jeffreys prior on α, namely log(α) ∈ [−9, log(αmax) ' −0.527]. In practice, however, when
α > 10−1.4, the likelihood is so small that it cannot be properly calculated. Moreover, when
α < 10−5, the value of the likelihood reaches a numerical stationary value and, therefore, it
is not necessary to numerically calculate it beyond that point. As a consequence, we consider
the following prior: log(α) ∈ [−5,−1.4].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CNBI log (α) ∈ [−5,−1.4] −1.68 2.13 3 0.79

– 29 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

A.23 Open string Tachyonic inflation (OSTI)

In this model, the inflaton field is a tachyon field on a D3-brane. In principle, its kinetic term
is non-minimal but when higher order terms are neglected, it becomes a standard slow-roll
model with a potential given by the following expression

V (φ) = −M4

(
φ

φ0

)2

ln

[(
φ

φ0

)2
]
. (A.34)

In the original version of the model, φ0 is set to the string scale φ0 ∼ Ms. However, φ0 can
also be viewed as a free sub-Planckian scale. In that case, a Jeffreys prior is appropriate, for
instance log(φ0/MPl) ∈ [0, 4]. However, when φ0/MPl < 10, the likelihood is so small that it
cannot be numerically calculated in a reliable way. As a consequence, in what follows, we
consider the prior log(φ0/MPl) ∈ [1, 4] only.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

OSTI log (φ0/MPl) ∈ [1, 4] −1.87 4.27 3 2.14

A.24 Witten-O’Raifeartaigh inflation (WRI)

The potential of WRI inflation can be expressed as

V (φ) = M4 ln

(
φ

φ0

)2

. (A.35)

When the high energy justifications of the scenario are considered, the condition φ0 = MPl

holds. In what follows, we call this version of the model the “original WRI” and we denote it
as WRIo. If this condition is relaxed (the corresponding version of the model is then denoted
by WRIg) and if the model is now viewed as a more phenomenological one, then the order
of magnitude and value of φ0 are unspecified and a Jeffreys prior is appropriate. We choose
log(φ0/MPl) ∈ [−3, 3]. These considerations are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

WRIo φ0 = MPl −1.09 2.05 2 1.29
WRIg log (φ0/MPl) ∈ [−3, 3] −1.20 2.97 3 1.89

A.25 Small field inflation (SFI)

Small field inflation is characterised by the following potential

V (φ) = M4

[
1−

(
φ

µ

)p]
, (A.36)

which depends on two parameters, the dimensionless index p and the mass scale µ. In most
of high energy physics implementations, only the case µ < MPl is sensible. It is, however,
always possible to take a more phenomenological point of view and also consider the case
µ > MPl. In what follows, for this reason, we will discuss a “small” version of the scenario
for which log(µ/MPl) ∈ [−1, 0] and a “large” version for which log(µ/MPl) ∈ [0, 2]. Two
remarks are in order at this point. Firstly, a Jeffreys prior is chosen on µ because, a priori,
its order of magnitude is unspecified. Secondly, in the small version of the model, we only
consider log(µ/MPl) ∈ [−1, 0] (and not, for instance, log(µ/MPl) ∈ [−2, 0]) because, when
µ/MPl < 0.1, the likelihood is so small that it cannot be properly numerically calculated.

– 30 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

The index p is an O(1) parameter that can also take specific integer values. We will
treat the case where there is a flat prior on p, namely p ∈ [2, 10], but also the case where p
has specific values, p = 1, p = 2, p = 3 and p = 4. Let us also notice that for p = 1 and
p = 2, the small version of the SFI inflation does not exist because slow-roll is violated in
that case (for instance, for p = 2, one has ε2 > 4).

Our priors are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SFI
p ∈ [2, 10] −0.31 1.88 4 2.29

log (µ/MPl) ∈ [−1, 2]

SFIs
p ∈ [2, 10] −0.40 1.54 4 2.27

log (µ/MPl) ∈ [−1, 0]

SFIl
p ∈ [2, 10] −0.30 2.01 4 2.29

log (µ/MPl) ∈ [0, 2]

SFI1
p = 1 −1.53 1.94 3 0.79

log (µ/MPl) ∈ [−1, 2]

SFI2
p = 2 −1.90 3.07 3 2.19

log (µ/MPl) ∈ [−1, 2]

SFI2l
p = 2 −1.47 3.07 3 2.19

log (µ/MPl) ∈ [0, 2]

SFI3
p = 3 −1.23 2.74 3 2.26

log (µ/MPl) ∈ [−1, 2]

SFI3s
p = 3 −3.88 3.13 3 0.67

log (µ/MPl) ∈ [−1, 0]

SFI3l
p = 3 −0.87 2.65 3 2.26

log (µ/MPl) ∈ [0, 2]

SFI4
p = 4 −0.53 2.12 3 2.29

log (µ/MPl) ∈ [−1, 2]

SFI4s
p = 4 −0.79 1.95 3 2.26

log (µ/MPl) ∈ [−1, 0]

SFI4l
p = 4 −0.41 2.14 3 2.29

log (µ/MPl) ∈ [0, 2]

A.26 Intermediate inflation (II)

Intermediate Inflation is a phenomenological model that can be defined by demanding an
equation of state during inflation of the form

ρ+ p = γρλ, (A.37)

where γ > 0 and λ > 1 are dimensionless parameters, ρ and p being the energy density and
pressure stored in the inflaton field, respectively. This assumption is in fact equivalent to
having a scale factor given by a(t) ∝ exp

(
Atf

)
where

f =
2(1− λ)

1− 2λ
. (A.38)

Given that λ > 1, it follows that 0 < f < 1. Finally, it is also equivalent to postulate the
following potential

V (φ) = M4

[(
φ

MPl

)−β
− β2

6

(
φ

MPl

)−β−2
]
, (A.39)
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with

β = 4

(
1

f
− 1

)
. (A.40)

In this scenario, inflation cannot stop by violation of the slow-roll conditions and, hence, one
needs to postulate an extra mechanism such as tachyonic instability. This implies that the
scenario depends on another parameter, φend, the vev at which inflation ends. Intermediate
inflation is therefore a two parameters models, φend and λ (or f or β).

Given the above considerations, one can choose to take a flat prior on β ∈ [0, 10] (in the
following, we denote the corresponding version of the scenario by IIβ). It makes also sense to
work with a flat prior on f ∈ [0, 1] (this version of the model is denoted IIf ). In fact, in order
to avoid an infinite value of β, we will consider the following prior f ∈ [0.1, 1]. Finally, we
also investigate a Jeffreys prior on λ (this version is denoted by IIλ), namely log(λ) ∈ [0.1, 4],
the lower bound log(λ) > 0.1 being chosen to have finite values of β.

The prior on φend also needs to be discussed. It was shown in ref. [5] that the parameter
xend = φend/MPl must be larger than some value xmin

end in order to have a sufficient number
of e-folds during inflation. The parameter xend is only known numerically and has been
calculated in ref. [5]. Moreover, the order of magnitude of xend is not known and, therefore,
this suggests a Jeffreys prior. As a consequence, we take log(xend) ∈ [log(xmin

end ), 4]. Everything
is summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

IIβ
β ∈ [0, 10] −7.61 7.39 4 −3.66

log (xend) ∈ [log
(
xmin

end

)
, 4]

IIf
f = 1/ (1 + β/4) ∈ [0.1, 1] −7.56 8.22 4 −3.02
log (xend) ∈ [log

(
xmin

end

)
, 4]

IIλ
log(λ) = log (1 + 2/β) ∈ [0.1, 4] −7.79 7.79 4 −3.89

log (xend) ∈ [log
(
xmin

end

)
, 4]

A.27 Kähler moduli inflation II (KMIII)

Kähler Moduli Inflation III is a stringy inspired scenario the potential of which can be
written as

V (φ) = M4

[
1− α

(
φ

MPl

)4/3

e−β(φ/MPl)
4/3

]
. (A.41)

In this model, the inflaton field is a modulus field. The potential depends on two parameters,
α and β. As reviewed in ref. [5], the order of magnitude of the parameter β is in fact controlled

by the compactification volume V. More precisely, one can show that α = O
(
V5/3

s

)
and

β = O
(
V2/3

s

)
where Vs is a dimensionless volume defined by Vs = V/`6s , `s being the string

length. Since typical values are usually chosen such that Vs ∼ 106 and since the order
of magnitude of Vs is not precisely specified, we take a logarithmic prior on Vs, namely
log(V) ∈ [5, 7].

On the other hand, the ratio α/(βV) is a O(1) quantity, thanks to the scaling mentioned
above. As a consequence, we choose a flat prior α/(βV) ∈ [0.2, 5]. In practice, once the

number Vs is fixed, one calculate β by means of β = V2/3
s . Then, the ratio α/(βV) is chosen

and one deduces the value of α.
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

KMIII
log(V) ∈ [5, 7]

0.07 1.66 3 2.22
α/(βV) ∈ [0.2, 5]

A.28 Logamediate inflation (LMI)

This model is a phenomenological model designed such that the scale factor during inflation
behaves as

a(t) = a0 exp

[
A

(
ln

t

t0

)λ]
, (A.42)

where A > 0 and λ > 1 are two dimensionless parameters and t0 is a third parameter the
dimension of which is time. From this expression of the scale factor, one can infer the shape
of the potential. Straightforward calculations [5] lead to

V (φ) = M4

(
φ

MPl

)4(1−γ)

exp

[
−β
(

φ

MPl

)γ]
(A.43)

where the parameters γ and β can be expressed as

γ =
2

λ+ 1
, β = 2

(
λ+ 1

2
√

2Aλ

)2/(λ+1)

. (A.44)

These relations, together with the conditions on A and λ, imply 0 < γ ≤ 1 and β > 0. The
potential (A.43) has a maximum located at

xmax ≡
φmax

MPl

=

[
4(1− γ)

βγ

]1/γ

. (A.45)

This gives rise to two different versions of the model [5]: either inflation proceeds on the
left side of its maximum and the field vev decreases during inflation (we call this version
LMI1 in the following) or it proceeds on the right side of its maximum and the field vev
increases during inflation (this version is denoted LMI2). In the case of LMI1, inflation stops
by slow-roll violation. The case of LMI2 is more complicated but, in brief, one needs an
extra mechanism to end inflation and this introduces a new parameter in the model, xend,
see ref. [5] for more details. LMI2 is therefore a three parameter model.

