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Abstract

To improve predictive machine learning-based models limited by sparse data, supplemental physics-
related features are introduced into a deep neural network (DNN). While some approaches inject
physics through differential equations or numerical simulation, improvements are possible using
simplified relationships from engineering references. To evaluate this hypothesis, thin rectangular
plates were simulated to generate training datasets. With plate dimensions and material properties as
input features and fundamental natural frequency as the output, predictive performance of a data-
driven DNN-based model is compared with models using supplemental inputs, such as modulus of
rigidity. To evaluate model accuracy improvements, these additional features are injected into various
DNN layers, and the network is trained with four different dataset sizes. When evaluated against
independent data of similar features to the training sets, supplementation provides no statistically-
significant prediction error reduction. However, notable accuracy gains occur when independent test
data is of material and dimensions different from the original training set. Furthermore, when
physics-enhanced data is injected into multiple DNN layers, reductions in mean error from 33.2% to
19.6%, 34.9% to 19.9%, 35.8% to 22.4%, and 43.0% to 28.4% are achieved for dataset sizes of 261,
117, 60, and 30, respectively, demonstrating potential for generalizability using a data supplementa-
tion approach. Additionally, when compared with other methods—such as linear regression and
support vector machine (SVM) approaches—the physics-enhanced DNN demonstrates an order of
magnitude reduction in percentage error for dataset sizes 0of 261, 117, and 60 and a 30% reduction for
asize of 30 when compared with a cubic SVM model independently tested with data divergent from
the training and validation set.

1. Introduction

Owing to its ability—in the presence of sufficient data—to predict new outcomes by determining complex
relationships among dataset parameters [1], machine learning (ML) enjoys increasing application for simulating
physical phenomena in science and engineering [2, 3]. This is in addition to its use as a data mining and human
behavioral study tool [4]. Unfortunately, models driven solely by data may not be conducive to generalization,
particularly when such data are limited [5—7], which can lead to large prediction errors for input parameters
outside the range of those used for model development [8]. Also limiting are inaccuracies from uncertainties
inherent to empirical measurements. Finally, a purely data-driven ML-based model can act as a ‘black box’
where inputs and outputs are known, but the underlying process for deriving relationships among these remains
amystery [9]. This is an issue when a fundamental understanding of the principles that cause certain features to
drive others is crucial.

© 2024 The Author(s). Published by IOP Publishing Ltd
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Alternatively, popular analytical and numerical approaches—such as the finite element method [10] and
computational fluid dynamics [11]—are leveraged significantly in science and engineering to make behavioral
predictions. Unlike machine learning, these techniques work by solving the governing partial differential
equations often rooted in first principles. Notably, however, while ML suffers from lack of generalization and
conceptual insight into physical processes, an oft-overlooked deficiency of analytical approaches is their inability
to overcome the presence of unknown physics. Because numerical modeling invariably includes simplifying
assumptions, nontrivial phenomena driving input-output relationships in a real system are often left
unaccounted [12]. Additionally, physics-based numerical models may require significant time and
computational resources to conduct a single simulation and are subject to limitations such as initial conditions
and linearity [13], limiting their usefulness for studying an array of design options.

Fortunately, deficiency for the physics-based model is where ML has an advantage; data derived from
experimentation will—within measurement limitations and uncertainties—reflect the true physical state of a
system [12]. Therefore, benefit may be gained by successful integration of ML with modeling, potentially leading
to improved designs from more efficient computation of possible solutions. Indeed, studies such as those
undertaken by Zhu et al [ 14, 15] for predicting total organic carbon (TOC) content of a reservoir, as well as Lu
and Zhang [16] with the assessment of seismic velocity inversion, have successfully integrated physics models
with ML, particularly neural networks. Nevertheless, available time and resources to develop a working
predictive model may still be less than needed for integration of ML with numerical simulation. Consequently,
the incorporation of simplified physical relations with ML becomes an attractive alternative [17]. And while still a
rich field of research, integration of physics into ML models has been investigated using a variety of approaches,
such as tailored loss functions [ 18] or reduced-order models [19]. This leads to the level of physics integration
investigated herein, namely, simplified theories. This methodology—presented by Pawar et al [ 17]—takes
advantage of fundamental physical relationships among features to form the basis of parameter augmentation.
For example, the authors increased neural network-based model accuracy for predicting flow around an airfoil
by considering fundamental fluid dynamic quantities—such as Reynolds number and angle of attack—and
calculating these characteristics from existing features. Once computed, the physics-based (as opposed to purely
measured) datapoints were inserted into an intermediate hidden neural network layer to supplement the
original data. This approach ultimately showed increased prediction accuracy within the limitations of the
underlying theory.

