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Abstract. The flux of hypothetical ‘hidden photons’ from the Sun is computed
under the assumption that they interact with normal matter only through kinetic
mixing with the ordinary standard model photon. Requiring that the exotic
luminosity is smaller than the standard photon luminosity provides limits for the
mixing parameter down to χ � 10−14, depending on the hidden photon mass.
Furthermore, it is pointed out that helioscopes looking for solar axions are also
very sensitive to hidden photons. The recent results of the CAST collaboration
are used to further constrain the mixing parameter χ at low masses (mγ′ < 1 eV)
where the luminosity bound is weaker. In this regime the solar hidden photon
flux has a sizable contribution of longitudinally polarized hidden photons of low
energy which are invisible for current helioscopes.
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1. Introduction

The standard model (SM) provides an accurate description of particle physics below the
electroweak scale but it is generally thought not to be valid up to arbitrary energies.
Extensions of this celebrated scheme, invoked to cure diseases like the strong CP,
hierarchy or flavor problems, often involve higher gauge symmetries and further matter
content. Moreover, string theory is a preferred candidate for the unification of quantum
mechanics and general relativity where additional gauge and matter fields are assured.
At low energies, some of these new fields can arrange into a ‘hidden sector’ if only very
massive particles (or gravity) mediate interactions between them and the SM ‘visible
sector’.

Of course, depending on the scalar content of the theory, gauge symmetries can either
be spontaneously broken or remain exact. Then, the corresponding ‘hidden’ bosons could
have in principle an arbitrary mass. If this is small enough, these hidden bosons can have
a very rich phenomenology at present affordable energy scales.

The simplest case concerns just a novel U(1)h symmetry and its corresponding gauge
boson, henceforth called a ‘hidden’ photon. The interplay between this hidden photon and
the SM photon modifies the predictions of quantum electrodynamics [1], often claimed to
be the most accurate of all physical theories so far, thus constraining the hidden photon
parameters. We can turn this argument in the opposite direction: the constraints on
hidden photon parameters give us information about how accurate the QED description
of nature is at low energies.

A number of laboratory experiments have been devoted to the search of hidden
photons, the resulting bounds being strongly dependent on the hidden photon mass.
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Observations of emission spectra of very distant sources have been used to set
limits on photon disappearance due to photon–hidden photon oscillations, e.g. with the
cosmic microwave radiation (CMB) [2]–[4], type Ia supernovae [5] and active galactic
nuclei (and other gamma ray sources) [6]. Measurements of Jupiter’s and Earth’s
magnetic fields also provide interesting constraints [7]. Powerful constraints from
late cosmology have been recently derived using CMB and big bang nucleosynthesis
data [8].

For macroscopic length scales, pure laboratory experiments testing the Coulomb
law [9, 10] set strong constraints on hidden photons, but still they could be largely
improved by experiments dealing with high quality microwave cavities [11]. In the
microscopic range, laser experiments are also becoming very powerful probes of hidden
sector particles [12]–[19]. At atomic distances, comparison of the Rydberg constant for
different atomic levels gives interesting but weak bounds [20, 21]. Finally, particle colliders
extend the mass range until typical electroweak scales [22]–[26]. In figure 7 a summary of
these constraints is presented.

On top of that, the evolution of stars turns out to be the most sensitive ‘laboratory’
to study properties of novel low mass weakly interacting particles [27, 28]. Even with tiny
couplings to electrons and protons, they might be still copiously created in the interior
of hot and dense stars. Because of their weak interactions they might abandon the star
without further scattering, accelerating the consumption of nuclear fuel and therefore
stellar evolution [29, 30]. Our present observational data on stellar evolution can strongly
constrain this novel luminosity, although the bounds can be relaxed in some concrete
models [31]–[35].

Interestingly enough, in this case the Sun itself could be a copious emitter of
weakly interacting particles, that could eventually be detected at Earth inside a sensitive
detector [36] (as is actually the case with neutrinos). Several of these so-called
‘helioscopes’ [37] have been built with the aim of detecting solar axions [38]–[40] and,
remarkably, the CAST collaboration has even recently surpassed the sensitivity of the
energy loss arguments for the axion coupling to two photons [41]. As we will see,
helioscopes can also detect hidden photons so the CAST limits can also be used to
constrain the solar hidden photon flux.

The energy loss argument and helioscope bounds for hidden photons were already
studied in [42, 43]. However, in this paper the author does not consider either the
possibility of a resonant production, which can enhance enormously the hidden photon
flux, nor the emission of longitudinally polarized hidden photons.

In this paper we compute the energy loss bounds using the latest solar data [44]
and derive the CAST helioscope bounds. In particular, it is shown that the new CAST
results are extremely sensitive to solar hidden photons, providing the strongest constraint
of their existence in the mass range mγ′ ∼ 0.01–1 eV. Moreover, accounting for the
resonant production improves the energy loss bounds in [43] roughly up to one order of
magnitude.

This paper is organized as follows. In section 2 the hidden photon solar emission is
derived while the principles of the CAST helioscope detection are reviewed in section 3.
We compute the energy loss and CAST bounds in section 4 and finally the conclusions
are presented.
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2. Hidden photon production in the Sun

At low energies, the dynamics of the two-photon system can be described by means of the
following Lagrangian:

L = LMX + Lh + Lχ = −1
4
AμνA

μν + Aμjμ − 1
4
BμνB

μν + 1
2
m2

γ′BμBμ − 1
2
χAμνB

μν , (1)

which is the sum of the Maxwell Lagrangian for the standard model photon field Aμ

with its corresponding source jμ (the electric current of electrons and protons), the Proca
Lagrangian for the massive hidden photon Bμ and a gauge-invariant mixing term. This
term has been discussed in some detail in the literature in a variety of contexts [45]–[54].
Although χ is a priori a free parameter that could be even of order 1, the experimental
evidence indicates that it should be much smaller. A natural explanation for this is that,
while χ could be zero because of symmetry reasons at a high energy scale, the integration
of high energy quantum fluctuations will end up inevitably in a small nonzero value in the
low energy theory. Typical values given in the literature range from 10−16 to 10−2 [48].
The lack of a mass mixing term is, of course, due to the protection of the U(1)em symmetry,
which in principle we would like to preserve. We do not have to write a tree level coupling
Bμjμ because it can be eliminated (if small) by a harmless redefinition of the photon field
and therefore absorbed in χ. This could not be done if the Bμ field couples with different
strengths to electrons and protons. Such a situation, however, is severely constrained from
experiments testing the neutrality of matter [55] and arguments concerning the existence
of leptonic and baryonic forces [56] and therefore we will not consider it.

The presence of a mixing term simply states the fact that the Aμ and Bμ fields are
non-orthogonal. This can be easily seen if we notice that the Feynman rule for the AμνB

μν

vertex is simply the inverse (non-diagonal) massless propagator. In order to gain further
understanding of the physics to be discussed it is highly recommendable to express the
Lagrangian in terms of the state that is orthogonal to the photon, and therefore sterile
with respect to local electromagnetic interactions, defined as

Sμ = Bμ + χAμ. (2)

This invites us to renormalize the electric charge
√

1 − χ2Aμ → Aμ and generates non-
diagonal mass terms:

Lm = 1
2
m2

γ′SμSμ − χm2
γ′SμAμ + 1

2
χ2m2

γ′AμAμ, (3)

which indicate that photons oscillate into sterile states during free propagation, as in the
case of neutral kaons or neutrinos.

The equations of motion (EOM) in the Lorentz gauge for such a system are, in Fourier
space,

(K2gμν − Πμν(K) − χ2m2
γ′)Aν(K) + χm2

γ′Sμ(K) = 0,

(K2 − m2
γ′)Sμ(K) + χm2

γ′Aμ(K) = 0,
(4)

where K is the 4-momentum (from now on I will skip writing it) and I have included
the effects of the photon interactions with the medium via the polarization tensor Πμν ,
which has a clear physical interpretation as the photon self-energy in the medium1.

