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Abstract
To improve predictivemachine learning-basedmodels limited by sparse data, supplemental physics-
related features are introduced into a deep neural network (DNN).While some approaches inject
physics through differential equations or numerical simulation, improvements are possible using
simplified relationships from engineering references. To evaluate this hypothesis, thin rectangular
plates were simulated to generate training datasets.With plate dimensions andmaterial properties as
input features and fundamental natural frequency as the output, predictive performance of a data-
drivenDNN-basedmodel is comparedwithmodels using supplemental inputs, such asmodulus of
rigidity. To evaluatemodel accuracy improvements, these additional features are injected into various
DNN layers, and the network is trainedwith four different dataset sizes.When evaluated against
independent data of similar features to the training sets, supplementation provides no statistically-
significant prediction error reduction.However, notable accuracy gains occurwhen independent test
data is ofmaterial and dimensions different from the original training set. Furthermore, when
physics-enhanced data is injected intomultipleDNN layers, reductions inmean error from33.2% to
19.6%, 34.9% to 19.9%, 35.8% to 22.4%, and 43.0% to 28.4% are achieved for dataset sizes of 261,
117, 60, and 30, respectively, demonstrating potential for generalizability using a data supplementa-
tion approach. Additionally, when comparedwith othermethods—such as linear regression and
support vectormachine (SVM) approaches—the physics-enhancedDNNdemonstrates an order of
magnitude reduction in percentage error for dataset sizes of 261, 117, and 60 and a 30% reduction for
a size of 30when comparedwith a cubic SVMmodel independently testedwith data divergent from
the training and validation set.

1. Introduction

Owing to its ability—in the presence of sufficient data—to predict newoutcomes by determining complex
relationships among dataset parameters [1], machine learning (ML) enjoys increasing application for simulating
physical phenomena in science and engineering [2, 3]. This is in addition to its use as a datamining and human
behavioral study tool [4]. Unfortunately,models driven solely by datamay not be conducive to generalization,
particularly when such data are limited [5–7], which can lead to large prediction errors for input parameters
outside the range of those used formodel development [8]. Also limiting are inaccuracies fromuncertainties
inherent to empiricalmeasurements. Finally, a purely data-drivenML-basedmodel can act as a ‘black box’
where inputs and outputs are known, but the underlying process for deriving relationships among these remains
amystery [9]. This is an issuewhen a fundamental understanding of the principles that cause certain features to
drive others is crucial.
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Alternatively, popular analytical and numerical approaches—such as thefinite elementmethod [10] and
computational fluid dynamics [11]—are leveraged significantly in science and engineering tomake behavioral
predictions. Unlikemachine learning, these techniqueswork by solving the governing partial differential
equations often rooted infirst principles. Notably, however, whileML suffers from lack of generalization and
conceptual insight into physical processes, an oft-overlooked deficiency of analytical approaches is their inability
to overcome the presence of unknown physics. Because numericalmodeling invariably includes simplifying
assumptions, nontrivial phenomena driving input-output relationships in a real system are often left
unaccounted [12]. Additionally, physics-based numericalmodelsmay require significant time and
computational resources to conduct a single simulation and are subject to limitations such as initial conditions
and linearity [13], limiting their usefulness for studying an array of design options.

Fortunately, deficiency for the physics-basedmodel is whereMLhas an advantage; data derived from
experimentationwill—withinmeasurement limitations and uncertainties—reflect the true physical state of a
system [12]. Therefore, benefitmay be gained by successful integration ofMLwithmodeling, potentially leading
to improved designs frommore efficient computation of possible solutions. Indeed, studies such as those
undertaken byZhu et al [14, 15] for predicting total organic carbon (TOC) content of a reservoir, as well as Lu
andZhang [16]with the assessment of seismic velocity inversion, have successfully integrated physicsmodels
withML, particularly neural networks. Nevertheless, available time and resources to develop aworking
predictivemodelmay still be less than needed for integration ofMLwith numerical simulation. Consequently,
the incorporation of simplified physical relationswithMLbecomes an attractive alternative [17]. Andwhile still a
richfield of research, integration of physics intoMLmodels has been investigated using a variety of approaches,
such as tailored loss functions [18] or reduced-ordermodels [19]. This leads to the level of physics integration
investigated herein, namely, simplified theories. Thismethodology—presented by Pawar et al [17]—takes
advantage of fundamental physical relationships among features to form the basis of parameter augmentation.
For example, the authors increased neural network-basedmodel accuracy for predicting flow around an airfoil
by considering fundamental fluid dynamic quantities—such as Reynolds number and angle of attack—and
calculating these characteristics from existing features. Once computed, the physics-based (as opposed to purely
measured) datapoints were inserted into an intermediate hidden neural network layer to supplement the
original data. This approach ultimately showed increased prediction accuracywithin the limitations of the
underlying theory.