While perhaps not as accurate as may be found through integration with numerical-based or reduced-order
models, a DNN implementation strategy that combines simplified physics with machine learning has the
potential to provide solutions that are better than purely data-driven techniques, and—once a model has been
built—results may compute faster than for physics-only approaches. This is important where time to build a
computational model or availability of suitable software is lacking. Therefore, establishment of a simplified
approach will prove invaluable for the quick design and implementation of a system.

In order to advance the use of simplified physics within a machine learning framework for sparse datasets,
the study detailed herein shows that not only can supplementing datasets with additional features generated
from simple physical relations improve DNN-based model predictions, but such physics-based information has
varying impact to model predictive accuracy based on size of training dataset. Furthermore, this investigation
shows that improvements are to be gained by reintegrating the same physical features into multiple DNN layers
rather than simply using them once, and that different combinations of augmented layers produce notably
different results, with multiple layers often outperforming those generated with physics introduced only into a
single layer. Finally, infusion of a DNN with physics-based information is shown to have the greatest impact on
model accuracy when used to predict behavior for data not within the scope of the original training sets. The end
result is a methodology that shows at least modest improvement to DNN model accuracy and generalizability
when an abundance of datasets is lacking, and one that may be enhanced through further study and
hyperparameter tuning.

2. Methods

The objective of this study is to examine the effects on model predictive accuracy when integrating simplified
physics into a sparsely-trained deep neural network (DNN) via data augmentation. Four specific aspects of this
are investigated, as follows.

(1) Type and number of physics relations added. Three different simplified physics relations are used for data
augmentation. The goal is to observe whether certain individual terms or combinations thereof provide
more improvement than others to DNN-based model accuracy.

2



10P Publishing

Phys. Scr. 99 (2024) 056010 N R Clinkinbeard and N N Hashemi

(a) (b)

Figure 1. Schematic of a thin rectangular plate with simply-supported boundary conditions along all four edges, where (a) shows
orthogonal (top) and planar (bottom) views of the plate having dimensions length, /, width, w, and thickness, #, and (b) demonstrates
the mode shape for the simply-supported thin plate during excitation of its fundamental resonance.

(2) Effects of including physics at different and/or multiple layers of the DNN. Different cases are developed to
examine how inclusion of physics affects model development when injected into each layer singularly or
into multiple layers for a given DNN. The purpose is to understand if focusing on a specific DNN layer (or
layers) for injecting physics has a greater influence on predictive power of the resulting model.

(3) Effect of training dataset size on model accuracy improvement. The third facet is of this study is to examine the
impact of augmentation with simplified physics on increasing model accuracy when progressively smaller
training datasets are available.

(4) Effect of simplified physics on predictive accuracy for inputs outside the original domain. This final aspect is
geared toward examining whether or not augmenting a DNN with simplified physics data can improve
predictions when new input data is largely outside of the domain of the original, i.e., does the enhancement
procedure developed herein create a model that can generalize better than the original? To understand the
answer to this question, two basic datasets are evaluated for every combination of (1), (2), and (3) previously
discussed—one having parameters within the original training dataset and the other having parameters that
lie outside.

The physical phenomenon chosen for this investigation is resonance of a thin rectangular plate with four
simply-supported edges, shown in figure 1(a). Using a DNN framework, a predictive model is developed for
processing previously-measured data to accurately predict the fundamental resonant frequency of a new plate
design using three easily measurable dimensional parameters (length, width, and thickness) and three
fundamental material properties (density, Young’s modulus, and Poisson’s ratio). Figure 1(b) provides a
schematic of the mode shape for such a simply-supported thin rectangular plate during excitation of its
fundamental resonance.

Once predictive performance of the baseline DNN is established for four different sizes of training datasets,
supplementary datapoints are generated based on the six input features (i.e., three dimensions and three
material properties), and injected into the same DNN code, albeit at different layers. To assess performance of
any one combination of augmenting variables /layer(s) of insertion, each DNN-based model is used to predict
natural frequency of plates containing various combinations of input features for which the models were not
trained. The final performance evaluation is based on the mean and median error between the predicted and
actual natural frequencies. Each model iteration is assessed with respect to additional input data using similar
materials and dimensions to the original, as well as for a material type and dimensions not part of the DNN
training parameters.
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(a) (b)

Figure 2. Finite element representation of a rectangular plate with simply-supported boundary conditions along all four edges. The
view in (a) shows the finite element mesh, which was developed using 4-node quad (SHELL181) elements, which have bending and
membrane stiffness. The view in (b) is fringe plot of the fundamental mode shape, which is similar for all combinations of dimensions
and materials discussed herein.

