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1 Introduction

Cosmological inflation [1] has become the dominant paradigm to understand the initial con-
ditions for the Cosmic Microwave Background (CMB) anisotropies and structure formation.
This picture has recently received further spectacular confirmation by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) five year set of data [2]. Present [2] and future [3]
experiments may be sensitive to the non-linearities of the cosmological perturbations at the
level of second- or higher-order perturbation theory. The detection of these non-linearities
through the non-Gaussianity (NG) in the CMB [4] has become one of the primary experi-
mental targets.

A possible source of NG could be primordial in origin, being specific to a particular
mechanism for the generation of the cosmological perturbations. This is what makes a posi-
tive detection of NG so relevant: it might help in discriminating among competing scenarios
which otherwise might be indistinguishable. Indeed, various models of inflation, firmly rooted
in modern particle physics theory, predict a significant amount of primordial NG generated
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either during or immediately after inflation when the comoving curvature perturbation be-
comes constant on super-horizon scales [4]. While single-field [5] and two(multi)-field [6]
models of inflation generically predict a tiny level of NG, ‘curvaton-type models’, in which a
significant contribution to the curvature perturbation is generated after the end of slow-roll
inflation by the perturbation in a field which has a negligible effect on inflation, may predict a
high level of NG [7, 8]. Alternatives to the curvaton model are those models characterised by
the curvature perturbation being generated by an inhomogeneity in the decay rate [9, 10] or
the mass [11] or of the particles responsible for the reheating after inflation. Other opportu-
nities for generating the curvature perturbation occur at the end of inflation [12] and during
preheating [13]. All these models generate a level of NG which is local as the NG part of the
primordial curvature perturbation is a local function of the Gaussian part, being generated
on superhorizon scales. In momentum space, the three point function, or bispectrum, arising
from the local NG is dominated by the so-called “squeezed” configuration, where one of the
momenta is much smaller than the other two and it is parametrized by the non-linearity
parameter f loc

NL. Other models, such as DBI inflation [14] and ghost inflation [15], predict a
different kind of primordial NG, called “equilateral”, because the three-point function for this
kind of NG is peaked on equilateral configurations, in which the lengths of the three wave-
vectors forming a triangle in Fourier space are equal [16]. The equilateral NG is parametrized

by an amplitude f equil
NL [17]. Present limits on NG are summarised by −9 < f loc

NL < 111 and

−151 < f equil
NL < 253 at 95% CL [2, 18].

On the other hand there might exist other sources of primordial NG in the CMB
anisotropies beyond the primordial ones related to the dynamics of inflation. One inter-
esting possibility is the contribution to the non-Gaussian signal in the CMB anisotropies
from a stochastic background of primordial magnetic fields. Large scale magnetic fields are
almost everywhere in the universe, from galaxies up to those present in galaxy clusters and
in the inter-cluster medium [19]. The dynamo effect provides a mechanism to explain the
observed magnetic fields associated to galaxies, whereas those associated to clusters may be
generated by gravitational compression. Both these mechanisms require an initial magnetic
seed, although with different amplitude and different correlation length.

Possible explanations for this initial seed have driven the interest in primordial mag-
netic fields generated in the early universe. A stochastic background of primordial magnetic
fields (PMFs) generated in the early universe with a mean amplitude well below micro-Gauss
level can leave imprints on the temperature and polarisation anisotropy pattern of the cosmic
microwave background (CMB). The impact of a stochastic background of PMFs onto CMB
anisotropies has distinctive imprints, such as a contribution in temperature which is larger
than the CMB angular power spectrum sourced by scalar cosmological perturbation at high
ℓ and a contribution in polarisation which include either BB (generated by vector and tensor
perturbations or by Faraday rotation [21]) or parity-odd correlators as TB (generated by an
helical component [20]).

As we mentioned, another distinctive imprint of PMF in CMB anisotropies is its non-
Gaussian nature. The CMB signature of this type which has been first considered in the
literature is due to a homogeneous PMF. A homogeneous magnetic field with fixed direction
breaks spatial isotropy in the universe, and therefore leads to non-zero correlations between
multipoles at different ℓ, 〈aℓ−1,maℓ+1,m〉 6= 0 [22]. This effect has been first proposed in [23],
and arises through the generation of vector metric pertubations from the Alfvén waves mag-
netically induced in the primordial fluid. Recently, it has been reanalysed and found to
reproduce, for a sufficiently high magnetic field amplitude, some of the anomalies of the
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CMB large scale fluctuations observed by WMAP such as the north-south asymmetry and
the quadrupole-octopole alignment [24].

This effect is related to the presence of a homogeneous magnetic field (or equivalently,
a stochastic magnetic field with correlation length larger than the horizon today). On the
other hand, the CMB contribution of a stochastic background of PMFs, modelled as a fully
inhomogeneous component, is intrinsically non-Gaussian: the PMFs energy-momentum ten-
sor, the Lorentz force acting on baryons are quadratic in the magnetic field B(η,x), which
is randomly distributed with a Gaussian distribution function. The source terms to the
Einstein-Boltzmann system are therefore χ-distributed, leading to a PMF contribution to
CMB fully non-Gaussian. Higher order statistical moments of the energy-momentum ten-
sor of PMFs are therefore non-vanishing at leading order and are calculable with minimal
assumptions, such as cutting sharply the power spectrum beyond a certain scale kD [25].

Non-gaussianities from PMFs are much less studied than those generated in inflationary
methods. The study of the three point statistics of the PMF energy-momentum tensor in [25]
is limited to the simplest particular collinear configuration. Nevertheless, due to the pres-
ence of a contribution from the collinear configuration, one deduces that non-gaussianities
from PMFs can be different from the inflationary case, in which the collinear contribution is
generically negligible with respect to the equilateral and squeezed ones (see however [26]). In
this paper we focus on the three point statistics of the PMF energy density, studying the con-
tribution of all three configurations. By using the large scale relation between temperature
anisotropies and PMF energy density given in ref. [27], we compute the temperature bispec-
trum and compare its contribution to the non-Gaussian statistics in the CMB anisotropies
with the present observational bounds. We also compare our results with those of the very
recent paper [28].

Our paper is organised as follows. In section II we introduce the stochastic background
of primordial magnetic fields and discuss the infrared behaviour of the spectra of its energy-
density. In section III and IV we discuss the CMB temperature spectrum and bispectrum
induced by PMF on large scales. Section V is devoted to the analytic computation of the
magnetic energy density bispectrum 〈ρB(k)ρB(q)ρB(p)〉 in general and for the collinear,
squeezed and equilateral configurations. In section VI we insert these results into the CMB
temperature bispectrum on large scales, and we give an estimation of the signal in section VII.
In the first appendix we derive analytic approximations to some integrals of Bessel functions
which are useful to calculate both the spectrum and the bispectrum, and in the second
appendix we give the details for the exact computation of the energy density bispectrum in
the collinear case for n = 2,−2.

2 Primordial stochastic magnetic field

We adopt notations consistent with [29, 30]:

Bi(x) =

∫

d3k

(2π)3
e−ik·xBi(k) → δ(k) =

∫

d3x

(2π)3
eik·x ,

where the definition of the delta function comes from
∫

d3k/(2π)3 e−ik·xδ(k) = 1/(2π)3. With
these conventions, the magnetic field power spectrum (defined as the Fourier transform of
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the two point correlation function) is:1

〈Bi(k)B∗
j (q)〉 = (2π)3δ3(k − q)(δij − k̂ik̂j)PB(k) (2.1)

PB(k) = Akn , k ≤ kD , (2.2)

where k̂i = ki/k, A is a normalisation constant, n the spectral index and kD the upper cutoff.
Using the above equations we can define the mean square of the magnetic field as

〈B2(x)〉 =
A

π2

kn+3
D

n+ 3
. (2.3)

If we are interested in the mean amplitude of the magnetic field on a given characteristic
scale, we smooth the power spectrum over the chosen scale using a Gaussian filter: we have
then 〈B2(x)〉|λ = B2

λ with

B2
λ =

1

π2

∫

dk k2 PB(k) e−k2λ2

=
A

2π2

Γ[(n+ 3)/2]

λn+3
, (2.4)

so that

B2
λ =

〈B2〉
2

n+ 3

(kDλ)n+3
Γ

(

n+ 3

2

)

. (2.5)

We also define the adimensional quantity Ωtot
B given by the ratio of the magnetic and the

total radiation energy densities:

Ωtot
B =

〈B2〉
8πρrel

≃ 10−7 〈B2(x)〉
(10−9Gauss)2

, (2.6)

where for the last equality we have used ρrel(η0) ≃ 2 × 10−51 GeV4, and η0 denotes the
conformal time today.

