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1 Introduction

Exact solutions to the Dirac equation in curved spacetime is of considerable interest in cos-
mology and astrophysics, where gravity is believed to play a dominant role in determining the
behavior of spin-1/2 particles. A general discussion on the interaction of massless neutrinos
and spherically symmetric gravitational fields was performed by Brill and Wheeler [1] in 1957.
In the 1970s the phenomenon of particle production in curved spacetime was investigated
by Parker [2–6] and in 1974 Hawking discovered the effect of black hole evaporation [7–9],
an appropriate example regarding the importance of strong gravitational fields in quantum
mechanical processes. Also, the study of the hydrogen atom energy spectrum in curved space-
time was presented by Audretsch and Schäfer [10] and was also studied by Parker in 1980 [11].

Finding exact and analytic solutions of the Dirac equation in curved backgrounds is
always a hard task. Some exact solutions have been reported in the middles of 1980 [12–14].
In 1987 Barut and Duru [15] provided an exact solution for the Dirac equation for a spa-
tially flat Friedmann-Robertson-Walker spacetime in three meaningful models of expanding
universes, based on the spin connection point of view. Exact solutions of the Dirac equa-
tion in open and closed Friedmann-Robertson-Walker spaces were presented in subsequent
years for both massive and massless case [16–21]. Solutions for Kasner spacetime was ob-
tained by Srivastava [22] and for an anisotropic Bianchi type VI background was presented
by Portugal [23].

In this work we aim to investigate exact solutions for Elko spinors whose dynamics is
taken in curved spacetime. More precisely, we study the solutions for the aforementioned
spinor field in spatially flat Friedmann-Robertson-Walker spacetimes. Elko spinor fields were
introduced in [24, 25] as a possible generalization of Majorana spinor fields. The main prop-
erty defining Elko spinors is that they are eigenspinors of the charge conjugator operator,
making them neutral under electromagnetic interactions by construction. Since the introduc-
tion of the Elko spinors, modifications and improvements have been accomplished. The final
form for the spinor and its corresponding quantum theory may be found in [26]. There are sev-
eral works considering Elko spinor fields in the context of curved spacetimes and cosmology.
The study of Elko spinors with a possible coupling with torsion fields is presented in [27, 28],
as well as its impact on Cosmic Microwave Background anisotropies [29] and its relation to the
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cosmological principle [30]. Following this reasoning, important consequences of dark spinor
models to inflation are studied in [31, 32] and interesting solutions where the dark spinor
field leads to slow roll and fast roll de Sitter solutions are presented in [33]. Scalar and tensor
cosmological perturbations are discussed in [34, 35] and dark spinor models as a candidate
of dark energy are investigated in [36, 37], as well as the cosmological coincidence problem.

As remarked, the endeavour on finding exact solutions of spinor fields in curved space-
times is important in several contexts. The possibility, raised in the Elko formalism, of
understanding this spinor field as a candidate to dark matter (for instance, along with the
fact that Elko has a peculiar dynamics) certainly highlights the relevance of studying exact
solutions for the Elko dynamics in physically important spacetimes. Furthermore, it is also
a robust starting point to investigate Elko particle production in curved backgrounds [38].

This paper is organized as follows: in the next section we give a tutorial and short
review about the main aspects of Elko spinor fields. In section III we study exact solutions
of Elko dynamics in three different cosmological expanding spacetimes, namely: the de Sitter
one, a linear expansion and the radiation dominated universe. Section IV is reserved to
the investigation of the obtained solutions in cosmology. In the final section we conclude,
comparing the obtained solutions with the usual case of Dirac spinors.

2 Elko spinor fields

In this section we shall review some important aspects concerning Elko spinor fields and its
dynamics [24, 26]. As mentioned in the Introduction, the very relation defining Elko spinor
fields is given by

Cλ = ±λ, (2.1)

where C stands for the charge conjugator operator. Hence, λ is an eigenspinor of C. By
solving eq. (2.1), it is possible to recast the spinors as self-conjugate (+ sign in (2.1)) λS{+,−},

λS{−,+}, and anti-self-conjugate (− sign in (2.1)) λA{+,−}, λ
A
{−,+}. They are given explicitly by

λS{+,−}(
~0) =

(
+σ2[φ

−
L (~0)]∗

φ−L (~0)

)
,

λS{−,+}(
~0) =

(
+σ2[φ

+
L (~0)]∗

φ+L (~0)

)
,

λA{+,−}(
~0) =

(
−σ2[φ−L (~0)]∗

φ−L (~0)

)
,

λA{−,+}(
~0) = −

(
−σ2[φ+L (~0)]∗

φ+L (~0)

)
, (2.2)

with phases adopted such that

φ+L (~0) =
√
m

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
(2.3)

and

φ−L (~0) =
√
m

(
− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
. (2.4)

– 2 –
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The equations above are valid in the rest frame (~k = ~0), therefore the expressions for
arbitrary momenta are obtained by a simple boost. The parameter m denotes the spinor
field mass, σ2 is the usual Pauli matrix, and the momentum parametrization is given by
k̂ = (sin θ cosφ, sin θ sinφ, cos θ). It is remarkable that −iσ2[φ±L (~0)]∗ and φ±L (~0) have opposite

helicities. It means that Elko spinor fields belong to the
(
1
2 , 0
)
⊕
(

0, 12

)
representation space.