While perhaps not as accurate asmay be found through integrationwith numerical-based or reduced-order
models, aDNN implementation strategy that combines simplified physics withmachine learning has the
potential to provide solutions that are better than purely data-driven techniques, and—once amodel has been
built—resultsmay compute faster than for physics-only approaches. This is important where time to build a
computationalmodel or availability of suitable software is lacking. Therefore, establishment of a simplified
approachwill prove invaluable for the quick design and implementation of a system.

In order to advance the use of simplified physics within amachine learning framework for sparse datasets,
the study detailed herein shows that not only can supplementing datasets with additional features generated
from simple physical relations improveDNN-basedmodel predictions, but such physics-based information has
varying impact tomodel predictive accuracy based on size of training dataset. Furthermore, this investigation
shows that improvements are to be gained by reintegrating the same physical features intomultipleDNN layers
rather than simply using themonce, and that different combinations of augmented layers produce notably
different results, withmultiple layers often outperforming those generatedwith physics introduced only into a
single layer. Finally, infusion of aDNNwith physics-based information is shown to have the greatest impact on
model accuracywhen used to predict behavior for data notwithin the scope of the original training sets. The end
result is amethodology that shows at leastmodest improvement toDNNmodel accuracy and generalizability
when an abundance of datasets is lacking, and one thatmay be enhanced through further study and
hyperparameter tuning.

2.Methods

The objective of this study is to examine the effects onmodel predictive accuracy when integrating simplified
physics into a sparsely-trained deep neural network (DNN) via data augmentation. Four specific aspects of this
are investigated, as follows.

(1) Type and number of physics relations added. Three different simplified physics relations are used for data
augmentation. The goal is to observewhether certain individual terms or combinations thereof provide
more improvement than others toDNN-basedmodel accuracy.
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(2) Effects of including physics at different and/or multiple layers of the DNN. Different cases are developed to
examine how inclusion of physics affectsmodel development when injected into each layer singularly or
intomultiple layers for a givenDNN.The purpose is to understand if focusing on a specificDNN layer (or
layers) for injecting physics has a greater influence on predictive power of the resultingmodel.

(3) Effect of training dataset size on model accuracy improvement. The third facet is of this study is to examine the
impact of augmentationwith simplified physics on increasingmodel accuracywhen progressively smaller
training datasets are available.

(4) Effect of simplified physics on predictive accuracy for inputs outside the original domain. This final aspect is
geared toward examiningwhether or not augmenting aDNNwith simplified physics data can improve
predictionswhen new input data is largely outside of the domain of the original, i.e., does the enhancement
procedure developed herein create amodel that can generalize better than the original? To understand the
answer to this question, two basic datasets are evaluated for every combination of (1), (2), and (3) previously
discussed—one having parameters within the original training dataset and the other having parameters that
lie outside.

The physical phenomenon chosen for this investigation is resonance of a thin rectangular plate with four
simply-supported edges, shown infigure 1(a). Using aDNN framework, a predictivemodel is developed for
processing previously-measured data to accurately predict the fundamental resonant frequency of a newplate
design using three easilymeasurable dimensional parameters (length, width, and thickness) and three
fundamentalmaterial properties (density, Young’smodulus, and Poisson’s ratio). Figure 1(b) provides a
schematic of themode shape for such a simply-supported thin rectangular plate during excitation of its
fundamental resonance.

Once predictive performance of the baselineDNN is established for four different sizes of training datasets,
supplementary datapoints are generated based on the six input features (i.e., three dimensions and three
material properties), and injected into the sameDNNcode, albeit at different layers. To assess performance of
any one combination of augmenting variables/layer(s) of insertion, eachDNN-basedmodel is used to predict
natural frequency of plates containing various combinations of input features for which themodels were not
trained. Thefinal performance evaluation is based on themean andmedian error between the predicted and
actual natural frequencies. Eachmodel iteration is assessedwith respect to additional input data using similar
materials and dimensions to the original, as well as for amaterial type and dimensions not part of theDNN
training parameters.