Regarding the priors, we essentially have two choices: either we specify them on the
parameters characterising the potential or we specify them on the parameters controlling the
behaviour of the scale factor. In the following, we consider both cases.

Let us start with the case where we choose priors on the parameters of the potential.
In the following, we denote the two corresponding versions of the scenario by LMI1p and
LMI2p. For LMI1p, it is natural to take a flat prior on γ, namely γ ∈ [0, 1]. In fact, γ = 0
is numerically pathological and, therefore, in practice, we consider γ ∈ [0.1, 1]. For the
parameter β, one takes a flat prior β ∈ [0.01, βmax(γ)], where

βmax(γ) = 22−3γ/2 (0.1)γ/2
(1− γ)1−γ/2

γ1+γ/2
. (A.46)

As discussed in ref. [5], the condition β < βmax(γ) is mandatory in order for the slow-roll
conditions to be valid.
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Let us now turn to LMI2p. For this case, we also consider a flat prior on γ, γ ∈ [0.1, 0.99].
For this model, there is no condition on β in order to satisfy the slow-roll and, therefore, one
takes a flat prior on this parameter, namely β ∈ [0.01, 10]. Finally, the order of magnitude
of xend is not specified and this suggests a Jeffreys prior. Notice also that one must have
xend > xmin

end (γ, β,∆Nmin) in order to have at least ∆Nmin e-folds during inflation (typically
∆Nmin ' 50). Combining these two pieces of information leads us to the following prior
log (xend) ∈ [log

(
xmin

end

)
, log

(
100xmin

end

)
].

Let us now treat the case where the priors are chosen from considerations based on the
form of the scale factor (A.42). We denote these versions LMI1o and LMI2o. This means
that we first choose A and λ and then infer γ and β from eqs. (A.44). For the LMI1o model,
since λ is a O(1) parameter, one takes a flat prior on this parameter, namely λ ∈ [1, 6]. For
the parameter A, one needs to take into account the fact that there is a maximum value of
β, see the above discussion. In fact, it is possible to invert eqs. (A.44) and to express A in
terms of β and γ. One finds

A =

(
2

β

)2/γ (2

γ

)2 1

8(2/γ − 1)
. (A.47)

Given that 2/γ > 1, the presence of a βmax implies a Amin which can be expressed as

Amin =

(
2

βmax

)2/γ (2

γ

)2 1

8(2/γ − 1)
. (A.48)

In addition, since the order of magnitude of A is a priori not fixed, one chooses to work with
a Jeffreys prior. We therefore take log(A) ∈ [Amin(λ), 2].

Let us finally examine the LMI2o version. We take the same prior on λ and xend as
before. Since there is no maximum value of β anymore, there is no minimal value of A. As
a consequence, we work with the following prior on A: log(A) ∈ [−2, 2].

All the above considerations are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

LMI1p
γ ∈ [0.1, 1] −1.36 3.06 4 2.29

β ∈ [0.01, βmax(γ)]

LMI1o
λ ∈ [1, 6] −0.99 2.83 4 2.24

log (A) ∈ [Amin(λ), 2]

γ ∈ [0.1, 0.99]
LMI2p β ∈ [0.01, 10] −4.35 3.74 5 2.29

log (xend) ∈ [log
(
xmin

end

)
, log

(
100xmin

end

)
]

λ ∈ [1.1, 6]
LMI2o log (A) ∈ [−2, 2] −3.93 3.24 5 2.29

log (xend) ∈ [log
(
xmin

end

)
, log

(
100xmin

end

)
]

A.29 Twisted inflation (TWI)

The potential of Twisted Inflation (TWI) is given by the following expression

V (φ) = M4

[
1−A

(
φ

φ0

)2

e−φ/φ0

]
, (A.49)
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where the two parameters M and φ0 can be expressed as

M4 =
8N

Aπ2(2πR)4
,

φ0

MPl

=
1

2πRMPl

, (A.50)

the constant A being defined by A = 32/[93ζ(5)] ' 0.33. This model is based on higher
dimensional supersymmetric gauge theories, more precisely U(N ) Yang-Mills theory, and R
represents the radius of compactification. The above potential is valid provided RMPl � 1,
that is to say φ0/MPl � 1. In fact, the model makes sense if φ�MPl for any vev and not only
φ0 , see ref. [5] for more detail. Inflation cannot stop by violation of the slow-roll conditions
and, as a consequence, one needs to introduce another mechanism which is characterised by
a new parameter, φend. TWI inflation is therefore a two parameter model.

Let us now discuss the priors. We have just seen that φ0 must be sub-Planckian.
Since its order of magnitude is a priori unknown, it seems natural to take a Jeffreys prior,
namely log(φ0/MPl) ∈ [−4,−1]. Concerning the vev at which inflation ends, we know that
φend/φ0 > 2 because the minimum of the potential is located at φ/φ0 = 2. Otherwise, as
already discussed, the only other constraint is φend � MPl. However, in practice, for values
of φend approaching the Planck mass, the potential is so flat that this regime is already
strongly disfavoured (because nS ' 1). Therefore, it is better to choose an upper bound
for log(φend/φ0) supplemented with the hard prior φend < MPl. Then, one can study if the
evidence is changed if we modify the upper bound. Since the order of magnitude of this
parameter is a priori not specified, we must also take a Jeffreys prior on φ0 . To summarise,
we consider the two following priors log(φend/φ0) ∈ [log(2), log(20)] and log(φend/φ0) ∈
[log(2), log(40)] and check that, indeed, the final result is not sensitive to the upper bound.
In the following, we denote these priors by TWIφ0 and TWIr

φ0
.

At the fundamental level, Twisted Inflation is in fact characterised by N and not by
φ0 . If we CMB normalise the model, one can express the latter in terms of the former,
namely φ0/MPl ' 10−5/

√
N . In this version of the model, denoted by TWI and TWIr in

what follows, the prior choices are now fixed on N (and the value of φ0 is calculated using
the above equation). Since N is a priori a number of order one, it makes sense to take a flat
prior and we choose N ∈ [1, 100]. Concerning φend, we just take the same priors as before.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

log (φ0/MPl) ∈ [−4,−1]
TWIφ0 log (φend/φ0) ∈ [log(2), log(20)] −0.73 1.64 4 2.27

φend < MPl

log (φ0/MPl) ∈ [−4,−1]
TWIr

φ0
log (φend/φ0) ∈ [log(2), log(40)] −0.83 1.66 4 2.27

φend < MPl

N = 10−10(φ0/MPl)
−2 ∈ [1, 100]

TWI log (φend/φ0) ∈ [log(2), log(20)] −2.74 1.50 4 2.27
φend < MPl

N = 10−10(φ0/MPl)
−2 ∈ [1, 100]

TWI log (φend/φ0) ∈ [log(2), log(40)] −1.55 1.55 4 2.27
φend < MPl
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A.30 Generalised MSSM inflation (GMSSMI)

This model is a generalisation of MSSMI studied in section A.18. The potential can be
expressed as [5]

V (φ) = M4

[(
φ

φ0

)2

− 2

3
α

(
φ

φ0

)6

+
α

5

(
φ

φ0

)10
]
. (A.51)

This is a two-parameters model, φ0 and α, and the potential of MSSMI is recovered for
α = 1. As already discussed in section A.18 and in ref. [5], the typical value for the vev φ0 is
φ0 ' 1014GeV. The model can also be viewed as a phenomenological one, that is to say as
a representative of the class of the so-called inflection point inflationary scenario.

Let us now discuss the priors. Viewed as a phenomenological model (denoted by
GMSSMIp in what follows), the model is such that the scale of φ0 is unspecified and, there-
fore, a Jeffreys prior is appropriate. We choose to work with log(φ0/MPl) ∈ [−5, 5]. On the
other hand, the parameter α is of order one and, as a consequence, we take a flat prior:
α ∈ [0.9, 1.1]. Finally, a hard prior has been implemented to reject all non slow-roll cases
(defined to have |ε2| > 0.2).

