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Thermo Field Dynamics on BTZ spacetime
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1Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

2Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá, Colombia

(Dated: April 18, 2024)

A thin dust shell contracting from infinity to near its gravitational radius r+, in a spacetime
AdS3 is analyzed; its equation of motion is determined and the solution R(t) as seen by a FIDO
observer is estimated. It is concluded that this Shell’s exterior looks like a BTZ black hole with
similar properties.

Based on the Thermo Field Dynamics technique, a scalar field Φ in the proximity of a non-rotating
BTZ (2 + 1) black hole is studied. From the corresponding Killing-Boulware |0⟩KB∗ and Hartle-
Hawking |0⟩HH∗ vacuum states, the associated Wightman function W (x, x′)HH∗ −W (x, x′)KB∗ is
determined and based on it, the time component of the momentum-energy tensor of the system
∂0∂0′ (WHH∗ −WKB∗) (x, x′) ≈ ⟨T00(x, x

′)⟩ = σ(r) is calculated. Which allows establishing the
origin and location of the degrees of freedom responsible for the entropy that describes a source for
the Bekenstein-Hawking SBH entropy.

The thermal environment described by this model manifests itself with a well-defined and con-
centrated energy density near the event horizon, according to a FIDO observer.

I. INTRODUCTION

In the framework of general relativity, the presence of
black holes arises as solutions to Einstein’s field equa-
tions, describing regions of spacetime where the curva-
ture is so intense that not even light can escape. Black
hole thermodynamics, as formulated by Hawking and
Bekenstein [1–3], posits that black holes have an entropy
proportional to the area of their event horizon, defying
the classical notion that these objects can only destroy
information

The origin of SBH may be attributed to various factors,
one of which is the concept of entanglement entropy,
SEnt, linked to quantum modes and correlations con-
cealed from an external observer near a horizon.

Assuming a black hole exists in an unknown pure quan-
tum state, correlations arise between internal and exter-
nal modes relative to the horizon. Thus, SEnt can be in-
ferred by tallying the modes beyond the horizon. Seminal
works by Bombelli [4], Frolov and Novikov [5], Srednicki
[6], Terashima [7], among others, propose: SEnt ∝ A,
where A signifies the area of the partition wall, a charac-
teristic not exclusive to black holes but extends to other
scenarios [6, 7]. Srednicki estimated the ground state
density matrix for a scalar field, yielding an entropy pro-
portional to area, S = KM2A, where K depends on M
[6].

Similarly, Terashima interpreted SBH as the entangle-
ment entropy between the exterior and a thin region in-
side the horizon, where the thickness of both regions is

∗ warojasc@unal.edu.co
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approximately the Planck length lP . Thus, Terashima
derived:

S ≈ C
A

a2
, (1)

with a representing horizon fluctuations and C as a con-
stant [7].

This entanglement interpretation aligns closely with ’t
Hooft’s wall model [8], subsequently modified by Muko-
hyama and Israel [9], especially when applied to the mod-
eling of a black shell compressing towards its gravita-
tional radius [10–13].

In a broader context, the thermal entanglement inter-
pretation of Bekenstein-Hawking entropy (SBH) reflects
vacuum properties in strong gravitational fields, wherein
vacuum fluctuations persist even in the absence of exci-
tations. This vacuum appears as a thermal atmosphere
to a Fiducial Observer (FIDO) near the horizon [14, 15],
resulting in:

S = β2 ∂F (β)

∂β
≈ 1

360πϵ2
A, (2)

where β = 1
T∞

, ϵ represents a horizon cutoff [16, 17], and
A denotes the horizon area. This entropy, associated
with vacuum properties, arises due to FIDO’s percep-
tion of the vacuum as a mixed state. Consequently, the
entanglement entropy coincides with the entropy of the
thermal atmosphere around the horizon [13].

Further insight into SBH comes from symmetries-based
research, particularly in the context of BTZ spacetime,
which aids in understanding AdS/CFT duality [18]. This
approach highlights the duality between thermal entropy
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2

of conformal field theory and the entropy of a BTZ black
hole [19].

In this latter approach, the interpretation of the entropy
of entanglement for black holes was developed by Shinsei
Ryu and Tadashi Takayanagi. For the case of a BTZ
black hole, in the high temperature limit, they succeeded
in obtaining the Bekenstein-Hawking entropy, which is a
thermal entropy of entanglement [19, 20]

SA =
γA

4Gd+2
N

, (3)

where γA is the minimum surface area in d dimensions in
AdSd+2, whose boundary is given by ∂A. It is important
to note that γA plays the role of a holographic screen for
an external observer. In the case of BTZ, SA and

SA(β) =
c

3
ln

[
β

πa
sinh

(
πl

β

)]
(4)

encode a topological entanglement entropy[19].

In this sense, there are several works that aim to ex-
plain SEnt from an analytical and/or numerical point of
view. For example, Dharm Veer Singh and Sanjay Si-
wach calculated SEnt for a massless scalar field in BTZ
numerically, of the form [21]

SEnt = Cs
r+
a
, Cs = 0.294. (5)

which is proportional to the area of the horizon 2πr+,
with a being the UV cut-off used to discretize the system.

This article seeks to extend the black shell entanglement
entropy model to BTZ spacetime, with the aim of relat-
ing classical symmetries and vacuum properties in strong
gravitational fields. The understanding of Bekenstein-
Hawking entropy in this comprehensive context offers
insights into the real localization of degrees of freedom
within quantum statistical mechanics systems, bridging
external and internal characterizations according to the
Mukohyama-Israel complementary principle.

This study is structured as follows: In Section II, we pro-
vide a brief overview of the BTZ spacetime structure. In
Section III, we conduct an analysis of a dust shell con-
tracting from infinity to near its gravitational radius r+.
This analysis includes estimating the differential equa-
tion of motion and proposing a possible solution for a
Fiducial Observer (FIDO).

In Section IV, we introduce the thermodynamics of a
scalar field near the horizon. Sections V and VI focus
on the application of Thermofield dynamics to the scalar
field, facilitating the estimation and calculation of the
⟨T00⟩ component of the energy-momentum tensor. This
analysis provides insights into the field distribution near
the horizon and the precise localization of the degrees of

freedom responsible for the entanglement entropy SEnt

and other thermal properties of the scalar field.

In Section VII, we delve into the statistical analysis of a
scalar field in BTZ spacetime.

Finally, in Section VIII, we present the discussions and
conclusions of the present study.

II. BTZ BLACK HOLE STRUCTURE

The BTZ solution is an exact solution of Einstein’s gen-
eral theory of relativity in three dimensions.

ds2 = −
(
N⊥)2 dt2 + 1

f(r)2
dr2 + r2

(
dϕ+Nϕdt

)2
(6)

where

N⊥ = f(r) =

√
−M +

r2

l2
+
J2

4r2
, (7)

Nϕ = − J

2r2
, |J | ≤Ml, (8)

The BTZ solution describes a three-dimensional space-
time with a constant and negative curvature, denoted as
R < 0, known as anti-de Sitter (AdS) space. This solu-
tion exhibits rotational symmetry and describes a black
hole with angular momentum J and mass M in space-
time. Similar to its counterpart in (3+1) dimensions, the
Kerr black hole, it possesses an ergosphere. In the case
of BTZ, the ergosphere is located a

rerg =
√
r+ − r− = l

√
M, (9)

r2± =
Ml2

2

1±
√
1−

(
J

Ml

)2
 . (10)

The BTZ black hole is interesting because it has pro-
vided insights into fundamental issues between string the-
ory and quantum gravity within the framework of the
AdS/CFT conjecture. If we consider J = 0, Equa-
tion (6) leads to a static black hole, analogous to the
Schwarzschild black hole. Both types of black holes share
similar characteristics, including a bifurcate horizon and
a central singularity. The presence of a horizon implies
a causal disconnection between the interior and the ex-
terior of the black hole. Therefore, it is not possible to
extract information from the interior once an object has
crossed the horizon. These similarities allow for the con-
struction of the Penrose diagram for BTZ, which visual-
izes the spacetime structure near the event horizon
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FIG. 1. Kruskal diagram for the BTZ black hole.

Thus, for the BTZ solution, accelerated observers move
along a hyperbolic trajectory that is perpendicular to the
black hole’s event horizon

T 2

1/2
− R2

1/2
= 1. (11)

For more detailed information, please consult Appendix
A.