The dual spinor associated to λS/A can be obtained in a very judicious way, by demand-

ing that the product
¬
λ λ, being

¬
λ the dual, remains invariant under Lorentz transforma-

tions [39]. The result reads

¬
λ
S/A

{∓,±} (~k) = ±i
[
λ
S/A
{±,∓}(

~0)
]†
γ0. (2.5)

With the aid of eq. (2.5) it is possible to write down the spin sums∑
κ

λSκ
¬
λ
S

κ= +m[I + G(φ)],

∑
κ

λAκ
¬
λ
A

κ= −m[I− G(φ)], (2.6)

where G(φ) is given by [39]

G(φ) = γ5(γ1 sinφ− γ2 cosφ). (2.7)

In order to unveil the Elko quantum dynamics we need an approach different from
the usual textbook ones, inasmuch as we do not know a priori what Lagrangian must be
associated to the Elko spinor. The first hint towards its dynamics comes from the following
algebraic relation

(γµk
µδβα ± imIεβα)λ

S/A
β (~k) = 0, (2.8)

which can be obtained by applying γµk
µ to λ

S/A
β (~k). From eq. (2.8) it is straightforward to

see that the application of γνkν from the left leads to

(γνγµkµkν −m2)λ
S/A
{∓,±} = 0, (2.9)

which, by means of {γµ, γν} = 2ηµν , leads to the Klein-Gordon equation in the momentum.
In the following we shall derive the Klein-Gordon equation of the Elko spinor field by a more
precise argument.

(2.8) is a Dirac-like equation. It is obviously different from the Dirac equation, but
they share the covariant structure. Hence, denoting a spinorial transformation as λ′ = Sλ
(assuming that λ belongs to a linear representation of, at least, a subgroup of the Lorentz
group), and studying the transformation of the expression (2.8) we arrive at the same covari-
ance condition of the standard Dirac equation SγνS−1Λµν = γµ. Therefore, as in the Dirac
case, the field λ is not unitarily transformed and cannot be associated to a quantum state.
Thus, quantization is necessary.

By keeping some recurrence with the usual spinorial case, we may associate a quantum
field by

η(x) =

∫
d3k

(2π)3
1√

2mE(~k)

∑
α

[cα(~k)λSα(~k)e−ikµx
µ

+ c†α(~k)λAα (~k)e+ikµx
µ
], (2.10)

– 3 –
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where c†α(~k) and cα(~k) are the creation and annihilation operators, respectively, satisfying the
usual fermionic anti-commutation relations. The quantum dual may be obtained in a rather
similar fashion. With the quantum fields at hands we may evaluate the Feynman-Dyson
propagator, given by

SFD(x′ − x) = i〈|T
(
η(x′)

¬
η (x)

)
|〉, (2.11)

where T is the time ordering operator. The calculation is a little tricky due to the subtle
aspects of the field. The final result reads [24–26]

SFD(x′ − x) = −
∫

d4k

(2π)4
e−ik

µ(x′µ−xµ)

[
1

kµkµ −m2

]
, (2.12)

hence the Elko spinor field must respect (only) the Klein-Gordon Lagrangian, i.e., it has
mass dimension one. If we keep ourselves on power counting arguments, then the only
perturbatively renormalizable possible terms are the mass one, the self (quartic) interaction

(
¬
λ λ)2 and the coupling with a scalar field.

In the following we shall investigate the exact solutions for the Elko spinor field in the
context of physically relevant expanding spacetimes.

3 The Elko spinor equation in expanding spacetimes

By the reasons exposed in the previous section, the Elko spinor action in the curved spacetime
is given by:

S =
1

2

∫ √
−g
(

1

2
gµν
(
∇µ

¬
λ ∇νλ+∇ν

¬
λ ∇µλ

)
− V (

¬
λ λ)

)
d4x , (3.1)

where V (
¬
λ λ) is the potential and g ≡ detgµν . The covariant derivatives acting on the Elko

spinors are ∇µ
¬
λ= ∂µ

¬
λ +

¬
λ Γµ and ∇µλ = ∂µλ− Γµλ, where Γµ are the spin connections.