If we now want to calculate the evidence of the model motivated by particle physics,
we must include in the analysis the fact that the vev φ0 is around 1014GeV. For this reason,
we choose a flat prior such that φ0/MPl ∈ [2× 10−5, 2× 10−4]. One also knows that, if α is
not precisely tuned around α = 1, then the model can not support slow-roll inflation and is,
therefore, ruled out. Moreover, requiring at least ∆N ' 60 e-fold during inflation leads to
the constraint

|α− 1| <
φ4

0

M4
Pl

π2

900∆N2
, (A.52)

see ref. [5]. This formula tells us that, if |α − 1| & 10−20, then the model is ruled out. This
illustrates the extreme fine-tuning needed for this model to be compatible with the Planck
data. When α > 1, we implement this fine-tuning through two different choices of priors
satisfying the above condition, namely log(1− α) ∈ [−28,−23] and log(1− α) ∈ [−28,−20],
corresponding to the GMSSMIomA and GMSSMIomB versions of the model, GMSSMIomB

being on the validity threshold. If α > 1, we define two other models denoted GMSSMIopA

and GMSSMIopB such that log(α − 1) ∈ [−28,−23] and log(α − 1) ∈ [−28,−21.75]. Our
choices for the priors are summarised in the following table:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

GMSSMIp
log (φ0/MPl) ∈ [−5, 5] −2.54 4.96 4 1.77

α ∈ [0.9, 1.1]

φ0/MPl ∈ [2× 10−5, 2× 10−4]
GMSSMIopA log (α− 1) ∈ [−28,−23] −10.30 0.76 4 −7.40

lnR ∈ [−46, 0], ∆N > 60

φ0/MPl ∈ [2× 10−5, 2× 10−4]
GMSSMIopB log (α− 1) ∈ [−28,−21.75] −10.41 0.76 4 −7.40

lnR ∈ [−46, 0], ∆N > 60

φ0/MPl ∈ [2× 10−5, 2× 10−4]
GMSSMIomA log (1− α) ∈ [−28,−23] −7.85 5.39 4 2.23

lnR ∈ [−46, 0], ∆N > 60

φ0/MPl ∈ [2× 10−5, 2× 10−4]
GMSSMIomB log (1− α) ∈ [−28,−20] −5.25 2.87 4 2.27

lnR ∈ [−46, 0], ∆N > 60

One may also wonder how the evidence would be changed if one penetrates the regime
where eq. (A.52) is not satisfied (and where the slow-roll approximation is not satisfied). In
that case, since all non slow-roll models are incompatible with the Planck data, the evidence
should only be rescaled by the ratio of the prior volumes. Therefore, in the following, we
study the more general situation where log |α − 1| ∈ [−28,−`], where ` is the variable with
respect to which we want to study the behaviour of the Bayesian evidence. In the prior plane
[φ0/MPl, log |1 − α|], eq. (A.52) defines a line above which the likelihood vanishes (since,
in that case and as already mentioned, the model becomes incompatible with the data).
This curve approximately goes from (2 × 10−5,−24 ≡ `min

c ) to (2 × 10−4,−20 ≡ `max
c ) and,

therefore, defines three different regions according to whether −` < `min
c , −` ∈ [`min

c , `max
c ] or

−` > `max
c .

Let us first assume that α > 1 and log(α− 1) ∈ [−28,−`]. If −` . −24, then α− 1 is so
small that one expects the model to be equivalent to MSSMI. If ` ∈ [`min

c , `max
c ] (denoted the

“transition region” in what follows), then only numerical calculations can track the behaviour
of the evidence. Notice that GMSSMIopA and GMSSMIopB belongs to this region. Finally,
for −` > `max

c , one expects the evidence to scale with the ratio of the prior volumes. These
expectations are confirmed in figure 5 (solid green line). However, for numerical reasons, we
are in fact unable to follow the evidence beyond the point −` ' −21.75 (GMSSMIopB model)
which is still in the transition region. One can nevertheless assume that the evidence does
not change much between that point and the edge of the transition region (hence the small
horizontal dashed red segment inside the transition region in figure 5). In that case, in the
regime −` > `max

c , one can write

ln

[Elog(α−1)∈[−28,−`]

EHI

]
' ln

(EGMSSMIopB

EHI

)
+ ln (28− `max

c )− ln (28− `) . (A.53)

This rough approximation can be considered as reasonable because it gives an upper bound
on the value of the evidence (since the evidence can only decrease in the transition region)
which is, anyhow, in a regime where the model is strongly disfavoured. Moreover, one should
also keep in mind that we are close to a regime where the numerical calculations cannot
really be trusted (light red shaded region).

The case α < 1 is very similar and in figure 5, we have represented different numerical
values of the Bayes factor versus −` (blue solid line). The interpretation is very similar and
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ln
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)

φ0/MPl∈[2×10−5 , 2×10−4 ]
log|1−α| ∈[−28,−ℓ]

α<1

α>1

∝ ln(28−ℓ)
numerically unreachable

Figure 5. Evolution of the GMSSMI Bayes factor versus the upper bound −` of the prior range on
α for α > 1 and α < 1. The green squares and blue circles represent numerical values of the evidence.
The dotted red curves represent the analytical laws giving the behaviour of the Bayes factor versus
−` for −` & `max

c according to eqs. (A.53) and (A.54). These equations predict how the Bayes factor
behaves with −` and, therefore, can be used to extrapolate in regimes where α becomes of order one.

one notices that, this time, one can track the evidence until the end of the transition regime,
i.e. until the GMSSMIomB model. Then, one can extrapolate it using again the ratio of the
prior volumes and this leads to the following expression

ln

(Elog(1−α)∈[−28,−`]

EHI

)
= ln

(
EGMSSMIomB

EHI

)
+ ln (28− `max

c )− ln (28− `) . (A.54)

This expression is plotted as the (upper) dotted red line in figure 5 and allows us to extrap-
olate, in a reliable way, the Bayes factor for values −` & −20. Let us also notice that, in this
case, the calculation is performed in a regime where numerical calculations are trustful.

In figure 5, one also notices that, for α > 1, the evidence decreases in the transition
region while, for α < 1, it grows. This is because the spectral index of GMSSMI decreases
with the value of α starting from the MSSMI value nS ' 0.9 when |α − 1| ' 0. As a
consequence, when α < 1, if −` is increased then nS grows and, therefore, crosses the Planck
best fit region. For this reason, the blue curve in figure 5 increases in the transition region.
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In the case α > 1, one observes the opposite behaviour since, in that situation, the model
moves away from the Planck best fit region.

The previous considerations allow us to extrapolate the evidence analytically to the
theoretical prior in which α varies up to unity. Those two extrapolated models have been
named GMSSMIep and GMSSMIem in the next table and their evidence have been estimated
using the two equations derived above, namely eqs. (A.53) and (A.54).

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

φ0/MPl ∈ [2× 10−5, 2× 10−4]
GMSSMIep log (α− 1) ∈ [−28,−0] −11.69 3.00 4 −7.40

lnR ∈ [−46, 0]

φ0/MPl ∈ [2× 10−5, 2× 10−4]
GMSSMIem log (1− α) ∈ [−28,−0] −6.53 3.88 4 2.27

lnR ∈ [−46, 0]

In the above table, the complexities have been rescaled following the rough estimate given
by eq. (A.8).

A.31 Generalised renormalisable point inflation (GRIPI)

In the very same way as GMSSMI is a generalisation of MSSMI, see section A.30, the GRIPI
potential is a generalisation of the RIPI one, see section A.19. This potential can be written as

V (φ) = M4

[(
φ

φ0

)2

− 4α

3

(
φ

φ0

)3

+
α

2

(
φ

φ0

)4
]
, (A.55)

and depends on two parameters, φ0 and α. The case α = 1 corresponds to the RIPI potential.
As discussed in ref. [5], the typical value of the vev φ0 is given by φ0 ' 1014GeV and/or
φ0 ' 1017GeV. In fact, in the case φ0 ' 1014GeV, the amount of fine-tuning is similar to
the GMSSMI case. For this reason, it is not so interesting to replicate the discussion of the
previous section and, here, one focuses on the case φ0 ' 1017GeV where one can expect the
fine tuning problem to be sligthly less severe.

Let us now discuss the priors. The GRIPI potential can always be viewed as a phe-
nomenological model (simply denoted GRIPIp in what follows). In that case, the order of
magnitude of the parameter φ0 is not specified and, therefore, one chooses a Jeffreys prior,
namely log(φ0/MPl) ∈ [−5, 5]. Regarding the parameter α, since it is of order one, we simply
take α ∈ [0.9, 1.1]. As for GMSSMI, we have also added a hard prior boundary, enforcing
|ε2| < 0.2, as otherwise some regions of the parameter space would predict non-slow-roll
inflation.

Returning to the original version of the model and considering the fact that, in this case,
the vev φ0 is specified, we choose the prior φ0/MPl ∈ [2×10−2, 2×10−1]. As for GMSSMI, if
α is not tuned around α = 1, the model becomes inconsistent. Requiring at least ∆N ' 60
e-fold during inflation leads to the condition

|α− 1| <
φ4

0

M4
Pl

π2

576∆N2
, (A.56)

see ref. [5] and, therefore, if |α − 1| & 10−8, then the model is a priori ruled out. As
a consequence, when α > 1, we consider two cases satisfying the above constraint namely
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log(1−α) ∈ [−15,−10] and log(1−α) ∈ [−28,−8], thus defining the GRIPIomA and GRIPIomB

models. If α > 1, we define two other models denoted GRIPIopA and GRIPIopB such that
log(α− 1) ∈ [−28,−10] and log(α− 1) ∈ [−28,−8].