Table 1. Worst-case mesh metrics for all plates modeled using the finite
element method. All evaluated quantities are near the ideal value, indicating

ahigh mesh quality.
Actual Ideal

Metric value value Range
Aspect Ratio 1.07 1 >1
Element Quality 0.980 1 Otol
Jacobian Ratio (Corner 0.975 1 —1to1l

Nodes)
Jacobian (Gauss Points) 0.985 1 —1tol
Max. Corner Angle 92.1 90° 0°t0180°

The following paragraphs briefly describe the generation and nature of the baseline data, theory behind the
development of physics-based data, and the DNN implemented to study the effects of including physics-based
information.

2.1. Training and testing dataset generation

The training and testing datasets for this study were generated through normal modes analysis using the finite
element software ANSYS Version 2021, Release 1 [20]. Thin rectangular plates with four simply-supported edges
having varying dimensions and material types were modeled, and their fundamental natural frequencies
calculated. Figure 2 shows an example finite element mesh for the plates under study, as well as a sample contour
plot of the fundamental mode shape corresponding to the frequency of interest. The mesh itself was scaled for
each individual plate size and adjusted to minimize discretization and other element approximation errors.
Table 1 provides relevent mesh metrics used to assess the finite element models.

As well as serving as inputs to the finite element models, the minimal dataset input parameters used for all
ML-based model generation comprise three plate dimensions (thickness, width, and length), weight density, and
two elastic properties (Young’s modulus Poisson’s ratio), for a total of six features. To provide a somewhat
diverse—but limited—set of data used to train the models, plates were simulated using aluminum, FR-4,
copper, magnesium, and stainless steel. Intrinsic and elastic properties for these materials are provided in table 2,
while the diversity of dimensions used is given in table 3.

Using the aforementioned parameters, a total of 500 solutions were calculated. From this, 261 datapoints are
reserved for model generation (training and validation), while the remaining 239 datapoints are retained for
independently assessing model predictive accuracy.
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Table 2. Materials used in the generation of training data, with their
intrinsic and elastic property values. Note the wide range of material
properties chosen.

Young’s

modulus Poisson’s
Material Weight density (kg/m?) (GPa) ratio
Aluminum 2,700 68 0.33
FR-4 1,900 14 0.12
Copper 8,940 110 0.343
Magnesium 1,800 45 0.35
Stainless Steel 7,900 200 0.27

Table 3. Dimensions of simply-supported rectangular plates used in the
generation of training data. In total, five different combinations of planar
dimensions were combined with each increment of plate thickness to give
atotal of 500 datasets. These 500 datasets were split into 261 for training/
testing and 239 for independent testing.

Dimension Set Value

i 0.0508 m x 0.0508 m

il. 0.0476 m x 0.0762 m
Planar length and iii. 0.133 m x0.178 m

width, w X 1

iv. 0.152 m x 0.0672 m

V. 0.267 m x0.222 m
Plate Thickness, t: 0.762 to 3.18 mm; increments

0f0.127 mm

One final note regarding the training/testing dataset is the application of uncertainty. Since the data
generated for this study are computational rather than physical, to simulate a possible 2% (+/—1%) variation
due to meaurement uncertainty and imperfect physical sample, the final output feature—i.e., natural frequency
—is adjusted as follows:

Fradi = £,(0.99 + 0.02R) 0

where R is a random number between the values of 0 and 1 having an approximately Gaussian distribution, and
fra i is the final adjusted natural frequency used at the output parameter. (For convenience, the adjusted natural

frequency is simply referred to as f, for the remainder of this study.) This addition of uncertainty was simply to
emulate measured data to a degree and analysis of its effect is not a focus of the study.

2.2. Simplified physics: natural frequency of a thin plate

Simplified physics used for integration with the deep learning model is partly based on small-deflection plate
theory, adapted from Steinberg [21]. Using this approach, the fundamental natural frequency, f,, of the
rectangular plate simply-supported along four edges shown in figure 1 is as follows:

r(DeYPT1 1
o= 5(7) [ 7] @

where t is the plate thickness, p is the material mass density, w and I are the plate width and length, respectively,
and D is flexural rigidity. Flexural rigidity is computed from thickness, Young’s modulus, E, and Poisson’s ratio,
v

Et?