Figure 1. Schematic of a thin rectangular plate with simply-supported boundary conditions along all four edges, where (a) shows
orthogonal (top) and planar (bottom) views of the plate having dimensions length, l, width,w, and thickness, t, and (b) demonstrates
themode shape for the simply-supported thin plate during excitation of its fundamental resonance.
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The following paragraphs briefly describe the generation and nature of the baseline data, theory behind the
development of physics-based data, and theDNN implemented to study the effects of including physics-based
information.

2.1. Training and testing dataset generation
The training and testing datasets for this studywere generated through normalmodes analysis using the finite
element software ANSYSVersion 2021, Release 1 [20]. Thin rectangular plates with four simply-supported edges
having varying dimensions andmaterial types weremodeled, and their fundamental natural frequencies
calculated. Figure 2 shows an example finite elementmesh for the plates under study, as well as a sample contour
plot of the fundamentalmode shape corresponding to the frequency of interest. Themesh itself was scaled for
each individual plate size and adjusted tominimize discretization and other element approximation errors.
Table 1 provides releventmeshmetrics used to assess the finite elementmodels.

Aswell as serving as inputs to thefinite elementmodels, theminimal dataset input parameters used for all
ML-basedmodel generation comprise three plate dimensions (thickness, width, and length), weight density, and
two elastic properties (Young’smodulus Poisson’s ratio), for a total of six features. To provide a somewhat
diverse—but limited—set of data used to train themodels, plates were simulated using aluminum, FR-4,
copper,magnesium, and stainless steel. Intrinsic and elastic properties for thesematerials are provided in table 2,
while the diversity of dimensions used is given in table 3.

Using the aforementioned parameters, a total of 500 solutionswere calculated. From this, 261 datapoints are
reserved formodel generation (training and validation), while the remaining 239 datapoints are retained for
independently assessingmodel predictive accuracy.

Figure 2. Finite element representation of a rectangular platewith simply-supported boundary conditions along all four edges. The
view in (a) shows thefinite elementmesh, whichwas developed using 4-node quad (SHELL181) elements, which have bending and
membrane stiffness. The view in (b) is fringe plot of the fundamentalmode shape, which is similar for all combinations of dimensions
andmaterials discussed herein.

Table 1.Worst-casemeshmetrics for all platesmodeled using thefinite
elementmethod. All evaluated quantities are near the ideal value, indicating
a highmesh quality.

Metric

Actual

value

Ideal

value Range

Aspect Ratio 1.07 1 � 1

Element Quality 0.980 1 0 to 1

Jacobian Ratio (Corner

Nodes)

0.975 1 −1 to 1

Jacobian (Gauss Points) 0.985 1 −1 to 1

Max. Corner Angle 92.1 90° 0° to 180°
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One final note regarding the training/testing dataset is the application of uncertainty. Since the data
generated for this study are computational rather than physical, to simulate a possible 2% (+/−1%) variation
due tomeaurement uncertainty and imperfect physical sample, thefinal output feature—i.e., natural frequency
—is adjusted as follows:

f f R0.99 0.02 1n adj n, ( ) ( )= +

whereR is a randomnumber between the values of 0 and 1 having an approximately Gaussian distribution, and
fn adj, is the final adjusted natural frequency used at the output parameter. (For convenience, the adjusted natural
frequency is simply referred to as fn for the remainder of this study.)This addition of uncertainty was simply to
emulatemeasured data to a degree and analysis of its effect is not a focus of the study.

2.2. Simplified physics: natural frequency of a thin plate
Simplified physics used for integrationwith the deep learningmodel is partly based on small-deflection plate
theory, adapted fromSteinberg [21]. Using this approach, the fundamental natural frequency, f ,n of the
rectangular plate simply-supported along four edges shown infigure 1 is as follows:
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where t is the plate thickness, r is thematerialmass density, w and l are the plate width and length, respectively,
and D isflexural rigidity. Flexural rigidity is computed from thickness, Young’smodulus, E, and Poisson’s ratio,
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=

-

Note that this term—calculated independently fromplanar dimensions and boundary conditions—
becomes the primary physics-based relation used to augmentDNN-basedmodel generation. This is important
becausewhile the plate equation is simple enough to use to calculate fundamental frequencies for our current
configuration, for themajority of real-world applications, physical boundary conditions are not easily
classifiable andmay be amix of simple, clamped, or elastic, to name a few.However, flexural rigidity is relatively
easy to estimate for any plate based onmaterial elastic properties and plate thickness. Therefore, this approach
can be adapted to any dimensional and boundary condition configuration.