1 In this discussion I follow the exposition and notation of [27].
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In a homogeneous, isotropic and CP conserving medium it has only two independent
components, πT and πL, corresponding to two transverse (k ·A = 0) and one longitudinal
(Langmuir waves with k×A = 0) electromagnetic excitations, which in a plasma are called
plasmons. Taking advantage of the isotropy, we chose to focus on propagation along the z
direction K = (ω; 0, 0, k) and we can write a simple set of orthogonal polarization vectors2

as

εμ
T1

(0; 1, 0, 0); εμ
T2

(0; 0, 1, 0); εμ
L

1√
ω2 − k2

(k; 0, 0, ω), (5)

satisfying εμ
aε∗bμ = −δab and define

Πμν(K) = −
∑

a

εμ
aε∗νa πa(K). (6)

Thus we can write the EOM for the different components Aa = εμ
aAμ (idem for Sa) as

(ω2 − k2 − πa − χ2m2
γ′)Aa + χm2

γ′Sa = 0,

(ω2 − k2 − m2
γ′)Sa + χm2

γ′Aa = 0.
(7)

The evolution of T-and L-plasmons is decoupled.
The lowest-order contribution to Πμν in a plasma comes from coherent forward

scattering off the thermal bath of electrons [57, 58], providing refractive (real) parts for
πT,L. For typical solar plasmon energies ω � 10 keV � me and we can neglect the electron
velocity dispersion in our calculations, getting [58]

Re{πT} ≡ m2
T � ω2

P; Re{πL} ≡ m2
L � ω2

P − k2, (8)

with the plasma frequency ωP given by

ω2
P � 4πα

me
ne, (9)

where ne is the electron number density.
Leaving aside the effects of the hidden sector photons, the solutions from the equations

of motion (7) tell us that T-plasmons behave as massive particles with an ‘effective mass’
given by ωP but L-plasmons oscillate at a frequency ω ∼ ωP, almost independent of the
wavenumber k (the group velocity is suppressed by a small factor ∼3T/me). Then, while
T-plasmons are always time-like, L-plasmons can also be light-or space-like. Explicitly
one finds

ω2 � ω2
P + k2 (T); ω2 � ω2

P +
3T

me

k2 (L), (10)

where I have kept the lowest-order terms in k.
In order to get the lowest nonzero contributions to the imaginary parts of πT,L we

need to include photon absorption and dispersion. Following Weldon [59], the imaginary
part of the photon self-energy is proportional to the difference of the photon absorption
and photon production probabilities (ΓA,P) by means of

Im πa ≡ −ωΓa = −ω
(
ΓA

a − ΓP
a

)
= −ω(1 − e−ω/T )ΓA

a , (11)

2 We will not consider space-like plasmons in this paper so the denominators will cause no trouble.

Journal of Cosmology and Astroparticle Physics 07 (2008) 008 (stacks.iop.org/JCAP/2008/i=07/a=008) 5

http://stacks.iop.org/JCAP/2008/i=07/a=008


JC
A

P
07(2008)008

Helioscope bounds on hidden sector photons

where in the last equality thermodynamic equilibrium3 is assumed, implying

ΓP = ΓAe−ω/T . (12)

The result equation (11) reminds us of an absorption rate corrected for stimulated
emission.

The dominant source of opacity in the Sun is inverse bremsstrahlung (also called
free–free absorption) which is very efficient at low and intermediate energies. Compton
scattering provides a smaller but energy-independent contribution (given that ω � me)
which is crucial for the highest energies. For transversely polarized photons of energy
sufficiently above the plasma frequency we get

ΓT =
16π2α3

3m2
eω

3

√
2πme

3T
ne

∑

i

Z2
i nigff,i(1 − e−ω/T ) +

8πα2

3m2
e

ne, (13)

where ni is the number density of ions of charge eZi—which, as a good approximation,
we will take to be only hydrogen and helium—and gff,i is the Boltzmann averaged
Gaunt factor4 which accounts for the deviations from the classical expression derived
by Kramers [64]. A more accurate calculation should include the effects of free–bound
and bound–bound transitions, which might acquire some relevance at the relatively low
temperatures of the solar external layers. Note that in (13) we are also assuming that all
the particle species are completely ionized. Again this approximation will fail at the solar
external layers and corrections should be included by solving the Saha equation. We will
refer to the validity of these simplifications later on.

For πL the situation is more complicated since formulae for the interactions of
longitudinal plasmons are difficult to derive or to find in the literature. However, it
turns out that, in the most interesting case, where L-plasmons are time-like, the bulk
emission is not sensitive to the details of ΓL. For completeness, however, we can write the
simplest contribution, Thomson dispersion (derived in the appendix A), giving

ΓL =
8πα2

9meT

k

ω
ne. (14)

The solar model BP05(OP) [44] provides the latest available data on the solar interior
compatible with helioseismology and neutrino fluxes. Magnitudes like temperature (T ),
mass density (ρ) and the mass fraction of the most important atomic elements (Xi) are
tabulated as a function of the solar radial coordinate r. Assuming that the plasma is
locally neutral we can compute the electron density as the sum over species of the number
of protons through ne = ρ/mu

∑
i ZiXi/Ai, with Zi, Ai the atomic and mass number of

species i and mu the atomic mass unit. The relevant parameters for this work are plotted
in figure 1. In particular, notice that the electron density strongly depends on the position
in the solar interior. This introduces an implicit position dependence in the EOM (7).

Now that we have learned about the standard plasmon propagation in the Sun it is
time to address the effects of mixing with the hidden photon B. Assuming slow spatial

3 Even in the absence of thermodynamic equilibrium the result holds because of unitarity [60, 59].
4 For a review on the subject see [61]. In the numerical estimates of this paper I have recalculated the Gaunt
factor using the exact Sommerfeld–Maue formula [62] and a Laguerre–Gauss quadrature as proposed in [63].
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Figure 1. Values of the solar parameters relevant for this work plotted as
a function of the normalized solar radial coordinate r (left) and the plasma
frequency ωP (right). From small to large dashed lines these are the electron
density ne (red), temperature T (blue), plasma frequency (black), dω2

P/dr
(brown), hydrogen mass fraction X (green) and radial coordinate r (pink).
Except for X, they are normalized to their largest values 6.07 × 1025 cm−3,
1350 eV, 295.5 eV, 5.8 × 10−4 eV2 m−1 and R� = 6.96 × 108 m, respectively
(taken from [44]).

variation of the electron density, the EOM in (7) are diagonalized by the following shift:

Aa → Ãa + χ
m2

γ′

πa − m2
γ′

S̃a; Sa → S̃a + χ
m2

γ′

m2
γ′ − πa

Ãa (15)

as long as the non-diagonal elements are much smaller than 1. I will refer to this
condition as weak mixing (WM) and justify later that it is satisfied in all the relevant
cases.

The states Ã, S̃ have decoupled evolution and satisfy dispersion relations similar to
A and B in the absence of kinetic mixing:

ω2 − k2
Aa

= π̃a(ω, kAa) = πa(ω, kAa) + O(χ2),

ω2 − k2
Sa

= m̃2
γ′a(ω, kSa) = m2

γ′ + O(χ2).
(16)

Therefore an originally pure-plasmon state A with energy ω produced in a small region
labeled z = 0 will evolve as a linear combination of the propagating states:

Aa(t, z) � eiωt−ikAazÃa +
χm2

γ′

πa(ω, kSa) − m2
γ′

eiωt−ikSazS̃a, (17)

leading in principle to A–S oscillations. However, in the Sun the imaginary part of the
plasmon dispersion relation is big enough to damp completely the Ã component after a
short distance ∼Γ−1

a .
The S̃ component is damped as well since it receives an O(χ2) imaginary contribution

∝Γa. Once we know what values of χ we can bound we can go back to this point to show
that this absorption is negligible.
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Finally we have to take into account that this solution holds locally in the Sun, or
at least in a region where ne (and therefore πa) does not change very much. At every
position of the Sun we should define S̃a(r) inverting (15) and using equations (8)–(14)
with the function ne(r) given by the solar model. Interestingly enough, as long as Γa is
sufficiently large, the corresponding Ãa(r(z)) component will be quickly absorbed and in
practice Aa(t, z) will ‘follow’ S̃a(r(z)) as it travels out of the Sun.

Eventually, a plasmon will exit the Sun as a S̃a(R�) state:

S̃a(R�) = S̃a(ne(R�) → 0) = Ba, (18)

with a probability

PAa→Ba = |〈Sa|Aa(R�)〉|2 � χ2
m4

γ′

(m2
a,0 − m2

γ′)2 + (ωΓa,0)2
, (19)

where m2
a,0 = m2

a(r0) and ωΓa,0 = ωΓa(r0) are the real and imaginary parts of πa evaluated
at the production point, at a distance r0 from the solar center.