The metric in a spatially flat, homogeneous and isotropic Friedmann-Robertson-Walker
expanding universe is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (3.2)

thus
gµν = diag(1,−a2,−a2,−a2) , gµν = diag(1,−1/a2,−1/a2,−1/a2) , (3.3)

with gµαgαν = δµν and
√
−g = a3. In order to satisfy the defining equations γµγν + γνγµ =

2gµν with respect to the metric (3.3), the Dirac matrices γµ(x) are

γ0(t) = γ0 , γi(t) = − 1

a(t)
γi , i = 1, 2, 3 , (3.4)

where γµ (lower index) denotes the standard Dirac matrices in the Minkowiski space. The
spin connections Γµ can be determined as Γ0 = 0 and Γi = ȧ

2γ0γi, where a dot denotes a
time derivative.

Taking the potential of the form V = 1
2m

2
¬
λ λ, the Elko Lagrangian density can be

written as

L =
1

2

√
−g
[
gµν(∇µ

¬
λ ∇νλ)−m2

¬
λ λ

]
. (3.5)

– 4 –
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The equations of motion follow from a principle of least action. For the spinor λ, for instance,
we have

∂α

[√
−ggαν(∂νλ− Γνλ)

]
+
√
−g
[
gµν(ΓµΓνλ− Γµ∂νλ) +m2λ

]
= 0 , (3.6)

and the corresponding equation of motion taking into account the metric (3.3) is

λ̈+ 3

(
ȧ

a

)
λ̇− 1

a2
∂2i λ−

3

4

(
ȧ

a

)2

λ+m2λ+
ȧ

a2
γ0γi(∂iλ) = 0 , (3.7)

where we have used ΓiΓi = ȧ2

4 I. The corresponding equation for
¬
λ is

¬̈
λ+ 3

(
ȧ

a

)
¬̇
λ−

1

a2
∂2i
¬
λ −

3

4

(
ȧ

a

)2 ¬
λ +m2

¬
λ −

ȧ

a2
(∂i
¬
λ)γ0γi = 0 . (3.8)

These equations are the generalization of the corresponding equations of motion obtained
in [31, 33] for the scalar part of the Elko field, including the non-homogeneous terms of the
type ∂iλ.

Since a is a function of t only, we can set

λ(~x, t) = N
ei
~k·~x

a(t)3/2

(
ΦI(~k, t)

ΦII(~k, t)

)
, (3.9)

where N is a normalization constant. It is a fairly simple exercise to constraint the ΦI,II

components of (3.9) by means of the eigenspinor equation (2.1) in the rest frame, in order
to ensure the spinor in question as an Elko spinor field indeed. To fix ideas, let us call
ΦT
I = (φ1(t)α, φ2(t)β), ΦT

II = (φ3(t)γ, φ4(t)δ), being α, β, γ, δ constants, and work with the
positive sign of (2.1). The result is

ΦI(~k, t) =

(
φ1(t)α(~k)

iφ∗3(t)γ
∗(~k)

)
, ΦII(~k, t) =

(
φ3(t)γ(~k)

−iφ∗1(t)α∗(~k)

)
. (3.10)

The functions ΦI and ΦII will satisfy the following equation,

Φ̈I,II +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
ΦI,II ± i

ȧ

a2
~k · ~σΦI,II = 0 , (3.11)

where the plus and minus signal stands for ΦI and ΦII , respectively. It is interesting to note
from this equation that the corresponding equations for ΦI and ΦII are decoupled, but due
to the last term the equations for φ1(t) and φ∗3(t) are coupled, and the same happens for
φ3(t) and φ∗1(t).

To solve this system of coupled equations we make the decomposition φ1(t) = φ1R(t) +
iφ1I(t) and φ3(t) = φ3R(t) + iφ3I(t), where φ1R, φ3R stands for the real part of φ1 and φ3,
respectively, and φ1I , φ3I for the imaginary part. Substituting in (3.11) we have the four
coupled differential equations:

φ̈1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ1(t) + i

ȧ

a2

(
k3φ1(t) +

iγ∗

α
k−φ

∗
3(t)

)
= 0 , (3.12)

– 5 –
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φ̈∗3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗3(t) + i

ȧ

a2

(
α

iγ∗
k+φ1(t)− k3φ∗3(t)

)
= 0 , (3.13)

φ̈3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ3(t)− i

ȧ

a2

(
k3φ3(t)−

iα∗

γ
k−φ

∗
1(t)

)
= 0 , (3.14)

φ̈∗1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗1(t)− i

ȧ

a2

(
γ

−iα∗
k+φ3(t)− k3φ∗1(t)

)
= 0 , (3.15)

with k± = k1 ± ik2.
For the anti-self-conjugate spinor

¬
λ we use the definition (2.5). The±i factor is irrelevant

to equation (3.8), thus we set:

¬
λ (~x, t) = N

e−i
~k·~x

a(t)3/2

{
¬
ΦI (~k, t) ,

¬
ΦII (~k, t)

}
(3.16)

where

¬
ΦI (~k, t) =

{
φ∗3(t)γ

∗(~k) , iφ1(t)α(~k)

}
, (3.17)

¬
ΦII (~k, t) =

{
φ∗1(t)α

∗(~k) , −iφ3(t)γ(~k)

}
. (3.18)

The full set of coupled equations for this case is

φ̈∗3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗3(t)− i

ȧ

a2

(
α

iγ∗
k+φ1(t)− k3φ∗3(t)

)
= 0 , (3.19)

φ̈1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ1(t)− i

ȧ

a2

(
k3φ1(t) +

iγ∗

α
k−φ

∗
3(t)

)
= 0 , (3.20)

φ̈∗1(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ∗1(t) + i

ȧ

a2

(
γ

−iα∗
k+φ3(t)− k3φ∗1(t)

)
= 0 , (3.21)

φ̈3(t) +

[
~k2

a2
+m2 − 3

2

(
ȧ

a

)2

− 3

2

ä

a

]
φ3(t) + i

ȧ

a2

(
k3φ3(t)−

iα∗

γ
k−φ

∗
1(t)

)
= 0 . (3.22)

3.1 Case a(t) = a0 e
Ht

For the case a(t) = a0 eHt, which represents an inflationary universe or a de Sitter evolution,
the coupled equations (3.12)–(3.15) have the following solutions in terms of the Whittaker
Mµ,ν(z) and Wµ,ν(z) functions [40]:

φ1(t) =
2e

1
2
Ht

αγk+ + α∗γ∗k−

[ (
c5α
∗γ∗k− + ic1|γ|2(k3 + k)

)
M+1/2,ν(z)

+
(
c7α
∗γ∗k− + ic3|γ|2(k3 + k)

)
W+1/2,ν(z)

+
(
c6α
∗γ∗k− + ic2|γ|2(k3 − k)

)
M−1/2,ν(z)

+
(
c8α
∗γ∗k− + ic4|γ|2(k3 − k)

)
W−1/2,ν(z)

]
, (3.23)

– 6 –
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φ3(t) =
2e

1
2
Ht

αγk+ + α∗γ∗k−

[ (
c1α
∗γ∗k− − ic5|α|2(k3 − k)

)
M+1/2,ν(z)

+
(
c3α
∗γ∗k− − ic7|α|2(k3 − k)

)
W+1/2,ν(z)

+
(
c2α
∗γ∗k− − ic6|α|2(k3 + k)

)
M−1/2,ν(z)

+
(
c4α
∗γ∗k− − ic8|α|2(k3 + k)

)
W−1/2,ν(z)

]
, (3.24)

where ci (i = 1, 2, . . . , 8) are integration constants, k ≡ |~k|, ν =
√

3−m2/H2 and z =
2ik/(Ha0e

Ht).
Finally, we can write the four independent solutions as:

λ1(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

M+1/2,ν(z)

[αγk+ + α∗γ∗k−]


c5|α|2γ∗k− + ic1|γ|2α(k3 + k)
−c5|α|2γ∗(k3 − k) + ic1|γ|2αk+
c1|γ|2α∗k− − ic5|α|2γ(k3 − k)
−c1|γ|2α∗(k3 + k)− ic5|α|2γk+

 , (3.25)

λ2(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

W+1/2,ν(z)

[αγk+ + α∗γ∗k−]


c7|α|2γ∗k− + ic3|γ|2α(k3 + k)
−c7|α|2γ∗(k3 − k) + ic3|γ|2αk+
c3|γ|2α∗k− − ic7|α|2γ(k3 − k)
−c3|γ|2α∗(k3 + k)− ic7|α|2γk+

 , (3.26)

λ3(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

M−1/2,ν(z)

[αγk+ + α∗γ∗k−]


c6|α|2γ∗k− + ic2|γ|2α(k3 − k)
−c6|α|2γ∗(k3 + k) + ic2|γ|2αk+
c2|γ|2α∗k− − ic6|α|2γ(k3 + k)
−c2|γ|2α∗(k3 − k)− ic6|α|2γk+

 , (3.27)

λ4(~x, t) =
2ei

~k·~x

a
3/2
0 eHt

W−1/2,ν(z)

[αγk+ + α∗γ∗k−]


c8|α|2γ∗k− + ic4|γ|2α(k3 − k)
−c8|α|2γ∗(k3 + k) + ic4|γ|2αk+
c4|γ|2α∗k− − ic8|α|2γ(k3 + k)
−c4|γ|2α∗(k3 − k)− ic8|α|2γk+

 . (3.28)

For the anti-self-conjugate spinor
¬
λ we have:

¬
λ1 (~x, t) =

2e−i
~k·~x

a
3/2
0 eHt

M+1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c5|α|2γ∗k− + ic1|γ|2α(k3 − k) ,

− c5|α|2γ∗(k3 + k) + ic1|γ|2αk+ ,
c1|γ|2α∗k− − ic5|α|2γ(k3 + k) ,

− c1|γ|2α∗(k3 − k)− ic5|α|2γk+
}
, (3.29)

¬
λ2 (~x, t) =

2e−i
~k·~x

a
3/2
0 eHt

W+1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c7|α|2γ∗k− + ic3|γ|2α(k3 − k) ,

− c7|α|2γ∗(k3 + k) + ic3|γ|2αk+ ,
c3|γ|2α∗k− − ic7|α|2γ(k3 + k) ,

− c3|γ|2α∗(k3 − k)− ic7|α|2γk+
}
, (3.30)
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¬
λ3 (~x, t) =

2e−i
~k·~x

a
3/2
0 eHt

M−1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c6|α|2γ∗k− + ic2|γ|2α(k3 + k) ,

− c6|α|2γ∗(k3 − k) + ic2|γ|2αk+ ,
c2|γ|2α∗k− − ic6|α|2γ(k3 − k) ,

− c2|γ|2α∗(k3 + k)− ic6|α|2γk+
}
, (3.31)

¬
λ4 (~x, t) =

2e−i
~k·~x

a
3/2
0 eHt

W−1/2,ν(z)

[αγk+ + α∗γ∗k−]

{
c8|α|2γ∗k− + ic4|γ|2α(k3 + k) ,

− c8|α|2γ∗(k3 − k) + ic4|γ|2αk+ ,
c4|γ|2α∗k− − ic8|α|2γ(k3 − k) ,

− c4|γ|2α∗(k3 + k)− ic8|α|2γk+
}
. (3.32)

3.2 Case a(t) = a0t

For the case a(t) = a0t, which represents the limit between the decelerated to the accelerated
universe, equations (3.12)–(3.15) have the following linearly independent solutions in terms
of the Bessel Jν(z) and Yν(z) functions [40]:

φ1(t) =
2
√
t

αγk+ + α∗γ∗k−

[ (
c5α
∗γ∗k− + ic1|γ|2(k3 + k)

)
Jν−(z)

+
(
c7α
∗γ∗k− + ic3|γ|2(k3 + k)

)
Yν−(z)

+
(
c6α
∗γ∗k− + ic2|γ|2(k3 − k)

)
Jν+(z)

+
(
c8α
∗γ∗k− + ic4|γ|2(k3 − k)

)
Yν+(z)

]
, (3.33)

φ3(t) =
2
√
t

αγk+ + α∗γ∗k−

[ (
c1α
∗γ∗k− − ic5|α|2(k3 − k)

)
Jν−(z)

+
(
c3α
∗γ∗k− − ic7|α|2(k3 − k)

)
Yν−(z)

+
(
c2α
∗γ∗k− − ic6|γ|2(k3 + k)

)
Jν+(z)

+
(
c4α
∗γ∗k− − ic8|γ|2(k3 + k)

)
Yν+(z)

]
, (3.34)

where ν± = (1/2)
√

7− 4k2/a20 ± 4ik/a0 and z = mt.
The four independent solutions are:

λ1(~x, t) =
2ei

~k·~x

a
3/2
0 t

Jν−(z)

[αγk+ + α∗γ∗k−]


c5|α|2γ∗k− + ic1|γ|2α(k3 + k)
−c5|α|2γ∗(k3 − k) + ic1|γ|2αk+
c1|γ|2α∗k− − ic5|α|2γ(k3 − k)
−c1|γ|2α∗(k3 + k)− ic5|α|2γk+

 , (3.35)

λ2(~x, t) =
2ei

~k·~x

a
3/2
0 t

Yν−(z)

[αγk+ + α∗γ∗k−]


c7|α|2γ∗k− + ic3|γ|2α(k3 + k)
−c7|α|2γ∗(k3 − k) + ic3|γ|2αk+
c3|γ|2α∗k− − ic7|α|2γ(k3 − k)
−c3|γ|2α∗(k3 + k)− ic7|α|2γk+

 , (3.36)
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λ3(~x, t) =
2ei

~k·~x

a
3/2
0 t

Jν+(z)

[αγk+ + α∗γ∗k−]


c6|α|2γ∗k− + ic2|γ|2α(k3 − k)
−c6|α|2γ∗(k3 + k) + ic2|γ|2αk+
c2|γ|2α∗k− − ic6|α|2γ(k3 + k)
−c2|γ|2α∗(k3 − k)− ic6|α|2γk+

 , (3.37)