Table 2.Materials used in the generation of training data, with their
intrinsic and elastic property values. Note thewide range ofmaterial
properties chosen.

Material Weight density (kg/m3)

Young’s

modulus

(GPa)
Poisson’s

ratio

Aluminum 2,700 68 0.33

FR-4 1,900 14 0.12

Copper 8,940 110 0.343

Magnesium 1,800 45 0.35

Stainless Steel 7,900 200 0.27

Table 3.Dimensions of simply-supported rectangular plates used in the
generation of training data. In total,five different combinations of planar
dimensionswere combinedwith each increment of plate thickness to give
a total of 500 datasets. These 500 datasets were split into 261 for training/
testing and 239 for independent testing.

Dimension Set Value

i. 0.0508 m´0.0508 m

ii. 0.0476 m´0.0762 m

Planar length and

width, w l´
iii. 0.133 m´0.178 m

iv. 0.152 m´0.0672 m

v. 0.267 m´0.222 m

Plate Thickness, t: 0.762 to 3.18 mm; increments

of 0.127 mm
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Since flexural rigidity is only dependent on three features—plate thickness, Young’smodulus, and Poisson’s
ratio—an attempt ismade to involve the remaining dimensions andmaterial density into simplified physics by
considering the plate weight,W , calculated as

W t w l 4( )r= ´ ´ ´

Shearmodulus, G, is used as a third and final supplemental term and is calculated as:

/G E 2 1 5[ ( )] ( )n= +

Since equation (2) is based on thin plate theory for small deflections, shearmodulus has no direct bearing on
natural frequency calculations where such assumptions are present; rather, it is chosen purely for its inclusion of
both Young’smodulus and Poisson’s ratio, providing a relationship between the two. Particularly, its presence is
intended as an additional datapoint to inform theDNNof the relationship between elastic parameters.

2.3. Neural network architecture
Based on early experimentation, the basic predictivemodel chosen and developed for this study is a deep neural
network comprising four hidden layers and one output layer, as diagrammed infigure 3(a). The optimization

Figure 3.Examples of deep neural networks used to generate predictivemodels for fundamental resonance of a rectangular plate
simply-supported along all edges. Note the following common characteristics of theseDNNs: six input features (plate thickness, t,
length, l, width,w, density, ρ, Young’smodulus,E, and Poisson’s ratio, ν); four hidden layers with several neurons each; and one
output layer with a single feature, i.e., fundamental natural frequency, fn. (a)BasicDNNused to predict natural frequency of thin
rectangular plates simply-supported along all four edges. (b)DNNwith augmented data set generated fromphysical relationships
among original data. Here the physics-based parameters are simply added to the baseline inputs to give up to nine total input features.
(c)DNNwith physics integrated into a single layer (Layer 3 shown). In this architecture, physics-based features are added to a hidden
layer as additional inputs for that layer only. (d)DNNwith physics integrated intomultiple layers (Layers 2 through 4 shown).With
this final example, physics-based features are inserted into thefirst and/or an early hidden layer and re-inserted at one ormore
subsequent layers.
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algorithm chosen for this study isAdam, introduced byKingma andBa [22]. Implementation of eachDNNwas
conducted using Python 3.8.8 64-bit through the Spyder 4.2.5 interface, as provided byAnacondaNavigator
2.3.2 [23]. The code used for implementationwas initially patterned after that developed by Pawar et al [17].

Data used for training and validation of the neural networked-basedmodels were configured into comma-
separated-value(s) (CSV) format. The resulting datafiles contain labeled column headings corresponding to the
six input parameters (plate thickness, length, width, density, Young’smodulus, and Poisson’s ratio) and one
output parameter (fundamental resonance). For iterationswhere augmented datawere used, additional
columnswere added, as necessary. Specifically, these include flexural rigidity (D), plate weight (W), andmaterial
shearmodulus (G). In all cases, data rows—each representing a different plate configuration—were randomized
within theCSVfiles in order to remove biasing and allow representative diverse sampling to be used for
validation.

Prior tomodel generation, preprocessing was conducted to condition the data for usewith the neural
network. Specifically, values for all parameters (input and output)were normalized to a range of 0 to 1 using
min-max scaling, as follows [24]:

/X X X X X 6SC max max min( ) ( ) ( )= - -

where X is the datapoint undergoing scaling for a given parameter, Xmax is themaximumvalue for the given
parameter within the dataset, Xmin is theminimumparameter value for the given dataset, and XSC is thefinal
scaled value.