Let me remark that the hidden photons exiting the Sun will have the same energy as
their original plasmons, i.e. of order eV up to ∼10 keV. As Ba are propagating states in
vacuum they will move away from the solar surface without ‘flavor’ oscillations.

The rate of hidden photons exiting the Sun will then be proportional to the plasmon
generation rate, i.e. the rate at which plasmons are produced from electron and proton
interactions in the plasma. Such a generation rate can be derived from equations (13)
and (14) by using (11) and (12). We find that this equals5 Γa defined in (11) weighted
by the Bose–Einstein distribution nBE = nBE(ω, T ) = [eω/T − 1]−1. This is particularly
transparent in the case of scattering since every photon emitted comes from a thermal
photon ‘absorbed’ and the number of these photons is given by the Bose–Einstein function.

We can immediately compute the flux of hidden photons that arrive at the Earth by
integrating this rate over the solar model [44]:

dΦa =
1

4πR2
⊕

∫ R�

0

4πr2 dr
k2 dk

2π2

χ2m4
γ′

(m2
a − m2

γ′)2 + (ωΓa)2

Γa

eω/T − 1
, (20)

where one has to keep in mind that m2
a and Γa depend implicitly on r through ne(r) and

equations (8)–(14) and on ω = ω(k) given by (10). R⊕ is the average Sun–Earth distance,
∼150 × 109 m. We discuss separately the emission of T- and L-hidden photons because
the different dispersion relations lead to a completely different phenomenology.

2.1. BT production

Using the dispersion relation in (10) (T) and multiplying by a factor of 2 to account for
the two different T-polarizations, we get

dΦT

dω
=

1

4πR2
⊕

∫ R�

0

4πr2 dr
1

π2

ω
√

ω2 − m2
γ′

eω/T − 1

χ2m4
γ′

(ω2
P − m2

γ′)2 + (ωΓT)2
ΓT. (21)

Given that, in the solar model, 1 eV � ωP � 295 eV, this expression has three clearly
differentiated regimes that we discuss separately.

5 This is, of course, related to Kirchhoff’s law of thermal radiation.
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Figure 2. The F1 and F2 functions give the flux of solar transverse and
longitudinal B’s at the Earth for mγ′ � 1 eV. Notice the different energy scales;
only eV L-hidden photons are emitted while the spectrum of T-modes extends
to x-ray energies, although considerably suppressed. See the text for details.

2.1.1. Suppressed production (mγ′ � 1 eV). For mγ′ � 1 eV we can safely neglect the
terms involving mγ′ and ΓT (typically ΓT < ωP) in the denominator of (19) and in the
square root. Then, all dependence on the hidden photon parameters, χ2m4

γ′ , factors out
of the integral in (21) and we have

dΦ

dω
= χ2m4

γ′
1

4πR2
⊕

∫ R�

0

4πr2 dr
1

π2

ω2

eω/T − 1

ΓT

ω4
P

≡ χ2
(mγ′

eV

)4 F1(ω)

cm2 s eV
, (22)

where the dimensionless function F1(ω) is plotted in figure 2. The spectrum peaks at
low energies because of two reasons: on the one hand, the bremsstrahlung production
decreases as ω−3 and, on the other hand, the production at the solar core, from where the
most energetic photons are expected, is suppressed by the largest values of ωP.

As we will see, this suppression regime is the most interesting for helioscopes. A
simple analytical formula for F1 can be useful therefore for more delicate future analysis.
A fit similar to the axion flux in [41] has provided

F1(ω) = 2.7 × 1028E−2.98 e−E/1.4, (23)

where E = ω keV−1. The fit reproduces the numerical results between 0.5 and 5 keV with
10% accuracy.

The solar luminosity in hidden sector photons in this case is

Wγ′ = χ2m4
γ′

∫ R�

0

4πr2dr
1

π2

ω3

eω/T − 1

ΓT

ω4
P

= 8 × 1043χ2
(mγ′

eV

)4

W. (24)

It is interesting to point out that for low energies ∼eV most of the production comes
from the outer layers of the Sun. In this region, neglecting bound–free and bound–bound
transitions or the ionization fraction is not completely justified. However, on the one hand
they contribute relatively less than higher energies to the energy loss, on the other hand
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Figure 3. The value of ωΓ/ω2
P controls the enhancement of the probability of the

emission of hidden photons in resonant conditions. The shadowed region contains
the values for the transverse modes in the whole solar model, with the boundary
curves for the Solar center (up) and surface (down). The thick line is a lower
bound (mγ′ = ωP) for the longitudinal modes for which the relation between the
energy and the position at the Sun is fixed. See the text for details.

the CAST bounds (based on keV energies for which (13) is accurate) are more restrictive.
Therefore, unless these uncertainties imply a huge increase in the energy loss, which is
not likely, or a helioscope focuses on these energies, there is no need for correcting (13).

2.1.2. Resonant production (1 eV � mγ′ � 295 eV). In this mass interval, there is always a
small region in the Sun where the hidden photon emission is so intensely amplified that
it outshines the emission from the rest. This is the region where the plasma frequency is
tuned to the hidden photon mass ωP = mγ′ , and correspondingly the emission probability
is

P res
A→B = χ2

m4
γ′

ω2Γ2
T

. (25)

The factor ωΓT/ω2
P, plotted in figure 3, enhances the mixing and therefore the probability

but, if it is too small, it can invalidate the WM condition. We will find that the energy
loss argument imposes values for χ smaller than 10−8 in this mass range (see figure 7) so
in any case the WM condition is always satisfied.

If we neglect the small r dependence of T and ΓT in (21) the half-width of this
resonance can be easily calculated from (19) giving

Δω2
P = 2ωΓT. (26)
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Therefore the resonant emission will take place in a tiny shell of the solar interior, of size
Δr � Δω2

P(dω2
P/dr)−1. The resultant flux at the Earth can be approximated by

dΦ

dω
� Δr

r2

R2
⊕

ω
√

ω2 − m2
γ′

π2(eω/T − 1)

m4
γ′χ2

ω2Γ2
T

ΓT = 2
r2

R2
⊕

√
ω2 − m2

γ′

π2(dω2
P/dr)(eω/T − 1)

m4
γ′χ2. (27)

As a remarkable fact, the dependence on ΓT cancels out. Any improvement in the
derivation of ΓT will not change this result. However, even coming from a tiny shell
of the Sun with almost constant temperature T = T (r(ωP)), the spectrum of hidden
photons does not have a perfect thermal shape; the power of the energy is roughly ω,
not ω2.

Finally the energy loss in hidden photons can be easily calculated. Using ωP = mγ′ �
T one finds

Wγ′ = 4πR2
⊕

∫ ∞

mγ′

dΦT

dω
ω dω =

16ζ(3)

π2

r2T 3

dω2
P/dr

m4
γ′χ2. (28)

Let me remark that, while for mγ′ � 1 eV the mγ′ dependence of the hidden photon
emission factors out, here in equations (27) and (28) it is implicitly assumed that all
the quantities T, r, ωP, ΓT, dω2

P/dr are evaluated at the point of the solar model where
ωP = mγ′ . These dependences can be seen in figure 1 and will help us to understand the
bounds of section 4.

2.1.3. Unsuppressed production (mγ′ > 295 eV). In this case the emission probability of (19)
is simply χ2. The flux in (21) is therefore independent of mγ′ if the energy ω is high enough
such that the threshold corrections like the square root are small. In this case we find

dΦT

dω
� 1

4πR2
⊕

∫ R�

0

4πr2 dr
1

π2

ω2

eω/T − 1
χ2ΓT ≡ χ2

cm2 s eV
G(ω), (29)

where G(ω) is a dimensionless function plotted in figure 4. In general in this regime
most of the production comes from the solar center, where ΓT and T are bigger and
therefore also the possible energies ω. For energies above ∼5 keV Compton scattering
dominates over bremsstrahlung and thus we expect an almost Planckian spectrum with a
temperature ∼T� = 1.35 keV, with exponential suppression for mγ′ � T�.