λ4(~x, t) =
2ei

~k·~x

a
3/2
0 t

Yν+(z)

[αγk+ + α∗γ∗k−]


c8|α|2γ∗k− + ic4|γ|2α(k3 − k)
−c8|α|2γ∗(k3 + k) + ic4|γ|2αk+
c4|γ|2α∗k− − ic8|α|2γ(k3 + k)
−c4|γ|2α∗(k3 − k)− ic8|α|2γk+

 . (3.38)

For the anti-self-conjugate spinor
¬
λ we have:

¬
λ1 (~x, t) =

2e−i
~k·~x

a
3/2
0 t

Jν−(z)

[αγk+ + α∗γ∗k−]

{
c5|α|2γ∗k− + ic1|γ|2α(k3 − k) ,

− c5|α|2γ∗(k3 + k) + ic1|γ|2αk+ ,
c1|γ|2α∗k− − ic5|α|2γ(k3 + k) ,

− c1|γ|2α∗(k3 − k)− ic5|α|2γk+
}
, (3.39)

¬
λ2 (~x, t) =

2e−i
~k·~x

a
3/2
0 t

Yν−(z)

[αγk+ + α∗γ∗k−]

{
c7|α|2γ∗k− + ic3|γ|2α(k3 − k) ,

− c7|α|2γ∗(k3 + k) + ic3|γ|2αk+ ,
c3|γ|2α∗k− − ic7|α|2γ(k3 + k) ,

− c3|γ|2α∗(k3 − k)− ic7|α|2γk+
}
, (3.40)

¬
λ3 (~x, t) =

2e−i
~k·~x

a
3/2
0 t

Jν+(z)

[αγk+ + α∗γ∗k−]

{
c6|α|2γ∗k− + ic2|γ|2α(k3 + k) ,

− c6|α|2γ∗(k3 − k) + ic2|γ|2αk+ ,
c2|γ|2α∗k− − ic6|α|2γ(k3 − k) ,

− c2|γ|2α∗(k3 + k)− ic6|α|2γk+
}
, (3.41)

¬
λ4 (~x, t) =

2e−i
~k·~x

a
3/2
0 t

Yν+(z)

[αγk+ + α∗γ∗k−]

{
c8|α|2γ∗k− + ic4|γ|2α(k3 + k) ,

− c8|α|2γ∗(k3 − k) + ic4|γ|2αk+ ,
c4|γ|2α∗k− − ic8|α|2γ(k3 − k) ,

− c4|γ|2α∗(k3 + k)− ic8|α|2γk+
}
. (3.42)
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3.3 Case a(t) = a0
√
t

For the case a(t) = a0
√
t, which represents a radiation dominated universe, the equa-

tions (3.12)–(3.15) has the following linearly independent solutions1 in terms of the Heun
B functions, denoted here by Ba,b,µ,ν(z), that are solutions of the Heun biconfluent equa-
tion [41, 42]:

φ1(t) =
2teimt

αγk+ + α∗γ∗k−

[ (
c3α
∗γ∗k− + ic1|γ|2(k3 + k)

)
B2,0,µ,ν−(z)

+
(
c4α
∗γ∗k− + ic2|γ|2(k3 − k)

)
B2,0,µ,ν+(z)

]
, (3.43)

φ3(t) =
2teimt

αγk+ + α∗γ∗k−

[ (
c1α
∗γ∗k− − ic3|α|2(k3 − k)

)
B2,0,µ,ν−(z)

+
(
c2α
∗γ∗k− − ic4|α|2(k3 + k)

)
B2,0,µ,ν+(z)

]
, (3.44)

where µ = 2ik2/a20m, ν± = ±(2− 2i)k/a0
√
m and z = (−1 + i)

√
mt.

The two independent solutions are:

λ1(~x, t) =
2ei

~k·~xt1/4

a
3/2
0

B2,0,µ,ν−(z)

[αγk+ + α∗γ∗k−]


eimt[c3|α|2γ∗k− + ic1|γ|2α(k3 + k)]

e−imt[−c3|α|2γ∗(k3 − k) + ic1|γ|2αk+]
eimt[c1|γ|2α∗k− − ic3|α|2γ(k3 − k)]

e−imt[−c1|γ|2α∗(k3 + k)− ic3|α|2γk+]

 ,(3.45)

λ2(~x, t) =
2ei

~k·~xt1/4

a
3/2
0

B2,0,µ,ν+(z)

[αγk+ + α∗γ∗k−]


eimt[c4|α|2γ∗k− + ic2|γ|2α(k3 − k)]

e−imt[−c4|α|2γ∗(k3 + k) + ic2|γ|2αk+]
eimt[c2|γ|2α∗k− − ic4|α|2γ(k3 + k)]

e−imt[−c2|γ|2α∗(k3 − k)− ic4|α|2γk+]