Hyperparameter selectionwas decided by trial and error rather than through a rigorous optimization
process. For consistency, all DNN-basedmodel generation is conducted using the parameters provided in
table 4.Note that the training/testing data was parsed such that 20%was reserved for validation, with the
balance used formodel training.

2.4. Integration of physics intoNNarchitecture
As previously discussed, themethodology chosen for integrating physics into the process ofmachine learning is
to insert physics-based quantities as augmentative data into variousDNN layers. Four basic approaches are
taken, represented infigure 3:

1. Neural networkwith no physics terms (figure 3(a)),

2. insertion of physics into Layer 1 (figure 3(b)),

3. insertion of physics into Layers 2, 3, 4, or 5 individually (figure 3(c)), and

4. insertion of physics intomultiple layers for each run (figure 4(c)).

These four strategies represent nine total DNNs: one basic networkwithout additional physics terms and eight
different ways of integrating physics into the baselineDNN.

Alongwith varying locations of physics integrationwithin theDNNmodel, six different combinations of
calculated parameters are examined, listed in table 5. The purpose behind this is to observewhether single or
multiple variables show themost improvement when integrated into theDNN.

Thefinal consideration formodel development is amount of training data available, for which the following
dataset sizes are used: 261 datapoints, 117 datapoints, 60 datapoints, and 30 datapoints. The largest dataset
containing 261 points serves as a superset fromwhich the 117, 60, and 30 are derived. The goal in examining

Table 4. Selected hyperparameters and their values. Note that for
performance comparison purposes, hyperparameters remained
constant throughout the study.

Hyperparameter Description/Value

Hidden layer activation function Rectified Linear Unit (ReLU)
Output layer activation function Linear

Learning rate, ta 0.01

Batch size 80

Epochs 500

Number of neurons per layer 40

Numerical stability parameter, ̂ 1e-6

Loss function Mean-Squared Error (MSE)
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different training dataset sizes is to determine howmuch—if any—impact physics has on improving accuracy of
theDNNwhen only scarce data are available.

Based on the various combinations described herein, the total number ofmodels generated for this study is

models

baseline DNN Models insertion options

physics combinations training data sizes 220

4 9

6 4 7

( ) ( )
( ) ( ) ( )=

+
´ ´

Each of thefinal 220models is used to computemultiple predictions of fundamental natural frequencywhile
initializedwith different random seeds, where the final output value is realized as an average of all computed
values (each having equal weight). The purpose for this is to reduce variation inmodel predictions. In total, fifty
values of natural frequency are computed for eachmodel. This number of averages was chosen based on early
trials demonstrating that—while not strictly true—the overall averagewould tend toward a quasi-stable value
between 20 and 30 iterations with the baseline (non-augmented)neural network and for all four training dataset
sizes. However, since not all datasets in the final study are reviewed for this particular trend, a factor of
approximately 2xwas chosen as the standard number of averages to better ensure stability. An example of the
stability trend using the training dataset size of 261 is shown infigure 4.

Figure 4.Example of averaging used for finalmodel predictions. Note that as the number of averages increases, thefinal natural
frequency value tends to stabilize at about 245 Hz, while the standard deviation exhibits a steadily reducing trend. This approach is
used to lessen the amount of variationwithin natural frequency predictions. (Results shown are for baselineDNN-basedmodel
predictions of the natural frequency for a stainless-steel plate with dimensions 5.25 in x 7.00 in x 0.045 in. TheDNN-basedmodel for
this examplewas trainedwith a dataset size of 261.).

Table 5.Variousmodels developed to predict natural frequency. Specifically, this entails the injection of different combinations of
weight (W),flexuralmodulus (D), and shearmodulus (G) at eachDNN layer.

Model Physics Codefile name

Baseline DeepNeural Network None NNML.py

Physics-GuidedDeepNeural Network 1 W , D PGML.py

Physics-GuidedDeepNeural Network 2 W PGMLa.py

Physics-GuidedDeepNeural Network 3 D PGMLb.py

Physics-GuidedDeepNeural Network 4 G PGMLc.py

Physics-GuidedDeepNeural Network 5 W , D, G PGMLd.py

Physics-GuidedDeepNeural Network 6 D, G PGMLf.py
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2.5. Error
Thefinal termof high importance computed for assessment ofmodel accuracy is percentage error. Once a
solution offifty averages is attained, the error for each resultant datapoint is calculated as

Error
f f

f
100% 8

n a n p

n a

. ,

,

∣ ∣
( )=

-
´

where fn a, is the actual natural frequency of the plate as determined through finite elementmodeling and fn p, is
the natural frequency predicted by theDNN-basedmodel. Based on this information, several basic quantities
are available, such asmean error,median error, standard deviation of error. Thus, these are investigated for each
predictivemodel.