III. COMPACT OBJECTS THAT MIMIC
BLACK HOLES

In the framework of General Relativity in 2+1 dimen-
sions, two different solutions of the Einstein field equa-
tions are considered at a point in the manifold. This
means that the junction conditions require the metrics
and their derivatives to be continuous across the inter-
face between two regions. Additionally, the conservation
of energy and momentum is required at the interface.

A. KINEMATICS OF HYPERSURFACES

According to the Darmois-Israel formalism [22–24], con-
sider a manifold M of dimension (2 + 1) and within
it a hypersurface Σ, with the condition that Σ ⊂ M
and can be time-like, space-like or null. A specific hy-
persurface Σ can be chosen when the coordinates xα

of variety M are constrained of the form Φ (xα) = 0.
Thus, Σ can be specified with a constraint on the co-
ordinates whose parametric equations are of the form
xα = xα(ya), xα ∈ M, ya ∈ Σ y Σ ⊂ M, where ya

corresponds to intrinsic coordinates in Σ. Also, the hy-
persurface Σ is determined by its normal vector nα, such
that the unit normal vector is −1, if Σ is space-like and
+1, if Σ is time-like.

The induced metric on Σ is obtained when the displace-
ments are limited to such a hypersurface of the form
ds2Σ = habdy

adyb. Where hab is known as the induced

metric hab = gαβe
α
ae

β
b and the tangent vectors to the

integral curves contained in Σ.

The extrinsic curvature or Second Fundamental Form
Kab, defines how the hypersurface Σ is curved with re-
spect to M in which it is embedded, and it is Kab =
1
2 [Lngµν ] e

α
ae

β
b .

Now, in the Darmois-Israel formalism [22, 23], let hyper-
surface Σ divide spacetime into two regions: M+ and
M−, such that g+αβ ∈ M+ and g−αβ ∈ M− and the junc-

tion conditions for BTZ spacetime, we have a shell (dust
ring), in (2 + 1) dimensions. Such that it contracts from
infinity to near its gravitational radius r = r++ ϵ. To an
external observer, the shell looks like a BTZ black hole.
In a first approximation with J = 0, let (A1)

ds2+ = −f(r)dt2 + 1

f(r)
dr2 + r2dϕ2, (12)

where

f(r) =

(
−M +

r2

l2

)
(13)

for the outer shell. And for the inner shell, there is a
Minkowski spacetime

ds2− = −dt2 + dr2 + r2dϕ2. (14)

The coordinates for the inner solution of the shell (14) are
t = T̄ (τ), r = R(τ). From the foregoing, (14) simplifies
to

ds2− = −
[
˙̄T 2 + Ṙ2

]
dτ2 +R2dϕ2. (15)

The extrinsic coordinates defined on Σ ⊂ M−, ya− =
(τ, ϕ) ∈ Σ and the intrinsic coordinates xα− ∈ M are

xα− = (T̄ (τ), R(τ), ϕ). From the foregoing, the rela-
tionship between the coordinates between Σ and M− is
eαa = ∂xα

∂ya , then

eατ = uα− =
[
˙̄T, Ṙ, 0

]
, (16)

where uα, defines the 3-velocity for an observer falling
radially with the shell (FFO). Also,

eαϕ = uβ− = [0, 0, 0] . (17)

The normal vector n−α ⊥ Σ is defined as

n−α = [nτ , nr, nϕ] . (18)

The orthonormality condition n±αu
α
± = 0 and the nor-

malization condition n±αn
α
± = 1. The foregoing makes

it possible to conclude that n−α is a time-like vector and
that Σ corresponds to a space-like hypersurface.

n−αu
α
− = n−τ

˙̄T + n−r Ṙ = 0, (19)

therefore, obtaining that n−ϕ = 0. From the condition of

normalization , gααn−αn
−
α = 1. Which allows determining

the system of equations

n−τ
˙̄T + n−r Ṙ = 0, −

[
n−t

]2
+
[
n−r

]2
= 1. (20)
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Once (20) has been solved, the normal vector n−α =[
−Ṙ, ˙̄T, 0

]
and ˙̄T 2 − Ṙ2 = 1 [23].

The outer solution of the Shell is defined by (12) and
(13). Let F (R) = f(r), then (12) transforms into

ds2+ = −F (R)dt2 + 1

F (R)
dr2 + r2dϕ2. (21)

Such that Σ ∈ M+ is obtained xα+ = (t, r, ϕ) ∈ M+

and ya+ = (τ, ϕ) ∈ Σ. It is useful to express t = T (τ),

r = R(τ) and F = F (R) = M + R(τ)2

l2 . The metric (21)
is simplified to

ds2+ = −

[
FṪ − Ṫ

F

]
dτ2 + Ṙ2dϕ2. (22)

The intrinsic coordinates xα+ ∈ M+. It is possible to

obtain uα+ =
[
Ṫ , Ṙ, 0

]
, where uα+ is the 3-velocity mea-

sured from M+. The normal vector n+α is determined as

n+α =
[
n+α , n

+
r , n

+
ϕ

]
.

From the orthogonality and normalization conditions, we
find the radial component n+r is obtained, which is

n+r =
Ṫ√

FṪ 2 − Ṙ2

F

, (23)

and the time component, n+t is

n+t =
−Ṙ√

FṪ 2 − Ṙ2

F

. (24)

This leads to

n+α =
1√

FṪ 2 − Ṙ2

F

[
−Ṙ,−Ṫ , 0

]
=

[
−Ṙ,−Ṫ , 0

]
(25)

where

√
FṪ 2 − Ṙ2

F = 1 [23].

It is possible to determine the extrinsic curvature for BTZ
spacetime as K±

αβ = n±α;β . So

K+0
0 =

β̇+

2Ṙ
, K+1

1 =
β+
2

and K+2
2 =

β+
R

(26)

where

β+ = ṪF, β̇+ = F ′ṘṪ . (27)

And

K−ϕ
ϕ =

√
1 + Ṙ2

R
=
β−
R
, (28)

where β− is defined

β− = ˙̄T =
√
1 + Ṙ2. (29)

The equation of motion for the shell is obtained from

Sab = − ϵ

8π
([Kab]− [K]hab) , (30)

where hab|Σ, is the metric induced on the hypersurface
Σ. Also,

[Kab] = K+
ab|Σ −K−

ab|Σ, (31)

[K] = K+|Σ −K−|Σ. (32)

Finally, the equation of motion for the shell in the BTZ
spacetime is

dR

dτ
=

√[
4M2F

(F −M)2
− 1

]
F . (33)

where

F = F (R) =M +
R(τ)2

l2
. (34)

A very important observation is that (33) corresponds to
the shell motion equation contracting in spacetime BTZ
[10, 16, 22, 25], whose motion is measured by a shell-
comoving observer (FFO) with proper time τ , according
to Figure 1.

Thus, it is possible to rewrite Equation (33) in terms of
the coordinate time, t as follows

dF

dt
= α

√
F 2 [F − ϑ(F −M)]. (35)

and

α =
4M

aR0
, ϑ =

[
aR0

2Ml

]2
. (36)

The solution to which can be written in the form

R(t) =

√√√√√ l2ϑM

1− ϑ


[
Ae−α

√
ϑM(t−t0) − 1

Ae−α
√
ϑM(t−t0) + 1

]2

+ 1

 (37)

where

A =

√
ϑM +

√
F0 + ϑM − F0ϑ√

ϑM −
√
F0 + ϑM − F0ϑ

. (38)

40 60 80 100
t

55

60

65

70

75

80

R t

FIG. 2. Representation of R(t) given by (37).
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The Figure 2 represents the trajectory and behavior of a
dust shell that contracts from infinity to near its gravita-
tional radius as observed by a FIDO [16, 17]. This result
is interesting because a dust shell can mimic a black hole,
making it difficult for a FIDO to distinguish between an
Exotic Compact Object (ECO) and a black hole [26]. To
access specific details, kindly turn to Appendix B.