 .(3.46)

For the anti-self-conjugate spinor
¬
λ we have:

¬
λ1 (~x, t) =

2e−i
~k·~xt1/4

a
3/2
0

B2,0,µ,ν−(z)

[αγk+ + α∗γ∗k−]

{
eimt[c3|α|2γ∗k− + ic1|γ|2α(k3 − k)] ,

e−imt[−c3|α|2γ∗(k3 + k) + ic1|γ|2αk+] ,

eimt[c1|γ|2α∗k− − ic3|α|2γ(k3 + k) , ]

e−imt[−c1|γ|2α∗(k3 − k)− ic3|α|2γk+]
}
,

¬
λ2 (~x, t) =

2e−i
~k·~xt1/4

a
3/2
0

B2,0,µ,ν+(z)

[αγk+ + α∗γ∗k−]

{
eimt[c4|α|2γ∗k− + ic2|γ|2α(k3 + k)] ,

e−imt[−c4|α|2γ∗(k3 − k) + ic2|γ|2αk+] ,

eimt[c2|γ|2α∗k− − ic4|α|2γ(k3 − k)] ,

e−imt[−c2|γ|2α∗(k3 + k)− ic4|α|2γk+]
}
.

1There are other independent solutions written in terms of integral equations, but we are omitting these
solutions here (see ref. [41, 42] for more details).
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4 Elko spinor in cosmology

Some peculiar features of the Elko field have been used in order to extract physical informa-
tion about cosmological scenarios. For instance, a quite interesting mass upper bound may
be found in trying to use Elko fields as dark matter driving inflation [27]. In this section we
shall consider a simple model of dark energy, instead, driven by the Elko spinor.

As has been done in recent works [31–33, 36, 37], usually the spinor field is factored out
to a real homogeneous scalar field, λ ≡ ϕ(t)ξ, with the temporal dependence only in ϕ(t), the
same for all components and ξ representing a constant and normalized Elko spinor. Due to
the homogeneity of the field (∂iλ = 0), the equation (3.7) for ϕ(t) is substantially simplified,

ϕ̈+ 3Hϕ̇− 3

4
H2ϕ+m2ϕ = 0 , (4.1)

where H = ȧ/a. We shall comment on this simplification at the end of this section. The
pressure and energy density are given by [33]

pϕ =
1

2
ϕ̇2 − 1

2
m2ϕ2 − 3

8
H2ϕ2 − 1

4
Ḣϕ2 − 1

2
Hϕϕ̇ , (4.2)

ρϕ =
1

2
ϕ̇2 +

1

2
m2ϕ2 +

3

8
H2ϕ2 . (4.3)

The Friedmann equations for H(t) can be written as

H2 =
8πG

3
ρ Ḣ = −4πG(ρ+ p) , (4.4)

from which follows the conservation equation

ρ̇+ 3H(ρ+ p) = 0 , (4.5)

where ρ and p stands for the total energy density and total pressure of all the matter fields
present in the model.

In this simplified model we will consider that all the material content of the universe
is the Elko spinor satisfying a dark energy equation of state p = −ρ, thus the Friedmann
equations reduces to

H =
ȧ

a
= ±

(
8πG

3
ρϕ

)1/2

, Ḣ = 0 , (4.6)

furthermore we have ρ̇ϕ = 0, so that ρϕ is a constant, implying a de Sitter evolution a(t) =
a0e

Ht, thus we can use the solutions obtained in section 3.1.

Before we proceed, let us examine the restriction imposed by the dark energy equation
of state pϕ = −ρϕ. By using (4.2) and (4.3) we find

ϕ̇2 − 1

2
Hϕϕ̇ = 0 , (4.7)

whose solutions are of two types, namely static or dynamic,

ϕ(t) = ϕ̄ (static) , ϕ(t) = ϕ0e
Ht/2 (dynamic) . (4.8)
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As it can be read from eqs. (3.25)–(3.28), the obtained solutions are already in the time
factored form.2 Therefore, to be able to use the above equations we shall only to apply some
limit in order to get the homogeneous solution. This limit can be achieved by taking into
account that the inhomogeneity comes from spatial derivatives, giving rise to momentum
dependent terms. Hence, the homogeneous limit is obtained by taken k1,2,3 to zero carefully.
For the argument, it is always possible to restrict the momentum to one direction and then
take this momentum to vanish. Once this limit is performed, two things happen: 1) the
spinorial part of the solution becomes homogeneous and the normalization can be imputed
to the integration constants; 2) the Whittaker k → 0 (or, correspondingly z → 0) limits are
in order. As the Whittaker limit Mσ,ν(z → 0) depends on the σ and ν index, we must explore
all the possibilities.