The upper cutoff kD corresponds to the damping scale, representing the dissipation of
magnetic energy due to the generation of magneto-hydrodynamic waves [31, 32]. Alfvén
waves are the most effective in dissipating magnetic energy, and in [32] it is demonstrated
that around recombination the damping occurs at scales k−1 . k−1

D ≃ VALSilk, where VA

is the Alfvén speed and LSilk the Silk damping scale at recombination. Strictly speaking,
Alfvén waves are oscillatory perturbations superimposed on a homogeneous magnetic com-
ponent, and the Alfvén speed depends on the amplitude of the homogeneous component. In
the cosmological context where the magnetic field is purely stochastic, the amplitude of this
component can be taken as the one of a ‘low frequency’ component obtained by smoothing
the magnetic field amplitude over a sufficiently large scale [33]. This scale corresponds to the
Alfvén scale at recombination, k−1

A ≃ VAηrec: magnetic modes on lager scales, in fact, do not
have time to oscillate before recombination [32]. One has therefore kD/kA = ηrec/LSilk ≃ 10,
and V 2

A = B2
LA
/(4π(ρ + p)). Consequently, the upper cutoff at the epoch of recombina-

tion is given by

kD ≃ 1

LSilk

√

16π

3

ρrel

B2
LA

=
1

LSilk

1
√

Ωtot
B

√

(2π)n+3

(n+ 3)Γ((n + 3)/2)

(

kA

kD

)
n+3

2

. (2.7)

1In this paper we neglect the possible presence of an helical component for the magnetic field, see for
example [20]
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Finiteness of the total magnetic energy density implies n > −3. In the rest of the paper
we keep the spectral index as a free parameter, when possible; however, in order to carry on
our calculations analytically we sometimes need to specify it. For example, in section 5, we
choose the values n = 2 and n = −2. n = 2 is the lowest possible value for a magnetic field
generated by a causal process [34], such as a phase transition [35], or a charge separation
process operating around recombination [36]. A magnetic field generated during inflation [37]
(or by any other a-causal process such as, for example, in pre big bang theories [38]), can take
any value of n > −3. However, because of Nucleosynthesis constraints [39], only for very
red spectra the magnetic field can assume sufficiently high amplitudes to have an impact
in the CMB. Therefore, in the following we choose the value n = −2 (for some analytic
calculations), or n→ −3 when possible.

The spatial part of the energy momentum tensor of the magnetic field is

τij(x) =
1

4π

[

1

2
δijBl(x)Bl(x) −Bi(x)Bj(x)

]

, (2.8)

and the magnetic energy density

ρB(x) = τii(x) =
1

8π
B2(x) , (2.9)

ρB(k) =
1

8π

∫

d3p

(2π)3
Bi(k− p)Bi(p) . (2.10)

As we will see in the next section, to calculate the CMB temperature spectrum from the
Sachs Wolfe effect we need the power spectrum of the magnetic energy density:

〈ρB(k)ρ∗B(q)〉≡(2π)3δ(k−q)|ρB(k)|2 =
2

(8π)2
δ(k−q)

∫

d3pPB(p)PB(|k−p|)(1+µ2) , (2.11)

the second equality is obtained using eq. (2.10), and µ = p̂ · k̂− p. Therefore

|ρB(k)|2 =
1

256π5

∫

d3pPB(p)PB(|k − p|)(1 + µ2) . (2.12)

As demonstrated in ref. [27], |ρB(k)|2 goes to zero at a wavenumber corresponding to twice
the magnetic field spectrum cutoff, k = 2kD. Eq. (21) of [27] gives the behaviour of |ρB(k)|2
at large scales k ≪ kD and for spectral indexes n > −3/2: the generic behaviour in this case
is white noise [27]

|ρB(k)|2 ≃ A2 k2n+3
D

32π4(2n + 3)
. (2.13)

For n = −2, an exact calculation as in refs. [27, 40] gives the behaviour for |ρB(k)|2 at large
scales k ≪ kD as

|ρB(k)|2 ≃ 3A2

512π2 k
, (2.14)

For n < −3/2 we use the approximated formula given by ref. [29]:

|ρB(k)|2 ≃ 3A2

128π4

n

(2n+ 3)(n + 3)
k2n+3 . (2.15)

For n = −2, expressions (2.14) and (2.15) are in agreement concerning the dependence on
the wavenumber, but the numerical factor differs by a factor π2/8.
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3 CMB temperature spectrum at large angular scales

We use the characterisation of the CMB temperature anisotropy induced by a stochastic
background of primordial magnetic fields given in [40]. It is useful to define the adimensional
magnetic energy parameter in k-space

ΩB(k) =
ρB(k)

ρrel
. (3.1)

From the initial conditions given in [27, 40] we parametrize the temperature anisotropy as

1

4
δγ + ψ =

α

4
ΩB(k) , (3.2)

where α ∼ 0.1 is a multiplication constant required since the above equation would be exact
with α = 1 in the radiation era. Therefore, the temperature anisotropy is given in terms of
this quantity as

Θ
(0)
ℓ (η0,k)

2ℓ+ 1
=
α

4
ΩB(k)jℓ(k(η0 − ηdec)) , (3.3)

where jℓ is the spherical Bessel function and η0, ηdec denote conformal time respectively
today and at decoupling. The CMB power spectrum is therefore [30]:

CB
ℓ =

2

π

∫ ∞

0
dk k2 〈Θ(0)

ℓ (η0,k)Θ
(0)∗
ℓ (η0,k)〉

(2ℓ+ 1)2
=
α2

8π

∫ ∞

0
dk k2 |ΩB(k)|2j2ℓ (k(η0 − ηdec)) . (3.4)

In the case n > −3/2, substituting definition (3.1) and eq. (2.13) in the above equation we
have [40]

CB
ℓ ≃ α2A2 k2n+6

D

8(2π)5(2n+ 3)ρ2
rel (kDη0)3

∫ kDη0

0
dxx2 j2ℓ (x) ≃ α2

512π

(n+ 3)2

2n+ 3

〈B2〉2

ρ2
rel

1

(kDη0)2

for n > −3/2 , (3.5)

where x = kη0, we have approximated jℓ(k(η0 − ηdec)) ≃ jℓ(kη0) and we integrate only up to
the upper cutoff kD since we are using the approximated expression eq. (2.13) which is strictly
valid only for k ≪ kD. For the second equality in the above equation, we have approximated
the integral as given in eq. (A.2) of appendix A, since we have that y = kDη0 ≫ 1. We have
also used eq. (2.3) to express the result in terms of the mean squared magnetic field.

For n = −2, we use instead eq. (2.14): substituting it in eq. (3.4), we find

CB
ℓ ≃ 3α2A2 k2

D

4096π3ρ2
rel (kDη0)2

∫ kDη0

0
dxx j2ℓ (x) ≃ 3π α2

8192

〈B2〉2

ρ2
rel

1

(kDη0)2
log

(

kDη0

ℓ

)

for n = −2 , (3.6)

where in the second equality we use the approximation given in eq. (A.4) of appendix A. For
more negative values of n, n < −2, in the absence of an exact expression, we use eq. (2.15):
the CMB spectrum becomes

CB
ℓ ≃ 3α2A2 k2n+6

D

1024π5ρ2
rel (kDη0)2n+6

n

(2n+ 3)(n + 3)

∫ kDη0

0
dxx2n+5 j2ℓ (x)

≃ 3α2

4096
√
π

n(n+ 3)

(2n+ 3)

Γ[−n− 2]

Γ[−n− 3/2]

〈B2〉2

ρ2
rel

1

(kDη0)2n+6
ℓ2n+4 for n < −2 , (3.7)
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where again for the second equality we have used eq. (A.3) of appendix A. The slope in ℓ
of this last expression is only approximatively recovered numerically, whereas it is perfectly
recovered for eqs. (3.5), (3.6).

4 CMB temperature bispectrum at large angular scales

We want to evaluate the CMB angular bispectrum of the temperature anisotropy due to the
Sachs Wolfe effect induced by the magnetic field energy density. The angular bispectrum is
given by 〈aℓ1m1

aℓ2m2
aℓ3m3

〉, with the spherical harmonic expansion coefficients

aℓm(x) =

∫

dΩn̂Y
∗
ℓm(n̂; ê)Θ(0)(x, n̂) , (4.1)

where Y ∗
ℓm(n̂; ê) is the spherical harmonic with respect to a basis where ê is an arbitrary but

fixed direction, and Θ(0)(x, n̂) is the scalar temperature perturbation at position x (n̂ is the
direction of light propagation). Using the formalism developed in [30] one has

Θ(0)(x, n̂) =

∫

d3k

(2π)3
ΣℓΘ

(0)
ℓ (η0,k)G0

ℓ , (4.2)

G0
ℓ = (−i)ℓ

√

4π

2ℓ+ 1
Yℓ0(n̂; k̂)eik·x , (4.3)

with respect to a basis where k̂ is fixed. Substituting the above expressions in eq. (4.1), and
changing basis accordingly (cf. [41]), one finds

aℓm(x) =
4π(−i)ℓ
2ℓ+ 1

∫

d3k

(2π)3
Θ

(0)
ℓ (η0,k)eik·xY ∗

ℓm(k̂; ê) . (4.4)

Therefore the angular bispectrum is given by (we place the observer in x = 0)

〈aℓ1m1
aℓ2m2

aℓ3m3
〉=

(4π)3(−i)ℓ1+ℓ2+ℓ3

(2ℓ1+1)(2ℓ2+1)(2ℓ3+1)

∫

d3kd3qd3p

(2π)9
Y ∗

ℓ1m1
(k̂; ê)Y ∗

ℓ2m2
(q̂; ê)Y ∗

ℓ3m3
(p̂; ê)

×〈Θ(0)
ℓ1

(η0,k)Θ
(0)
ℓ2

(η0,q)Θ
(0)
ℓ3

(η0,p)〉 . (4.5)

Remembering eq. (3.3) and definition (3.1), we see that in order to proceed we need to
evaluate the bispectrum of the magnetic energy density 〈ρB(k)ρB(q)ρB(p)〉.