2.2. BL production

Longitudinal plasmons can also resonantly convert into hidden photons. Moreover, since
in this case m2

L � ω2
P − k2 the resonant conversion will not only happen at a solar shell

where ωP � mγ′ but at every place in the Sun where ωP > mγ′ since m2
L = m2

γ′ is always
satisfied by a certain value of k.

As the energy ω � ωP is almost unrelated to k by (10)(L) but r = r(ωP), it is
convenient to approximate the momentum integral in (20) by the value at the resonance
times the half-width Δk (in analogy with (26) Δk2 will be 2ωΓL) and use

dr = dω2
P

(
dω2

P

dr

)−1

� 2ω dω

(
dω2

P

dr

)−1

, (30)
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Figure 4. The function G gives the flux of mγ′ � 295 eV hidden photons from
the Sun. See the text for details.

to get

dΦL

dω
=

r2

R2
⊕

√
ω2 − m2

γ′

π2(dω2
P/dr)(ω/T )

m4
γ′χ2, (31)

which looks exactly the same formula as for the resonant flux of T-hidden photons (27)
but here r and dω2

P/dr are evaluated at the point where ωP = ω. This limits the BL flux
to energies 1 eV � ω � 295 eV, the range of the plasma frequency in the solar model.

For small mγ′ , again m4
γ′χ2 factors out of the flux and, in analogy to (22), we can

define a dimensionless function F2(ω) as (dΦL/dω)( cm2 eV s)(mγ′/eV)−4χ−2 which is
plotted in figure 2. In this mass regime the BL luminosity is

WT(mγ′ � 1 eV) = 1.4 × 1043 χ2
(mγ′

eV

)4

W, (32)

which is only slightly smaller than the BT luminosity in (24).
Then, while resonant T-hidden photon production proceeds in a tiny shell that

emits at all energies, L-hidden photons are resonantly produced in a sphere of radius
r = r(ωP = mγ′) and the position inside this sphere determines the unique resonant
energy ω = ωP(r).

Unfortunately, beyond mγ′ = ωP� ∼ 295 eV the resonant production is not possible
and the emission of BL’s drops drastically. Note from (10) that the L-plasmon energy
cannot exceed ωP by much without entering the region where Landau damping is strong,
namely k �

√
me/TωP. For such large values of k all our approach has to be revised.

However, in view of the bounds that can be extracted with the more powerful resonant
emission this seems not to be a fruitful business.
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Figure 5. Schematics of a helioscope experiment looking for hidden photons.
Hidden bosons are produced in the Sun’s interior from x-ray plasmon conversion
and get out almost freely. Only the sterile component (S) of B will traverse
the helioscope external shielding, leading to the possibility of reconversion into a
detectable photon by S–A oscillations.

It is easy to show that the WM condition in this case is also satisfied. For mγ′ > 1 eV
we will require (at least) χ < 10−8 and figure 3 shows then at most an enhancement of
104 can be expected. For smaller values of mγ′ these quantities both scale with m2

γ′ so
the conclusion remains unchanged.

3. Helioscope detection

Having addressed the calculation of the hidden photon fluxes at the Earth, in this section
I point out that existing axion helioscopes [36, 37] like CAST [40, 41] at CERN are indeed
capable of detecting these exotic photons.

The set-up of a typical axion helioscope is depicted in figure 5. It consists in
a (preferably) long cavity pointing towards the Sun where a strong magnetic field is
maintained. The cavity is strongly sealed and has a powerful, low background x-ray
detector at the end.

If axions are emitted from the Sun [29, 65], they easily pass through the shielding
and a few of them can be coherently reconverted into x-rays. This conversion can be
understood in terms of axion–photon mixing [66], where the magnetic field acts as the
mixing agent, providing the required angular momentum (axions are spin-0 particles).

In contrast, hidden photons do not need a magnetic field to satisfy angular momentum
conservation, they just mix naturally with photons regardless of the presence of the
magnetic field, given that χ and mγ′ are both nonzero.

The small mixing shift in (15) turns out to be again a correct approximation for
the treatment of the photon–hidden photon system both in the Sun–Earth travel and
inside the CAST oscillation region. This is because CAST operates either in high vacuum
where we can neglect πa (and the WM condition is an exceedingly good approximation),
or filled with gas to force resonant conversion, and therefore producing also a nonzero
Γa that cuts off the divergence of the denominators in (15) at reasonable values. The
interstellar medium can also be treated as a perfect vacuum.

Note that essentially all the hidden photons emitted from the Sun are propagation
states ∝Ba so they do not suffer oscillations. However, these states will be projected into
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their sterile component S when traversing the helioscope shielding. Such a projection
decreases the flux only in a small O(χ2) factor and can be neglected6. An initial state
Sa traveling through the conversion region (of length L) will oscillate into a detectable
photon with a probability given by

PSa→Aa = |〈Aa|Sa(L)〉|2 = |〈Aa(L)|Sa〉|2

=
χ2m4

γ′

(m2
a − m2

γ′)2 + (ωΓa)2

(
1 + e−ΓaL − 2 e−ΓaL/2 cos ΔpaL

)
, (33)

where Δpa =
√

ω2 − m2
a −

√
ω2 − m2

γ′ is the difference in wavenumbers of the photon

and hidden photons. In vacuum ωP = Γ = 0 and L-plasmons cannot been excited, so we
recover the well-known expression

PST→AT
= 4χ2 sin2 ΔpL

2
, (34)

that in the limit ω � mγ′ leads to

PST→AT
= 4χ2 sin2

m2
γ′L

4ω
, (35)

and, for m2
γ′ � ωL−1,

PST→AT
=

χ2m4
γ′L2

4ω2
. (36)

An interesting situation arises when the hidden photon mass is so large that the argument
in the sines of (35) is much larger than one. If the energy resolution of the detector is
such that it integrates photons with energy between ω and ω + Δω then it effectively
integrates several oscillations when Δω/ω � 4πω/(m2

γ′L). In the limiting case, the sine
is effectively averaged to 1/2, if the dependence of the flux with the energy is reasonably
small. Note that in this case the conversion probability will be effectively independent of
the oscillation path.

If oscillations take place in a medium, even longitudinal excitations could appear.
However the detectors used for helioscopes like CAST are designed for the detection of
transversely polarized photons. For the T-modes a resonant detection is possible if the
oscillation volume is filled with a small amount of gas such that m2

T(= ω2
P) = m2

γ′ (above
the energy of the highest atomic resonance the dispersion relation of photons in gas is
essentially the same as for a plasma). Assuming ΓaL � 1, the conversion probability is
again independent of the absorption coefficient:

PST→AT
=

χ2m4
γ′L2

4ω2
. (37)

A formula for the range of validity of the WM approximation can be easily provided.
For keV photons above the atomic resonances of the gas the Thomson scattering will
be the main source of absorption. We find then that χω2

P/(ωΓT) = χ3me/(2αω) �
106χ(keV/ω) � 1 should hold.

6 Effects of the atmosphere and further barriers are also at the O(χ2) level and therefore are also unimportant.
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In our bounds we should use the values for the most recent and sensitive experiment.
The CAST helioscope at CERN has recently published results [41] from a search of
solar axions in a decommissioned LHC magnet of 10 m length in an energy window
0.5 keV < ω < 15 keV. They found no signal over a subtracted background of 1–4× 10−6

counts cm−2 s−1 keV−1, depending on the energy. In order to be conservative I will use a
slightly bigger value

ΦCAST < 10−5 1

cm2 s keV
for 0.5 keV < ω < 15 keV, (38)

in the bounds of this paper. This limit arises from the difference of background photons
when the helioscope points towards the Sun and when it does not (axions need the
magnet to convert into photons). If the hidden photon mass is large enough such that
the conversion probability is independent of the length this procedure will subtract the
possible signal as well! Therefore, for masses larger than

√
8πω2/(ΔωL) one should use

the pure background counts to estimate the bounds. However, one of the three detectors
of the CAST experiment (the CCD camera) has an x-ray focusing device that in any case
increases the flux of photons coming along the magnet direction with respect to those
coming from other directions by a sizable amount, making the subtraction harmless. As
the exclusion bound derived with this detector is stronger than with the two others (the
TPC and the Micromegas), it seems conservative to still use equation (38) to limit the
flux of photons from hidden sector conversion.