IV. THERMODYNAMICS NEAR THE
HORIZON

The BTZ spacetime can be written in the following form

ds2 =
l4

r2+

(r + r+)
2

l2
dUdV + r2dϕ. (39)

For simplicity, consider a scalar field Φ(t, x), where x =
r, ϕ, described by the Lagrangian density:

LM =
1

2

√
−g

[
gµν∂µΦ∂νΦ−m2Φ2

]
, (40)

Such that the variation of the action, δS, leads to the
Klein-Gordon equation (KGE)[

□−m2
]
Φ = 0, □ =

1√
−g

∂µ
[√

−ggµν∂ν
]
. (41)

By considering a WKB-type solution for Equation (41),
given by φΩ(r) = e−iϕ(r), it is possible to estimate the
modes under the Hartle-Hawking (HH∗) scheme and the
Killing-Boulware (KB∗) modes [9, 10, 25] for the scalar
field over the BTZ spacetime. The relationship between
the HH∗ modes and the KB∗ modes is defined through
a Bogolubov transformation

Ψ
(ϵ)
Ω (x) = Φ

(ϵ)
Ω (x) cosh(x) + Φ

(−ϵ)
Ω (x) sinh(x). (42)

For in-depth specifics, please turn to Appendix C.

From the above, it is possible to consider a quantum field
theory on a curved spacetime with respect to a Killing
time t. By considering the KB∗ modes, the field ΦΩ(t, x)
is promoted to a field operator as follows:

ΦΩ(t, x) =
∑
Ω

[
aΩFΩ + b†ΩF

∗
Ω

]
. (43)

Thus, the Hamiltonian of the field can be obtained as
follows

H =

∫
d2x

{√
−g
2

[
g00Φ̇†Φ̇ + gij∂iΦ

†∂jΦ
]
+

[
m2Φ†Φ

]}
.

(44)
Consequently, under the framework of second quantiza-
tion, it is obtained that the Hamiltonian operator of the
field is

H =
∑
Ω

1√
T
ω
[
a†ΩaΩ + b†ΩbΩ

]
+ Z.P.E., (45)

where Z.P.E. corresponds to the zero-point energy.

V. THERMO FIELD DYNAMICS FOR BTZ
SPACETIME

This section discusses the implications of Thermo Field
Dynamics (TFD) in the proximity of a BTZ black hole
[7, 10, 12, 25, 27–31]. TFD is a technique used to describe
systems in equilibrium, as it explains how the thermo-
dynamic properties of quantum observables arise from
quantum correlations of local operators as perceived by
an observer. In the case of BTZ, an entangled state is es-
tablished for the field modes in the KB∗ scheme between
the R and L regions of the maximally extended BTZ for
J = 0 [32].

FIG. 3. Carter-Penrose diagram for a BTZ black hole.

The Hamiltonian operator for the regions R and L is

H = H(+) −H(+)

=
∑
Ω

[
N

(+)
Ω −N

(−)
Ω + N̄

(+)
Ω − N̄

(−)
Ω

]
ω, (46)

where (+) ∈ R y (−) ∈ L, N±
Ω = a

(±)†
Ω a

(±)
Ω and N̄±

Ω =

b
(±)†
Ω b

(±)
Ω .

The vacuum states of the field are given by

a
(+)
Ω a

(−)
Ω

∣∣∣0(+), 0(−)
〉+

B
= 0, (47)

b
(+)
Ω b

(−)
Ω

∣∣∣0(+), 0(−)
〉−

B
= 0. (48)

By considering the thermal vacuum state
∣∣0(β)±B〉 and the

normalization condition of such states ±
B ⟨0(β)|0(β)⟩±B =

1, it is possible to obtain the partition function.

Z±(β) =
1

1− e−β|ω| . (49)
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And the thermal vacuum state is defined as follows

|0(β)⟩+B =
√

1− e−β|ω| exp
[
e−

β|ω|
2 a†(+)a†(−)

] ∣∣∣0(+), 0(−)
〉
,

(50)

|0(β)⟩−B =
√

1− e−β|ω| exp
[
e−

β|ω|
2 b†(+)b†(−)

] ∣∣∣0(+), 0(−)
〉
.

(51)
The occupation number is given by

⟨N⟩+ =
〈
N̄
〉−

=
1

eβ|ω| − 1
. (52)

For a detailed breakdown, please refer to Appendix E.

VI. MOMENTUM-ENERGY TENSOR FOR A
SCALAR FIELD IN BTZ SPACETIME

Using the usual recipe, where the Lagrangian density of
the matter fields LM for BTZ (40) is known, we can
obtain the energy-momentum tensor Tµν as follows

Tµν =

[
∂(µ∂ν′)− gµν

2

(
∂β∂β′ −m2

)]
Φ2. (53)

By considering the Wightman function for Tµν , we can
obtain:

⟨Tµµ(x, x′)⟩ = Dµν′W (x, x′). (54)

Thus, we can write the difference between the Wightman
functions HH∗ and KB∗ as

(WHH∗ −WKB∗) (x, x′) =
∑
Ω

1

eβω − 1
F

∗(+)
Ω F

(+)
Ω . (55)

By considering the temporal component of Tµν , we obtain〈
T 0
0 (x, x

′)
〉
= σ(r) = −

∫ ∞

0

E

eE/T (r) − 1

2πp dp

h2
. (56)

Supposing an ideal gas model and E = pv

P =
1

2
σ(r)

=
1

2

∫ ∞

0

pv

eE/T (r) − 1

2πp dp

h2
. (57)

VII. THERMODYNAMIC ANALYSIS OF A
SCALAR FIELD IN BTZ

Let partition function of a scalar field in BTZ per mode,
as

ZΩ =
∞∑

n=0

e−βnω =
1

1− eβω
, (58)

where Ω = ω,m and also

n = {nω∀Ω, ω > 0} . (59)

Thus, the energy of the field is En =
∑

Ω nΩω. From the
foregoing, the partition function for all possible modes
near the gravitational radius r+

Z =
∏

Ω,ω>0

1

1− eβω
. (60)

On the other hand, the entropy is determined as S =
β ⟨H⟩+ ln |Z| [33], where ⟨H⟩ = − ∂

∂β ln |Z|. Then

∑
Ω

f(ω) =

∫ ∞

0

N(ω)f(ω)dω. (61)

Ergo, for the partition function,

ln |Z| =
∫ ∞

0

N(ω)f(ω)dω (62)

where

f(ω) = ln

∣∣∣∣ 1

1− e−βω

∣∣∣∣ , (63)

also, N(ω)dω corresponds to the number of modes ψΩ(x)
are in the range ω and ω + dω for Ω = ω,m and S is as-
sociated with the simplified density matrix. Considering
(60).

ln |Z| =
∑
η=±

∑
m

m ln

∣∣∣∣ 1

1− e−βω

∣∣∣∣ . (64)

The wavenumber is required to be real (F23)

T∗2(r, ω,m) ≥ 0. (65)

This is under the WKB (F25) approach

ψΩ(r) =
1

4
√
4ω2T∗2

sin

[∫ rm,ω

r++ϵ

T∗(r, ω,m)dr

]
. (66)

Which implies that the field modes cancel each other out
near the gravitational radius r+ when Neumann-Dirichlet
boundary conditions are considered∫ rm,ω

r++ϵ

T∗(r, ω,m)dr = nπ, (67)

such that

T∗2(r, ω,m) = 0, T∗2(r, ω,m) ≥ 0 −→ r′ < r, (68)
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7

thus r = r+ + ϵ, r = R −→ ω ≥ 0 and m ≥ 0. As a
result, T ∗2(r, ω,m) is defined by (F23). Taking (67)

n(ω,m) =
1

π

∫ rm,ω

r++ϵ

T∗(r, ω,m)dr. (69)

Considering the variation ∂n(ω,m)
∂ω

∂n(ω,m)

∂ω
=

1

π

∫ rm,ω

r++ϵ

∂T∗(r(ω,m);ω,m)

∂ω
dr(ω,m)

+
1

π

∫ rm,ω

r++ϵ

T∗(r(ω,m);ω,m)
∂

∂ω
[dr(ω,m)] ,

(70)

where dr(ω,m) ≫ ∂
∂ω [dr(ω,m)]. Consequently

∂n(ω,m)

∂ω
≈ 1

π

∫ rm,ω

r++ϵ

∂T∗(r(ω,m);ω,m)

∂ω
dr(ω,m). (71)

On the other hand, in the continuum limit for (64)

ln |Z| = 1

π

∫
ω

∫ rm,ω

r++ϵ

∫
m

dωdmdr(ω,m)m ln

∣∣∣∣ 1

1− e−βω

∣∣∣∣ ∂T∗(r(ω,m);ω,m)

∂ω
. (72)

Integrating by parts (72)

ln |Z| = 1

π

∫ rm,ω

r++ϵ

dr

∫
m

dm mT∗ ln

∣∣∣∣ 1

1− e−βω

∣∣∣∣
+

1

π

∫ rm,ω

r++ϵ

dr

∫
m

dm m

∫
ω

βT∗

eβω − 1
dω. (73)