PEnaon ©)

Note that this term—calculated independently from planar dimensions and boundary conditions—
becomes the primary physics-based relation used to augment DNN-based model generation. This is important
because while the plate equation is simple enough to use to calculate fundamental frequencies for our current
configuration, for the majority of real-world applications, physical boundary conditions are not easily
classifiable and may be a mix of simple, clamped, or elastic, to name a few. However, flexural rigidity is relatively
easy to estimate for any plate based on material elastic properties and plate thickness. Therefore, this approach
can be adapted to any dimensional and boundary condition configuration.
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Figure 3. Examples of deep neural networks used to generate predictive models for fundamental resonance of a rectangular plate
simply-supported along all edges. Note the following common characteristics of these DNNGs: six input features (plate thickness, ¢,
length, [, width, w, density, p, Young’s modulus, E, and Poisson’s ratio, v/); four hidden layers with several neurons each; and one
output layer with a single feature, i.e., fundamental natural frequency, f,,. (a) Basic DNN used to predict natural frequency of thin
rectangular plates simply-supported along all four edges. (b) DNN with augmented data set generated from physical relationships
among original data. Here the physics-based parameters are simply added to the baseline inputs to give up to nine total input features.
(c) DNN with physics integrated into a single layer (Layer 3 shown). In this architecture, physics-based features are added to a hidden
layer as additional inputs for that layer only. (d) DNN with physics integrated into multiple layers (Layers 2 through 4 shown). With
this final example, physics-based features are inserted into the first and/or an early hidden layer and re-inserted at one or more
subsequent layers.

Since flexural rigidity is only dependent on three features—plate thickness, Young’s modulus, and Poisson’s
ratio—an attempt is made to involve the remaining dimensions and material density into simplified physics by
considering the plate weight, W, calculated as

W=txwxIxp 4)

Shear modulus, G, is used as a third and final supplemental term and is calculated as:
G=E/[2(1 + v)] )

Since equation (2) is based on thin plate theory for small deflections, shear modulus has no direct bearing on
natural frequency calculations where such assumptions are present; rather, it is chosen purely for its inclusion of
both Young’s modulus and Poisson’s ratio, providing a relationship between the two. Particularly, its presence is
intended as an additional datapoint to inform the DNN of the relationship between elastic parameters.

2.3. Neural network architecture
Based on early experimentation, the basic predictive model chosen and developed for this study is a deep neural
network comprising four hidden layers and one output layer, as diagrammed in figure 3(a). The optimization
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Table 4. Selected hyperparameters and their values. Note that for
performance comparison purposes, hyperparameters remained
constant throughout the study.

Hyperparameter Description/Value
Hidden layer activation function Rectified Linear Unit (ReLU)
Output layer activation function Linear

Learning rate, o, 0.01

Batch size 80

Epochs 500

Number of neurons per layer 40

Numerical stability parameter, & le-6

Loss function Mean-Squared Error (MSE)

algorithm chosen for this study is Adam, introduced by Kingma and Ba [22]. Implementation of each DNN was
conducted using Python 3.8.8 64-bit through the Spyder 4.2.5 interface, as provided by Anaconda Navigator
2.3.2[23]. The code used for implementation was initially patterned after that developed by Pawar et al [17].

Data used for training and validation of the neural networked-based models were configured into comma-
separated-value(s) (CSV) format. The resulting data files contain labeled column headings corresponding to the
six input parameters (plate thickness, length, width, density, Young’s modulus, and Poisson’s ratio) and one
output parameter (fundamental resonance). For iterations where augmented data were used, additional
columns were added, as necessary. Specifically, these include flexural rigidity (D), plate weight (W), and material
shear modulus (G). In all cases, data rows—each representing a different plate configuration—were randomized
within the CSV files in order to remove biasing and allow representative diverse sampling to be used for
validation.

Prior to model generation, preprocessing was conducted to condition the data for use with the neural
network. Specifically, values for all parameters (input and output) were normalized to a range of 0 to 1 using
min-max scaling, as follows [24]:

Xsc = (X - Xmax)/(Xmax — Xmin) (6)

where X is the datapoint undergoing scaling for a given parameter, Xy, is the maximum value for the given
parameter within the dataset, X, is the minimum parameter value for the given dataset, and X is the final
scaled value.