4. Bounds and discussion

The energy loss in terms of novel particle species can have dramatic consequences for
stellar evolution. Hidden photons seem to behave like invisible axions [67, 68, 36]: wherever
they are produced they leave the Sun without further relevant interactions. Although in
principle such a non-standard energy loss could be easily accommodated in a ‘present
day’ solar model by increasing the central temperature a bit over the standard value (the
nuclear reaction rates depend strongly on the temperature) the nuclear fuel would be
consumed faster and the star would enter sooner the next stage of stellar evolution [30].

Theoretical [30] and numerical studies [69] incorporating axion losses showed that no
present day solar model can be constructed if the exotic luminosity is larger than the
actual solar luminosity L�. Under the hypothesis that hidden photon losses have similar
effects and taking L� = 3.83 × 1026 W we can obtain the bounds in figure 6 labeled
T-lifetime and L-lifetime.

The T-lifetime bound has been obtained by integrating numerically the general
expression (22) for BT, except for the region of resonant production (1 eV < mγ′ < 295 eV)
for which (28) has been used. The L-lifetime bound comes from numerically integrating
the energy of the flux in (31). The bound should regard the sum of both T and L
contributions but in practice the L contribution does not change the limit appreciably.

Below mγ′ ∼ 1 eV the bound is a straight line of slope −2 because in this case the
hidden photon flux is just proportional to χ2m4

γ′ . In the range 1 eV � mγ′ � 295 eV

the resonant production dominates and improves the bound down to χ ∼ 10−14 where
the resonance takes place in the solar core. The change of slope of the T-lifetime bound
around mγ′ ∼ 10 eV can be traced back to the temperature dependence of (24), as can be
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Figure 6. Upper limits on the kinetic mixing parameter versus the mass of the
hidden photon from the CAST helioscope and the solar lifetime argument. See
the text for details.

seen in figure 1 since in this regime ωP corresponds to mγ′ . There we can also see that the
inflection point at ∼290 eV it is due to the decrease of the volume of emission through
the factor r2 of (24).

Beyond 295 eV the T-lifetime bound sharply worsens until it reaches the bound due
to the solar bulk emission. For mγ′ � 10 keV the bound vanishes because of the lack of
photons with enough energy.

It is worth mentioning that stronger bounds would probably follow from the
implementation of the hidden photon energy loss channel in a self-consistent solar
model computation. The corresponding modifications of temperature and density from
a standard Sun can be bounded from the solar neutrino flux and helioseismological
observations [70]. In particular the impact of a resonant region of photon–hidden photon
conversion can probably have spectacular consequences.

Let us now turn our attention to the CAST bounds coming from the non-observation
of x-ray photons in the energy window 0.5–15 keV. We have already discussed that CAST
is not sensitive to BL’s so we restrict the discussion to the non-observation of transverse
excitations.

The hidden photon flux is a decreasing function of energy since it comes essentially
from bremsstrahlung (see also (27) and figures 2 and 4) so we can restrict the bounds to
the most interesting (yet reasonably sized) interval, which is 1 keV above mγ′ .
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Figure 7. Compendium of constraints on a hidden photon mixing kinetically
with the standard photon in the mixing-mass plane. Shown are bounds from:
measurements of the magnetic fields of Jupiter and Earth [7], tests of the 1/r2

dependence of the Coulomb law [9, 10], distortions of the Planck spectrum of the
cosmic microwave background due to resonant photon–hidden photon oscillations
before decoupling (FIRAS) [8], concordance between the cosmic radiation density
measured at decoupling and at the big bang nucleosynthesis epoch (hCMB) [8]
and from comparison of the Rydberg constant measured in different atomic
transitions [20, 21]. The limits labeled ‘Lifetime’ and ‘CAST’ are derived in this
work.

Integrating the BT flux in (21), or (27) when resonance dominates, times the vacuum
conversion probability (34) in the mentioned energy interval and using (38), I get the
bound labeled ‘Helioscope (CAST)’ in figure 6.

The onset of the oscillation regime in the CAST detector is clearly seen at mγ′ ∼√
4 × 1 keV/10 m ∼ 0.01 eV. Below this mass, S–A oscillations are never complete

and (36) holds. The CAST signal is then proportional to χ4m8
γ′ , and therefore the slope

of the helioscope line is again −2. Soon above this mass, the oscillation length in CAST
is so small that the squared sine of (34) gives a factor of 1/2 when we average over energy.
In this regime, but below 1 eV, the CAST signal is proportional to χ4m4

γ′ and therefore

the helioscope line has slope 1. In order to maintain this slope down to 10−4 eV the CAST
oscillation length should be increased by a factor 104 (or the energies detected lowered
by a similar factor). However, the region of improvement is already excluded by laser
experiments [19].

Assuming that the same bound (38) holds even with gas filling the oscillation region,
and varying the plasma frequency of the gas in the reasonable range 0.01–1 eV, the bound
labeled ‘Gas’ could be achieved. While it is not clear if this procedure is realistic for
higher masses, figure 6 shows that it would be extremely interesting.
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In the mass range ∼1–104 eV, the CAST bound lies in a region ruled out by the
energy loss argument. Since the emission has been calculated assuming an unperturbed
solar model we find that the CAST bound is not consistent in this mass range. The
observation of a hidden photon flux corresponding to this region would imply drastic
changes in our current picture of solar structure.

Note that the curve scales with the fourth power of the CAST limit (38) so a huge
improvement in sensitivity would be needed to beat the energy loss bound in this range.
Observe, however, that there is no change of slope in the helioscope line at μ ∼ 1 eV
where the T-lifetime starts to be dominated by resonant emission. The reason is that the
resonant production starts at ωP ∼ 1 eV, close to the solar surface where the temperature
is much smaller than the CAST energy window. Therefore, some hope of improvement in
the mass range 1–10 eV relies on lowering the lower threshold until O(eV) energies.

The top of the energy window, 15 keV, limits the range of hidden photon masses
that can be testable with CAST. The dashed vertical line shows this limitation. Still I
have continued the ‘helioscope’ line up to somehow higher masses by assuming the same
sensibility (38) and no threshold. Interestingly enough, this shows that for mγ′ > 25 keV
the CAST bound would be again consistent with, and more powerful than, the energy
loss bound. Unfortunately for mγ′ > 40 keV the hidden photon flux cannot be calculated
from an unperturbed solar model and the bounds become indeterminate.

Finally, it is interesting to compare these results with the earlier works [42, 43].
The energy loss bounds presented here are weaker except in the resonant region, whose
effects were apparently not considered before. The extremely good results of the CAST
collaboration are, however, able to reverse the situation for low masses. Even with the
lower flux calculated in this paper the CAST exclusion line goes deeper, not only than
the former helioscope bound, but also than the energy loss limit. Finally it is interesting
to note that the lifetime bound derived here extends one order of magnitude further in
mass. Therefore, except for two islands around mγ′ ∼ 1 eV and mγ′ ∼ 1 keV, the bounds
presented here improve the earlier limits.

Our last check should be to ensure that the S̃ absorption inside the Sun is negligible
as has been assumed in all the above. If this were not the case, not only the hidden
photon flux will decrease with respect to the above estimates but the same solar internal
structure will require an unacceptable readjustment because of the resulting non-local
energy transfer [71]. I have checked that absorption is not significant except for the case
of massive hidden photons mγ′ � 295 eV with χ � 10−6. The main reasons for that
are that absorption in the low mass range is suppressed by m4

γ′ and the resonant regions
in the intermediate mass regime are never too wide. For illustration purposes the line
labeled ‘m.f.p. = R�’ shows the value of the mixing parameter χ for which a T-hidden
photon produced in the solar center would have a mean free path of the order of the solar
radius. This mean free path is an average over the radial trajectory using, at every place
of the Sun, the highest possible value of the absorption rate (energies near the plasma
frequency), so it is again a very conservative estimate.

In this context I should emphasize that the region above the ‘Lifetime’ and
‘Helioscope’ curves is not strictly ruled out by the energy loss and CAST limits since
it assumes that hidden photon emission is a small perturbation of the standard solar
model [44]. Only adding the fact that the standard solar model agrees very well with
helioseismological data and the observed neutrino fluxes, and these are typically very
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sensitive to the internal structure of the Sun, one concludes by ‘reductio ad absurdum’
that this region is severely excluded.