Finally, the GRIPI potential can also arise in a supergravity framework (we denote this
version of the scenario GRIPIsugra). In that case, there is usually a shift symmetry which
allows us to consider super-Planckian vev of the field. For this reason, we also investigate the
prior φ0/MPl ∈ [10, 50]. The prior on α is still taken to be with α ∈ [0.9, 1.1] in agreement
with the previous discussion. All the considerations presented in this section are summarised
in the table below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

GRIPIp
log (φ0/MPl) ∈ [−5, 5] −2.77 4.00 4 2.29

α ∈ [0.9, 1.1]

φ0/MPl ∈ [2× 10−2, 2× 10−1]
GRIPIopA log (α− 1) ∈ [−15,−10] −5.10 3.14 4 −0.31

lnR ∈ [−46, 0], ∆N > 60

φ0/MPl ∈ [2× 10−2, 2× 10−1]
GRIPIopB log (α− 1) ∈ [−15,−8] −5.39 3.21 4 −0.31

lnR ∈ [−46, 0], ∆N > 60

φ0/MPl ∈ [2× 10−2, 2× 10−1]
GRIPIomA log (1− α) ∈ [−15,−10] −4.60 6.42 4 1.87

lnR ∈ [−46, 0], ∆N > 60

φ0/MPl ∈ [2× 10−2, 2× 10−1]
GRIPIomB log (1− α) ∈ [−15,−8] −4.30 5.72 4 1.99

lnR ∈ [−46, 0], ∆N > 60

GRIPIsugra
φ0/MPl ∈ [10, 50] −0.96 2.96 4 2.23
α ∈ [0.9, 1.1]

As was done in the case of GMSSM inflation in the previous section, one can also
study how the choice of the prior on α affects the determination of the Bayesian evidence.
For this reason, we consider the following priors: log(α − 1) ∈ [−15,−`] for α > 1 and
log(1 − α) ∈ [−15,−`] for α < 1. The dependence of the evidence with respect to ` can
be derived as in the previous section. In the prior plane [φ0/MPl, log |1 − α|], eq. (A.56)
defines a line above which the likelihood is tiny and can be considered to be vanishing.
This line divides the prior space into two parts and goes from (2 × 10−2,−12 ≡ `min

c ) to
(2 × 10−1,−8 ≡ `max

c ) and, therefore, defines three different regions according to whether
−` < `min

c , −` ∈ [`min
c , `max

c ] or −` > `max
c .

Let us first assume that α > 1. If −` . −15, then α− 1 is tiny and one expects GRIPI
to be equivalent to RIPI (with the same value of φ0). If ` ∈ [`min

c , `max
c ], then only numerical

calculations can track the behaviour of the evidence. Notice that GRIPIopA and GRIPIopB

belongs to this region. Finally, for −` > `max
c , one expects the evidence to scale with the

ratio of the prior volumes. In that case, one can write

ln

(Elog(α−1)∈[−15,−`]

EHI

)
= ln

(EGRIPIopB

EHI

)
+ ln(15− `max

c )− ln(15− `). (A.57)

Here, we have taken GRIPIopB as the calibration model, a natural choice considering that this
model lies at the frontier of the transition region. The corresponding results are represented
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−14 −12 −10 −8 −6 −4

−ℓ
−6.0

−5.5

−5.0

−4.5

−4.0

ln
( E GR

IP
I/
E H

I)

ℓmin
c ℓmax

c

ln
(ERIPI/EHI)

φ0/MPl∈[0.02, 0.2]
log|1−α| ∈[−15,−ℓ]

α<1

α>1

∝ ln(15−ℓ)

Figure 6. Evolution of the GRIPI Bayes factor versus the upper bound −` of the prior range on α
for α > 1 and α < 1. The green squares and blue circles represent numerical values of the evidence.
The dotted red curves represent the analytical laws giving the behaviour of the Bayes factor versus
−` for −` & `max

c according to eqs. (A.57) and (A.58). These equations predict how the Bayes factor
behaves with −` and, therefore, can be used to extrapolate in regimes where α becomes of order one.
The behaviour of the evidences is very similar to what was found in the GMSSMI case, see figure 5.
However, a difference with GMSSMI is that, in the case α > 1, one is now able to track the Bayes
factors through the entire transition region.

in figure 6 (solid green line for the numerical results and dashed red line for the extrapolated
evidences).

For α < 1, taking GRIPIomB as a calibration model, exactly the same discussion applies
and one is led to (again, see figure 6)

ln

(Elog(1−α)∈[−15,−`]

EHI

)
= ln

(
EGRIPIomB

EHI

)
+ ln(15− `max

c )− ln(15− `). (A.58)

We can now use these formulae to rescale the evidence if α varies up to unity. Naming the
two corresponding models GRIPIep and GRIPIem, their evidences have been reported below.
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

GRIPIep
φ0/MPl ∈ [2× 10−2, 2× 10−1] −6.15 3.79 4 −0.31

log (α− 1) ∈ [−15, 0]

GRIPIem
φ0/MPl ∈ [2× 10−2, 2× 10−1] −5.06 4.28 4 1.99

log (1− α) ∈ [−15, 0]

In this table, complexities have also been rescaled following the rough estimate given by
eq. (A.8).

A.32 Brane SUSY breaking inflation (BSUSYBI)

The potential is a sum of two exponential and reads

V (φ) = M4

(
e
√

6 φ
MPl + e

√
6γ φ

MPl

)
. (A.59)

In addition to the parameter γ, the field value xend = φend/MPl at which inflation ends
has to be specified. Within the superstring scenario from which this model is inspired,
0 < γ < 1/

√
3 [69]. However, the upper limit would already implies to ε1(x) > 3γ2 ' 1

and slow-roll is violated everywhere. We have therefore limited the prior on γ to slightly
lower values γ < 0.3 considering either a flat prior or a Jeffreys prior. Concerning, xend, one
notices that inflation proceeds at decreasing field values and is confined in a region x < xε1=1,
xε1=1 being the solution of ε1(x) = 1. As a result, there is a maximal bound xmax

end which
has been defined such that inflation last more than 120 e-folds. The quantity is only known
numerically and is obtained by integrating the field trajectory from xini = xε1=1 during 120
e-folds. On the contrary, there is no lower limit on the allowed values of xend and the limit
xend → −∞, would correspond to nS = 1 and r = 0. Therefore, for xend negative enough,
the likelihood, and therefore the evidence, becomes independent on the lower bound on xend.
We have therefore considered the following priors:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

BSUSYBIf
γ ∈ [0, 0.3]

3.26 3.26 4 −2.54
xend ∈ [−200, xmax

end ]

BSUSYBIl
log(γ) ∈ [−3,−1]

4.52 3.26 4 −2.54
xend ∈ [−200, xmax

end ]

A.33 Tip inflation (TI)

This string inspired potential has two parameters, a dimensionless coupling α and a typical
vev µ:

V (φ) = M4

[
1 + cos

(
φ

µ

)
+ α sin2

(
φ

µ

)]
. (A.60)

As made explicit in ref. [5], these parameters encode combinations of geometrical quantities
related to the relative position of branes within a conifold geometry. This potential supports
inflation at its top provided α ' 1/2, which amounts to some level of fine-tuning. When this
condition is satisfied, µ actually gives the volume of the extra-dimensions

µ

MPl

' 2× 108σ
9/4
0 , (A.61)

where σ0 is the stabilised value of the volume modulus in the absence of uplifting terms [70].
A typical value for σ0 is σ0 ' 102 which translates into µ/MPl ' 10−4, up to a few orders
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of magnitude. Following these considerations, we have examined various priors designed
to measure how important is the fine-tuning over α. In particular, the three sub-classes
α & 1/2, α = 1/2 and α . 1/2 yield different observable predictions and have been treated
as separated models. They are summarised below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

TIft+
α>1/2

α ∈]0.5, 0.5 + 10−7] −4.37 3.51 4 1.95
log(µ/MPl) ∈ [−5,−3]

TIft
α>1/2

α ∈]0.5, 0.5 + 2× 10−7] −5.19 3.53 4 1.95
log(µ/MPl) ∈ [−5,−3]

TIft−
α>1/2

α ∈]0.5, 0.5 + 10−6] −6.99 3.51 4 1.95
log(µ/MPl) ∈ [−5,−3]

TI1/2
α = 1/2 −1.90 2.82 3 1.95

log(µ/MPl) ∈ [−5,−3]

TIft+
α<1/2

α ∈ [0.5− 10−7, 0.5[ −1.92 2.59 4 2.21
log(µ/MPl) ∈ [−5,−3]

TIft
α<1/2

α ∈ [0.5− 10−6, 0.5[ −4.64 2.60 4 2.21
log(µ/MPl) ∈ [−5,−3]

TIft−
α<1/2

α ∈ [0.5− 10−5, 0.5[ −7.12 2.59 4 2.21
log(µ/MPl) ∈ [−5,−3]

For completeness, we have also considered models in which α ' 1/2 without any prior
prejudice on the sign of α− 1/2. One gets the following evidences:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

TIft+
α ∈ [0.5− 10−7, 0.5 + 10−7] −2.65 2.74 4 2.21

log(µ/MPl) ∈ [−5,−3]

TIft
α ∈ [0.5− 10−6, 0.5 + 10−6] −5.26 2.74 4 2.21

log(µ/MPl) ∈ [−5,−3]

TIft−
α ∈ [0.5− 10−5, 0.5 + 10−5] −7.78 2.75 4 2.21

log(µ/MPl) ∈ [−5,−3]

One can also wonder what happens if one detunes the prior on α since, after all, this fine-
tuning is not theoretically motivated. Let us first consider the case where α > 1/2. We want
to calculate the evidence if the prior on α is chosen such that α ∈]0.5, 0.5 + a]. We assume
that, for a > 10−6, the likelihood vanishes (which is, according to the results presented in the
tables, a realistic hypothesis). Applying the considerations presented earlier [see eq. (A.4)]
and taking as a calibration model TIft−

α>1/2, one obtains that for a > 10−6

Eα∈]0.5,0.5+a] = Eα∈]0.5,0.5+10−6]
10−6

a
, (A.62)

or

ln

(Eα∈]0.5,0.5+a]

EHI

)
= ln

(ETIft−
α>1/2

EHI

)
− 6 ln(10)− ln(a) ' −6.99− 6 ln(10)− ln(a). (A.63)

If we now assume α < 1/2, the same considerations lead to a similar formula, namely

ln

(Eα∈]0.5−a,0.5]

EHI

)
= ln

(ETIft−
α<1/2

EHI

)
− 5 ln(10)− ln(a) ' −7.12− 5 ln(10)− ln(a), (A.64)
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for a > 10−5. Finally, the case where the sign of α− 1/2 is not specified yields

ln

(Eα∈]0.5−a,0.5+a]

EHI

)
= ln

(ETIft−

EHI

)
− 5 ln(10)− ln(a) ' −7.78− 5 ln(10)− ln(a), (A.65)

for a > 10−5. As expected, we see on these last three formulae that, if one increases the
range of the prior in a region where the likelihood vanishes, then the corresponding models
get penalised for the wasted parameter space. Therefore, the above calculations concretely
illustrate the Occam’s razor effect.