Hyperparameter selection was decided by trial and error rather than through a rigorous optimization
process. For consistency, all DNN-based model generation is conducted using the parameters provided in
table 4. Note that the training/testing data was parsed such that 20% was reserved for validation, with the
balance used for model training.

2.4. Integration of physics into NN architecture

As previously discussed, the methodology chosen for integrating physics into the process of machine learning is
to insert physics-based quantities as augmentative data into various DNN layers. Four basic approaches are
taken, represented in figure 3:

1. Neural network with no physics terms (figure 3(a)),
2. insertion of physics into Layer 1 (figure 3(b)),
3. insertion of physics into Layers 2, 3, 4, or 5 individually (figure 3(c)), and

4. insertion of physics into multiple layers for each run (figure 4(c)).

These four strategies represent nine total DNNs: one basic network without additional physics terms and eight
different ways of integrating physics into the baseline DNN.

Along with varying locations of physics integration within the DNN model, six different combinations of
calculated parameters are examined, listed in table 5. The purpose behind this is to observe whether single or
multiple variables show the most improvement when integrated into the DNN.

The final consideration for model development is amount of training data available, for which the following
dataset sizes are used: 261 datapoints, 117 datapoints, 60 datapoints, and 30 datapoints. The largest dataset
containing 261 points serves as a superset from which the 117, 60, and 30 are derived. The goal in examining

7



10P Publishing

Phys. Scr. 99 (2024) 056010 N R Clinkinbeard and N N Hashemi

Natural Frequency Prediction

265

260

®e
o9
oo,
e \“sme\:\nsggea
®
®oe

N
wn
w

Average (Hz)

245 ....-.......o.'...o-..... ..:

240 —T—————T—T—T—TTT—rTTT T

Averages

e Average * Standard Deviation

this example was trained with a dataset size of 261.).

Standard Deviation (Hz)

Figure 4. Example of averaging used for final model predictions. Note that as the number of averages increases, the final natural
frequency value tends to stabilize at about 245 Hz, while the standard deviation exhibits a steadily reducing trend. This approach is
used to lessen the amount of variation within natural frequency predictions. (Results shown are for baseline DNN-based model
predictions of the natural frequency for a stainless-steel plate with dimensions 5.25 in x 7.00 in x 0.045 in. The DNN-based model for

Table 5. Various models developed to predict natural frequency. Specifically, this entails the injection of different combinations of

weight (W), flexural modulus (D), and shear modulus (G) at each DNN layer.

Model Physics Code file name
Baseline Deep Neural Network None NNML.py
Physics-Guided Deep Neural Network 1 W, D PGML.py
Physics-Guided Deep Neural Network 2 w PGMLa.py
Physics-Guided Deep Neural Network 3 D PGMLb.py
Physics-Guided Deep Neural Network 4 G PGMLc.py
Physics-Guided Deep Neural Network 5 W,D,G PGMLd.py
Physics-Guided Deep Neural Network 6 D,G PGML{.py

different training dataset sizes is to determine how much—if any—impact physics has on improving accuracy of

the DNN when only scarce data are available.

Based on the various combinations described herein, the total number of models generated for this study is

(4 baseline DNN Models) + (9 insertion options)
X (6 physics combinations) X (4 training data sizes) = 220 models

%)

Each of the final 220 models is used to compute multiple predictions of fundamental natural frequency while
initialized with different random seeds, where the final output value is realized as an average of all computed
values (each having equal weight). The purpose for this is to reduce variation in model predictions. In total, fifty
values of natural frequency are computed for each model. This number of averages was chosen based on early
trials demonstrating that—while not strictly true—the overall average would tend toward a quasi-stable value
between 20 and 30 iterations with the baseline (non-augmented) neural network and for all four training dataset
sizes. However, since not all datasets in the final study are reviewed for this particular trend, a factor of
approximately 2x was chosen as the standard number of averages to better ensure stability. An example of the

stability trend using the training dataset size of 261 is shown in figure 4.
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Table 6. Independent Dataset 2 input
features. Material elastic properties taken
from Steinberg [21], while density is
estimated. Planar length (I), planar width
(w), and plate thickness () for the 101
different plates are generated at random
within the bounds shown.