As a final remark we should keep in mind that these bounds can be completely
different if, in addition to the hidden photon, other low mass particles exist in the hidden
sector. In particular, the stellar emission of particles of mass �10 keV, charged under
U(1)h, does not vanish in the limit mγ′ → 0 [72] (actually this can even be true if these
particles are much heavier [73]). In this case low hidden photon masses are constrained
as much as masses of the order of the stellar temperature.

5. Conclusions

I have addressed the calculation of the solar emission of a hypothetical hidden sector
photon Bμ mixing kinetically with the standard model ordinary photon. I have shown that
a resonant effect is possible when the dispersion relation of solar plasmons fits the particle-
like dispersion relation of the hidden photon. This happens for transverse plasmons if the
hidden photon mass mγ′ lies in the range 1–295 eV (the range of the plasma frequency in
the solar model used) and for longitudinal plasmons as long as mγ′ � 295 eV.

The conservative requirement that the hidden photon luminosity should not exceed
the solar standard luminosity bounds the amount of kinetic mixing up to χ � 10−14,
depending on the mass and the polarization. At masses beyond 1 eV, where the strongest
bound is reached, the emission of transversally polarized hidden photons dominates over
the emission of longitudinal ones. Below this mass both polarizations contribute by a
similar amount.

At low masses the bounds are weaker, relaxing proportionally to m2
γ′ . However, the

non-observation of a signal in the CAST axion helioscope improves the bounds in this
region up to two orders of magnitude. Altogether, these are the best current limits on the
mixing parameter χ in the range 3 meV < mγ′ < 40 keV. A small room for improvement
is available for large masses mγ′ � 10 keV if the CAST detectors were to raise their top
energy threshold.

It should be interesting to extend this study to other stellar objects like supernovae,
white dwarfs, red giants and horizontal branch stars, since these can provide stronger
bounds than the Sun, especially at masses where a resonant production is possible.
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Appendix. Thomson dispersion of longitudinal plasmons

The dispersion relation for longitudinal plasmons allows for space-like excitations. These
plasmons can be coherently absorbed by the electrons in the plasma, giving rise to an
order O(α) absorption—the so-called Landau damping [74, 75]—which can be important
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for the bulk emission. However, only time-like L-plasmons, whose ‘Landau’ absorption is
kinematically forbidden, can be resonantly produced, making it natural to restrict this
discussion to them. The next order contribution to the absorption rate of plasmons is due
to Thomson dispersion, γae

− → γa′e−. Given that typical energies in the solar interior
are much smaller than the electron mass, it is justified to focus on the non-relativistic
limit me → ∞. It is worth noting that in this case the transitions to transverse plasmons
γLe− → γTe− are suppressed by phase space since ωT(k) grows much faster with k than
ωL(k) and the target electrons cannot transfer energy efficiently at such small energies.
Therefore I only address the calculation of the γLe− → γLe− process.

Let us begin by defining the polarization vectors for the initial and final photon states.
Writing kμ = (ω; 0, 0, k) f and k′μ = (ω′; k′ sin θ, 0, k′ cos θ) for the initial and final photon
4-momenta we can choose

εμ
L

1√
ω2 − k2

(k; 0, 0, ω); ε′
μ
L =

1√
ω′2 − k′2

(k′; ω′ sin θ, 0, ω′ cos θ). (A.1)

The matrix element can be written as

M = ε′
∗
μενMμν , (A.2)

where

Mμν = −e2
√

Z
√

Z ′u(p′, s′)

[
γμk/γν + 2γνpμ

2p · k + k2
μ

+
γνk/′γμ − 2γμpν

2p · k′ − k′2
μ

]
u(p, s), (A.3)

and Z, Z ′ are the wavefunction renormalization factors of the initial and final plasmons
given by

ZL(k) ≡ Z̃L
ω2

ω2 − k2
=

2(ω2 − v2
∗k

2)

3ω2
P − 2(ω2 − v2

∗k
2)

ω2

ω2 − k2
, (A.4)

where v2
∗ = 5T/me � 1 and ω, k are understood to satisfy the dispersion relation (10)(L).

In practice, because we restrict ourselves to time-like plasmons ω � k, we can set Z̃L ∼ 1.
Because of charge conservation, Mμν satisfies necessarily the conditions

kνMμν = ωMμ0 − kMμ3 = 0; k′
μMμν = ω′M0ν − k′iMiν = 0, (A.5)

that can be used to express M in a very convenient way:

ML =

√
(ω2 − k2)(ω′2 − k′2)

ωω′

(
M13 sin θ + M33 cos θ

)
. (A.6)

Note that the renormalization factors in (A.3) will cancel the prefactor in the above
equation.

In the non-relativistic limit we can use pμ = p′μ = (m; 0) for the Dirac spinors and we
can neglect the squared 4-momenta of the photons in the denominators of (A.3). Now it is
easy to evaluate Mi3. Recall that u(s′)γiu(s) and pi are proportional to the velocity of the

electrons and therefore are suppressed with respect to u(s′)γ0u(s) = u†(s′)u(s) = 2mξ′†ξ.
This argument is sufficient to neglect the terms proportional to pμ in the numerators.
Moreover, using the commutation relations {γμ, γμ} = 2gμν and also (γ0)2 = −(γi)2 = 1,
it turns out that terms containing three gamma matrices can be either reduced to terms
containing only one or they appear in pairs that cancel out. Finally, M13 is found to
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be negligible compared with M33 � 2e2ξ′†ξ and the properly averaged squared matrix
element is

|M̃|2 ≡ 1
2

∑

s,s′

|M|2 = 4 e4 cos2 θ. (A.7)

The averaged dispersion rate is obtained by integrating the Lorentz-invariant phase space
of the final particles and averaging over the thermal distribution of electrons in the initial
state, weighting with the appropriate stimulation/blocking factors. In practice, however,
given that electrons are non-relativistic we can avoid their thermal average and blocking
factors and simply multiply by the electron density ne to get

ΓA
L =

ne

2ω2me

∫
d3k′

(2π)32ω′
d3p′

(2π)32E ′
e

(2π)4δ4(p′ + k′ − p − k)|M̃|2(1 + nBE(ω′)) (A.8)

=
α2ne

ωme

∫
2π dk′k′2 d cos θ

ω′me
δ(E ′ + ω′ − m − ω) cos2 θ(1 + nBE(ω′)) (A.9)

=
α2ne

ωme

∫ k

k′
m

2π dk′k′2

ω′E ′
cos2 θ

kk′/E′ (1 + nBE(ω′)) =
8πα2ne

9meT

k

ωP
(1 + nBE(ω′)), (A.10)

where in the second step I have used the cos θ dependence of the energy of the outgoing

electron E ′ =
√

m2 + (k − k′)2 =
√

m2 + k2 + k′2 − 2kk′ cos θ to remove Dirac’s delta
enforcing energy conservation. Together with the dispersion relation, this establishes the
relation

k′

k
=

3T + ωP cos θ

3T + ωP
, (A.11)

that bounds the integral over k′ to the small interval (k′
m = k(1 − 2ωP/3T ), k). Finally,

note that the stimulation factor 1 + nBE(ω′) cancels the term in the parentheses of (11)
since ω � ω′, so we obtain

Im{πL} = −ω
8πα2ne

9meT

k

ωP
. (A.12)

References

[1] Okun L B, 1982 Sov. Phys. JETP 56 502 [SPIRES]
[2] Georgi H, Ginsparg P H and Glashow S L, 1983 Nature 306 765 [SPIRES]
[3] de Bernardis P et al , 1984 Astrophys. J. 284 L21 [SPIRES]
[4] Nordberg H P and Smoot G F, 1998 Preprint astro-ph/9805123
[5] De Angelis A and Pain R, 2002 Mod. Phys. Lett. A 17 2491 [SPIRES] [astro-ph/0205059]
[6] De Angelis A, Mansutti O and Pain R, 2003 Preprint astro-ph/0307391
[7] Goldhaber A S and Nieto M M, 1971 Rev. Mod. Phys. 43 277 [SPIRES]
[8] Jaeckel J, Redondo J and Ringwald A, 2008 Preprint 0804.4157 [astro-ph]
[9] Williams E R, Faller J E and Hill H A, 1971 Phys. Rev. Lett. 26 721 [SPIRES]