The error terms for each physics-guidedDNNmodel are evaluated against those for the baselineDNN
without integrated physics. This provides insight into the overall improvement a particular physics-guided
DNNhas in predicting plate natural frequency. To ensure any conclusions are statistically significant, the two-
sample t-Test assumingGaussian distribution but unequal variances is conducted between the baselineDNN
and each physics-enhancedDNN individually. Results are considered statistically significant for a two-tail
p-value of 0.05 (5%) or less.

2.6. Independent assessment of physics-guidedDNNmodel accuracy
Following development of predictivemodels through training and testingwith original data having parameters
from tables 2 and 3, each is tested using two independent datasets in order to assess prediction accuracy. Thefirst
dataset independently testedwith eachmodel—henceforth referred to asTest Dataset 1—contains the
remaining 239 datapoints developed from finite elementmodeling of the aluminum, copper, FR-4,magnesium,
and stainless steel plates. The second independent dataset—Test Dataset 2— consists of a series of 101 plates
constructed from composite printedwiring board (PWB)material having the isotropic property values and
randomdimensions within the extreme parameters provided in table 6.

Selection of printedwiring boardmaterial properties for independent Test Dataset 2was undertaken for two
primary reasons. First, systems containing PWBs are often subjected to vibration environments in practice. As
such, their use in this study provides a real-world rationale for development of amethodology to accurately
predict natural frequencies of plates. Second, PWBs are often fabricated from a layup of copper and FR-4
material, both used in generation of the training dataset. As seen in a comparison of tables 2 and 6, PWBmaterial
properties lie between those for FR-4 and copper and therefore lie within the values used to develop the
predictiveDNN-basedmodel.

3. Results

3.1. Natural frequency predictions using data similar to training
Figure 5 showsmean predictive error for each physics-guidedDNNmodel when comparedwith the baseline
DNNcontaining no physics. Test Dataset 1 is used for independent testing of eachmodel. Note thatmean error
for the baselineDNNwithout physics is 2.1% for the largest training size of 261 datapoints, which is
approximately equivalent to the range of uncertainty assumed for plate natural frequencymeasurements. As
expected, baselineDNNmodels generatedwith decreased training dataset sizes of 117, 60, and 30 datapoints
exhibit increasingly highermean error, with values of 5.0%, 6.4%, and 19.3%, respectively. Figure 6 shows the
correspondingmedian predictive error and variability for each physics-guidedDNNmodel when compared

Table 6. Independent Dataset 2 input
features.Material elastic properties taken
fromSteinberg [21], while density is
estimated. Planar length (l), planarwidth
(w), and plate thickness (t) for the 101
different plates are generated at random
within the bounds shown.

Feature Value

Density 4,200 kgm−3

Young’smodulus 21 GPa

Poisson’s ratio 0.18

Planar length, l 0.0518 to 0.250 m

Planar width, w 0.0512 to 0.250 m

Plate Thickness, t: 0.610 to 5.49 mm
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with the baselineDNNcontaining no physics. Note thatmedian error for the baselineDNNwithout physics is
0.95% for the largest training size of 261 datapoints. Aswithmean error, baselineDNNmodels generatedwith
decreased training dataset sizes of 117, 60, and 30 datapoints exhibit increasingly highermedian error, with
values of 2.0%, 3.6%, and 8.3%, respectively.

3.2. Natural frequency predictions using data dissimilar from training
Figure 7 comparesmean predictive error for the physics-guidedDNNmodels to the baselineDNNwhen
independently testedwith Test Dataset 2. Baselinemean error values are 33.2%, 34.9%, 35.8%, and 43.0% for
dataset sizes of 261, 117, 60, and 30 points, respectively. Figure 8 shows the correspondingmedian predictive
error and variability for the physics-guidedDNNmodels when independently testedwith Test Dataset 2.
Baselinemedian error values are 30.4%, 30.8%, 32.0%, and 36.5% for dataset sizes of 261, 117, 60, and 30 points,
respectively.