Regarding (73), the following observations are made

1. The partition function contains two contributions:
one proportional to the perimeter∫ rm,ω

r++ϵ

dr

∫
m

dm mT∗ ln

∣∣∣∣ 1

1− e−βω

∣∣∣∣ . (74)

2. And another to the area over the phase space∫ rm,ω

r++ϵ

dr

∫
m

dm m

∫
ω

βT∗

eβω − 1
dω. (75)

With the condition that the area contribution is much
larger than the perimeter contribution in the partition
function (73), which enables us to approximate

ln |Z| ≈ 1

π

∫ rm,ω

r++ϵ

dr

∫
m

dm m

∫
ω

βT∗

eβω − 1
dω. (76)

According to (F23)

m2

r
=
L

r
=

ω2

f(r)
−m2 +B, (77)

thus, for (77), it is possible to define L = m and Lmax =
mmax. In other words,

Lmax

r
=

ω2

f(r)
−m2 +B. (78)

Therefore,

m = ±
√
L, dm =

dL

2
√
L
. (79)

then, the integral with respect to min (76)

∫
m

dm mT∗ =
1

2

∫
L

dL T∗

=
1

2
√
rf(r)

∫ Lmax

0

dL
√
Lmax − L

=
1

3
√
rf(r)

L3/2
max.

(80)

Inserting (80) in (76)

ln |Z| =
∫ ∞

0

βN(ω)

eβω − 1
dω. (81)

Taking (81) and considering (78)

N(ω) =
1

3π

∫ R

r++ϵ

dr
1√
rf(r)

L3/2
max

=
1

3π

∫ R

r++ϵ

dr
1√
rf(r)

r3/2p3, (82)
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8

where it possible to define

N(ω) =

∫ R

r++ϵ

dr
1

3π

1√
rf(r)

r3/2
[
ω2

f(r)
−m2 +B

]3/2
=

∫ R

r++ϵ

drN∗(ω). (83)

4 6 8 10
r

2 10
16

4 10
16

6 10
16

FIG. 4. Occupation number N∗(ω) for a BTZ spacetime.

On the other hand, the Helmholtz free energy F , is re-
lated to the partition function Z as

F = − 1

β
ln |Z|

= −
∫ ∞

0

N(ω)

eβω − 1
dω. (84)

In that same direction, the internal energy of the scalar
field is U = − ∂

∂β ln |Z|, as a result

U =

∫ ∞

0

dω
ω

eβω − 1
N ′(ω) (85)

where N ′(ω) = ∂N(ω)
∂ω has been defined. According to

(82)

∂N(ω)

∂ω
=

1

π

∫ R

r++ϵ

dr
1√
rf(r)

rω

f(r)

√
r

(
ω2

f(r)
−m2 +B

)
.

(86)
Inserting (86) in (85)

U =

∫
dA σ(r) (87)

where σ(r) is defined by (F51). The entropy S of the
field is obtained as

S = β[U − F ]

=

∫ R

r++ϵ

dA s(r) H, (88)

where is the area integral in BTZ spacetime. In addition,

s(r) =
3β

2

∫ ∞

0

E

eE/T (r) − 1

2πpdp

h2
(89)

is the field entropy density

H =
2p2

9πω(eβω − 1)
(90)

and is the coupling factor. From the foregoing, it is pos-
sible to obtain

s(r) = β[σ(r) + P ]. (91)

Let x = E
T , then (89)

s(r) =
3

2
T 3(r)

2π

h2

∫ ∞

0

x2

ex − 1
dx.

=
6πζ[3]

h2
T 2(r) (92)

where ζ[3] corresponds to the Riemann Zeta function.
Taking (88)

S =

∫
2πrdr√
f(r)

6πζ[3]

h2
T 2(r)

=
6πζ[3]

h2
T 2
∞P

∫ r++ϵ

r+

dr

f(r)3/2
, (93)

where r+ =
√
Ml2 and P = 2π

√
Ml2. Furthermore,

the metric factor f(r) can be expressed in terms of the
surface gravity

f(r) ≈ f ′(r+)(r − r+), ϵ = r − r+. (94)

On the other hand, let the proper distance above the
horizon α be

α =

∫ r1

r+

dr√
f(r)

=
2√
f ′(r+)

√
ϵ, (95)

which makes it possible to establish [16, 17]

ϵ =
1

2
κ0α

2. (96)

This makes it possible to evaluate (93)

S =
6πζ[3]

h2
T 2
∞P

∫ r++ϵ

r+

dr

f(r)3/2

=
3ζ[3]

2h2π
γ

[
T∞
κ0/2π

]2 P
α
, (97)

where γ =
√
2(
√
2− 1). In the case where SEnt = SBH ,

implies that T∞ = TH , makes it possible to obtain

α =
3ζ[3] γ P
4πh2

√
2G3

l2M

=
3ζ[3] γ

2πh2

√
2G3. (98)
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Then,

SBH = 2π

√
Ml2

2G3
. (99)

It is possible, from (97) to calculate the specific heat of
BTZ as [34]

CV = CP

= T∞

(
∂S

∂T∞

)
P

=
3ζ[3]

h2π
γ

[
T∞
κ0/2π

]2 P
α
. (100)

VIII. DISCUSSIONS AND CONCLUSIONS

A thermal source of the Bekenstein- Hawking entropy
SBH for a BTZ black hole was modeled as an entropy of
entanglement of a real massive scalar field. Entropy asso-
ciated with a thin spherical dust shell, collapsing gravita-
tionally from a specific distance to a radius slightly larger
than the gravitational radius, in an AdS3 space-time, and
described by a FIDO observer.

Section III describes the equation of motion of the con-
tracting shell in the BTZ space-time, measured by an
observer comoving to the shell in terms of the proper
time τ . Then, we obtained the equation of motion of
the shell in the same spacetime, expressed by equation
(B11), in terms of the coordinate time t, according to the
measurement of a FIDO observer.

Section IV presents the developments of the quantiza-
tion of a real massive scalar field over the BTZ spacetime.
Specifically, in a Thermo Field Dynamics context, we cal-
culated the expected value for the component T00(x, x

′)
of the momentum-energy tensor with respect to the Boul-
ware and Hartle-Hawking vacuum states, for the men-
tioned scalar field. Thus, we show in expression (F52),
under the WKB approximation, that the thermal entropy
is strongly located near the outer surface of the shell, at
the collapse limit, according to the FIDO observer. In
these terms, we obtained a well-defined energy density,
of a hot scalar field.

Additionally in this section performs a thermodynamic
analysis of the thermal environment found in the previ-
ous sections. In greater detail, we determined from the
partition function corresponding to the hot scalar field,
the occupation number N(ω) in proximity to the outer
surface of the shell, which, according to the FIDO ob-
server, is very close to the corresponding event horizon.
Then we calculated the internal energy U and the en-
tropy density s(r), expressed by equations (87) and (92)
.

At the end of IV , the entropy of entanglement was cal-
culated, resorting to the cutoff introduced by ’t Hooft in

his wall model, and corrected by Mukohyama and Israel.
This modified model involved a reinterpretation of the
vacuum state and of the described object. To an outside
observer, the object described is star-like and not a black
hole. However, the external observer cannot distinguish
between one and the other.

With the previously described collapsing shell model, in
agreement with the FIDO observer, a gap is established
between the inner surface of the shell and the event hori-
zon, which is identified with ϵ, related to the proper dis-
tance above the horizon α, in the modified wall model.
Thus, the ’t Hooft wall coincides with the shell in prox-
imity to the event horizon. The possibility of calculat-
ing a microscopic parameter with macroscopic criteria is
noteworthy. Thus, we calculated the finite entropy of
entanglement given by equation (97).

What we show with the gravitational collapse shell model
is that the thermal source of the Bekenstein-Hawking
entropy, in the Mukohyama-Israel two-source model,
based on a complementarity principle [9], is external and
fully corresponds to the thermal entropy of entangle-
ment. Using the euclidean Gibbons-Hawking technique,
Bekenstein-Hawking entropy can be obtained for the eu-
clidean BTZ spacetime and an euclidean BTZ black shell,
where these results coincide with those obtained using
the entanglement technique and Thermo Field Dynam-
ics. This result could be the key to relate the black hole
entanglement formalism in the context of Mukohyama-
Israel complementary principle and the black hole en-
tanglement thermal entropy formalism for the conformal
fields in the context of the AdS/CFT duality, resorting
to the common topological property S1 that their respec-
tive spacetimes have.