5 The magnetic energy density bispectrum

From the expression of the magnetic energy density given in eq. (2.10), we see that its
bispectrum is given in terms of the six point correlation function of the magnetic field

〈ρB(k)ρB(q)ρB(p)〉= 1

(8π)3

∫

d3k̃ d3q̃ d3p̃

(2π)9
〈Bi(k̃)Bi(k − k̃)Bj(q̃)Bj(q − q̃)Bl(p̃)Bl(p− p̃)〉 .

(5.1)
Since the magnetic field is assumed to be a Gaussian variable, we can use Wick’s theorem
to decompose the six point correlation function into products of the magnetic field power
spectrum. To compute the above expression, we then use the definition of the magnetic power
spectrum eq. (2.1) and the fact that B∗

i (k) = Bi(−k). Of the total fifteen terms obtained
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using Wick’s theorem, seven are irrelevant because they are one-point terms proportional
to δ(k), δ(q) or δ(p), while eight terms survive. Each of the latter is the product of three
power spectra, and consequently contains the product of three delta functions (cf. eq. (2.1)).
Two delta functions can be integrated, while the remaining one reduces to δ(k + q + p),
the homogeneity condition. Starting from eq. (5.1), the final result depends on which of the
variables of the triple integral remains. For example, performing the integration in d3p̃ and
d3q̃ and leaving out d3k̃, one obtains (appropriately renaming the mute indexes)

〈ρB(k)ρB(q)ρB(p)〉 =
1

128π3
δ(k+p+q)

∫

d3k̃ Pij(k̃)Pjl(k−k̃)[Pil(q+k̃)+Pil(p+k̃)] , (5.2)

where for conciseness we have defined

Pij(k) = PB(k) (δij − k̂ik̂j) (5.3)

(note that Pij(k) = Pij(−k)). On the other hand, integrating out d3k̃ and d3p̃ one obtains

〈ρB(k)ρB(q)ρB(p)〉 =
1

128π3
δ(k+p+q)

∫

d3q̃ Pij(q̃)Pjl(q−q̃)[Pil(k+q̃)+Pil(p+q̃)] , (5.4)

while integrating out d3q̃ and d3k̃ one obtains

〈ρB(k)ρB(q)ρB(p)〉 =
1

128π3
δ(k+p+q)

∫

d3p̃ Pij(p̃)Pjl(p−p̃)[Pil(k+p̃)+Pil(q+p̃)] . (5.5)

This is just a consequence of the fact that the right hand side of eq. (5.1) is not apparently
symmetric under the exchange of k, q and p, contrary to the left hand side. Since the final
result should be symmetric, we finally set:

〈ρB(k)ρB(q)ρB(p)〉 =
δ(k+p+q)

384π3

{
∫

d3k̃ Pij(k̃)Pjl(k− k̃)[Pil(q + k̃) + Pil(p + k̃)]

+

∫

d3k̃ Pij(k̃)Pjl(q− k̃)[Pil(k + k̃) + Pil(p + k̃)]

+

∫

d3k̃Pij(k̃)Pjl(p−k̃)[Pil(q+k̃)+Pil(k+k̃)]

}

.(5.6)

Using definitions (5.3) and (2.2) we have in all generality:

Pij(k)Pjl(q)Pil(p) = A3knpnqn[(k̂ · q̂)2 + (k̂ · p̂)2 + (q̂ · p̂)2 − (k̂ · q̂)(k̂ · p̂)(q̂ · p̂)]
if k ≤ kD , q ≤ kD , p ≤ kD , (5.7)

and zero else. Due to the complexity of the angular structure and of the integration boundary
of the integrals in eq. (5.6), we cannot derive an exact expression for 〈ρB(k)ρB(q)ρB(p)〉
which is valid for any configuration of k, q, p. We can however give an analytical estimate
of the result, which we present in the following.

We are interested in estimating the behaviour of the integrals in (5.6). From the ex-
pression in eq. 5.7 it is clear that, depending on the value of the spectral index n, the integral
could diverge in the infrared limit. On the other hand, the angular part always gives a finite
contribution. We therefore neglect the angular part for the following estimate, and set

〈ρB(k)ρB(q)ρB(p)〉 ≃ δ(k + p + q)

384π3
A3

×
{

∫

d3k̃ k̃n|k − k̃|n
[

|q + k̃|n + |p + k̃|n
]

+ permutations

}

.(5.8)

– 8 –



J
C
A
P
0
6
(
2
0
0
9
)
0
2
1

Figure 1. The geometrical configuration used to perform the integration: k, q and p are free, while
k̃ is the integration wave-vector (see [25]).

To perform the above integration, following [25], we choose a basis with êz ‖ k and where
the triangle formed by k, q, p lies in the plane perpendicular to êy, in y = 0, see figure 1.

We call φ the angle between k and q, cosφ = k̂ · q̂, and α the angle between k and −p,
cos(π − α) = k̂ · p̂. The integration variable k̃ has angles θ̄ with êz ‖ k and φ̄ with the plane
identified by the triangle formed by k, q, p (cf. figure 1). The angle between k̃ and q is
expressed in terms of the previously defined ones as

ˆ̃k · q̂ = sin θ̄ cos φ̄ sinφ+ cos θ̄ cosφ , (5.9)

and the one between k̃ and p is

ˆ̃
k · p̂ = −(sin θ̄ cos φ̄ sinα+ cos θ̄ cosα) . (5.10)

We remind that the boundaries of the integrals in (5.8) are defined by the condition that
the momenta coming from the power spectrum are bounded by kD: in the first integral for
example, the conditions are k̃ ≤ kD, |k− k̃| ≤ kD, |q + k̃| ≤ kD.

Let us first concentrate on the first integral of (5.8). For negative values of n, it has
integrable divergences for k̃ → k and for k̃ → −q. We approximate the total result by
selecting only these angular configurations, which are the biggest contributions to the integral
for negative n, and are at least representative of the total result for positive n. By doing
so, and using the above reference system, the first integral of (5.8) becomes (Ω̄ denotes the
angular boundary)

∫

d3k̃k̃n|k−k̃|n|q+k̃|n=

∫ kD

0
dk̃ k̃n+2

∫

Ω̄
dΩ

×
[

k2+k̃2−2kk̃ cos θ̄
]n/2

×
[

q2+k̃2+2qk̃(sin θ̄ cos φ̄ sinφ+cos θ̄ cosφ)
]n/2

≃ 2π

∫ kD

0
dk̃ k̃n+2

×
[

|k−k̃|n(q2+k̃2+2qk̃ cosφ)n/2

+(k2+k̃2+2kk̃ cosφ)n/2|q−k̃|n
]

(5.11)
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where in the second equality we have accounted only for the two above mentioned angular
configurations: the first term of the second equality is the contribution of the angular con-
figuration k̃ → k, and therefore θ̄ = 0; the second one is the contribution of the angular
configuration k̃ → −q, and therefore θ̄ = π − φ and φ̄ = π. We have inserted the factor 2π
to simulate the integration in dφ̄, which should be present at least in the first configuration.
We repeat the same approximation scheme in each term of (5.8), to obtain finally

〈ρB(k)ρB(q)ρB(p)〉 ≃ δ(k + p + q)

96π2
A3 (5.12)

×
{

∫ kD

0
dk̃ k̃n+2

[

|k − k̃|n(q2 + k̃2 + 2qk̃ cosφ)n/2

+(k2 + k̃2 + 2kk̃ cosφ)n/2|q − k̃|n
]

+

∫ kD

0
dk̃ k̃n+2

[

|k − k̃|n(p2 + k̃2 − 2pk̃ cosα)n/2

+(k2 + k̃2 − 2kk̃ cosα)n/2|p− k̃|n
]

+

∫ kD

0
dk̃ k̃n+2

[

|q − k̃|n(p2 + k̃2 − 2pk̃ cos(φ− α))n/2

+(q2 + k̃2 − 2qk̃ cos(φ− α))n/2|p− k̃|n
]

}

.

