Tuning optical properties of poly(3-hexylthiophene) nanoparticles through hydrothermal processing

To cite this article: Seok Ho Lee et al 2011 Sci. Technol. Adv. Mater. 12 025002

View the article online for updates and enhancements.
Tuning optical properties of poly(3-hexylthiophene) nanoparticles through hydrothermal processing

Seok Ho Lee, Yong Baek Lee, Dong Hyuk Park, Mi Suk Kim, Eun Hei Cho and Jinsoo Joo

Department of Physics, Korea University, Seoul 136-713, Korea
E-mail: jsoo@korea.ac.kr

Received 21 December 2010
Accepted for publication 20 January 2011
Published 15 March 2011
Online at stacks.iop.org/STAM/12/025002

Abstract
Poly(3-hexylthiophene) (P3HT) nanoparticles (NPs) were prepared by a reprecipitation method. Hydrothermal processing applied external pressure to the pristine P3HT NPs at temperatures ranging from 60 to 150 °C. Optical absorption and photoluminescence (PL) spectra for the hydrothermally treated P3HT NPs varied markedly with the processing temperature. With increasing treatment temperature, the absorption peak broadened and the peak position shifted from 510 to 623 nm; moreover, the intensity ratio of the 0–1 to 0–0 emission varied. These changes were caused by interactions between the P3HT main chains and alkyl side groups and conformational modifications induced by the high pressure during the hydrothermal process. The evolution of the optical absorption spectra of the P3HT NPs during the hydrothermal processing was strongly correlated with the variation of PL excitation spectra and with the PL emission spectra of a single NP.

Keywords: poly(3-hexylthiophene), nanoparticles, optical absorption, photoluminescence, hydrothermal process, interchain interaction

1. Introduction
Poly(3-hexylthiophene) (P3HT) materials have been intensively studied for applications in organic optoelectronics because of their high solubility in organic solvents and controllable crystallinity. Considerable effort has been made to improve the intrinsic characteristics of p-type P3HT materials to enable their use in organic field-effect transistors and organic photovoltaic cells (OPVCs) [1–3]. When P3HT was used as the donor material in bulk heterojunction (BHJ) OPVCs, the power conversion efficiency (η) was about 5% owing to nanoscale phase separation induced by annealing [4]. To increase η in BHJ-OPVCs, it is important to clarify the mechanism of exciton generation and dissociation at the interface of p-type P3HT and n-type organic materials [5]. In addition to increase η, it is necessary that the organic active layers in OPVCs have optical characteristics that allow the efficient absorption of solar energy. Many researchers have reported tandem [6] and hybrid [7] structures with increased absorption efficiency of solar light in a wide spectral range.

The optical characteristics of inorganic and organic nanostructures such as the absorption and photoluminescence (PL) efficiency can be controlled by their size, shape, and crystallinity on the basis of energy bandgap tuning [8]. Various synthetic methods [9], post-treatment [10] and hybridization with hetero-nanomaterials [11] have been studied as means of tuning the optical properties of nanostructures. Hydrothermal processing has been used to synthesize metal oxides such as TiO₂ [12] and ZnO [13] and to modify the material properties. Zhou et al [14] reported that hydrothermal treatment converted graphene oxide to a stable graphene solution. Jung et al [15] induced the structural transformation of organic copper phthalocyanine nanowires to hollow rectangular nanotubes using hydrothermal processing. Such treatment is promising for tuning the optical characteristics of organic
semiconducting nanoparticles (NPs) and nanowires for application in OPVCs.

In this study, P3HT NPs were fabricated in an aqueous suspension using a reprecipitation method [16]. To modify the optical properties, the P3HT NPs were hydrothermally treated in an aqueous suspension, i.e., pressurized in a chamber at various temperatures. The ultraviolet and visible (UV/Vis) absorption spectra changed markedly upon treatment, with the intensity and width of the features depending on the temperature of hydrothermal treatment. These observations agreed with the results for PL in solution, PL excitation (PLE) spectra, and PL from single P3HT NPs measured with a laser confocal microscope. Analysis suggests that the hydrothermal treatment induced conformational modifications and altered the interactions between the P3HT main chains and alkyl side groups, which changed the optical properties of the P3HT NPs.

2. Experimental details

2.1. Fabrication of P3HT NPs

The P3HT NPs were fabricated by a reprecipitation method [16]. Regioregular P3HT powder (regioregularity: 90–93%, Mw = 50 k, Sigma-Aldrich Corp) was used without further purification. Twenty milligrams of powder was dissolved in 20 ml of tetrahydrofuran, then 1 ml of the solution was added dropwise to 20 ml of deionized water and stirred vigorously for 10 min. Nanoparticles were formed in the aqueous suspension because of the hydrophobic property of P3HT. Large aggregates were filtered out with a membrane filter (pore diameter 800 nm).

2.2. Hydrothermal process

An autoclave (Parr Instrument Acid Digestion Bombs; 4744 general-purpose bomb) served as the chamber for the hydrothermal process. Pristine P3HT NPs dispersed in deionized water (21 ml) were placed in the Teflon beaker (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a temperature between 60 and 150°C (45 ml) of the chamber, which was heated in an oven to a
Figure 1. SEM images of (a) pristine, (b) HT060, (c) HT110 and (d) HT150 P3HT NPs. Insets show TEM images of the corresponding samples.