The results obtained in this research complement the
progress of the study of the Bekenstein-Hawking entropy
in the context of asymptotic symmetries, reinforcing the
considerations made by Fursaev [14]. An interesting com-
mon geometric background between the model developed
in this article and the modeling of asymptotic symmetries
is the eternal black hole in AdS3 [35].

In this background, we present two types of proper-
ties related to the thermal character of the Bekenstein-
Hawking entropy, intimately associated with two nat-
ural boundaries, near the horizon and the asymptotic
region when r −→ ∞. The near-horizon boundary
has the same properties as its corresponding horizon
in an asymptotically flat static spacetime, so in effec-
tive terms, it is possible to consider the Boulware and
Hartle-Hawking vacuum states and obtain an entropy
related to the Bekenstein-Hawking entropy for the ther-
mal source. The other boundary substantiates the cal-
culations with the AdS/CFT duality, resorting to the
metric’s Euclidean properties. The calculation of the
Bekenstein-Hawking entropy with this formalism is re-
lated to the one presented in this article, resorting to
the complementary source of Mukohyama-Israel, based
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on the Gibbons-Hawking formalism [9].

Appendix A: BTZ SPACETIME STRUCTURE

Consider a BTZ black hole, proposed by Banados et. al.
[36] spacetime in (2+1) dimensions. The outer metric is
of the form

ds2 = −
(
N⊥)2 dt2 + 1

f(r)2
dr2 + r2

(
dϕ+Nϕdt

)2
(A1)

where

N⊥ = f(r) =

√
−M +

r2

l2
+
J2

4r2
, (A2)

Nϕ = − J

2r2
, |J | ≤Ml. (A3)

Identifying M the mass of the black hole, J the angular
momentum, l associated with the cosmological constant
of the form

l2 =
1

−Λ
. (A4)

Then, it is possible to consider the gµν component and
find the ergosphere region

rerg =
√
r+ − r− = l

√
M, (A5)

and

r2± =
Ml2

2

1±
√
1−

(
J

Ml

)2
 , (A6)

Where r− ≤ r+ ≤ rerg. It is possible to obtain the mass
of the black hole M from (A6), as

M =
r2+ + r2−

l2
, (A7)

which is equivalent to

J =
2r+r−
l

. (A8)

A coordinate transformation for the metric (A1) allows
obtaining the Carter-Penrose diagram for the BTZ black
hole

T 2

1/2
− R2

1/2
= 1. (A9)

This is essential given that a FIDO moves on a hyperbolic
trajectory in BTZ spacetime [36–38].

Appendix B: SOLUTION TO THE SHELL
MOTION EQUATION

This section discusses a possible solution to equation
(33).

Let

a =
M

µ
=

2πλR

2πλR0
= 1, (B1)

where µ is the mass of the shell in R0 and M is the mass
of the shell in R, with the condition that R0 ≫ R.

µ

R0
= 2πλ. (B2)

Then (33) is simplified to

dF

dτ
=

2

l

√
(F −M)F

[
4M2l2F

a2R2
0(F −M)

− 1

]
. (B3)

It is useful to express the proper time τ in terms of the
coordinate time t, as

dτ =
√
Fdt. (B4)

Therefore,

dF

dt
= α

√
F 2 [F − ϑ(F −M)], (B5)

where

α =
4M

aR0
, ϑ =

[
aR0

2Ml

]2
. (B6)

Integrating (B5) yields

∫ F

F0

1√
F 2 [F − ϑ(F −M)]

= α

∫ t

t0

dt (B7)

arctanh

[√
F + ϑM − FM

ϑM

]F

F0

= −α
√
ϑM

2
(t− t0),

(B8)

where arctanh [x] = 1
2 ln

∣∣∣ 1+x
1−x

∣∣∣ = x+ x3

3 + x5

7 + . . .

F =M +

(
R

l

)2

, F0 =M +

(
R0

l

)2

(B9)

and

A =

√
ϑM +

√
F0 + ϑM − F0ϑ√

ϑM −
√
F0 + ϑM − F0ϑ

, (B10)
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allows to obtain

R(t) =

√√√√√ l2ϑM

1− ϑ


[
Ae−α

√
ϑM(t−t0) − 1

Ae−α
√
ϑM(t−t0) + 1

]2

+ 1

.
(B11)

Let (B11) correspond to the shell motion equation in
BTZ spacetime, as seen by a FIDO observer measuring
a coordinate time t. Let r+ correspond to the position
of the horizon, which allows establishing that the hori-
zon not only depends on the mass of the BTZ black hole,
but also on the value of the cosmological constant (A4)
[16, 17, 22–25, 39–44].

Appendix C: ENTANGLEMENT MODES FOR
BTZ

Considering BTZ spacetime, it can be rewritten as

ds2 =
l4

r2+

(r + r+)
2

l2
dUdV + r2dϕ (C1)

where the coordinates (U, V ) are null coordinates. Then,
the geometry of the BTZ black hole is described by Figure
1. Under such conditions, let a scalar field Φ [45]

LM =
1

2

√
−g

[
gµν∂µΦ∂νΦ−m2Φ2

]
. (C2)

The action that includes the space-time component and
the matter fields is [36]

S =

∫ [
1

2π

√
−g

(
R+

2

l2

)
+ LM

]
d3x. (C3)

The variation δS leads to the KGE. Consider a possible
solution for KGE

Φ(t, r, ϕ) =
φΩ(r)√

2ω
e−iωeimϕ, (C4)

where m corresponds to the magnetic quantum num-
ber, associated to the angular part of the scalar field
Φ. These orthogonal modes under Klein-Gordon inner
product. Expanding (C4) into KGE leads to

1

r

∂

∂r

[
rf(r)

∂φΩ(r)

∂r

]
+ φΩ(r)

[
ω2

f(r)
− m2

r
−m2

]
= 0,

(C5)
with dr∗ = 1

f(r)dr. Allows simplifying

d

dr∗

[
dφΩ(r)

dr∗

]
+T(ω,m,m, r)φΩ(r) = 0, (C6)

where

T(ω,m,m, r) = ω2 −
(
m2 +

m

r

)
f(r). (C7)

Under the WKB approximation [46], consider a harmonic
solution of the form

φΩ(r) = e−iϕ(r), (C8)

with the condition that T(ω,m,m, r) varies very slightly,
which is why ϕ′′(r)is very small

ϕ(r) =

∫ √
T(ω,m,m, r)dr. (C9)

(C6) is satisfied when

ϕ′′(r) ∼=
1

2

∣∣∣∣ T′
√
T

∣∣∣∣ ≪ T, T = T(ω,m,m, r). (C10)

Considering one of the solutions of (C8), it is possible to
write

Φ(t, r, ϕ) =
e−i(

∫ √
Tdr−mϕ)e−iωt

4
√
4ω2T

. (C11)

If, in addition, x = r, ϕ and Ω = ω,m

ΦΩ(x) =
e−i(

∫ √
Tdr−mϕ)

4
√
4ω2T

, (C12)

ΦΩ(t, x) = ΦΩ(x)e
−iωt. (C13)

Using tortoise Coordinates

Φ(t, x) = ΦΩ(r∗, x) = ΦΩ(r∗, x)e−iωr∗. (C14)

For (C14), it is possible to define the incoming and out-
going modes of the scalar field over BTZ space-time as

Φ
(+)
Ω (r∗, x) = ΦΩ(x)e

iωr∗, incoming modes. (C15)

Φ
(−)
Ω (r∗, x) = ΦΩ(x)e

−iωr∗, outgoing modes. (C16)

Thus, the modes (C14)

Φ(u, v, x) = ΦΩ(x)e
− iωv

2 e
iωu
2 . (C17)

Figure 3 shows a Carter-Penrose diagram for a BTZ black
hole. From (C17), the outgoing modes with u = 0 and
the incoming modes v = 0 are defined

Φϵ(t, x) = Φin
Ω (x)e−

iωv
2 = Φin

Ω (v, x). (C18)

Φϵ(t, x) = Φout
Ω (x)e

iωu
2 = Φout

Ω (u, x). (C19)

FIG. 5. Left: Outgoing modes of the scalar field in the Carter-
Penrose diagram for a BTZ black hole. Right: Incoming
modes of the scalar field in the Carter-Penrose diagram for
a BTZ black hole.
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The modes Φin
Ω (v, x) and Φout