Feature Value
Density 4,200 kgm?
Young’s modulus 21 GPa
Poisson’s ratio 0.18
Planar length, | 0.0518 t00.250 m
Planar width, w 0.0512t00.250 m
Plate Thickness, t: 0.610t0 5.49 mm

2.5. Error
The final term of high importance computed for assessment of model accuracy is percentage error. Once a
solution of fifty averages is attained, the error for each resultant datapoint is calculated as

oo = fap |

n,a

Error = X 100% (8)

where f, is the actual natural frequency of the plate as determined through finite element modelingand f, 18
the natural frequency predicted by the DNN-based model. Based on this information, several basic quantities
are available, such as mean error, median error, standard deviation of error. Thus, these are investigated for each
predictive model.

The error terms for each physics-guided DNN model are evaluated against those for the baseline DNN
without integrated physics. This provides insight into the overall improvement a particular physics-guided
DNN has in predicting plate natural frequency. To ensure any conclusions are statistically significant, the two-
sample t-Test assuming Gaussian distribution but unequal variances is conducted between the baseline DNN
and each physics-enhanced DNN individually. Results are considered statistically significant for a two-tail
p-value 0f 0.05 (5%) or less.

2.6.Independent assessment of physics-guided DNN model accuracy

Following development of predictive models through training and testing with original data having parameters
from tables 2 and 3, each is tested using two independent datasets in order to assess prediction accuracy. The first
dataset independently tested with each model—henceforth referred to as Test Dataset 1—contains the
remaining 239 datapoints developed from finite element modeling of the aluminum, copper, FR-4, magnesium,
and stainless steel plates. The second independent dataset—Test Dataset 2— consists of a series of 101 plates
constructed from composite printed wiring board (PWB) material having the isotropic property values and
random dimensions within the extreme parameters provided in table 6.

Selection of printed wiring board material properties for independent Test Dataset 2 was undertaken for two
primary reasons. First, systems containing PWBs are often subjected to vibration environments in practice. As
such, their use in this study provides a real-world rationale for development of a methodology to accurately
predict natural frequencies of plates. Second, PWBs are often fabricated from a layup of copper and FR-4
material, both used in generation of the training dataset. As seen in a comparison of tables 2 and 6, PWB material
properties lie between those for FR-4 and copper and therefore lie within the values used to develop the
predictive DNN-based model.

3. Results

3.1. Natural frequency predictions using data similar to training

Figure 5 shows mean predictive error for each physics-guided DNN model when compared with the baseline
DNN containing no physics. Test Dataset 1 is used for independent testing of each model. Note that mean error
for the baseline DNN without physics is 2.1% for the largest training size of 261 datapoints, which is
approximately equivalent to the range of uncertainty assumed for plate natural frequency measurements. As
expected, baseline DNN models generated with decreased training dataset sizes of 117, 60, and 30 datapoints
exhibit increasingly higher mean error, with values of 5.0%, 6.4%, and 19.3%, respectively. Figure 6 shows the
corresponding median predictive error and variability for each physics-guided DNN model when compared
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Figure 5. Mean prediction error for Test Dataset 1 using models created by physics-enhanced DNNs generated with (a) 261 training
samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation, several
different combinations of plate weight (W), flexural rigidity (D), and material shear modulus (G) are evaluated. Note that (d) is scaled
to alarger ordinate value for clarity.

with the baseline DNN containing no physics. Note that median error for the baseline DNN without physics is
0.95% for the largest training size of 261 datapoints. As with mean error, baseline DNN models generated with
decreased training dataset sizes of 117, 60, and 30 datapoints exhibit increasingly higher median error, with
values 0f2.0%, 3.6%, and 8.3%, respectively.

3.2. Natural frequency predictions using data dissimilar from training

Figure 7 compares mean predictive error for the physics-guided DNN models to the baseline DNN when
independently tested with Test Dataset 2. Baseline mean error values are 33.2%, 34.9%, 35.8%, and 43.0% for
dataset sizes 0f 261, 117, 60, and 30 points, respectively. Figure 8 shows the corresponding median predictive
error and variability for the physics-guided DNN models when independently tested with Test Dataset 2.
Baseline median error values are 30.4%, 30.8%, 32.0%, and 36.5% for dataset sizes 0f 261, 117, 60, and 30 points,
respectively.