3.3. Comparisonwith other regressionmethods
One further evaluation of themethodology andmodels developed section 2was conducted to assess their
performance against various other regression approaches. Using theMatlab 2024a RegressionModeler
application [25], the followingmodels were trained validatedwith the same datasets of size 261, 117, 60, and 30:

Figure 5.Mean prediction error for TestDataset 1 usingmodels created by physics-enhancedDNNs generatedwith (a) 261 training
samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation, several
different combinations of plate weight (W),flexural rigidity (D), andmaterial shearmodulus (G) are evaluated. Note that (d) is scaled
to a larger ordinate value for clarity.

10

Phys. Scr. 99 (2024) 056010 NRClinkinbeard andNNHashemi



• Linear Regression

• Cubic Support VectorMachine (SVM)

• TrilayeredNeural Network

Thesemodels were subsequently testedwith independent Test Dataset 1 (materials and dimensions similar
to the training/validation set) andTest Dataset 2 (the printedwiring boardmaterial dissimilar to the training/
validation set). Figure 9 showsmean prediction error for each of these threemodels when comparedwithmean
error for the baselineDNNoffigure 3(a) and the best performing physics-enhancedDNNs (figures 3(b)–(d)).

4.Discussion

4.1.Natural frequency predictions using data similar to training
Onemajor item immediately stands out from the data. Thefirst observation is that for data of similar
dimensions andmaterials as the training set, insertion of physics into theDNNs results in no statistically-
relevant improvement formodels generatedwith 261, 117, and 60 datapoints. In fact, for these simulations, the

Figure 6.Median prediction error and variability for Test Dataset 1 usingmodels created by physics-enhancedDNNs generatedwith
(a) 261 training samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation,
several different combinations of plate weight (W),flexural rigidity (D), andmaterial shearmodulus (G) are evaluated.
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t-Test shows that the only statistically-significant changes in predictive power are detrimental. This effect
actually becomesmore apparent formodels generated using scarcer training data. For example, figure 5
demonstrates that, in general, inclusion of theweight term in themodel (alone or in combinationwithmodulus
of rigidity and shearmodulus) results in significantly worse predictive power than the simple non-enhanced
DNN.Overall, therefore, no notable or consistent benefit is evident from the inclusion of physics-based
parameters when testingwith data similar to that used for training.

4.2. Natural frequency predictions using data dissimilar from training
In contrast to independent Test Dataset 1, although less accurate overall, Test Dataset 2 seesmoderate but clear
improvement to natural frequency predictions for certain combinations of physics parameters and insertion
layers covering all four training dataset sizes. In particular, solutionswhere flexural rigidity is included as a
physical parameter almost universally demonstrate better accuracy of natural frequency prediction over the
baselineDNNwithout physics. For example, the greatest increase in accuracy occurs with inclusion of weight
andflexuralmodulus inDNNLayers 1 through 4, exhibiting a total predictive error reduction of about 15%
(from33.2% to 19.6%)when the training dataset contains 117 points.

Interestingly, while not as effective when inserted into theDNNwith larger training datasets, the addition of
shearmodulus to theW-D combination exhibits similar performance to just weight andflexuralmodulus alone
for the training dataset of size 60, and theW-D-G combination actually outperforms all otherswhen themodel is

Figure 7.Mean prediction error for TestDataset 2 usingmodels created by physics-enhancedDNNs generatedwith (a) 261 training
samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation, several
different combinations of plate weight (W),flexural rigidity (D), andmaterial shearmodulus (G) are evaluated.
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trainedwith only thirty 30 datapoints. Although not conclusive, thismay indicate that certain combinations of
physics-based parameters aremore effective than others when applied to different training dataset sizes during
model generation. In particular, thosemodels with a greater number of terms creating parameter relationships
appear to be effective in improving predictions.

4.3. Effect of embedding physics into different layers
As illustrated infigure 3, supplementation of physics-driven datawas implementedwith the neural network in
several different layers, both singularly and simultaneously. Similar to results overall, figures 5–7 showno
discernable improvement or detriment with any particular combination of layer augmentation for predictions
madewith using Test Dataset 1 (i.e., input parameters similar to the training dataset). However, whenmaking
predictionswith Test Dataset 2, notable differences in accuracy are observed. In particular, whenmodulus of
rigidity (D) and plate weight (W) are used as augmentative data parameters, the effect of injecting physics into
Layer 1 or Layer 5 appears to be least impactful to accuracy.However, for these cases, the supplementation of a
combination of inner layers or innerwith Layer 5 provides a lower overall predictive error for themodel.While
further study is required to better understand this effect, it indicates that the supplementation of aDNNwith
physics-derived datamay bemost effective when conducted formultiple layers.