Let us start investigating the solution (3.25) in the homogeneous limit. It is easy to see
that in this case we have

λ1(t) =
2

a
3/2
0

M+1/2,ν(z → 0)e−Htξ, (4.9)

where ξ stands for the constant homogeneous spinorial part of λ1 (which is completely irrele-
vant to this application). The unique z → 0 limit allowed for this specific Whittaker function
occurs when 2ν 6= −1,−2, . . .. Supposing this is the case we have M+1/2,ν → zν+1/2. Hence,

writing the solution as λ1(t) = ϕ(t)ξ, bearing in mind that z = 2ik/a0He
Ht and absorbing

the constant part in ϕ0 one gets

ϕ = ϕ0e
−(ν+3/2)t. (4.10)

Comparing the solution (4.10) with the static solution (4.8) we see that it entails 2ν = −3
contradicting the hypothesis for this limit validity. Thus this solution cannot describe the
static situation. To fulfil the dynamic solution of (4.8) we must have ν = −2, but as ν > 0
by definition (ν =

√
3−m2/H2), we shall disregard this solution.

The solution given by (3.27), λ3, is more interesting. In fact, the time dependent part
in this case can be recast as

ϕ(t) = ϕ0e
(ν−3/2)Ht. (4.11)

By comparing eq. (4.11) with (4.8) we see that the dynamical solution requires ν = 2, which
is mathematically acceptable, but it leads to m2 < 0, a physically unacceptable condition.
It is interesting, however, that massive ghosts solutions to an Einstein-Cartan-Dirac system
present the very same behavior [45]. The static case, on the other hand, can be reached if

ν = 3/2, leading to an Elko mass given by m =
√
3
2 H, providing a physically acceptable

solution. In fact, a static solution for the field ϕ can be directly obtained from (4.1) if the
above condition on the mass is set. By analyzing the energy density (4.3) with a static field ϕ
we see that in this case it reproduces exactly a cosmological constant term in the Friedmann
equation (4.4).

It can be straightforwardly verified that the remain cases (λ2 and λ4) do not contain

any novelty, leading to nonphysical solutions or reproducing the static case for m =
√
3
2 H.

We would like to conclude this section by tracing some comments on the homogeneity
simplification in the spinor solutions. In fact, when this is the case, we have arrived at

2Indeed, for all the three cases analysed here, the solutions given by eqs. (3.25)–(3.28), (3.35)–(3.38)
and (3.45)–(3.46) are already in the time factored form, which justifies the use of the decomposition λ = ϕ(t)ξ
in recent works [31–33, 36, 37].
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a relationship between the spinor mass and H so that the solution can be applied to this
cosmological scenario (also simplified). The net effect of considering the non-homogeneous
case is, probably, the obtention of a more general vinculum, this time regarding the mass,
the Hubble parameter and the momentum. This dispersion relation-like constraint may,
eventually, lead to new possible cosmological applications, but there is no guarantee that it
is in fact physically appealing.

5 Concluding remarks

In the present work we have studied the evolution of Elko spinors in a flat Friedmann-
Robertson-Walker background finding exact solutions for three different models of expansion,
namely a de Sitter, linear and radiation. A very interesting aspect of the solutions we have
found is that, contrary to the solutions of the Dirac equation in a spatially flat Friedmann-
Robertson-Walker spacetimes [15] where the first two components are coupled to the last
two, the equations for the first two components of the Elko spinors are independent of the
third and fourth, as can be seen in eq. (3.11).

Still comparing with the Dirac case, we see that the solution for the temporal part of
the spinor is totally different in the three cases examined here. For the de Sitter evolution,
the Dirac case gives solutions in terms of the Bessel functions, while here we obtain solutions
in terms of the Whittaker functions. For both linear and radiation expansion the solutions
in the Dirac case are given by means of Whittaker functions, while here we obtain the Bessel
functions for the linear evolution and the complicated Heun biconfluent functions as solutions
for the radiation. These behaviors illustrate some of the differences between the Dirac and
the Elko spinors.

We have investigated a cosmological setting where an homogeneous Elko spinor acts as
dark energy in a de Sitter background. It is shown that there are two solutions for this case.
A dynamic one, where a constraint in the mass parameter indicates a non-physical scenario
and a static solution, in which the spinor field works as an effective cosmological constant.
It is important to emphasize that the results of such an application are mainly due to the
maintenance of the state equation p = −ρ leading to a de Sitter expansion. Other types of
equation of state, giving different expansion rates are not excluded in principle, but dealing
with the resulting coupled differential equations system is certainly a difficult endeavour.

We shall finish remembering that here our analysis was restricted to the flat Friedmann-
Robertson-Walker geometry. Generalizations involving the parabolic and hyperbolic curved
backgrounds may be achieved. Some applications involving particle creation in more general
spacetimes are under investigation.
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