Applying these formulae allows us to extrapolate the evidence for a natural prior choice
having a = 10−1, i.e. assuming only |α− 0.5| < 0.1.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

TIe
α<1/2

α ∈ [0.4, 0.5] −16.33 4.00 4 2.21
log(µ/MPl) ∈ [−5,−3]

TIe
α>1/2

α ∈ [0.5, 0.6] −18.50 4.00 4 1.95
log(µ/MPl) ∈ [−5,−3]

TIe α ∈ [0.4, 0.6] −16.99 4.00 4 2.21
log(µ/MPl) ∈ [−5,−3]

In this table, complexities have also been rescaled following the rough estimate given by
eq. (A.8). Here the volume ratio is so big that the rescaled complexities end up being
very close to the number of parameters, which is certainly overestimated due to our crude
assumptions in deriving eq. (A.8).

A.34 Beta exponential inflation (BEI)

This model is an extension of PLI to the generalised exponential function exp1-β defined by

exp1-β(x) = (1 + βx)1/β for 1 + βx > 0 and exp1-β(x) = 0 otherwise. The potential therefore
reads

V (φ) = M4 exp1-β

(
λ
φ

MPl

)
, (A.66)

where λ > 0 is a dimensionless parameter. As detailed in ref. [5], inflation ends naturally
only for β > 0, which will be our prior. The model being phenomenological, there is no
natural value for λ and we have chosen a Jeffreys prior. Moreover, one can show that the
slow-roll observable predictions does not depend on λ, and thus the prior boundaries do not
affect the evidence. In the limit β → 0, the model becomes strongly disfavoured such that,
changing the lower limit of the β-prior accordingly decreases the evidence of the model. This
is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

BEI
log(λ) ∈ [−3, 3] −0.99 2.65 4 2.29

log(β) ∈ [−1.5, 3]

A.35 Pseudo natural inflation (PSNI)

The potential of PSNI reads

V (φ) = M4

[
1 + α ln

(
cos

φ

f

)]
, (A.67)
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Figure 7. Priors for PSNI inflation in the plane [logα, log(f/MPl)]. The red rectangle represents
the theoretical motivated prior. The blue line represents the condition of validity of the slow-roll
approximation, namely αf2/M2

Pl < 0.1. Above this line (green region), slow-roll is satisfied and below
(blue region) slow-roll is strongly violated. As a consequence, the likelihood vanishes in the blue region
and is different from zero in the green one. Numerically, one can only determine the Bayesian evidence
with a prior corresponding to the green region. The evidence corresponding to the red rectangle can
be derived from analytical considerations (see text). The left panel corresponds to the situation where
y > (x− 1)/2 while the right panel is for y < (x− 1)/2.

where α is a dimensionless coupling and f is an energy scale. In order for the model to be
consistent, one should have f < mPl =

√
8πMPl and α� 1 [71]. As discussed in ref. [5], the

above potential has ε2 > εmin
2 = 2αM2

Pl/f
2 and slow-roll inflation can occur only if αM2

Pl/f
2

is constrained to be small.
A first phenomenological choice of priors therefore consists in adopting prior bound-

aries for uniform priors in the quantities log(αM2
Pl/f

2) and log(f/MPl). Taking log(f/MPl) ∈
[−2, 1] and log(αM2

Pl/f
2) < −1, different lower bounds on αM2

Pl/f
2 have been studied, cor-

responding to different levels of fine-tuning of this parameter.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

PSNIft1
log(αM2

Pl/f
2) ∈ [−5,−1] −0.42 2.13 4 2.29

log(f/MPl) ∈ [−2, 1]

PSNIft2
log(αM2

Pl/f
2) ∈ [−3,−1] −0.41 2.04 4 2.29

log(f/MPl) ∈ [−2, 1]

PSNIft3
log(αM2

Pl/f
2) ∈ [−2,−1] −0.64 1.74 4 2.29

log(f/MPl) ∈ [−2, 1]

PSNIft4
log(αM2

Pl/f
2) ∈ [−1.5,−1] −5.62 3.68 4 0.02

log(f/MPl) ∈ [−2, 1]

One can see that the evidence increases as the lower bound on log(αM2
Pl/f

2) decreases because
the likelihood is better in the region where log(αM2

Pl/f
2) is small.

Another sensible choice of priors, based on the previous considerations, is to take uni-
form priors on the theoretical motivated parameter log(α) ∈ [−x,−1] and log(f/MPl) ∈
[−y, 1], where x and y are positive numbers left unspecified for the moment. In the plane
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[log(f/MPl), logα] the two-dimensional prior range is represented in figure 7 by the red rect-
angle. As discussed previously, αM2

Pl/f
2 must be a small quantity for slow-roll to be satisfied.

In the numerical calculations, we have assumed that it is smaller than 0.1, i.e. , we use the
same hard prior boundary as before, ε2 < 0.2. Such a hard prior cuts the theoretical prior
domain of figure 7 along the curve

log

(
f

MPl

)
>

1

2
logα+

1

2
, (A.68)

which is represented by a blue line in figure 7. As for GMSSMI and GRIPI, we can estimate
analytically how the evidence would be rescaled by removing this hard prior, but first we
need to estimate how much prior volume is affected.

When y ≥ (x − 1)/2 (left panel of figure 7), the hard prior boundary line intersects
the right vertical edge of the red rectangle at the point (−1, 0) and the left vertical edge at
(−x, 1/2 − x/2). In the case where y ≤ (x − 1)/2 (right panel of figure 7), this line still
intersects the right vertical edge of the red rectangle at the point (−1, 0) but now meets the
bottom horizontal edge at (−1−2y,−y). The condition (A.68) corresponds to the green region
in figure 7, where slow-roll is valid and the likelihood non-vanishing. The complementary
domain has been represented in blue on the same figure. In this domain, slow-roll is violated
and the predictions cannot be in agreement with the observations. As a consequence, the
likelihood function L is very small and for the purpose of our analytical extrapolation it will
be assumed to vanish. In the following table, we have numerically computed the evidences
in the green domain, i.e. in the region where our computations can be trusted, for various
prior choices.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

log(α) ∈ [−7,−1]
PSNIoA log(f/MPl) ∈ [−2, 1] −0.40 2.15 4 2.29

αM2
Pl/f

2 < 10−1

log(α) ∈ [−5,−1]
PSNIoB log(f/MPl) ∈ [−2, 1] −0.42 2.12 4 2.29

αM2
Pl/f

2 < 10−1

log(α) ∈ [−3,−1]
PSNIoC log(f/MPl) ∈ [−2, 1] −0.43 2.12 4 2.29

αM2
Pl/f

2 < 10−1

We can now use these evidences calculated with the green domain prior and rescale them
appropriately to obtain the evidences over the full domain, including the slow-roll violating
regions, that is to say in the red rectangle. From eq. (A.4), generalised to a two-dimensional
prior, one gets

Ered =

∫
green d log(α) d log(f/MPl)∫
red d log(α) d log(f/MPl)

Egreen, (A.69)

i.e. the evidence is rescaled according to the ratio of the prior volumes between the green and
red domains. Explicitly, one gets∫

red
d log(α) d log(f/MPl) = (x− 1)(y + 1), (A.70)

– 46 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

and ∫
green

d log(α) d log(f/MPl) =


(x− 1)(x+ 3)

4
if y ≥ x− 1

2
,

(y + 1)(x− 1)− y2 if y ≤ x− 1

2
,

(A.71)

such that

ln

(
Ered

EHI

)
= ln

(
Egreen

EHI

)
+


ln

[
x+ 3

4(y + 1)

]
if y ≥ x− 1

2
,

ln

[
1− y2

(y + 1)(x− 1)

]
if y ≤ x− 1

2
.

(A.72)

Therefore, the rescaled evidence (for the red domain) can be obtained from the one in the
green region by using the correction factor given by the above formula. The results are
summarised below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

PSNIepA
log(α) ∈ [−7,−1] −0.65 2.39 4 2.29

log(f/MPl) ∈ [−2, 1]

PSNIepB
log(α) ∈ [−5,−1] −0.83 2.51 4 2.29

log(f/MPl) ∈ [−2, 1]

PSNIepC
log(α) ∈ [−3,−1] −1.13 2.77 4 2.29

log(f/MPl) ∈ [−2, 1]

In this table, complexities have also been rescaled following the rough estimate given by
eq. (A.8).