[10] Bartlett D F and Loegl S, 1988 Phys. Rev. Lett. 61 2285 [SPIRES]
[11] Jaeckel J and Ringwald A, 2007 Preprint 0707.2063 [hep-ph]
[12] Cameron R et al (BRFT Collaboration), 1993 Phys. Rev. D 47 3707 [SPIRES]
[13] Gies H, Jaeckel J and Ringwald A, 2006 Phys. Rev. Lett. 97 140402 [SPIRES] [hep-ph/0607118]
[14] Ahlers M, Gies H, Jaeckel J and Ringwald A, 2007 Phys. Rev. D 75 035011 [SPIRES] [hep-ph/0612098]
[15] Ahlers M, Gies H, Jaeckel J, Redondo J and Ringwald A, 2007 Phys. Rev. D 76 115005 [SPIRES]

[0706.2836] [hep-ph]

Journal of Cosmology and Astroparticle Physics 07 (2008) 008 (stacks.iop.org/JCAP/2008/i=07/a=008) 21

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C56%2C502
http://dx.doi.org/10.1038/306765a0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NATUA%2C306%2C765
http://dx.doi.org/10.1086/184344
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ASJOA%2C284%2CL21
http://arxiv.org/abs/astro-ph/9805123
http://dx.doi.org/10.1142/S021773230200926X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA17%2C2491
http://arxiv.org/abs/astro-ph/0205059
http://arxiv.org/abs/astro-ph/0307391
http://dx.doi.org/10.1103/RevModPhys.43.277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C43%2C277
http://arxiv.org/abs/0804.4157
http://dx.doi.org/10.1103/PhysRevLett.26.721
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C26%2C721
http://dx.doi.org/10.1103/PhysRevLett.61.2285
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C61%2C2285
http://arxiv.org/abs/0707.2063
http://dx.doi.org/10.1103/PhysRevD.47.3707
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C3707
http://dx.doi.org/10.1103/PhysRevLett.97.140402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C140402
http://arxiv.org/abs/hep-ph/0607118
http://dx.doi.org/10.1103/PhysRevD.75.035011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C035011
http://arxiv.org/abs/hep-ph/0612098
http://dx.doi.org/10.1103/PhysRevD.76.115005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C115005
http://arxiv.org/abs/0706.2836
http://stacks.iop.org/JCAP/2008/i=07/a=008


JC
A

P
07(2008)008

Helioscope bounds on hidden sector photons

[16] Jaeckel J and Ringwald A, 2007 Phys. Lett. B 653 167 [SPIRES] [0706.0693] [hep-ph]
[17] Robilliard C et al (BMV Collaboration), 2007 Phys. Rev. Lett. 99 190403 [SPIRES] [0707.1296] [hep-ex]
[18] Chou A S et al (GammeV (T-969)), 2007 Preprint 0710.3783 [hep-ex]
[19] Ahlers M, Gies H, Jaeckel J, Redondo J and Ringwald A, 2007 Preprint 0711.4991 [hep-ph]
[20] Beausoleil R G, 1987 Phys. Rev. A 35 4878 [SPIRES]
[21] Garreau J G and Biraben F, 1987 Laser Spectroscopy VIII (Berlin: Springer)
[22] Kors B and Nath P, 2004 Phys. Lett. B 586 366 [SPIRES] [hep-ph/0402047]
[23] Feldman D, Liu Z and Nath P, 2006 Phys. Rev. Lett. 97 021801 [SPIRES] [hep-ph/0603039]
[24] Chang W-F, Ng J N and Wu J M S, 2006 Phys. Rev. D 74 095005 [SPIRES] [hep-ph/0608068]
[25] Kumar J and Wells J D, 2006 Phys. Rev. D 74 115017 [SPIRES] [hep-ph/0606183]
[26] Feldman D, Liu Z and Nath P, 2007 AIP Conf. Proc. 939 50 [0705.2924] [hep-ph]
[27] Raffelt G G, 1996 Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions,

and Other Weakly Interacting Particles (Chicago, IL: University of Chicago Press) p 664
[28] Raffelt G G, 1999 Ann. Rev. Nucl. Part. Sci. 49 163 [SPIRES] [hep-ph/9903472]
[29] Dicus D A, Kolb E W, Teplitz V L and Wagoner R V, 1978 Phys. Rev. D 18 1829 [SPIRES]
[30] Frieman J A, Dimopoulos S and Turner M S, 1987 Phys. Rev. D 36 2201 [SPIRES]
[31] Masso E and Redondo J, 2005 J. Cosmol. Astropart. Phys. JCAP09(2005)015 [SPIRES] [hep-ph/0504202]
[32] Masso E and Redondo J, 2006 Phys. Rev. Lett. 97 151802 [SPIRES] [hep-ph/0606163]
[33] Jaeckel J, Masso E, Redondo J, Ringwald A and Takahashi F, 2006 Preprint hep-ph/0605313
[34] Jaeckel J, Masso E, Redondo J, Ringwald A and Takahashi F, 2007 Phys. Rev. D 75 013004 [SPIRES]

[hep-ph/0610203]
[35] Brax P, van de Bruck C and Davis A-C, 2007 Phys. Rev. Lett. 99 121103 [SPIRES] [hep-ph/0703243]
[36] Sikivie P, 1983 Phys. Rev. Lett. 51 1415 [SPIRES]

Sikivie P, 1984 Phys. Rev. Lett. 52 695 (erratum)
[37] van Bibber K, McIntyre P M, Morris D E and Raffelt G G, 1989 Phys. Rev. D 39 2089 [SPIRES]
[38] Lazarus D M et al , 1992 Phys. Rev. Lett. 69 2333 [SPIRES]
[39] Moriyama S et al , 1998 Phys. Lett. B 434 147 [SPIRES] [hep-ex/9805026]
[40] Zioutas K et al (CAST Collaboration), 2005 Phys. Rev. Lett. 94 121301 [SPIRES] [hep-ex/0411033]
[41] Andriamonje S et al (CAST), 2007 J. Cosmol. Astropart. Phys. JCAP04(2007)010 [SPIRES]

[hep-ex/0702006]
[42] Popov V V and Vasil’ev O V, 1991 Europhys. Lett. 15 7 [SPIRES]
[43] Popov V, 1999 Turk. J. Phys. 23 943
[44] Bahcall J N, Serenelli A M and Basu S, 2005 Astrophys. J. 621 L85 [SPIRES] [astro-ph/0412440]
[45] Holdom B, 1986 Phys. Lett. B 166 196 [SPIRES]
[46] Holdom B, 1986 Phys. Lett. B 178 65 [SPIRES]
[47] Holdom B, 1991 Phys. Lett. B 259 329 [SPIRES]
[48] Dienes K R, Kolda C F and March-Russell J, 1997 Nucl. Phys. B 492 104 [SPIRES] [hep-ph/9610479]
[49] Lust D and Stieberger S, 2007 Fortschr. Phys. 55 427 [hep-th/0302221]
[50] Abel S A and Schofield B W, 2004 Nucl. Phys. B 685 150 [SPIRES] [hep-th/0311051]
[51] Blumenhagen R, Moster S and Weigand T, 2006 Nucl. Phys. B 751 186 [SPIRES] [hep-th/0603015]
[52] Abel S A, Jaeckel J, Khoze V V and Ringwald A, 2006 Preprint hep-ph/0608248
[53] Babu K S, Kolda C F and March-Russell J, 1998 Phys. Rev. D 57 6788 [SPIRES] [hep-ph/9710441]
[54] Foot R and He X-G, 1991 Phys. Lett. B 267 509 [SPIRES]
[55] Marinelli M and Morpurgo G, 1984 Phys. Lett. B 137 439 [SPIRES]
[56] Grifols J A, Masso E and Peris S, 1989 Mod. Phys. Lett. A 4 311 [SPIRES]
[57] Altherr T and Kraemmer U, 1992 Astropart. Phys. 1 133 [SPIRES]
[58] Braaten E and Segel D, 1993 Phys. Rev. D 48 1478 [SPIRES] [hep-ph/9302213]
[59] Weldon H A, 1983 Phys. Rev. D 28 2007 [SPIRES]
[60] Weinberg S, 1979 Phys. Rev. Lett. 42 850 [SPIRES]
[61] Brussaard P J and Van de Hulst H C, 1962 Rev. Mod. Phys. 34 507 [SPIRES]
[62] Sommerfeld A and Maue A W, 1935 Ann. Phys., NY 23 589 [SPIRES]
[63] Grant I P, 1958 Mon. Not. R. Astron. Soc. 118 241
[64] Kramers H A, 1923 Phil. Mag. 44 836
[65] Fukugita M, Watamura S and Yoshimura M, 1982 Phys. Rev. Lett. 48 1522 [SPIRES]
[66] Raffelt G and Stodolsky L, 1988 Phys. Rev. D 37 1237 [SPIRES]
[67] Dine M, Fischler W and Srednicki M, 1981 Phys. Lett. B 104 199 [SPIRES]
[68] Kim J E, 1979 Phys. Rev. Lett. 43 103 [SPIRES]
[69] Raffelt G G and Dearborn D S P, 1987 Phys. Rev. D 36 2211 [SPIRES]