Ω (v, x) are written in terms
of the Kruskal null coordinates U, V as

Φϵ
Ω (U, x) = Θ(ϵ, V )Φin

Ω (v, x) = Θ(ϵ, V )Φin
Ω (x)e−

iωv
2 ,
(C20)

Φϵ
Ω (V, x) = Θ(−ϵ, V )Φout

Ω (u, x) = Θ(−ϵ, U)Φout
Ω (x)e−

iωu
2 ,

(C21)
where the function Θϵ(x) is

Θϵ(x) =
1

2
[Θ(−ϵU) + Θ(ϵV )] . (C22)

This allows defining (+) ∈ R and (−) ∈ L of the Carter-
Penrose diagram in Figure (3). Consequently, the com-
plete modes for the region R are

Φ
(+)
Ω (u, v, x) = Φ

(+)
Ω (v, x) + Φ

(+)
Ω (u, x) . (C23)

And the complete modes for the region L are

Φ
(−)
Ω (u, v, x) = Φ

(−)
Ω (v, x) + Φ

(−)
Ω (u, x) . (C24)

Consequently, it is possible to obtain the modes of the
scalar field in BTZ, which are contained in the R and L
regions as

ΦΩ (u, v, x) = Φ
(−)
Ω (u, v, x) + Φ

(+)
Ω (u, v, x) . (C25)

Therefore, there are two representations in terms of the
Killing-Boulware modes (KB∗)

Φ
(ϵ)
Ω (U, x), Φ

(ϵ)
Ω (V, x), (C26)

that are seen by a FIDO observer. And another repre-
sentation of Hartle-Hawking modes

Ψ
(ϵ)
Ω (U, x), Ψ

(ϵ)
Ω (V, x), (C27)

where such modes are seen by a FFO observer1 [9, 10, 14,
25, 37] . The modes are orthogonal for a FIDO observer
when

(
Φ

(ϵ)+
Ω (x),Φ

(ϵ′)+
Ω′ (x′)

)
=

(
Φ

(ϵ)−
Ω (x),Φ

(ϵ′)−
Ω′ (x′)

)
= ϵ(ω)δΩΩ′δϵϵ′ . (C28)

1 The KB∗ modes have been defined as those modes of the scalar
field that are measured by a FIDO observer. This type of ob-
server is accelerated to a fixed distance above the BTZ spacetime
horizon. And which are not the KB modes of the quantum field
for Schwarzschild space-time that were originally defined. The
HH∗ modes are the modes of the quantum field, which are seen
by a FFO observer, falling radially in the direction of the black
hole in BTZ spacetime. And not to be confused with the HH
modes defined for Schwarzschild spacetime .

and they are null when [31](
Φ

(ϵ)±
Ω (x),Φ

(ϵ′)∓
Ω′ (x′)

)
= 0. (C29)

FIG. 6. Types of FIDO and FFO observers in the Carter-
Penrose diagram for a BTZ black hole..

And, for a FFO it is

(
Ψ

(ϵ)+
Ω (x),Ψ

(ϵ′)+
Ω′ (x′)

)
=

(
Ψ

(ϵ)−
Ω (x),Ψ

(ϵ′)−
Ω′ (x′)

)
= ϵ(ω)δΩΩ′δϵϵ′

(C30)
And they are null when [31](

Ψ
(ϵ)±
Ω (x),Ψ

(ϵ′)∓
Ω′ (x′)

)
= 0. (C31)

The relationship between the KB∗ and los modos HH∗

modes is mediated by a Bogoliubov transformation of the
form [45]

Ψ
(ϵ)
Ω (x) = Φ

(ϵ)
Ω (x) cosh(x) + Φ

(−ϵ)
Ω (x) sinh(x). (C32)

To this end, consider the maximally extended BTZ space-
time as

FIG. 7. The Heaviside step function Θϵ(x) for the Carter-
Penrose diagram of a BTZ black hole.
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Figure 7 defines the Heaviside step function Θϵ(x) for the
Carter-Penrose diagram of a BTZ black hole. Taking the
null coordinates U, V which are rewritten in terms of the
surface gravity

U = −e−κ0u, V = eκ0v. (C33)

This allows rewriting

e−iωtϵϵ′ = e−iωt

[
e

πωϵ′
2κ0 Θϵ + e

−πωϵ′
2κ0 Θ−ϵ

]
. (C34)

Let

e−
π|ω|
κ0 = tanhχ, (C35)

then

e−
π|ω|
2κ0 =

√
sinhχ

coshχ
. (C36)

So (C34) is simplified to

e−iωtϵϵ′ =
e−iωt

√
sinhχ coshχ

[coshχ Θϵ + sinhχ Θ−ϵ] ,

(C37)

e−iωtϵϵ(ω)
√

sinhχ coshχ = e−iωt [coshχ Θϵ + sinhχ Θ−ϵ] .
(C38)

When considering the modes of the field by regions R
and L, according to (C14), it follows that

Φ
(ϵ)
Ω = ΦΩ(x)e

−iωtΘϵ(x) ∈ R, (C39)

Φ
(−ϵ)
Ω = ΦΩ(x)e

−iωtΘ−ϵ(x) ∈ L. (C40)

From the foregoing, it follows that (C38) is simplified to

e−iωtϵϵ(ω)
√
sinhχ coshχ ΦΩ = Φ

(ϵ)
Ω coshχ+Φ

(−ϵ)
Ω sinhχ.

(C41)
For (C41), the HH∗ modes are recognized for the scalar
field in BTZ as

Ψϵ
Ω(x) = e−iωtϵϵ(ω)

√
sinhχ coshχ ΦΩ(x). (C42)

From the foregoing, it is possible to obtain the Bo-
goliubov transformation between HH∗ modes and KB∗

modes defined as [10, 25, 28, 30, 45]

Ψϵ
Ω(x) = Φϵ

Ω(x) coshχ+Φ−ϵ
Ω (x) sinhχ. (C43)

Appendix D: QUANTUM FORMULATION

In this section, a quantum approximation to the scalar
field in BTZ spacetime is considered. Let the scalar field
modes be of the form [47]

ΦΩ(t, x) =
e−i[ωt−

∫ √
Tdr+mϕ]

4
√
4ω2TV 2

, (D1)

where V is the 2-Volume for BTZ spacetime. From (D1),
it is possible to define

FΩ =
e−i[ωt−

∫ √
Tdr+mϕ]

4
√
4ω2TV 2

, (D2)

and its conjugate hermitian. Therefore, the field operator
ΦΩ(t, x), is rewritten as

ΦΩ(t, x) =
∑
Ω

[
aΩFΩ + b†ΩF

∗
Ω

]
(D3)

and its conjugate hermitian. Therefore, this allows ob-
taining the Hamiltonian of the scalar field in the BTZ
spacetime

H =
∑
Ω

1√
T
ω
[
a†ΩaΩ + b†ΩbΩ

]
+ Z.P.E., (D4)

where Z.P.E is recognized as the zero-point energy, N =

a†ΩaΩ and N̄ = b†ΩbΩ. Thus, the Hamiltonian operator
has been estimated for the scalar field in the proximity
of the BTZ hole [10, 25, 32, 45, 48, 49].

Appendix E: THERMO FIELD DYNAMICS ON
BTZ BLACK HOLE

Considering that the BTZ spacetime was written as (C1),
where r+ and the null coordinates U, V . Which allows to
build the Carter-Penrose diagram, see Figure 3 [32, 36,
38, 50]. Where, (+) ∈ R and (−) ∈ L. In this context,
the scalar field Φ(t, x) has a Hamiltonian of eigenvalues
constituting the eigenvalues as

H(+), |n⟩(+) ∈ R, H(−), |n⟩(−) ∈ L, (E1)

and the eigenvalue equation

H(+) |n⟩(+)
= E(+) |n⟩(+) ∈ R, (E2)

H(−) |n⟩(−)
= E(−) |n⟩(−) ∈ L. (E3)

The TFD technique establishes the field Hamiltonian as
a state of entanglement between the field

Φ(+)(t, x) ∈ R, Φ(−)(t, x) ∈ L. (E4)

Consequently, the Hamiltonian H of the complete field
is determined as

H = H(+) −H(−), (E5)

where the modes of the field ΦΩ(t, x) are expressed by
regions R,L in terms of the creation and annihilation
operators of the particles and corresponding antiparticles
(D3)

Φ
(±)
Ω (t, x) =

∑
Ω

[
a
(±)
Ω FΩ + b

†(±)
Ω F ∗

Ω

]
. (E6)
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From the foregoing, eight modes are necessary to describe
the scalar field ΦΩ(t, x) in BTZ. Consequently, having the
commutation relations for the operators of creation and

annihilation per region R,L defined as
[
a
(±)
Ω , a

†(±)
Ω

]
=[

b
(±)
Ω , b

†(±)
Ω

]
= 1 and the other possible combinations are

null.