A.36 Non canonical Kähker inflation (NCKI)

The model has two dimensionless parameters α and β and its potential reads

V (φ) = M4

[
1 + α ln

(
φ

MPl

)
+ β

(
φ

MPl

)2
]
. (A.73)

The logarithmic term encodes loop corrections to the monomial part of the potential [72]
and, therefore, natural values of α are such 0 < α � 1 whereas β = O(1). As discussed in
ref. [5], for β > 0, the first Hubble flow function has a maximum εmax

1 ' β/2 (α � 1) at
xεmax

1
' 1/

√
β, with x ≡ φ/MPl. Therefore, we require β to small enough to have εmax

1 � 1 to
ensure slow-roll inflation. If this condition is not satisfied, inflation could still process in the
large field limit, but would be equivalent to the LFI models. A similar requirement exists for
β < 0 by noticing that the second Hubble flow function verifies εmin

2 > −8β (α � 1), which
should be less than unity. The lower limit of |β| is arbitrary but cannot not be too small in
order to maintain the hierarchy between the loop corrections and the monomial term. On
purely phenomenological grounds, taking the limit β → 0 gives back the LI potential. We
have accordingly chosen the following priors:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

NCKIβ>0
log(α) ∈ [−4,−1] −3.91 2.57 4 −0.11
β ∈ [0.02, 0.2]

NCKIβ<0
log(α) ∈ [−4,−1] −65.07 4.50 4 −56.01
β ∈ [−0.1,−0.02]
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A.37 Constant spectrum inflation (CSI)

This potential is designed to produce a scale invariant power spectrum nS ' 1 and reads

V (φ) =
M4(

1− α φ

MPl

) , (A.74)

where α is supposed to be small. This potential requires the field value xend = φend/MPl at
which inflation stops to be specified. In the branch x = φ/MPl < 1/α, inflation proceeds at
decreasing field value while it cannot start at too large initial field value xini. Indeed, one
has ε1(x) < 1 only for x < xε1=1 such that xini is bounded from above xini < xε1=1. This
implies that there is a maximal bound for xend, that is numerically determined by requesting
inflation to last, at least, 120 e-folds from xini = xε1=1 to xend = xmax

end . A priori, there is no
lower limit for xend. However, for xmin

end → −∞, all the slow-roll functions vanish, nS → 1,
r → 0. Therefore, the likelihood values become independent on xmin

end , as is the evidence. For
convenience, we have chosen xmin

end (α) such that ε1(xmin
end ) > 10−16, the machine precision limit.

Everything is summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CSI
log(α) ∈ [−5,−1] −7.80 0.16 4 −7.72
xend ∈ [xmin

end , x
max
end ]

A.38 Orientifold inflation (OI)

The potential of these models has two parameters, a coupling α and a vev φ0 , and reads

V (φ) = M4

(
φ

φ0

)4 [
ln2

(
φ

φ0

)
− α

]
. (A.75)

As the model is motivated by super Yang-Mills orientifold theories, the vev φ0 should be
related to the Grand Unified energy scale and the coupling α should be small since α =
O(1/Nc), Nc � 1 being the number of colours [73]. Therefore, we have chosen the following
priors.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

OI
log(α) ∈ [−3,−1] −6.52 3.62 4 −3.21

log(φ0/MPl) ∈ [−3,−1]

A.39 Constant nS C inflation (CNCI)

This is the class “C” of potentials, according to the classification of ref. [5], which produces
a constant spectral index. The potential is parametrised by one parameter α and reads

V (φ) = M4

[(
3 + α2

)
coth2

(
α√
2

φ

MPl

)
− 3

]
. (A.76)

In addition to α, the model requires the field value xend ≡ φend/MPl at which inflation ends
to be specified. These scenarios are phenomenological and motivated for α small. Moreover,
inflation proceeds at increasing field values and there is a region at small x = φ/MPl in
which ε1(x) > 1. As the result, xini > xε1=1, with xε1=1 the solution of ε1 = 1. Requesting
inflation to support at least 120 e-folds from xε1=1 implies the existence of minimal value for
xend > xmin

end (α). These considerations lead us to the following priors:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CNCI
log(α) ∈ [−5,−1] −7.72 8.25 4 −3.53
xend/x

min
end ∈ [1, 10]

A.40 Supergravity brane inflation (SBI)

The potential depends on two dimensionless parameters α and β and reads

V (φ) = M4

{
1 +

[
−α+ β ln

(
φ

MPl

)](
φ

MPl

)4
}
. (A.77)

As discussed in ref. [5], the logarithmic term comes from loop corrections that should not
dominate the field dynamics. As such, the potential supports inflation in the small field
region in which it is convex. For inflation to end, one requires α ≥ αmin(β) where αmin =
(β/4)[1− ln(β/4)], and β should be a small parameter. For α > αmin, inflation is well defined
but, at larger field values, the potential exhibits a negative minimum showing that it cannot
be extended to those regions. On the other hand, for α = αmin, the potential has a vanishing
minimum and is well defined everywhere. We have therefore considered these two cases.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SBI
log(α) ∈ [−5,−2] −0.37 1.67 4 2.29
log(β) ∈ [−4,−1]

SBIαmin

α = αmin −0.85 2.04 3 2.23
log(β) ∈ [−4,−1]

A.41 Spontaneous symmetry breaking inflation (SSBI)

The SSBI models are described by potentials of the form

V (φ) = M4

[
1 + α

(
φ

MPl

)2

+ β

(
φ

MPl

)4
]
, (A.78)

where α and β are the two dimensionless parameters. As discussed in ref. [5], this potential
supports six different inflationary regimes according the relative signs of α and β. They are
SSBI1 for α > 0, β > 0; SSBI2 for α < 0, β < 0; SSBI3 and SSBI4 for α > 0, β < 0;
SSBI5 and SSBI6 for α < 0, β > 0. A priori the parameters α and β may take very
small values, or not, depending on the underlying theoretical motivations (see ref. [5]). As
a result, we have both considered a Jeffreys and flat prior for those two parameters. There
are however some additional restrictions. For SSBI1, inflation ends only for α > αmin(β)
which fixes an absolute lower limit for the α-prior. Moreover, even when this condition is
satisfied, SSBI1 is strongly disfavoured when α becomes small and we have only considered
α > max(10−3, αmin). For SSBI3 and SSBI4, inflation proceeds from the top of the potential,
either at increasing field values or at decreasing field values. The shape of the SSBI potential
is such that this may occur in a non slow-rolling way with ε2 large. These situations violates
the slow-roll approximation, and are strongly disfavoured. Therefore, we have added a hard
prior rejecting all model parameter values yielding ε2(xtop) > 0.2, xtop being the field value
at the top of the potential. Finally, for SSBI5 and SSBI6, there is another value αmax(β)
above which inflation never ends. As a result, for those scenarios, the prior on α verifies
α < αmax(β). The following table summarises all the SSBI models considered with the
Jeffreys prior choices:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SSBI1
max[−3, log(αmin)] < log(α) < 1 −4.27 2.73 4 −0.08

log(β) ∈ [−5, 1]

SSBI2
log(−α) ∈ [−5, 1] −0.54 1.74 4 2.29
log(−β) ∈ [−5, 1]

log(α) ∈ [log(αmin), 1]
SSBI3 log(−β) ∈ [−5, 1] −2.28 4.13 4 1.83

ε2(xtop) < 0.2

log(α) ∈ [log(αmin), 1]
SSBI4 log(−β) ∈ [−5, 1] −0.70 2.02 4 2.29

ε2(xtop) < 0.2

SSBI5
log(−α) ∈ [log(−αmax), 1] −3.02 2.40 4 2.19

log(β) ∈ [−5, 1]

SSBI6
log(−α) ∈ [log(−αmax), 1] −3.30 3.19 4 0.72

log(β) ∈ [−5, 1]

We have also considered the same models but when the natural values of α and β are
considered as being O(1), i.e. with flat priors rather than Jeffreys priors. They are listed in
the table below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SSBI1f
α ∈ [max(10−3, αmin), 10] −6.24 9.08 4 −0.08

β ∈ [10−5, 10]

SSBI2f
α ∈ [−10,−10−5] −2.65 1.99 4 2.29
log(−β) ∈ [−5, 1]

α ∈ [αmin, 10]
SSBI3f β ∈ [−10,−10−5] −2.52 2.93 4 1.83

ε2(xtop) < 0.2

α ∈ [αmin, 10]
SSBI4f β ∈ [−10,−10−5] −2.09 2.40 4 2.29

ε2(xtop) < 0.2

SSBI5f
α ∈ [−10, αmax] −7.11 2.93 4 2.19
β ∈ [10−5, 10]

SSBI6f
α ∈ [−10, αmax] −6.08 10.15 4 0.71
β ∈ [10−5, 10]

A.42 Inverse monomial inflation (IMI)

The potential is a extension of the large field inflation potential to negative power indices
and read

V (φ) = M4

(
φ

MPl

)−p
, (A.79)

with p > 0. Inflation proceeds at increasing field values and ends at the field value xend =
φend/MPl, which is an additional model parameter. There is however a region, at small field
values, which does not support inflation as ε1(x) > 1. Denoting xε1=1 the solution of ε1 = 1,
this implies that xini > xε1=1 and there is a minimal acceptable value for xend such that
inflation lasts more than 120 e-folds. As for the other models, this value xmin

end is numerically
determined by solving the field trajectory starting at xini = xε1=1 for the specified amount
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of e-folds. In the absence of definite constraints on xend, we have chosen a flat prior for
xend/x

min
end ∈ [1, 100] as well as various fixed values of p = O(1). They are summarised below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

IMI
p ∈ [1, 6] −7.79 6.69 4 −4.44

xend/x
min
end ∈ [1, 100]

IMI1
p = 1 −7.80 0.85 3 −7.37

xend/x
min
end ∈ [1, 100]

IMI2
p = 2 −7.80 1.41 3 −7.09

xend/x
min
end ∈ [1, 100]

IMI3
p = 3 −7.80 5.88 3 −4.85

xend/x
min
end ∈ [1, 100]

IMI4
p = 4 −7.79 6.28 3 −4.65

xend/x
min
end ∈ [1, 100]

IMI5
p = 5 −7.79 5.68 3 −4.93

xend/x
min
end ∈ [1, 100]

IMI6
p = 6 −7.78 6.63 3 −4.44

xend/x
min
end ∈ [1, 100]

A.43 Brane inflation (BI)

The potential of brane inflation reads

VBIph
(φ) = M4

[
1−

(
φ

µ

)−p]
, (A.80)

and depends explicitly on two parameters µ and p. This is an approximated expression
derived from KKLMMT-like inflationary scenarios, in which p = 4 and µ�MPl [74, 75]. In
the following, we define x ≡ φ/µ and inflation proceeds at decreasing x. It is induced by the
motion of a brane inside the throat of some compactified extra-dimensions, φ referring to the
position of this brane. Brane inflation can either ends naturally, i.e. when the acceleration
of the universe stops, or before if a tachyonic preheating is triggered by brane annihilation.
The model has therefore an additional parameter, xstg, which is the field value at which
brane annihilation occurs. Denoting by xε1=1 the solution of ε1(x) = 1, inflation actually
ends at the field value xend = max(xstg, xε1=1). The parameter xstg is related to various
hidden string parameters such as the flux conserved quantum numbers and the volume of the
throat. As shown in ref. [76], the internal consistency of the model implies that xstg > 1, its
order of magnitude remaining unknown. Moreover, there is a maximal field value, φUV, which
corresponds to the brane position at the edge of the throat. As the model only describes
brane interactions within the throat, one should impose φ < φUV. As discussed in ref. [76],
the internal consistency of the model imposes that φUV < 2MPl.