3.3. Comparison with other regression methods

One further evaluation of the methodology and models developed section 2 was conducted to assess their
performance against various other regression approaches. Using the Matlab 2024a Regression Modeler
application [25], the following models were trained validated with the same datasets of size 261, 117, 60, and 30:

10



IOP Publishing Phys. Scr. 99 (2024) 056010

N R Clinkinbeard and N N Hashemi

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Error

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Error

261 Training Datapoints

w-D w D G WDG DG
Physics

()

60 Training Datapoints

Physics

(©

Physics Layer

Error

Error

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

117 Training Datapoints

Physics

(b)

30 Training Datapoints

TT“]I ;I'T'r'z"l % TTTTﬂ

W-D w D G W-D-G DG
Physics
(d)

B Layer 1 Olayer 2 OLayer 3 OLayer 4 OLayers 1-4 O Layers 2-4 OLlayers 2-5 O layer 5

Figure 6. Median prediction error and variability for Test Dataset 1 using models created by physics-enhanced DNNs generated with
(a) 261 training samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation,
several different combinations of plate weight (W), flexural rigidity (D), and material shear modulus (G) are evaluated.

+ Linear Regression

+ Cubic Support Vector Machine (SVM)

+ Trilayered Neural Network

These models were subsequently tested with independent Test Dataset 1 (materials and dimensions similar
to the training/validation set) and Test Dataset 2 (the printed wiring board material dissimilar to the training/
validation set). Figure 9 shows mean prediction error for each of these three models when compared with mean
error for the baseline DNN of figure 3(a) and the best performing physics-enhanced DNNs (figures 3(b)—(d)).

4, Discussion

4.1. Natural frequency predictions using data similar to training

One major item immediately stands out from the data. The first observation is that for data of similar
dimensions and materials as the training set, insertion of physics into the DNNs results in no statistically-
relevant improvement for models generated with 261, 117, and 60 datapoints. In fact, for these simulations, the
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Figure 7. Mean prediction error for Test Dataset 2 using models created by physics-enhanced DNNs generated with (a) 261 training

samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation, several
different combinations of plate weight (W), flexural rigidity (D), and material shear modulus (G) are evaluated.

t-Test shows that the only statistically-significant changes in predictive power are detrimental. This effect
actually becomes more apparent for models generated using scarcer training data. For example, figure 5
demonstrates that, in general, inclusion of the weight term in the model (alone or in combination with modulus
of rigidity and shear modulus) results in significantly worse predictive power than the simple non-enhanced
DNN. Overall, therefore, no notable or consistent benefit is evident from the inclusion of physics-based
parameters when testing with data similar to that used for training.

4.2. Natural frequency predictions using data dissimilar from training
In contrast to independent Test Dataset 1, although less accurate overall, Test Dataset 2 sees moderate but clear
improvement to natural frequency predictions for certain combinations of physics parameters and insertion
layers covering all four training dataset sizes. In particular, solutions where flexural rigidity is included as a
physical parameter almost universally demonstrate better accuracy of natural frequency prediction over the
baseline DNN without physics. For example, the greatest increase in accuracy occurs with inclusion of weight
and flexural modulus in DNN Layers 1 through 4, exhibiting a total predictive error reduction of about 15%
(from 33.2% to 19.6%) when the training dataset contains 117 points.

Interestingly, while not as effective when inserted into the DNN with larger training datasets, the addition of
shear modulus to the W-D combination exhibits similar performance to just weight and flexural modulus alone
for the training dataset of size 60, and the W-D-G combination actually outperforms all others when the model is
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Figure 8. Median prediction error and variability for Test Dataset 2 using models created by physics-enhanced DNNs generated with
() 261 training samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation,
several different combinations of plate weight (W), flexural rigidity (D), and material shear modulus (G) are evaluated.

trained with only thirty 30 datapoints. Although not conclusive, this may indicate that certain combinations of
physics-based parameters are more effective than others when applied to different training dataset sizes during
model generation. In particular, those models with a greater number of terms creating parameter relationships
appear to be effective in improving predictions.