Note that the terms in eq. (5.8) which share the same wave-vectors collect two by two
for the angular configurations considered (c.f. eq. (5.6)). It is now possible to evaluate
approximatively the above integrals. As already mentioned, the apparent divergence for
negative n is integrable. Assuming k < q < kD, we approximate the first integral in the
above expression as

∫ kD

0
dk̃ k̃n+2

[

|k − k̃|n(q2 + k̃2 + 2qk̃ cosφ)n/2 + (k2 + k̃2 + 2kk̃ cosφ)n/2|q − k̃|n
]

≃ 2

(

qn kn

∫ k

0
dk̃ k̃n+2 + qn

∫ q

k
dk̃ k̃2n+2 +

∫ kD

q
dk̃ k̃3n+2

)

. (5.13)

We see that, under this approximation, the angular part plays no longer a role, and the result
is the same for the two terms of the first line of the above equation.

Applying the same technique for each integral in eq. (5.12), for the combination k ≤
q ≤ p ≤ kD we find the total approximate behaviour:

〈ρB(k)ρB(q)ρB(p)〉 ≃ δ(k + p + q)

48π2
A3 (5.14)

×
{

n

(n + 3)(2n + 3)
qnk2n+3 +

n

(3n + 3)(2n + 3)
q3n+3 +

k3n+3
D

3n+ 3

+
n

(n+ 3)(2n + 3)
pnk2n+3 +

n

(3n + 3)(2n + 3)
p3n+3 +

k3n+3
D

3n+ 3

+
n

(n+ 3)(2n + 3)
pnq2n+3 +

n

(3n + 3)(2n + 3)
p3n+3 +

k3n+3
D

3n+ 3

}

for k ≤ q ≤ p ≤ kD ,
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while if q ≤ k ≤ p we have to exchange k and q in the above expression, and so on with all
the ordered permutations of the wave-numbers.

Observing eq. (5.14), we can confirm what pointed out in [25], i.e. that there are two
distinctive spectral regimes for the bispectrum. For flat and blue magnetic field spectra,
with n > −1, the infrared limit k → 0 of the bispectrum is white noise; eq. (5.14) is in
fact dominated by the constant terms k3n+3

D /(3n + 3). On the other hand, for red magnetic
field spectra n < −1, the bispectrum is divergent in the infrared limit. As we will see
in the next sections, the divergence can go as k2n+3 or as k3n+3, depending on the wave-
vector configuration. The same behaviour holds for the magnetic energy density power
spectrum, but in this case the discriminating value is n = −3/2, and the infrared divergence
for n < −3/2 goes as k2n+3 [27, 29] (in [27], it has been found that for the limiting value
n = −3/2 the white noise spectrum acquires a logarithmic dependence on k: this is the case
also here for the corresponding limiting value n = −1). The above approximated result is
valid only for k, q and p smaller than the magnetic upper cutoff kD, while in general they
do not need to satisfy this bound. As already mentioned in section 2, in [27] it has been
found that the magnetic energy spectrum goes to zero at k = 2kD, due to the convolution
boundaries (c.f eq. (2.12)). As we will see in the next sections, the same behaviour holds
also for the bispectrum (this is verified exactly in the collinear configuration).

The above equation (5.14) is a general approximation to the magnetic field energy
density bispectrum in the infrared limit. We now compare it with the result coming from a
specific configuration of the wave-vectors, the collinear configuration, for which we have an
exact result. We find that the above expression can be considered quite a good approximation
to the true magnetic field bispectrum in the infrared limit. We also give explicit formulas for
the squeezed and equilateral configurations, for which, however, we do not calculate the exact
result. We find that the three configurations give a comparable white noise contribution for
n > −1, while if n < −1 the collinear and equilateral configurations diverge in the infrared
limit as k3n+3, while the squeezed one diverges as k2n+3.

5.1 Collinear configuration

The collinear (or flattened) configuration is given by two equal wave-vectors, while the third
one points in the opposite direction: for example, p = q and k = −2q. In this case, it is
possible to calculate the bispectrum (5.6) exactly. The three permutations of k, q, p of this
configuration should be present in the symmetric expression (5.6): this gives in the end

〈ρB(k)ρB(q)ρB(p)〉|collinear =
δ(k+p+q)

384π3

2

3

∫

d3k̃Pij(k̃)

{

Pjl

(

k

2
+k̃

)[

Pil(k+k̃)+Pil

(

k

2
−k̃

)]

+Pjl(k−k̃)Pil

(

k

2
−k̃

)

+k → p+k→q

}

. (5.15)

Therefore, for the collinear case we find the following expression, using eq. (5.7):

〈ρB(k)ρB(q)ρB(p)〉|collinear =
δ(k + p + q)

576π3
A3

×
{

2

∫

V1

d3k̃k̃n

∣

∣

∣

∣

k

2
+k̃

∣

∣

∣

∣

n ∣

∣

∣
k+k̃

∣

∣

∣

n
[

(
ˆ̃
k ·k+2k̃)2

4
∣

∣

∣

k

2 +k̃

∣

∣

∣

2 +
(
ˆ̃
k ·k+k̃)2
∣

∣

∣
k+k̃

∣

∣

∣

2 +
(k2+3 k̃·k+2 k̃2)(k2 − (

ˆ̃
k ·k)2)

4
∣

∣

∣

k

2 +k̃

∣

∣

∣

2 ∣

∣

∣
k+k̃

∣

∣

∣

2

]
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+

∫

V2

d3k̃k̃n

∣

∣

∣

∣

k

2
+k̃

∣

∣

∣

∣

n ∣

∣

∣

∣

k

2
−k̃

∣

∣

∣

∣

n
[

(
ˆ̃
k ·k+2k̃)2

4
∣

∣

∣

k

2 +k̃

∣

∣

∣

2 +
(
ˆ̃
k ·k−2k̃)2

4
∣

∣

∣

k

2 −k̃

∣

∣

∣

2 +
(k2−4k̃2)(k2−(

ˆ̃
k ·k)2)

16
∣

∣

∣

k

2 +k̃

∣

∣

∣

2 ∣

∣

∣

k

2 −k̃

∣

∣

∣

2

]

+k → p + k → q

}

, (5.16)

where V1 denotes the volume given by the three conditions

k̃ ≤ kD

|k/2 + k̃| ≤ kD

|k + k̃| ≤ kD , (5.17)

and V2 is given by the conditions

k̃ ≤ kD

|k/2 + k̃| ≤ kD

|k/2 − k̃| ≤ kD . (5.18)

The last term of eq. 5.15, Pij(k̃)Pjl(k − k̃)Pil

(

k

2 − k̃
)

, becomes equal to the first one by

changing k̃ to −k̃ and the integration volume accordingly.
It is possible to calculate eq. (5.16) exactly for the selected values of the spectral index

n = 2 and n = −2. This is due to the fact that, in this configuration, the integration over the
angle φ̄ becomes trivial (c.f. figure 1): since p = q and k = −2q, the integrands in eq. (5.16)
depend only on cos θ̄ and the boundaries given by V1 and V2 can be made explicit with little
difficulty. The details of the calculation are given in appendix B, while the result is shown
in figure 2. In the case n = −2 the calculation is quite involved, therefore we have evaluated
only the infrared part, up to k ≤ kD/2. On the other hand, the case n = 2 is simpler, and
in this case we found a general, exact expression. This expression confirms that the cutoff
of the bispectrum is at k = 2kD, as we would expect from the analysis of the spectrum (see
figure 3), and as can be viewed easily from the last inequality of the boundary conditions of
V1, |k + k̃| ≤ kD, which shows that the maximal allowed value for k is 2kD.

Knowing the exact result, we can test the goodness of the approximation given in the
last section at least in this configuration. Reducing the general result of eq. (5.14) in the
collinear configuration, we find:

〈ρB(k)ρB(q)ρB(p)〉|collinear ≃ δ(k + p + q)

144π2
A3

×
{

n

23n+3(2n+ 3)

(

2n+1 + 1

n+ 3
+

23n+4 + 1

3n+ 3

)

k3n+3 +
k3n+3

D

n+ 1

+ k → p+ k → q

}

. (5.19)

Given that k ≤ kD, if n < −1, this expression is divergent for k → 0 as k3n+3, while for
n > −1, is it white noise. Consequently, the case n = −2 exhibits a divergent behaviour
as k−3, while the case n = 2 is regular, as can be seen in figure 2, where the true and
approximated result are compared. In the regular n = 2 case, the bispectrum is not pure
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Figure 2. The magnetic field bispectrum in the collinear configuration p = q = −k/2, normalised by
the quantity A3k3n+3

D
/(576π3), as a function of k/kD, for n = 2 (left plot) and n = −2 (right plot).

We only show the infrared region k ≤ kD/2. The blue, solid line is the exact result, while the red,
dashed line the approximation given in eq. (5.19).