Following these considerations, we have first considered strict priors associated with
the string scenario (BIstg), namely p = 4, log(µ/MPl) ∈ [−6, log(2)], log(xstg) ∈ [0, 3] and
log(φUV/MPl) ∈ [−2, log(2)]. For the sake of generality, we have also considered the non-
approximated potential associated with the KKLMMT model, namely

VKKLTI(φ) =
M4

1 +

(
φ

µ

)−p , (A.81)
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under the label KKLTIstg, and with the same priors as BIstg. As one can check in the
following table, there is no difference between the two models under those priors.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

BIstg

p = 4

−0.33 1.91 5 2.29
log(µ/MPl) ∈ [−6, log(2)]

log(xstg) ∈ [0, 3]
log(φUV/MPl) ∈ [−2, log(2)]

KKLTIstg

p = 4

−0.32 1.92 5 2.29
log(µ/MPl) ∈ [−6, log(2)]

log(xstg) ∈ [0, 3]
log(φUV/MPl) ∈ [−2, log(2)]

Then, we have allowed for other phenomenological scenarios that would be based on the
same potentials by relaxing p and allowing µ to become super-Planckian. Out of the string
framework, there is no motivation to keep xstg and φUV as extra model parameters and we
have instead assumed that inflation ends at xend = xε1=1. However, for µ > MPl, inflation
within the potential (A.80) or (A.81) may yield different observable predictions. As a result,
we have separated the models in which µ < MPl from those in which µ can take any values.
The phenomenological models considered, and their priors, are enumerated in the following
table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

KKLTI
p ∈ [2, 10] −0.34 1.90 4 2.29

log(µ/MPl) ∈ [−3, 3]

KKLTIs
p ∈ [2, 10]

0.02 1.85 4 2.29
log(µ/MPl) ∈ [−3, 0]

BIph
p ∈ [2, 10] −0.19 2.14 4 2.29

log(µ/MPl) ∈ [−3, 3]

BIs
p ∈ [2, 10]

0.03 1.84 4 2.29
log(µ/MPl) ∈ [−3, 0]

BI1s
p = 1 −0.21 2.19 3 2.29

log(µ/MPl) ∈ [−3, 0]

BI2s
p = 2 −0.08 2.05 3 2.29

log(µ/MPl) ∈ [−3, 0]

BI3s
p = 3 −0.02 1.96 3 2.29

log(µ/MPl) ∈ [−3, 0]

BI4s
p = 4

0.01 1.91 3 2.29
log(µ/MPl) ∈ [−3, 0]

BI5s
p = 5

0.02 1.87 3 2.29
log(µ/MPl) ∈ [−3, 0]

BI6s
p = 6

0.04 1.82 3 2.29
log(µ/MPl) ∈ [−3, 0]

A.44 Running-mass inflation (RMI)

The running-mass inflationary models, denoted RMI, have a potential of the form

V (φ) = M4

[
1− c

2

(
−1

2
+ ln

φ

φ0

)
φ2

M2
Pl

]
, (A.82)
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which supports four different inflationary regimes, namely RMI1 (φ < φ0 , c > 0), RMI2
(φ > φ0 , c > 0), RMI3 (φ < φ0 , c < 0) and RMI4 (φ > φ0 , c < 0), see ref. [5]. In
addition to the constant c and the vev φ0 , the field value φend at which inflation ends has to
be specified making RMI a three-parameters model. The model describing loop corrections
over a polynomial expansion, the constant c cannot be too small and the vev φ0 must be
sub-Planckian. The order of magnitude of φ0 being unspecified, we have chosen a Jeffreys
prior in log(φ0/MPl) ∈ [−2, 0]. For RMI1, RMI2 and RMI3, the likelihood has a flat direction
along the parameter φ0 such that the evidence is independent of the lower bound on φ0 . For
RMI4, the likelihood is vanishing when φ0 becomes small, and the evidence is accordingly
decreased if the prior lower bound on log(φ0/MPl) is pushed to smaller values.

As discussed in ref. [5], within supersymmetry, natural values of c ' 10−2 to 10−1 for
soft masses values matching the energy scale of inflation. This suggest to take a flat prior for
c encompassing those values. For other type of couplings, c may take smaller values and we
therefore consider another motivated prior in which the order of magnitude of c is unknown,
e.g. log(c) ∈ [−3,−1].

Finally, the field value φend is constrained to be in the inflationary region of interest.
The shape of the potential therefore gives the natural prior bounds for xend ≡ φend/φ0 , i.e.
xend ∈ [1/e, 1] for RMI1 and RMI3, xend ∈ [1, e] for RMI2. For RMI4, one still has xend > 1
but choosing the prior upper limit requires some precaution. Indeed, the potential is an
increasing function of φ, which approaches large field inflation asymptotically, and inflation
proceeds at decreasing field values, bounded from below by xend. Since the large field regime
is not acceptable for RMI4, one has to require the initial field value xini < xεmax

1
. Here xεmax

1

is the field value at which the first Hubble flow function is maximal, which is the frontier
between the vacuum dominated regime and the large field one. As for the other models,
adding the “hard prior” that inflation lasts longer than 120 e-folds ensures the existence of a
maximal value xmax

end , which is obtained by integrating the field trajectory from xini = xεmax
1

.
This is a complicated functions of the other parameters which is only known numerically.
The parameter space of RMI4 is therefore sampled with a flat prior for xend ∈ [1, xmax

end ].

Finally, for RMI1 and RMI2, we have added another “hard prior” to avoid an infinite
number of e-folds to occur at the top of the potential by requiring ε1(xini) to be larger than
the numerical machine precision. This has no observable consequences as the parameter
space volume cut remains extremely small and those cases would correspond otherwise to
nS = 1 and are disfavoured. All these considerations are summarised in the following table.
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

c ∈ [0.01, 0.2]
RMI1 log(φ0/MPl) ∈ [−2, 0] −2.03 1.94 5 2.29

xend ∈ [1/e, 1]

log(c) ∈ [−3,−1]
RMI1l log(φ0/MPl) ∈ [−2, 0] −1.41 2.04 5 2.29

xend ∈ [1/e, 1]

c ∈ [0.01, 0.2]
RMI2 log(φ0/MPl) ∈ [−2, 0] −2.18 1.80 5 2.29

xend ∈ [1, e]

log(c) ∈ [−3,−1]
RMI2l log(φ0/MPl) ∈ [−2, 0] −1.14 2.04 5 2.29

xend ∈ [1, e]

c ∈ [−0.2,−0.01]
RMI3 log(φ0/MPl) ∈ [−2, 0] −1.96 2.05 5 2.29

xend ∈ [1/e, 1]

log(−c) ∈ [−3,−1]
RMI3l log(φ0/MPl) ∈ [−2, 0] −2.84 2.16 5 2.29

xend ∈ [1/e, 1]

c ∈ [−0.2,−0.01]
RMI4 log(φ0/MPl) ∈ [−2, 0] −25.90 9.54 5 −13.85

xend ∈ [1, xmax
end ]

log(−c) ∈ [−3,−1]
RMI4l log(φ0/MPl) ∈ [−2, 0] −9.26 1.28 5 −7.13

xend ∈ [1, xmax
end ]

A.45 Valley hybrid inflation (VHI)

The potential is parametrised by two parameters p and µ and reads

V (φ) = M4

[
1 +

(
φ

µ

)p]
, (A.83)

p > 0 being the power index and µ is a typical vev . Because this expression only describes
inflation along the valley of the genuine two-field hybrid inflationary scenario, the vev µ is
forced to be super-Planckian. As discussed in refs. [77–81], this condition is required to get
enough e-folds of inflation occurring in the valley. Another implicit prior is to assume that
the parameters associated with the other field are such that the regime of waterfall inflation
does not take place. As discussed in ref. [5], the dynamics of VHI is significantly different if
p > 1 or p < 1 and the two classes are considered. In addition to µ and p, hybrid inflation
ends by tachyonic instability and the field value xend ≡ φend/µ at which this occurs is an extra
model parameter. As for RMI, our prior is to restrain VHI to the vacuum dominated regime
only, i.e. xini < xεmax