4.3. Effect of embedding physics into different layers

As illustrated in figure 3, supplementation of physics-driven data was implemented with the neural network in
several different layers, both singularly and simultaneously. Similar to results overall, figures 5-7 show no
discernable improvement or detriment with any particular combination of layer augmentation for predictions
made with using Test Dataset 1 (i.e., input parameters similar to the training dataset). However, when making
predictions with Test Dataset 2, notable differences in accuracy are observed. In particular, when modulus of
rigidity (D) and plate weight (W) are used as augmentative data parameters, the effect of injecting physics into
Layer 1 or Layer 5 appears to be least impactful to accuracy. However, for these cases, the supplementation of a
combination of inner layers or inner with Layer 5 provides a lower overall predictive error for the model. While
further study is required to better understand this effect, it indicates that the supplementation of a DNN with
physics-derived data may be most effective when conducted for multiple layers.
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Figure 9. Comparison of mean prediction error for various models when trained, validated, and independently tested using the
datasets described in section 2. Approaches evaluated are Linear Regression, Cubic Support Vector Machine (SVM), Trilayered Neural
Network (NN), the baseline Deep Neural Network developed for this study (see figure 3(a)), and the associated Enhanced Deep Neural
Networks (see figures 3(b) through 3(d)). (a) Independent testing conducted with Test Dataset 1. (b) Independent testing conducted
with Test Dataset 2. Note that due to the wide spread of prediction error across regression models, the Mean Error axis in both plots is
presented in log scale.

4.4. Loss and overfitting

One aspect of this study not yet discussed in detail is the comparison of training and validation loss. During the
course of the investigation, it is observed that as the training dataset sizes decrease, the training and validation
loss (based on mean-squared error, as indicated in table 4) increasingly separate from one another, as is evident
in the example shown in figure 10. Although expected behavior for the DNN where all hyperparameters are held
constant, it likely indicates an increasing degree of overfitting. As such, the number of epochs used for this study
is too large and reduction to something less than 100 would improve computational efficiency while not likely
deteriorating accuracy. Overall, further investigation to simplify the DNN while optimizing hyperparameters
would benefit the approach to reduce the overfitting effect.

4.5. Comparison of approach with other regression techniques

As described in section 3.3, the baseline deep neural network and corresponding physics-enhanced models
developed for this study were compared with various other regression approaches, specifically linear regression,
cubic SVM, and a trilayered neural network. As figure 9 demonstrates, the baseline DNN significantly
outperformed Linear Regression and Cubic SVM for all training/validation dataset sizes when independently
tested against Test Dataset 1 and Test Dataset 2. In contrast, the baseline DNN showed similar performance to
the Trilayered DNN approach. However, in all comparisons the best-case physics-enhanced models were found
to provide the lowest average percentage prediction error.

5. Conclusions

This study serves as a continuation of an earlier investigation that introduced simplified physics-based data into
asingle internal deep neural network layer [17]. To evolve the approach, physics-enhanced parameters
informing the deep neural network are not only injected into each DNN layer one-at-a-time, but reinserted into
multiple layers during a single DNN computation. When tested by means of independent data, supplementation
with simplified physics-based parameters provides virtually no reduction in prediction error over the baseline
for models trained with dataset sizes of 60 and greater, although a small improvement of slightly better than 3%
is observed when trained with a sparser size of 30 and physics introduced either to Layer 4 or 5 (but not multiple
layers). However, notable gains in accuracy occur when the independent test data is for material and dimensions
not conforming to the training set. Particularly, reductions in error from 33.2% to 19.6%, 34.9% to 19.9%,
35.8% t0 22.4%, and 43.0% to 28.4% are achieved for training dataset sizes 0of 261, 117, 60, and 30, respectively.
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Figure 10. Examples of training and validation loss for (a) 261 training samples, (b) 117 training samples, (c) 60 training samples, and
(d) 30 training samples. Note that while the loss representing the highest training size of 261 points is fairly well-behaved, as the
training size is decreased, the validation loss quickly diverges from the training loss after very few epochs. This behavior coincides with
the loss in predictive accuracy for models trained with scarcer data, and it likely indicates an overfitting condition (Loss plots taken
from model generated with flexural modulus inserted into layers 2, 3, and 4.).

For these cases, injection of physics into multiple layers per DNN consistently outperforms instances where only
one layer is augmented, and this disparity is more apparent for models trained with 30 points. The initial lack of
error reduction for similar training/independent test datasets coupled with subsequent greater improvements
for dissimilar independent test data suggests that the approach described herein indeed provides improvement
to DNN-based model generalizability.

To better understand the benefits of the simplified methodology discussed herein and further evolve the
approach, ongoing research is focused on the following:

Hyperparameter Optimization. Since hyperparameter tuning is critical for neural network success, assessment
of the effect of optimization of such parameters—with particular attention to characteristics affected by the
addition of simplified physics—is expected to further enhance the methodology.

Generalization Effect. Elucidation of the observation that predictions are improved with the simplified physics
approach when using dissimilar data to the training set but not with similar data will further clarify the benefit
of the methodology.
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