Figure 3. The magnetic field bispectrum in the collinear configuration p = q = −k/2 (blue, solid)
and the magnetic field spectrum to the 3/2 (red, dashed), both multiplied by the phase space density
k3, as a function of k/kD for n = 2 and n = −2. Note that in the n = −2 case, we only calculated
the bispectrum up to k = kD/2, while the spectrum is known up to k = kD.

white noise but shows a mild dependence on k: our approximation does not capture this
dependence, but only the infrared white noise behaviour. In both cases, our approximation
underestimates the true result by a factor of two.

In figure 3, we compare the exact result of the bispectrum in the collinear configuration
with the magnetic spectrum to the power 3/2, for n = 2 and n = −2, both multiplied by the
phase space density (k/kD)3. For n = 2, they are of the same order of magnitude, as one
would expect. For n = −2, the bispectrum goes as k3n+3, while the spectrum as k2n+3. The
spectrum approaches the bispectrum amplitude as k grows, however, the exact bispectrum
has been calculated only for k ≤ kD/2, and this is the region shown in the plot.

5.2 Squeezed configuration

In the squeezed configuration one wave-vector goes to zero while the other two are equal but
opposite in direction. Expliciting the case in which q ≃ 0, k = −p, from eq. (5.6) we have

〈ρB(k)ρB(q)ρB(p)〉|squeezed =
δ(k+p+q)

384π3

1

3

∫

d3k̃ Pij(k̃)

×
{

Pjl(k− k̃)[Pil(q + k̃) + Pil(k − k̃)]

+Pjl(q − k̃)[Pil(k − k̃) + Pil(k + k̃)]
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+Pjl(k + k̃)[Pil(k + k̃) + Pil(q + k̃)]

+(q→p≃0 ,k→q)+(q→k≃0 ,k→p)
}

. (5.20)

Using eq. 5.7, and grouping the terms which are mutually equal, we find:

〈ρB(k)ρB(q)ρB(p)〉|squeezed =
δ(k + p + q)

384π3
A3 (5.21)

×2

3

{

∫

V1

d3k̃k̃n
∣

∣

∣
k−k̃

∣

∣

∣

n ∣

∣

∣
q+k̃

∣

∣

∣

n

×
[

(
ˆ̃
k ·k−k̃)2
∣

∣

∣
k−k̃

∣

∣

∣

2 +
(
ˆ̃
k ·q+k̃)2
∣

∣

∣
q+k̃

∣

∣

∣

2 +
(k·q−k·k̃+q·k̃−k̃2)[k·q−(

ˆ̃
k ·k)(

ˆ̃
k ·q)]

∣

∣

∣
k−k̃

∣

∣

∣

2 ∣

∣

∣
q+k̃

∣

∣

∣

2

]

+

∫

V2

d3k̃ k̃n
∣

∣

∣
k− k̃

∣

∣

∣

2n

×
[

2
(
ˆ̃
k · k− k̃)2
∣

∣

∣
k − k̃

∣

∣

∣

2 +
(k2 − 2k · k̃ + k̃2)[k2 − (

ˆ̃
k · k)2]

∣

∣

∣
k− k̃

∣

∣

∣

4

]

+

∫

V3

d3k̃k̃n
∣

∣

∣
q−k̃

∣

∣

∣

n ∣

∣

∣
k−k̃

∣

∣

∣

n

×
[

(ˆ̃k ·k−k̃)2
∣

∣

∣
k−k̃

∣

∣

∣

2 +
(ˆ̃k ·q−k̃)2
∣

∣

∣
q− k̃

∣

∣

∣

2 +
(k·q−k·k̃−q·k̃+k̃2)[k·q−(ˆ̃k ·k)(ˆ̃k ·q)]

∣

∣

∣
k− k̃

∣

∣

∣

2 ∣

∣

∣
q− k̃

∣

∣

∣

2

]

+ (q → p ≃ 0 ,k → q) + (q → k ≃ 0 ,k → p)

}

,

where V1 is given by the conditions

k̃ ≤ kD

|k − k̃| ≤ kD

|q + k̃| ≤ kD , (5.22)

V2 by the conditions

k̃ ≤ kD

|k − k̃| ≤ kD , (5.23)

and V3 by the conditions

k̃ ≤ kD

|q − k̃| ≤ kD

|k − k̃| ≤ kD . (5.24)

We do not have an exact calculation of the bispectrum in the squeezed configuration. This
is due to the fact that, contrary to the collinear case, the integration over the angle φ̄ is
not trivial (c.f. figure 1). For example, for the case q ≃ 0, k = −p, the angle φ → π/2:
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therefore, taking for example the first integral in eq. (5.21), we see that it contains the term
(q2 + k̃2 +2k̃q sin θ̄ cos φ̄)n/2, and the integration boundary over θ̄ and φ̄ given by V1 becomes
very complicated. Having already an estimation of the goodness of our approximation in the
collinear case, we do not dwell on the calculation for the squeezed configuration, and use
only the approximated formula. Observing the boundary conditions given by the integration
volumes V1, V2 and V3 we can however confirm that, also in the squeezed configuration, the
bispectrum goes to zero at k = q = 2kD, since these are the maximally allowed values for
the wave-numbers.

We reduce the general expression given in eq. (5.14) in the squeezed configuration,
and find:

〈ρB(k)ρB(q)ρB(p)〉|squeezed≃
δ(k+p+q)

144π2
A3

{

2n

(n+3)(2n+3)
q2n+3kn

+
6n(n+ 2)

(3n+3)(2n+3)(n+3)
k3n+3 +

k3n+3
D

n+ 1

+ (q → p ≃ 0 , k → q) + (q → k ≃ 0 , k → p)

}

. (5.25)

For n > −1, the resulting white noise plateau has the same amplitude as in the collinear
case. However, for n < −1 the divergence for q → 0 is q2n+3: therefore, it is weaker than in
the collinear case, and reaches the collinear behaviour q3n+3 only in the limit k → q → 0.

5.3 Equilateral configuration

In the equilateral configuration the wave-vectors form an equilateral triangle. With q = kq̂,
and p = kp̂, using eq. (5.6) and regrouping the equal terms one gets

〈ρB(k)ρB(q)ρB(p)〉|equilateral =
δ(k + p + q)

384π3

2

3

∫

d3k̃ Pij(k̃)

×
{

Pjl(k− k̃)[Pil(kq̂ + k̃) + Pil(kp̂ + k̃)]

+Pjl(kq̂ − k̃)Pil(kp̂ + k̃) +
(

k → q , kq̂ → qk̂ , kp̂→ qp̂
)

+
(

k → p , kq̂ → pq̂ , kp̂ → pk̂
)}

. (5.26)

Using eq. (5.7), we can rewrite the above expression explicitly as

〈ρB(k)ρB(q)ρB(p)〉|equilateral =
δ(k + p + q)

384π3
A3 (5.27)

×2

3

{

∫

V1

d3k̃ k̃n
∣

∣

∣
k − k̃

∣

∣

∣

n ∣

∣

∣
kq̂ + k̃

∣

∣

∣

n

×
[

(
ˆ̃
k · k − k̃)2
∣

∣

∣
k− k̃

∣

∣

∣

2 +
(
ˆ̃
k · kq̂ + k̃)2
∣

∣

∣
kq̂ + k̃

∣

∣

∣

2 +
(k · kq̂ − k · k̃ + kq̂ · k̃ − k̃2)[k · kq̂ − (

ˆ̃
k · k)(

ˆ̃
k · kq̂)]

∣

∣

∣
k− k̃

∣

∣

∣

2 ∣

∣

∣
kq̂ + k̃

∣

∣

∣

2

]

+

∫

V2

d3k̃ k̃n
∣

∣

∣
k− k̃

∣

∣

∣

n ∣

∣

∣
kp̂+ k̃

∣

∣

∣

n

×
[

(
ˆ̃
k · k − k̃)2
∣

∣

∣
k− k̃

∣

∣

∣

2 +
(
ˆ̃
k · kp̂+ k̃)2
∣

∣

∣
kp̂ + k̃

∣

∣

∣

2 +
(k · kp̂− k · k̃ + kp̂ · k̃− k̃2)[k · kp̂− (

ˆ̃
k · k)(

ˆ̃
k · kp̂)]

∣

∣

∣
k− k̃

∣

∣

∣

2 ∣

∣

∣
kp̂+ k̃

∣

∣

∣

2

]
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+

∫

V3

d3k̃ k̃n
∣

∣

∣
kq̂ − k̃

∣

∣

∣

n ∣

∣

∣
kp̂+ k̃

∣

∣

∣

n

×
[

(ˆ̃k ·kq̂−k̃)2
∣

∣

∣
kq̂ − k̃

∣

∣

∣

2 +
(ˆ̃k ·kp̂+k̃)2
∣

∣

∣
kp̂+ k̃

∣

∣

∣

2 +
(kq̂ ·kp̂−kq̂ ·k̃+kp̂·k̃−k̃2)[kq̂ ·kp̂−(ˆ̃k ·kq̂)(ˆ̃k ·kp̂)]

∣

∣

∣
kq̂ − k̃

∣

∣

∣

2 ∣

∣

∣
kp̂+ k̃

∣

∣

∣

2

]