1
where xεmax

1
is the frontier between the vacuum dominated regime and

the large field one. From this limit, requiring inflation to support at least 120 e-folds gives
a numerical upper bound xend < xmax

end . The quantity xmax
end is determined numerically using

the ASPIC code by integrating the field trajectory starting at xεmax
1

. For the cases p ≤ 1, the
VHI potential does not support inflation around x = 0 as ε1 diverges in this limit. For those,
we therefore consider a prior xend > xmin

end where xmin
end = x−ε1=1 is the solution of ε1 = 1 in the

vacuum dominated region. For p > 1, the tachyonic instability can take place at arbitrarily
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small field values and xmin
end = 0 (up to machine precision limitations). Notice that the upper

bounds of the p and µ priors have been fixed to arbitrary values. All the models considered
for the VHI scenarios are listed below and are all ruled out, independently of their priors.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p ∈]1, 6]
VHI log(µ/MPl) ∈ [0, 3] −7.81 16.46 5 0.43

xend ∈ [xmin
end , x

max
end ]

p ∈ [0, 0.9]
VHIp<1 log(µ/MPl) ∈ [0, 3] −7.80 20.09 5 2.27

xend ∈ [xmin
end , x

max
end ]

p = 1/2
VHI1/2 log(µ/MPl) ∈ [0, 3] −7.80 19.57 4 1.99

xend ∈ [xmin
end , x

max
end ]

p = 1
VHI1 log(µ/MPl) ∈ [0, 3] −7.80 17.14 4 0.79

xend ∈ [xmin
end , x

max
end ]

p = 2
VHI2 log(µ/MPl) ∈ [0, 3] −7.80 15.42 4 −0.09

xend ∈ [xmin
end , x

max
end ]

p = 3
VHI3 log(µ/MPl) ∈ [0, 3] −7.81 14.66 4 −0.47

xend ∈ [xmin
end , x

max
end ]

p = 4
VHI4 log(µ/MPl) ∈ [0, 3] −7.82 14.15 4 −0.72

xend ∈ [xmin
end , x

max
end ]

A.46 Dynamical supersymmetric inflation (DSI)

The potential is an extension of the VHI one to negative power index and reads

V (φ) = M4

[
1 +

(
φ

µ

)−p]
, (A.84)

while this class of model naturally appears in supersymmetric theories (see ref. [5]). As such,
the vev µ should be always sub-Planckian. For the priors, we have either considered the
typical values of refs. [82, 83], i.e. a flat prior for µ around 10−7 (model DSIo), which is also
relaxed to allow for any other phenomenological models of the same kind (DSI). Inflation
takes place at increasing field value and the end of inflation xend = φend/µ is an additional
parameter. Moreover, as discussed in ref. [5], inflation can only take place in the region
x > xε1=1, where xε1=1 is the solution of ε1 = 1. This provides a lower bound for xini,
and therefore, complemented with our hard prior that inflation lasts more than 120 e-folds,
this gives xend > xmin

end . As for VHI, the quantity xmin
end has to be numerically evaluated by

integrating the field trajectory over 120 e-folds starting at xini = xε1=1. Moreover, within
the supersymmetric framework in which this potential is derived, there are additional terms
lifting V (φ) at large field values which can be ignored provided φ is not too large. This gives
a natural upper bound for the prior on xend. More specifically, these terms are of the form
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∆V = φq+4/M q
Pl such that the corrected potential exhibits a global minimum at a field value

xVmin . Requiring xend � xVmin gives the absolute upper bound

xend � xmax
end ≡

[
43200π2 p3

q + 4
P∗

(
MPl

µ

)q+6
]1/(3p+q+6)

. (A.85)

As a motivated case, we have chosen q = 8 and a Jeffreys’ prior on xend in [xmin
end , x

max
end ].

The case p = 2 has been considered as an independent model as it corresponds to the so-
called inverse mutated scenarios. In summary, the following models and priors have been
considered:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p ∈]1, 6]
DSI log(µ/MPl) ∈ [−5, 0] −8.51 0.07 5 −7.71

log

(
xend − xmin

end

xmax
end − xmin

end

)
∈ [−5,−0.7]

p ∈]1, 6]
DSIo µ/MPl ∈

[
10−9, 10−6

]
−8.47 0.07 5 −7.71

log

(
xend − xmin

end

xmax
end − xmin

end

)
∈ [−5,−0.7]

p = 2
DSI2 µ/MPl ∈

[
10−9, 10−6

]
−8.40 0.07 4 −7.71

log

(
xend − xmin

end

xmax
end − xmin

end

)
∈ [−5,−0.7]

A.47 Generalised mixed large field inflation (GMLFI)

The potential mixes two large field monomials and reads

V (φ) = M4

(
φ

MPl

)p [
1 + α

(
φ

MPl

)q]
, (A.86)

where p and q are power indices and α a constant. The model has three parameters and their
priors have been chosen on phenomenological grounds. In particular, because GMLFI allows
to discuss the effects stemming from combining together two LFI models, it motivates to fix
p and q to all the possible theoretically motivated combination of pure LFI models. One can
also view GMLFI as a new class of models and let p, q and α freely varying. A priori, the
parameter α can be very small such that it should be sampled along a Jeffreys prior. We
have considered the following cases:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p ∈ [1, 6]
GMLFI log(α) ∈ [−5, 1] −5.15 3.90 5 0.79

q ∈ [1, 6]

p = 2/3
GMLFI2/3,1/3 log(α) ∈ [−5, 1] −1.27 2.31 3 1.24

q = 1/3

p = 2/3
GMLFI2/3,4/3 log(α) ∈ [−5, 1] −1.69 2.74 3 1.24

q = 4/3

p = 1
GMLFI1,1 log(α) ∈ [−5, 1] −1.86 2.35 3 0.79

q = 1

p = 1
GMLFI1,2 log(α) ∈ [−5, 1] −2.52 2.69 3 0.79

q = 2

p = 1
GMLFI1,3 log(α) ∈ [−5, 1] −3.64 3.13 3 0.63

q = 3

p = 2
GMLFI2,1 log(α) ∈ [−5, 1] −3.05 2.08 3 −0.08

q = 1

p = 2
MLFI log(α) ∈ [−5, 1] −3.77 2.39 3 −0.09

q = 2

p = 2
GMLFI2,3 log(α) ∈ [−5, 1] −5.23 3.47 3 −0.39

q = 3

p = 3
GMLFI3,1 log(α) ∈ [−5, 1] −4.83 3.29 3 −1.02

q = 1

p = 3
GMLFI3,2 log(α) ∈ [−5, 1] −5.60 4.06 3 −1.04

q = 2

p = 3
GMLFI3,3 log(α) ∈ [−5, 1] −7.43 6.87 3 −1.90

q = 3

Notice that the case p = 2, q = 2 is also referred to as MLFI in ref. [5].

A.48 Logarithmic potential inflation (LPI)

These scenarios are parametrised by a potential of the form

V (φ) = M4

(
φ

φ0

)p(
ln

φ

φ0

)q
. (A.87)

Some specific combinations of p and q match various Yang-Mills composite models LPI14,1

(p = 4, q = 1), LPI14,2 (p = 1, q = 2) and LPI14,3 (p = 4, q = 3) [73, 84]. Others
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combinations are phenomenological [85]. Because the potential admits a local maximum at
x = xVmax , with x = φ/φ0 , inflation can take place in three domains: LPI1 for x > 1, LPI2
for xVmax < x < 1 and LPI3 for x < xVmax . Let us notice that for both LPI2 and LPI3,
the potential is well-defined only if q is an even integer. For LPI1, both p and q can take
arbitrary real values. The vev φ0 is not constrained for LPI1, and we have chosen a Jeffreys
prior encompassing both sub-Planckian and super-Planckian values. On the contrary, in
the LPI1 and LPI2 domains, φ0 must be deeply super-Planckian to allow for slow-rolling
inflation. The models and priors considered are listed below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p ∈ [1, 6]
LPI1 log(φ0/MPl) ∈ [−3, 3] −3.95 3.84 5 0.77

q ∈ [1, 6]

p = 4
LPI14,1 log(φ0/MPl) ∈ [−3, 3] −3.27 2.79 3 0.69

q = 1

p = 4
LPI14,2 log(φ0/MPl) ∈ [−3, 3] −4.42 2.90 3 −0.14

q = 2

p = 4
LPI14,3 log(φ0/MPl) ∈ [−3, 3] −5.99 5.28 3 −1.14

q = 3

p ∈ [1, 6]
LPI22 log(φ0/MPl) ∈ [2, 5] −2.47 3.82 4 1.14

q = 2

p ∈ [1, 6]
LPI24 log(φ0/MPl) ∈ [2, 5] −5.97 7.85 4 −0.18

q = 4

p ∈ [1, 6]
LPI26 log(φ0/MPl) ∈ [2, 5] −8.15 7.64 4 −3.24

q = 6

p ∈ [1, 6]
LPI32 log(φ0/MPl) ∈ [2, 5] −2.67 4.58 4 1.98

q = 2

p ∈ [1, 6]
LPI34 log(φ0/MPl) ∈ [2, 5] −2.04 4.03 4 2.26

q = 4

p ∈ [1, 6]
LPI36 log(φ0/MPl) ∈ [2, 5] −1.71 3.56 4 2.28

q = 6

A.49 Constant nS D inflation (CNDI)

The potential has two parameters α, β and reads

V (φ) =
M4[

1 + β cos

(
α
φ

MPl

)]2 . (A.88)
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As discussed in ref. [5], the only regime of cosmological interest has x = φ/MPl small and
β > 1. In that situation, the field value at which inflation ends should be specified, namely
xend = φend/MPl. Moreover, if x becomes too large, inflation cannot even start because
there exists a “forbidden” range of field values in which ε1(x) > 1. As a result, there is a
maximal value for xini = x−ε1=1, x−ε1=1 being the smallest root of the equation ε1 = 1. As
for the other models, by imposing to get at least 120 e-folds of inflation, the maximal values
of xini translates into a maximal value xmax

end thereby constituting the upper bound of the
xend’s prior. Concerning the parameter α, the genuine CNDI model is designed to produce
a constant spectral index and, as discussed in ref. [5], this occurs for not too small, neither
not too large values of α. The priors chosen are summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

β ∈ [1.1, 6]
CNDI log(α) ∈ [−2,−1] −7.91 6.41 5 −4.55

xend ∈ [0, xmax
end ]
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