(∼610 nm) to 0–1 absorption (∼550 nm) reflects the strength of the interchain interaction in the weak excitonic coupling regime. As shown in figure 2(b), the intensity ratio of 0–0 to 0–1 absorption increases with the hydrothermal temperature, indicating the enhancement of the interchain interaction. The intensity ratio of the 0–0 to 0–2 absorption increases and that of the 0–2 to 0–1 absorption decreases with increasing temperature. The latter ratio is related to the Huang–Ray factor, which represents the coupling between the electronic transition and the phonon mode according to the Franck–Condon model [27]. The magnitude of the Huang–Ray factor multiplied by the phonon energy is the average relaxation energy from the upper vibronic state to the lowest vibronic state within an excited electronic state. With increasing hydrothermal temperature, the Huang–Ray factor and relaxation energy decreased, implying the planarization of thiophene rings, as also reflected by the redshift of the absorption peaks. From the analysis of the UV/Vis absorption spectra, we suggest that with increasing hydrothermal temperature, the interchain interaction and the ring planarity in P3HT main chains strengthened owing to the pressure applied during the hydrothermal process.

Figure 3(a) shows the normalized PL spectra of the pristine and hydrothermally treated P3HT NPs in solution. The main PL peak originating from the 0–0 transition appears at about 650 nm together with a shoulder at 710 nm due to the 0–1 transition; this agrees with the spectra of solid-state bulk PL of the P3HT material [20]. The 0–0 (650 nm) and 0–1 (710 nm) peaks originate from the excitonic and aggregated emissions, which result from the crystalline P3HT with interdigitated alkyl side chains and the crystalline P3HT with tilted alkyl side chains, respectively [28]. The hydrothermal processing induced a slight redshift of the PL peaks of the 0–0 and 0–1 emissions for the P3HT NPs from 650 to 653 nm and from 710 to 712 nm, respectively. With increasing process temperature, the PL shoulders at about 710 and 810 nm became more prominent, as shown in figure 3(a), indicating that the external pressure increased the crystallinity of the P3HT NPs with tilted side chains. The relative PL intensity ratio of the 0–1 emission to the 0–0 emission was greatest for the HT110 sample, as shown in the inset of figure 3(a), and the shoulders at 615 and 810 nm also strengthened in the HT110 and HT120 samples.

Figure 3(b) shows the LCM PL spectra for the pristine and hydrothermally treated single P3HT NPs. The spectra were averaged over 20 different dry NPs. The main 0–0 emission peak at 650 nm is similar to that in the spectra of the NP solution. However, the intensity and position of the 0–1 emission peak at 692–708 nm were different for the individual NPs and varied significantly with the hydrothermal temperature. Its dominance increased for the HT060 and HT110 samples, in qualitative agreement with the changes in the UV/Vis absorption spectra. The 0–1 to 0–0 PL intensity ratio was maximum for the HT110 sample, which is consistent with the PL spectra in solution. Similar
results for the MEH-PPV film were reported in [29]. The external pressure in the hydrothermal processing increased the interchain interaction, increasing the degree of tilt of the alkyl side chains and the planarity of thiophene rings, and decreasing the distance of interchain π-stacking. The solution and LCM PL spectra suggest that the interchain interaction increased (i.e. the interchain distance decreased) as the hydrothermal temperature was increased from 60 to 110 °C; however, severe conformational changes in the P3HT chains may have occurred during the hydrothermal processing at temperatures of 130 °C and above, decreasing the 0–1 emission for the HT150 sample.

Figure 4 and its inset show the normalized excitation spectra for the 653 and 715 nm emissions, respectively. The three PLE peaks at 500, 540 and 600 nm are closely related to the UV/Vis absorption peaks, and the increase in the relative PLE intensity at 600 and 640 nm is similar to that in the UV/Vis absorption spectra (in figure 2(a)). The PLE intensity at 540 nm increased as the hydrothermal temperature was raised from 60 to 120 °C, while it decreased at 130 °C and above as shown in figure 4. The PLE results are qualitatively consistent with the solution and LCM PL spectra.

Figure 5 shows a comparison of the FTIR absorption spectra of the bulk P3HT materials and the pristine and hydrothermally treated P3HT NPs. Characteristic peaks of the bulk P3HT material were observed at 722, 823, 1057,
Table 1. Assignment of the FTIR absorption peaks in the bulk P3HT and P3HT NPs.

<table>
<thead>
<tr>
<th>Peak position (cm$^{-1}$)</th>
<th>Assignment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>667</td>
<td>Ring deformation</td>
<td>Abdou and Holdcroft [30]</td>
</tr>
<tr>
<td>722</td>
<td>Methyl rock mode of hexyl group</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>823</td>
<td>C$_2$H bending</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>1057</td>
<td>C=O–S–O stretching</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>1377</td>
<td>Methyl deformation</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>1460</td>
<td>Symmetric ring stretching mode</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>1510, 1560</td>
<td>Asymmetric ring stretching mode</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>1633</td>
<td>C=S stretching mode</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
<tr>
<td>1712</td>
<td>C=O stretching mode</td>
<td>Abdou and Holdcroft, Louarn et al [30, 31]</td>
</tr>
</tbody>
</table>

4. Conclusion

P3HT NPs prepared by a reprecipitation method were hydrothermally processed at various temperatures. The variations in the optical absorption spectra, such as redshift and broadening of the peaks, depended on the treatment temperature. The intensity ratio of the 0–1 to 0–0 emission also varied with the hydrothermal temperature, as revealed by PL, PLE, and LCM PL spectra. These changes are associated with enhanced interchain interaction and ring deformation induced by the high pressure applied during the hydrothermal processing. Therefore, hydrothermal processing is a promising post-treatment for tuning the optical properties of π-conjugated polymeric NPs.

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (nos R0A-2007-000-20053-0 and 2009-89501).

References