+
(

k → q , kq̂ → qk̂ , kp̂→ qp̂
)

+
(

k → p , kq̂ → pq̂ , kp̂ → pk̂
)

}

, (5.28)

where again V1 is given by the conditions

k̃ ≤ kD

|k − k̃| ≤ kD

|kq̂ + k̃| ≤ kD , (5.29)

and similarly for V2 and V3. In this case as well, we cannot solve the above integrals exactly.
Like in the squeezed configuration, the integration in dφ̄ is non-trivial, since φ = 2π/3 and,
for example, the first integral of eq. (5.27) contains terms like (k2 + k̃2 + 2k̃k(1

2 sin θ̄ cos φ̄−
1
2 cos θ̄))n/2. We therefore use the approximated expression in eq. (5.14), which gives simply:

〈ρB(k)ρB(q)ρB(p)〉|equilateral ≃
δ(k + p + q)

144π2
A3

×
{

6n

(n+3)(3n+3)
k3n+3+

k3n+3
D

n+1
+(k→q)+(k→p)

}

.(5.30)

For n > −1, we find again a white noise plateau of the same amplitude as in the other
configurations; for n < −1 the divergence for k → 0 is the same as in the collinear case. At
first sight, this result might not seem correct: in the collinear case, in fact, by definition the
wave-vectors are collinear and therefore the limits k̃ → k and k̃ → −q collapse into a single
wave-vector configuration. In the equilateral case, on the other hand, they do not: we would
therefore naively expect the same infrared behaviour of the squeezed configuration. However,
the infrared divergence occurs for k = q = p → 0, and in this limit k̃ → k and k̃ → −q are
no longer distinct. Therefore, we do expect a k3n+3 behaviour also in the equilateral case,
equivalent to what we find in the collinear case and also in the squeezed one when we let not
only q, but also k → 0 (c .f eq. (5.25)).

We can conclude that, although it neglects the angles, the approximation in eq. (5.14)
does recover the correct behaviour of the bispectrum in the analysed configurations. How-
ever, neglecting the angles certainly introduces an inaccuracy, because one does not account
precisely for the weight with which the different configurations contribute to the total result.
We were able to compare the approximated result with the exact one only in the collinear
configuration, and we found an underestimation of a factor of two both for negative and
positive spectral indexes. However, this does not ensure that the total, exact bispectrum is
altogether only a factor of two higher than what given in eq. (5.14), neither that it has exactly
the same dependence on wave-numbers when we significantly deviate from the infrared limit.
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6 The CMB bispectrum

Given the magnetic energy density bispectrum 〈ρB(k)ρB(q)ρB(p)〉, we can now evaluate the
CMB bispectrum eq. (4.5). We use the approximated magnetic energy bispectrum eq. (5.14),

〈ρB(k)ρB(q)ρB(p)〉 ≃ δ(k + p + q)
A3k3n+3

D

48π2
I(K,Q,P ) (6.1)

I(K,Q,P ) =
n

(n + 3)(2n + 3)
QnK2n+3 +

n

(3n+ 3)(2n + 3)
Q3n+3

+
n

(n+ 3)(2n + 3)
PnK2n+3 +

n

(3n + 3)(2n + 3)
P 3n+3

+
n

(n+ 3)(2n + 3)
PnQ2n+3 +

n

(3n+ 3)(2n + 3)
P 3n+3 +

1

n+ 1

for K ≤ Q ≤ P ≤ 1 ,

where K = k/kD and so on denote normalised wave-numbers. We want to estimate the
reduced bispectrum bℓ1ℓ2ℓ3 introduced in [42]

〈aℓ1m1
aℓ2m2

aℓ3m3
〉 = Gm1m2m3

ℓ1ℓ2ℓ3
bℓ1ℓ2ℓ3 , (6.2)

where Gm1m2m3

ℓ1ℓ2ℓ3
is the Gaunt integral. We use the procedure described in [43]: starting from

eq. (4.5), substituting in it eq. (3.3) and eq. (3.1), and using expression (6.1) for the source,
we find:

bℓ1ℓ2ℓ3 =
π α3A3k3n+9

D

6 ρ3
rel

∫ ∞

0
dxx2

∫ 1

0
dK K2

∫ 1

0
dQQ2

∫ 1

0
dP P 2jℓ1(Ky)jℓ1(Kx)jℓ2(Qy)

×jℓ2(Qx)jℓ3(Py)jℓ3(Px)I(K,Q,P ) , (6.3)

where y = kDη0 and x = kDr, and r comes from the decomposition of the delta function
in (6.1) (see [43]). Using the definition of the bispectrum I(K,Q,P ) given in (6.1), the above
equation becomes

bℓ1ℓ2ℓ3 =
π α3A3k3n+9

D

36 ρ3
rel

∫ ∞

0
dxx2

∫ 1

0
dK K2jℓ1(Ky)jℓ1(Kx)

×
∫ K

0
dQQ2jℓ2(Qy)jℓ2(Qx)

∫ Q

0
dPP 2jℓ3(Py)jℓ3(Px)

×
{

a(n)
[

KnQ2n+3 +KnP 2n+3 +QnP 2n+3
]

+ b(n)
[

2K3n+3 +Q3n+3
]

+ c(n)
}

+ permutations , (6.4)

where a(n) = n/(n + 3)/(2n + 3), b(n) = n/(3n + 3)/(2n + 3), c(n) = 1/(n + 1), and one
adds the six ordered permutations of K, Q and P which entail permutations of ℓ1, ℓ2, ℓ3.

In order to estimate the bispectrum, we substitute the upper boundaries in eq. (6.4) with
the interval [0, 1] in all the integrals over the momenta, since the Bessel functions peak at very
low momentum: jℓ3(Py) peaks at P ≃ ℓ3/y, and y ≫ 1. Because of the form of the source
I(K,Q,P ), in (6.4) at least one integral over the momentum is not influenced by the source.
Following [44], for each of these integral we use the approximation (cf. eq. 6.512 of [45])

∫ 1

0
dP P 2jℓ3(Py)jℓ3(Px) ∼

1

4

δ(y − x)

x2
, (6.5)
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we then solve the integral in dx using the delta function and obtain for the first term for ex-
ample,

a(n)

4

∫ 1

0
dK Kn+2j2ℓ1(Ky)

∫ 1

0
dQQ2n+5j2ℓ2(Qy) , (6.6)

and so on. Approximate expressions for this kind of integrals are discussed in appendix A.
If n > −1, in eq. (6.4) we retain only the white noise term c(n). All permutations give

the same result in this case, and we find finally

bℓ1ℓ2ℓ3 ≃ π7 α3

96

(n+ 3)3

n+ 1

〈B2〉3

ρ3
rel

1

(kDη0)4
, for n > −1 . (6.7)

Values of the spectral index n < −1, for which the source is not pure white noise, are a bit
more involved. As in the spectrum case (cf. section 3), we cannot give a general expression
valid for every n < −1, since the way to approximate integrals like those in (6.6) depends
on the actual value of the power law exponent. Therefore, we give explicit expressions only
for two values of the spectral index: n = −2, and n → −3. Fixing the spectral index to
n = −2, one finds

bℓ1ℓ2ℓ3 ≃ π8 α3

288

〈B2〉3

ρ3
rel

1

(kDη0)3

{

1

ℓ1

[

log

(

kDη0√
ℓ2
√
ℓ3

)

− 2kDη0

3π

1

ℓ1

]

+
1

ℓ2

[

1

2
log

(

kDη0

ℓ3

)

− kDη0

3π

1

ℓ2

]}

+ permutations , for n = −2 . (6.8)

It is important to remark that the squeezed limit of the above expression must be taken
with ℓ3 ≪ ℓ2 ≃ ℓ1, since this expression has been derived from the wave-number configu-
ration P ≤ Q ≤ K. We see that in this case, the dominant term in the bispectrum (of
the order log(kDη0/ℓ3)) correctly corresponds to the one coming from the dominant term in
wave-number space, P 2n+3. The permutations must be treated accordingly: for example, for
Q ≤ P ≤ K one has ℓ2 ≪ ℓ1 ≃ ℓ3.

For n→ −3, we solve the integrals setting n = −3, therefore using approximation (A.3)
with m = −1, and we find then

bℓ1ℓ2ℓ3 ≃ π7 α3

288

n(n+ 3)2

2n+ 3

〈B2〉3

ρ3
rel

[(

1

ℓ21ℓ
2
2

+
1

ℓ21ℓ
2
3

+
1

ℓ22ℓ
2
3

)

+
π

16

n+ 3

n+ 1
kDη0

(

1

ℓ51
+

1

2ℓ52

)]

+ permutations , for n ≈ −3 , (6.9)

where the same considerations as above apply for the squeezed limit. The second term in
the above expression, coming from the term proportional to b(n) in eq. (6.4) is sub-leading,
since it contains a factor n + 3. Note that since 〈B2〉 ∝ (n + 3)−1, the leading term of the
bispectrum diverges in n→ −3 as (n+3)−1, like the spectrum (cf. eq. (3.7)): this divergence
is connected to the infrared divergence of the magnetic energy.2

The leading term of the above result eq. (6.9), reduced to the squeezed and the equilat-
eral configurations, gives the same result as found in [28] (cf. eqs. (17) and (18) and discussion
thereafter, we remind that we use α = 0.1).