On the other hand, the normalization condition on the
quantum states of the field is

∣∣∣m(+), n(+),m(−), n(−)
〉
=

∣∣∣m(+)
〉 ∣∣∣n(+)

〉 ∣∣∣m(−)
〉 ∣∣∣n(−)

〉
,

(E7)
for modes ω < 0 and ω > 0.

The completeness relation

I =
∑

m(±),n(±)

∣∣∣m(+), n(+),m(−), n(−)
〉〈

m(+), n(+),m(−), n(−)
∣∣∣ .

(E8)
In addition, the empty states per region are defined as

a
(±)
Ω |0⟩(±)±

B = 0, (E9)

b
(±)
Ω |0⟩(±)±

B = 0, (E10)

Vacuum state for particles with ω > 0 and ω < 0 in the
regions R and L. This makes it possible to write the
temperature-dependent vacuum state as

|0(β)⟩±B =
∣∣∣0(+)(β), 0(−)(β)

〉±

B
. (E11)

Consequently, the thermal vacuum state is

|0(β)⟩+B =
∑
n

e
−βEn

2

n!
√
Z(β)

[
a
†(+)
Ω

]n [
a
†(−)
Ω

]n ∣∣∣0(+), 0(−)
〉+

B
,

(E12)

|0(β)⟩−B =
∑
m

e
−βEm

2

m!
√
Z(β)

[
b
†(+)
Ω

]m [
b
†(−)
Ω

]m ∣∣∣0(+), 0(−)
〉−

B
.

(E13)
and the thermal vacuum state complete for R and L re-
gions on BTZ spacetime, |0(β)⟩B = |0(β)⟩+B |0(β)⟩−B

|0(β)⟩B =
∑
m,n

e
β
2 (En+Em)

m!n!Z(β)

[
a
†(+)
Ω

]n [
a
†(−)
Ω

]n [
b
†(+)
Ω

]m [
b
†(−)
Ω

]m ∣∣∣0(+), 0(−)
〉+

B

∣∣∣0(+), 0(−)
〉−

B
. (E14)

If the vacuum states are subject to the normalization
condition, such that it is possible to establish that the
partition function is

Z±(β) =
1

1− e−β|ω| , (E15)

which makes it possible to obtain the vacuum state as

|0(β)⟩+B =
√
1− e−β|ω| exp

[
e−

β|ω|
2 a†(+)a†(−)

] ∣∣∣0(+), 0(−)
〉
,

(E16)

|0(β)⟩−B =
√

1− e−β|ω| exp
[
e−

β|ω|
2 b†(+)b†(−)

] ∣∣∣0(+), 0(−)
〉
.

(E17)

And the expected value of the occupation number as

⟨N⟩+ =+
B ⟨0(β)| a†(+)a(+) |0(β)⟩+B , (E18)〈

N̄
〉−

=−
B ⟨0(β)| b†(+)b(−) |0(β)⟩+B . (E19)

To this end, it is necessary to express the temperature-
dependent creation and annihilation operators β as a
Bogoliubov transformation [29]. This enables us to
compute the expected value of the occupation number
[7, 10, 25, 27, 29, 30, 51, 52].

⟨N⟩+ =
〈
N̄
〉−

=
1

eβ|ω| − 1
. (E20)

Appendix F: WIGHTMAN FUNCTION FOR
SCALAR FIELD IN BTZ SPACETIME

The Wightman function corresponds to a two-point
Green’s function of the form [10, 25, 53, 54]

⟨Tµν(x, x′)⟩ = Dµν′W (x, x′), (F1)

where

Dµν′ = ∂(µ∂ν′)− gµν

2

(
∂β∂β′ −m2

)
(F2)

and

Φ2(x, x′) =W (x, x′). (F3)

Such that W (x, x′)+, is defined as the Wightman func-
tion for positive frequency modes, in other

W (x, x′) = ⟨0|Φ(x)Φ∗(x′) |0⟩ . (F4)

Under the Killing-Boulware (KB∗) vacuum state scheme

W (x, x′)KB∗ =KB∗ ⟨0|Φ(ϵ)
Ω (x)Φ

∗(ϵ)
Ω′ (x′) |0⟩KB∗ . (F5)
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And also, under the Hartle-Hawking (HH∗) vacuum
state scheme

W (x, x′)HH∗ =HH∗ ⟨0|Ψ(ϵ)
Ω (x)Ψ

∗(ϵ)
Ω′ (x′) |0⟩HH∗ . (F6)

Moreover, considering that the modes of the field have
been written as (D3) for each of the regions R,L, in other
words

Φ
(ϵ)
Ω (t, x) =

∑
ϵ,Ω

[
a
(ϵ)
Ω F

(ϵ)
Ω + b

†(ϵ)
Ω F

∗(ϵ)
Ω

]
(F7)

and its conjugate hermitian, where ϵ = ±.

Considering the KB∗ vacuum state, it is expressed as

|0⟩KB∗ =
∣∣∣0(+), 0(−)

〉+

KB∗
⊗
∣∣∣0(+), 0(−)

〉−

KB∗

=
∣∣∣0(ϵ)〉

KB∗
⊗
∣∣∣0(−ϵ)

〉
KB∗

. (F8)

And the commutation rules

[
a
(ϵ)
Ω , a

†(ϵ′)
Ω′

]
=

[
b
(ϵ)
Ω , b

†(ϵ′)
Ω′

]
= ϵϵ(ω)δϵϵ′δΩΩ′ . (F9)

Therefore

W (x, x′)KB∗ =
∑

ϵ,Ω,ϵ′,Ω′

F
∗(ϵ)
Ω F

(ϵ)
Ω′ Θ(ϵω), (F10)

where ϵ(ω) = sgnω = Θϵω, δΩΩ′ = δωω′δmm′ , x = r, ϕ
and Ω = ω,m. The Wightman function under the HH∗

scheme is

W (x, x′)HH∗ =HH∗ ⟨0|Ψ∗(ϵ)
Ω (x)Ψ

(ϵ)
Ω′ (x

′) |0⟩HH∗ , (F11)

where the scalar field has been written as

Ψ
(ϵ)
Ω (U, V, x) =

∑
ϵ,Ω

[
d
(ϵ)
Ω GΩ + f

†(ϵ)
Ω G∗

Ω

]
(F12)

and its conjugate hermitian. At this point it should be
clarified that there is an equivalence between the KB∗

modes and the HH∗ modes. Such equivalence is medi-
ated by a Bogoliubov transformation (C38). Considering
the KB∗ vacuum state, it is expressed as

|0⟩HH∗ =
∣∣∣0(+), 0(−)

〉+

HH∗
⊗

∣∣∣0(+), 0(−)
〉−

HH∗

=
∣∣∣0(ϵ)〉

HH∗
⊗

∣∣∣0(−ϵ)
〉
HH∗

(F13)

and the commutation rules
[
d
(ϵ)
Ω , d

†(ϵ′)
Ω′

]
=

[
f
(ϵ)
Ω , f

†(ϵ′)
Ω′

]
=

ϵϵ(ω)δϵϵ′δΩΩ′ . This makes it possible to estimate

W (x, x′)HH∗ =HH∗ ⟨0|Ψ(ϵ)
Ω (x)Ψ

∗(ϵ)
Ω′ (x′) |0⟩HH∗

=
∑

ϵ,Ω,ϵ′,Ω′

G
∗(ϵ)
Ω G

(ϵ)
Ω′ Θ(ϵω).

(F14)

Therefore, it is possible to obtain

W (x, x′)HH∗ =
∑
ϵ,Ω

Θ(ϵω)×

[
F

(ϵ)
Ω F

∗(ϵ)
Ω cosh2 χ+ F

(−ϵ)
Ω F

∗(−ϵ)
Ω sinh2 χ

]
.