Figure 8.Median prediction error and variability for TestDataset 2 usingmodels created by physics-enhancedDNNs generated with
(a) 261 training samples, (b) 117 training samples, (c) 60 training samples, and (d) 30 training samples. For each layer of augmentation,
several different combinations of plate weight (W), flexural rigidity (D), andmaterial shearmodulus (G) are evaluated.
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4.4. Loss and overfitting
One aspect of this study not yet discussed in detail is the comparison of training and validation loss. During the
course of the investigation, it is observed that as the training dataset sizes decrease, the training and validation
loss (based onmean-squared error, as indicated in table 4) increasingly separate fromone another, as is evident
in the example shown infigure 10. Although expected behavior for theDNNwhere all hyperparameters are held
constant, it likely indicates an increasing degree of overfitting. As such, the number of epochs used for this study
is too large and reduction to something less than 100would improve computational efficiencywhile not likely
deteriorating accuracy. Overall, further investigation to simplify theDNNwhile optimizing hyperparameters
would benefit the approach to reduce the overfitting effect.

4.5. Comparison of approachwith other regression techniques
As described in section 3.3, the baseline deep neural network and corresponding physics-enhancedmodels
developed for this studywere comparedwith various other regression approaches, specifically linear regression,
cubic SVM, and a trilayered neural network. Asfigure 9 demonstrates, the baselineDNN significantly
outperformed Linear Regression andCubic SVM for all training/validation dataset sizes when independently
tested against Test Dataset 1 andTestDataset 2. In contrast, the baselineDNN showed similar performance to
the TrilayeredDNNapproach.However, in all comparisons the best-case physics-enhancedmodels were found
to provide the lowest average percentage prediction error.

5. Conclusions

This study serves as a continuation of an earlier investigation that introduced simplified physics-based data into
a single internal deep neural network layer [17]. To evolve the approach, physics-enhanced parameters
informing the deep neural network are not only injected into eachDNN layer one-at-a-time, but reinserted into
multiple layers during a singleDNNcomputation.When tested bymeans of independent data, supplementation
with simplified physics-based parameters provides virtually no reduction in prediction error over the baseline
formodels trainedwith dataset sizes of 60 and greater, although a small improvement of slightly better than 3%
is observedwhen trainedwith a sparser size of 30 and physics introduced either to Layer 4 or 5 (but notmultiple
layers). However, notable gains in accuracy occurwhen the independent test data is formaterial and dimensions
not conforming to the training set. Particularly, reductions in error from33.2% to 19.6%, 34.9% to 19.9%,
35.8% to 22.4%, and 43.0% to 28.4% are achieved for training dataset sizes of 261, 117, 60, and 30, respectively.

Figure 9.Comparison ofmean prediction error for variousmodels when trained, validated, and independently tested using the
datasets described in section 2. Approaches evaluated are Linear Regression, Cubic Support VectorMachine (SVM), TrilayeredNeural
Network (NN), the baselineDeepNeuralNetwork developed for this study (seefigure 3(a)), and the associated EnhancedDeepNeural
Networks (see figures 3(b) through 3(d)). (a) Independent testing conductedwith Test Dataset 1. (b) Independent testing conducted
with TestDataset 2. Note that due to thewide spread of prediction error across regressionmodels, theMean Error axis in both plots is
presented in log scale.
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For these cases, injection of physics intomultiple layers perDNNconsistently outperforms instances where only
one layer is augmented, and this disparity ismore apparent formodels trainedwith 30 points. The initial lack of
error reduction for similar training/independent test datasets coupledwith subsequent greater improvements
for dissimilar independent test data suggests that the approach described herein indeed provides improvement
toDNN-basedmodel generalizability.

To better understand the benefits of the simplifiedmethodology discussed herein and further evolve the
approach, ongoing research is focused on the following:

• Hyperparameter Optimization. Since hyperparameter tuning is critical for neural network success, assessment
of the effect of optimization of such parameters—with particular attention to characteristics affected by the
addition of simplified physics—is expected to further enhance themethodology.

• Generalization Effect.Elucidation of the observation that predictions are improvedwith the simplified physics
approachwhen using dissimilar data to the training set but not with similar data will further clarify the benefit
of themethodology.
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