2The above expression is valid only for n → −3 so the denominator is always finite. Note however that
the apparent divergence for n = −3/2 is just an artefact due to our approximation (cf. eq. (2.15)): n = −3/2
would correspond to a threshold value for which |ρB(k)|2 diverges logarithmically for k → 0 and is not simply
white noise.
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7 Estimation of the signal

Since the signal-to-noise ratios (S/N) we will be interested in is some function of the maxi-
mum multipole a given experiment can reach, ℓmax ≫ 1, we can use the flat-sky approxima-
tion [46, 47] and write for the bispectrum

〈a(~ℓ1)a(~ℓ2)a(~ℓ3)〉 = (2π)2δ(2)(~ℓ123)B(ℓ1, ℓ2, ℓ3) , (7.1)

where ~ℓ123 = ~ℓ1 + ~ℓ2 + ~ℓ3. With this notation, the reduced bispectrum bℓ1ℓ2ℓ3 coincides with
the bispectrum B(ℓ1, ℓ2, ℓ3).

Our goal now is to quantify the level of NG coming from the stochastic magnetic field
and eventually to give a bound on the amplitude of the magnetic field. One way to do it
is to exploit the present bound on the primordial local non-Gaussianity parametrized by
the quantity f loc

NL. As we mentioned in the introduction, the search for a non-vanishing
bispectrum of a local type has given so far a null result and currently f loc

NL is bounded in
the range −9 < f loc

NL < 111. As the shape of the non-Gaussian signature from the stochastic
magnetic field may be different from the one of the local type, one may not directly apply
the bounds coming from WMAP5 whose search for non-Gaussianity is optimised to search
for local primordial contribution. Instead, we proceed in the following way. First, we define
the Fisher matrix (see, for example, [42])

Fij =
fsky

(2π)2π

∫

d2ℓ1d
2ℓ2d

2ℓ3 δ
(2)(~ℓ123)

Bi(ℓ1, ℓ2, ℓ3)Bj(ℓ1, ℓ2, ℓ3)

6C(ℓ1)C(ℓ2)C(ℓ3)
, (7.2)

where fsky is the portion of the observed-sky in a given experiment and i (or j)= (mag, loc).
The first entry Fmag,mag of the Fisher matrix corresponds to the signal-to-noise ratio (S/N)2

provided by the stochastic magnetic field to the non-Gaussianity. We have defined the power
spectrum in the flat-sky approximation by 〈a(~l1)a(~l2)〉 = (2π)2δ(2)(~l12)C(ℓ1) with ℓ2C(ℓ) =
A/π and A ≃ 17.46 × 10−9 is the amplitude of the primordial gravitational potential power
spectrum computed at first-order. In other words, we assume that the two-point correlation
function is dominated by the usual adiabatic contribution from inflation. Finally, the local
bispectrum is given by [46]

Bloc(ℓ1, ℓ2, ℓ3) =
2 f loc

NL A2

π2

(

1

ℓ21ℓ
2
2

+ cycl.

)

. (7.3)

Notice that all these expressions are obtained in the Sachs-Wolfe approximation. We will
return back to this point shortly.

Next, we define an effective f eff
NL which minimises the χ2 defined as

χ2 =

∫

d2ℓ1d
2ℓ2d

2ℓ3 δ
(2)(~ℓ123)

(

f eff
NLBloc(ℓ1, ℓ2, ℓ3)

∣

∣

f loc
NL

=1
−Bmag(ℓ1, ℓ2, ℓ3)

)2

6C(ℓ1)C(ℓ2)C(ℓ3)
.

One finds

f eff
NL =

Fmag,loc

Floc,loc

∣

∣

∣

f loc
NL

=1
. (7.4)

The signal-to-noise ratio for the primordial local case has already been com-
puted in the flat-sky approximation in ref. [46]. The result is that Floc,loc ≃
(4/π2)fskyA(f loc

NL)2 ℓ2max log(ℓmax/ℓmin). The logarithm is typical of scale invariant power
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spectra and ℓmin is the minimum multipole compatible with the flat-sky approximation. The
physical meaning of f eff

NL is the following: it is the best value of the local f loc
NL which best

mimics the bispectrum from a stochastic magnetic field background. As such, we can apply
to this value the current observational limits.

We start with the simplest case n ≈ −3. Indeed, for n close to −3, the leading term of
the bispectrum is of the same form of the local primordial bispectrum (7.3) in the squeezed
limit ℓ3 ≪ ℓ1 ≃ ℓ2 and we immediately find

f eff
NL ≃ 3π9 α3

288A2

n(n+ 3)2

2n+ 3

〈B2〉3

ρ3
rel

≃ 10−2 (n+3)2
( 〈B2〉

(10−9Gauss)2

)3

, for n ≈ −3 . (7.5)

In the case in which the bispectrum is independent from the multipoles, that is for n > −1,
we find

f eff
NL ≃ π9 α3

2304A2

(n + 3)3

n+ 1

〈B2〉3

ρ3
rel

(

ℓmax

ℓD

)4 1

log(ℓmax/ℓmin)

≃ 6 × 10−7 (n+ 3)3

n+ 1

( 〈B2〉
(10−9Gauss)2

)3

, for n > −1 . (7.6)

Finally, for the case n = −2, we find

f eff
NL ≃ 5π10 α3

2304A2

〈B2〉3

ρ3
rel

(

ℓmax

ℓD

)3 log(ℓD/ℓmax)

log(ℓmax/ℓmin)

≃ 5 × 10−5

( 〈B2〉
(10−9Gauss)2

)3

, for n = −2 . (7.7)

In all numerical estimates we have taken ℓD = kDη0 ≃ 3000, ℓmax ∼ 750, ℓmin ∼ 10, α ≃ 0.1,
and eq. (2.6). We see that the effective value of non-Gaussianity f eff

NL is smaller than the
present upper bound of O(102) on f loc

NL [2] for magnetic fields O(10) · 10−9 Gauss for n ≈ −3
and O(20) · 10−9 Gauss for the other cases.3

Accounting more precisely for the value of the damping scale kD as a function of the
spectral index and of the magnetic field amplitude using eq. (2.7), we obtain

√

〈B2〉 ≤ 9 nGauss for n = −2.9
√

〈B2〉 ≤ 25 nGauss for n = −2
√

〈B2〉 ≤ 20 nGauss for n = 2 (7.8)

The corresponding bound on the magnetic field amplitude Bλ (cf. eq. (2.5)) on the scale λ =
0.1 Mpc is unchanged for n→ −3, it becomes Bλ ≤ 26 nGauss for n = −2, and is less strin-
gent as n grows, becoming irrelevant for n = 2: Bλ ≤ 2 µGauss. This is a consequence of the
fact that the procedure of using an effective fNL returns a bound on the integrated magnetic
field spectrum, and therefore for very blue spectra the constraint on large scales is irrelevant.

3We have obtained similar estimates repeating the same procedure to define an effective non-Gaussianity
parameter starting from a primordial equilateral configuration for which WMAP5 limits exist. In such a case
the primordial equilateral configuration is peaked for ℓ1 ∼ ℓ2 ∼ ℓ3 and the effective non-Gaussianity parameter
scales with ℓmax with one power less than the corresponding one obtained from a local primordial bispectrum.
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A word of caution is in order here though. In all our estimates, we have used the Sachs-
Wolfe approximation for all bispectra. This is certainly a sufficiently good approximation
for an experiment like WMAP whose maximum multipole is ℓmax ∼ 750. This is because
the transfer functions for both the scalar contribution to the CMB anisotropies from the
stochastic magnetic field and the one from the inflationary adiabatic modes may be taken
roughly equal to unity up to ℓ ∼ 750 and they do not affect the computation of the Fisher
matrix elements, see [46, 48]. However, for higher multipoles, say ℓ ∼ 2000, typical of an
experiment like Planck, the inclusion of the transfer functions will be crucial because the
anisotropies from the adiabatic inflationary modes get an exponential suppression due to the
Silk damping, while the ones from the scalar modes from the stochastic magnetic field show
a much milder suppression [27, 40]. This will increase the value of f eff

NL. Needless to say, the
inclusion of the vector and tensor contributions from the magnetic field will help to increase
the non-Gaussian signal too.

While writing this paper, the preprint [28] appeared where the computation of the bis-
pectrum from a stochastic magnetic field background was presented for the case n ≈ −3. Our
findings agree with those in ref. [28] and extend them to other values of the spectral index and
by the estimation of the signal-to-noise ratio and of the effective non-Gaussianity parameter.
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A Integrals of Bessel functions

In order to evaluate both the magnetic field spectrum and bispectrum at large angular scales,
we need to evaluate integrals of the type

∫ y

0
dxxmj2ℓ (x) (A.1)

with y ≫ 1. This integral can be expressed generically in terms of hypergeometric functions;
however, good approximations can be found, which are much simpler.