(F15)

The difference between (F15) and (F10) is

(WHH∗ −WKB∗) (x, x′) =
∑
±,Ω

Θ(+ω) sinh2 χ
[
F

(+)
Ω F

∗(+)
Ω + F

(−)
Ω F

∗(−)
Ω

]
+Θ(−ω) sinh2 χ

[
F

(+)
Ω F

∗(+)
Ω + F

(−)
Ω F

∗(−)
Ω

]
(F16)

It is possible to constrain (F16) to one of the regions

(WHH∗ −WKB∗) (x, x′) =
∑
Ω

sinh2 χ[
F

∗(ϵ)
Ω F

(ϵ)
Ω + F

∗(−ϵ)
Ω F

(−ϵ)
Ω

]
.

(F17)

It follows that (F17) is simplified to

(WHH∗ −WKB∗) (x, x′) =
∑
Ω

1

eβω − 1
F

∗(+)
Ω F

(+)
Ω .

(F18)
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From the foregoing, it is feasible to obtain the component ⟨T00(x, x′)⟩ as

∂0∂0′ (WHH∗ −WKB∗) (x, x′) =
1

2

∑
ω

ω

eβω − 1

∑
m

φ∗
Ω(r)φ(r)Ω (F19)

the sum over ω, in the limit to the continuum can be
expressed as an integral∑

ω

ω

eβω − 1
−→

∫ ∞

−∞

1

eβω − 1
dω = 2

∫ ∞

0

1

eβω − 1
dω.

(F20)
From the foregoing, it follows that

∂0∂0′ (WHH∗ −WKB∗) (x, x′) =∫ ∞

0

ω

eβω − 1
dω

∑
m

φ∗
Ω(r)φ(r)Ω.

(F21)

Considering the BTZ metric (C1), where it follows that
for the scalar field it is possible to obtain the KGE and
whose modes (C4) make it possible to obtain the ra-
dial equation determined. It is possible to consider a
new transformation of the radial component as φ(r)Ω =

1√
rf(r)

ψΩ(r). Which makes it possible to obtain

d2ψ(r)Ω
dr2

+T∗2ψ(r)Ω = 0 (F22)

where

T∗2 =
1

f(r)

{
ω2

f(r)
−m2 − m2

r
+B

}
(F23)

and

B =
1

2

[
− d

dr

(
df(r)

dr
− 1

2
f(r)

)
+

d

dr

(
ln |f(r)1/2|

)
− f(r)

2r2

]
.

(F24)
Under the WKB approximation, the component φ(r)Ωis

ψΩ(r) =
1

4
√
4ω2T∗2

e−i
∫
T∗dr. (F25)

This allows for φ∗
Ω(r)φ(r)Ω = 1

2ωrf(r)T∗ . Therefore, it

follows that

∂0∂0′ (WHH∗ −WKB∗) (x, x′)|x=x′ =

=
1

2r

∫ ∞

0

ω

eβω − 1
dω×

1

ω

∑
m

1

f(r)T∗ .

(F26)

The sum over m in the limit to the continuum is rewritten
as

∑
m

1

f(r)T∗ −→
∫ mmax

0

1

f(r)T∗ dm, (F27)

which makes it possible to rewrite

∂0∂0′ (WHH∗ −WKB∗) (x, x′)|x=x′ =
1

2r

∫ ∞

0

ω

eβω − 1
dω

1

ω

×
∫ mmax

0

1

f(r)T∗ dm.

(F28)

Choosing that

T∗2 = T∗2(r, ω,m)|m=mmax
= 0. (F29)

T∗2
max =

1

f(r)

{
ω2

f(r)
−m2 − m2

max

r
+B

}
= 0 (F30)

in other words,
m2

max

r = ω2

f(r) −m2 + B = p2. Therefore,

it follows that (F29) is simplified to

T∗(r, ω,m)|m=mmax
=

√
1

f(r)

[
p2 − m2

r

]
. (F31)

Inserting (F31) in

∫ mmax

0

1

f(r)T∗ dm =

∫ mmax

0

1

f(r)
√

1
f(r)

[
p2 − m2

r

]dm,
(F32)

And then (F28)
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∂0∂0′ (WHH∗ −WKB∗) (x, x′)|x=x′ =
1

2r

∫ ∞

0

ω

eβω − 1
dω

1

ω

√
rf(r)

f(r)

∫ mmax

0

1√
[p2r −m2]

dm. (F33)

Integrating by m is∫ mmax

0

1√
[p2r −m2]

dm = arctan

[
mmax√

p2r −m2
max

]
,

(F34)
in a Taylor series

arctan

[
mmax√

p2r −m2
max

]
≈ 1. (F35)

Consequently, (F33) is simplified to

∂0∂0′ (WHH∗ −WKB∗) (x, x′)|x=x′ =
1

2r

∫ ∞

0

ω

eβω − 1
dω

× 1

ω

√
rf(r)

f(r)
.

(F36)

With local energy per mode

E =
ω√
f(r)

(F37)

and the local temperature

T (r) =
TH√
f(r)

, TH =
1

β
. (F38)

Then

βω =
E

T (r)
. (F39)

Considering the relativistic energy E2 = m2 + p2, with
the condition that E ≫ m, makes it possible to obtain

ωdω

f(r)
= pdp. (F40)

Then

∂0∂0′ (WHH∗ −WKB∗) (x, x′)|x=x′ =

∫ ∞

0

E

eE/T (r) − 1
pdpf(r)∆

(F41)
where ∆ = 2π

ω2
√
r
. It is possible to assert that ∆|r=r+ =

2π
ω2√r+

≈ cte. This is possible, since the shell is in a

meta-stable phase according to (B11) [16, 17]. Moreover,
it follows that

g00g00 + g0βg0β = 1. (F42)

Then g00g00 = 1, also g00∂0 = ∂0, then(F41)

−∂0∂0′ (WHH∗ −WKB∗) (x, x′)|x=x′ =

∫ ∞

0

E

eE/T (r) − 1
pdp∆.

(F43)
Considering (F2) with µ = ν = 0

D00′ (WHH∗ −WKB∗) (x, x′)|x=x′ =
[
∂(0∂0′)−

g00
2

(
∂0∂0′ −m2

)]
(WHH∗ −WKB∗) (x, x′)|x=x′ (F44)

and
(
∂β∂β′ −m2

)
(WHH∗ −WKB∗) (x, x′)|x=x′ , where |∂µΦ|2 = ∂µΦ

∗∂µΦ. Therefore

gµν∂µΦ
∗∂νΦ =

[
− ω2

f(r)
φ2
Ω(r) + f(r)

∣∣∣∣∂φΩ(r)

∂r

∣∣∣∣2
]

1

2ω
+

1

r2
φ2
Ω(r)

2ω
m2, (F45)

where Ω = ω,m for BTZ. In addition, considering that
φΩ(r) is broken down into the incoming (C17) and out-
going (C18) modes. Consequently,

gµν∂µΦ
∗∂νΦ+ Φ2

Ω(r)m
2 = Φ2

Ω(r)
αω,m(r)

2ω
. (F46)

Which makes it possible to write

gµν∂µ∂ν +m2 =
αω,m(r)

2ω
. (F47)

In the limit to the continuum over ω
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[
∂µ

′
∂µ +m2

]
(WHH∗ −WKB∗) (x, x′) =

1

2

∫ ∞

−∞

ω−1

eβω − 1

∑
m

F
∗(+)
Ω F

(+)
Ω αω,m(r). (F48)

Consequently

⟨Tµν(x, x′)⟩ = −g00
2

(
∂β

′
∂β −m2

)
(WHH∗ −WKB∗) (x, x′).

(F49)
For the time components of the tensor Tµν

g00 ⟨T00(x, x′)⟩ = −∂0∂0′ (WHH∗ −WKB∗) (x, x′)

−
(
∂β∂β′ −m2

)
(WHH∗ −WKB∗) (x, x′)

(F50)

where, the first term on the right is determined by (F41)
and is proportional to the frequency ω, while the second
term is proportional to 1/ω. Consequently, in limit of
high frequencies, the second term can be disregarded, in

other words〈
T 0
0 (x, x

′)
〉
= σ(r) = −

∫ ∞

0

E

eE/T (r) − 1
pdp. (F51)

With the condition that ∆|r+ ≈ cte, allows simplifying
(F51) even more as

σ(r) = −
∫ ∞

0

E

eE/T (r) − 1

2πp dp

h2
. (F52)

Supposing an ideal gas model and E = pv

P =
1

2
σ(r)

=
1

2

∫ ∞

0

pv

eE/T (r) − 1

2πp dp

h2
. (F53)
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