Journal of Cosmology and Astroparticle Physics 07 (2008) 008 (stacks.iop.org/JCAP/2008/i=07/a=008) 22

http://dx.doi.org/10.1016/j.physletb.2007.07.066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB653%2C167
http://arxiv.org/abs/0706.0693
http://dx.doi.org/10.1103/PhysRevLett.99.190403
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C99%2C190403
http://arxiv.org/abs/0707.1296
http://arxiv.org/abs/0710.3783
http://arxiv.org/abs/0711.4991
http://dx.doi.org/10.1103/PhysRevA.35.4878
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CA35%2C4878
http://dx.doi.org/10.1016/j.physletb.2004.02.051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB586%2C366
http://arxiv.org/abs/hep-ph/0402047
http://dx.doi.org/10.1103/PhysRevLett.97.021801
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C021801
http://arxiv.org/abs/hep-ph/0603039
http://dx.doi.org/10.1103/PhysRevD.74.095005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C095005
http://arxiv.org/abs/hep-ph/0608068
http://dx.doi.org/10.1103/PhysRevD.74.115017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C115017
http://arxiv.org/abs/hep-ph/0606183
http://dx.doi.org/10.1063/1.2803786
http://arxiv.org/abs/0705.2924
http://dx.doi.org/10.1146/annurev.nucl.49.1.163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C49%2C163
http://arxiv.org/abs/hep-ph/9903472
http://dx.doi.org/10.1103/PhysRevD.18.1829
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD18%2C1829
http://dx.doi.org/10.1103/PhysRevD.36.2201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2201
http://dx.doi.org/10.1088/1475-7516/2005/09/015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0509%2C015
http://arxiv.org/abs/hep-ph/0504202
http://dx.doi.org/10.1103/PhysRevLett.97.151802
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C151802
http://arxiv.org/abs/hep-ph/0606163
http://arxiv.org/abs/hep-ph/0605313
http://dx.doi.org/10.1103/PhysRevD.75.013004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C013004
http://arxiv.org/abs/hep-ph/0610203
http://dx.doi.org/10.1103/PhysRevLett.99.121103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C99%2C121103
http://arxiv.org/abs/hep-ph/0703243
http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C51%2C1415
http://dx.doi.org/10.1103/PhysRevLett.52.695.2
http://dx.doi.org/10.1103/PhysRevD.39.2089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD39%2C2089
http://dx.doi.org/10.1103/PhysRevLett.69.2333
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C2333
http://dx.doi.org/10.1016/S0370-2693(98)00766-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB434%2C147
http://arxiv.org/abs/hep-ex/9805026
http://dx.doi.org/10.1103/PhysRevLett.94.121301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C121301
http://arxiv.org/abs/hep-ex/0411033
http://dx.doi.org/10.1088/1475-7516/2007/04/010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0704%2C010
http://arxiv.org/abs/hep-ex/0702006
http://dx.doi.org/10.1209/0295-5075/15/1/002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EULEE%2C15%2C7
http://dx.doi.org/10.1086/428929
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ASJOA%2C621%2CL85
http://arxiv.org/abs/astro-ph/0412440
http://dx.doi.org/10.1016/0370-2693(86)91377-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB166%2C196
http://dx.doi.org/10.1016/0370-2693(86)90470-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB178%2C65
http://dx.doi.org/10.1016/0370-2693(91)90836-F
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB259%2C329
http://dx.doi.org/10.1016/S0550-3213(97)00173-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB492%2C104
http://arxiv.org/abs/hep-ph/9610479
http://dx.doi.org/10.1002/prop.200310335
http://arxiv.org/abs/hep-th/0302221
http://dx.doi.org/10.1016/j.nuclphysb.2004.02.037
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB685%2C150
http://arxiv.org/abs/hep-th/0311051
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB751%2C186
http://arxiv.org/abs/hep-th/0603015
http://arxiv.org/abs/hep-ph/0608248
http://dx.doi.org/10.1103/PhysRevD.57.6788
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C6788
http://arxiv.org/abs/hep-ph/9710441
http://dx.doi.org/10.1016/0370-2693(91)90901-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB267%2C509
http://dx.doi.org/10.1016/0370-2693(84)91752-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB137%2C439
http://dx.doi.org/10.1142/S0217732389000381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA4%2C311
http://dx.doi.org/10.1016/0927-6505(92)90014-Q
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APHYE%2C1%2C133
http://dx.doi.org/10.1103/PhysRevD.48.1478
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C1478
http://arxiv.org/abs/hep-ph/9302213
http://dx.doi.org/10.1103/PhysRevD.28.2007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD28%2C2007
http://dx.doi.org/10.1103/PhysRevLett.42.850
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C42%2C850
http://dx.doi.org/10.1103/RevModPhys.34.507
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C34%2C507
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C23%2C589
http://dx.doi.org/10.1103/PhysRevLett.48.1522
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C48%2C1522
http://dx.doi.org/10.1103/PhysRevD.37.1237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD37%2C1237
http://dx.doi.org/10.1016/0370-2693(81)90590-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB104%2C199
http://dx.doi.org/10.1103/PhysRevLett.43.103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C43%2C103
http://dx.doi.org/10.1103/PhysRevD.36.2211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2211
http://stacks.iop.org/JCAP/2008/i=07/a=008


JC
A

P
07(2008)008

Helioscope bounds on hidden sector photons

[70] Schlattl H, Weiss A and Raffelt G, 1999 Astropart. Phys. 10 353 [SPIRES] [hep-ph/9807476]
[71] Raffelt G G and Starkman G D, 1989 Phys. Rev. D 40 942 [SPIRES]
[72] Davidson S and Peskin M E, 1994 Phys. Rev. D 49 2114 [SPIRES] [hep-ph/9310288]
[73] Hoffmann S, 1987 Phys. Lett. B 193 117 [SPIRES]
[74] Landau L D, 1946 Zh. Eksp. Teor. Fiz. 16 574
[75] Tsytovich V N, 1961 Zh. Eksp. Teor. Fiz. 40 1775

Journal of Cosmology and Astroparticle Physics 07 (2008) 008 (stacks.iop.org/JCAP/2008/i=07/a=008) 23

http://dx.doi.org/10.1016/S0927-6505(98)00063-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APHYE%2C10%2C353
http://arxiv.org/abs/hep-ph/9807476
http://dx.doi.org/10.1103/PhysRevD.40.942
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD40%2C942
http://dx.doi.org/10.1103/PhysRevD.49.2114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C2114
http://arxiv.org/abs/hep-ph/9310288
http://dx.doi.org/10.1016/0370-2693(87)90467-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB193%2C117
http://stacks.iop.org/JCAP/2008/i=07/a=008

	1. Introduction
	2. Hidden photon production in the Sun
	2.1. B_{T} production
	2.1.1. Suppressed production (m_{gamma ^'}<< 1 eV).
	2.1.2. Resonant production (1 eV<~ m_{gamma ^'} <~ 295 eV).
	2.1.3. Unsuppressed production (m_{gamma ^'} > 295 eV).

	2.2. B_{L} production

	3. Helioscope detection
	4. Bounds and discussion
	5. Conclusions
	Acknowledgments
	Appendix. Thomson dispersion of longitudinal plasmons
	References