For m = 2, the integral can be performed exactly: one has

∫ y

0
dxx2 j2ℓ (x) =

π

4
y2

[

J2
ℓ+ 1

2

(y) − 2

y

(

ℓ+
1

2

)

Jℓ+ 1

2

(y)Jℓ+ 3

2

(y) + J2
ℓ+ 3

2

(y)

]

≃ y

2
(A.2)

where since y ≫ ℓ we used the expansion of the Bessel functions for large arguments.
For m < 1, the integral reaches a constant value for y ≫ ℓ, and can therefore be

evaluated in the limit y → ∞. We find

∫ y

0
dxxmj2ℓ (x) ≃ 1

4

[√
π Γ(1−m

2 )Γ(ℓ+ m+1
2 )

Γ(1 − m
2 )Γ(ℓ+ 3−m

2 )
+ ym−2

(

2y

m− 1
+ sin(πℓ− 2y)

)

]

ℓ≫1−→
√
π Γ(1−m

2 )

4Γ(1 − m
2 )

ℓm−1

for m < 1 , y ≫ ℓ (A.3)
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Figure 4. The approximations for the integral in eq. (A.1). Upper left plot, for m = 2: the integral
(solid) and the approximation y/2 (dashed) are shown for ℓ = 20, ℓ = 100, ℓ = 500 as a function of
y. Upper right plot, for m < 1: the approximations for y ≫ ℓ (solid) and for ℓ≫ 1 (dashed) given in
eq. (A.3) are shown as a function of ℓ for m = 0, m = −1 and m = −2. Lower plots, for m = 1: the
integral (solid) and the approximation in eq. (A.4) (dashed) are shown as a function of y for ℓ = 20
(left plot) and as a function of ℓ for y = 100 (right plot).

The case m = 1 is a bit more involved: the integral (A.1) grows logarithmically with y
and cannot be evaluated with the same approximation as before. In this case we set

∫ y

0
dxx j2ℓ (x) ≃

∫ y

ℓ

dx

x
cos2

(

x− π

2
ℓ− π

4

)

≃ 1

2
[log(y) − log(ℓ)] for y ≫ ℓ . (A.4)

We are neglecting the subdominant contribution to the integral of the interval [0, ℓ], therefore
this approximation is slightly underestimating the true result. However, it captures the
correct behaviour in ℓ and y. These approximations are shown in figure 4.

B Bispectrum in collinear configuration

In the following appendix we describe the technique used to calculate the magnetic energy
density bispectrum in the collinear configuration eq. (5.15).

Due to the complexity of the calculations we restrict to analytical solutions of the
bispectrum integral for two representative spectral indexes: the case n = 2 (the typical
spectrum of a magnetic field generated by a causal mechanism), and the case n = −2 (in
order to investigate the behaviour of the spectrum also for negative spectral indexes).

The magnetic energy density bispectrum in the collinear configuration is given in
eq. (5.15). From this we extract the integral in the momenta which is given by the per-
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mutation over the three momenta K,P,Q of three basic integrals:4

I(K) =

∫

dK̃

∫

dx(Ia(K, K̃) + Ib(K, K̃) + Ic(K, K̃)) , (B.1)

where x = K̂ · ˆ̃K. The functions Ia(K, K̃), Ib(K, K̃), Ic(K, K̃) are:

Ia(K, K̃) = K̃2+n(
K2

4
+ K̃2 +KK̃x)

n
2 (K2 + K̃2 + 2KK̃x)−1+ n

2

×
(

8K̃4+24KK̃3x+K4(1+x2)+3K3K̃x(3+x2)+K2K̃2(7+19x2)

K2 + 4K̃2 + 4KK̃x

)

(B.2)

Ib(K, K̃) = K̃2+n(
K2

4
+ K̃2 +KK̃x)n/2(K̃2 +

1

4
K(K − 4K̃x))n/2

×
(

(32K̃4 + 4K2K̃2(1 − 5x2) +K4(1 + x2))

((K2 + 4K̃2)2 − 16K2K̃2x2)

)

(B.3)

Ic(K, K̃) = K̃2+n(K2 + K̃2 − 2KK̃x)−1+ n
2 (K̃2 +

1

4
K(K − 4K̃x))n/2

×
(

(8K̃4−24KK̃3x+K4(1+x2)−3K3K̃x(3+x2)+K2K̃2(7+19x2))

(K2 + 4K̃2 − 4KK̃x)

)

(B.4)

We note that due to the symmetry K̃ → −K̃ we have that the first and the third integrals
are indeed the same Ia(K) = Ic(K), therefore to obtain the energy density bispectrum in the
collinear configuration we need to solve only the two integrals of Ia(K, K̃) and Ib(K, K̃).

B.1 Integration domains

The sharp cut-off of the PMF spectrum at the damping scale kD, imposed to account for

the magnetic fields suppression on small scales, leads to many conditions on the angle ˆ̃K · K̂.
This causes the integration domain to be split into various sub-domains. The conditions
are different for Ia and Ib, therefore for simplicity in the following we consider the two
integrations separately.

B.2 Domains of Ia

The sharp cut off imposes:

K̃ < 1
(

K2

4
+ K̃2 +KK̃x

)

< 1

(K2 + K̃2 + 2KK̃x) < 1

This leads to the following integration scheme:

1) 0 < K < 1
∫ 1−K

0
dK̃

∫ 1

−1
dx Ia(K̃,K) +

∫ 1

1−K
dK̃

∫ 1−K2
−K̃2

2KK̃

−1
dx Ia(K̃,K)

4For simplicity of notation in this appendix we use re-scaled variables: K = k/kD, Q = q/kD, P = p/kD

and K̃ = k̃/kD
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2) 1 < K < 2
∫ 1

K−1
dK̃

∫ 1−K2
−K̃2

2KK̃

−1
dx Ia(K̃,K) (B.5)

B.3 Domains of Ib

The sharp cut off imposes:

K̃ < 1
(

K2

4
+ K̃2 +KK̃x

)

< 1

(

K2

4
+ K̃2 −KK̃x

)

< 1

This leads to the following integration scheme for 0 < K < 2:

∫ 2−K
2

0
dK̃

∫ 1

−1
dx Ib(K̃,K) +

∫

√
4−K2

2

2−K
2

dK̃

∫
1−K2/4−K̃2

KK̃

−1+K2/4+K̃2

KK̃

dx Ib(K̃,K)

(B.6)

in the interval
√

4−K2

2 < K̃ < 1 the integral collapses to zero.

B.4 n=2

First we consider the case n = 2 which is the easiest from the point of view of the calculations.
In fact the angular integrand functions for this spectral index simply reduce to:

Ia(K, K̃, x) =
1

4
K̃4(8K̃4 + 24KK̃3x+K4(1 + x2) + 3K3K̃x(3 + x2) +K2K̃2(7 + 19x2))

Ib(K, K̃, x) =
1

16
K̃4(32K̃4 + 4K2K̃2(1 − 5x2) +K4(1 + x2)) (B.7)

Once performed the angular integrations, following the integration scheme reported in the
previous paragraph, the radial integrations become trivial and the result is:

I(K)|n=2 =

(

4

3
− 3K +

20K2

7
− 23K3

16
+

2K4

5
− K5

16
+
K7

256
− 17K9

53760

)

(B.8)

In figure 2 we have shown the result for n = 2. We note that, as it happens for the energy den-
sity spectrum, also the PMF energy density bispectrum goes to zero for K = 2 as expected.

B.5 n=-2

Here we consider the case n = −2. The functions Ia and Ib for this spectral index reduce to:

Ia(K, K̃, x) =
4(8K̃4 + 24KK̃3x+K4(1 + x2) + 3K3K̃x(3 + x2) +K2K̃2(7 + 19x2))

(K2 + K̃2 + 2KK̃x)2(K2 + 4K̃2 + 4KK̃x)2

Ib(K, K̃, x) =
16(32K̃4 + 4K2K̃2(1 − 5x2) +K4(1 + x2))

((K2 + 4K̃2)2 − 16K2K̃2x2)2
(B.9)

We note how these functions are far more complicated than the ones for the n = 2 case. Once
performed the angular integrations in both the integrals we have the appearance of absolute
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values like |K − 2K̃ | and |K − K̃|, their presence influences the integration domains creating
further splitting into several sub-domains. Since we are interested in the effect on CMB
where only the low K part of the spectrum has a role we restrict ourselves to the K < 1/2
region of the spectrum. The analytical result for n = −2 unfortunately has a very long and
complicated form, therefore, for the sake of simplicity, we show only the infrared limit:

Ia(K) ∼ 24.674

K3

Ib(K) ∼ 24.674

K3

I(K) ∼ 73.8367

K3

Figure 2 shows the exact result.
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