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CrossMark
Abstract
These two accompanying papers are concerned with two mode entanglement for systems of
identical massive bosons and the relationship to spin squeezing and other quantum correlation
effects. Entanglement is a key quantum feature of composite systems in which the probabilities
for joint measurements on the composite sub-systems are no longer determined from
measurement probabilities on the separate sub-systems. There are many aspects of entanglement
that can be studied. This two-part review focuses on the meaning of entanglement, the quantum
paradoxes associated with entangled states, and the important tests that allow an experimentalist
to determine whether a quantum state—in particular, one for massive bosons is entangled. An
overall outcome of the review is to distinguish criteria (and hence experiments) for entanglement
that fully utilize the symmetrization principle and the super-selection rules that can be applied to
bosonic massive particles. In the first paper (I), the background is given for the meaning of
entanglement in the context of systems of identical particles. For such systems, the requirement
is that the relevant quantum density operators must satisfy the symmetrization principle and that
global and local super-selection rules prohibit states in which there are coherences between
differing particle numbers. The justification for these requirements is fully discussed. In the
second quantization approach that is used, both the system and the sub-systems are modes (or
sets of modes) rather than particles, particles being associated with different occupancies of the
modes. The definition of entangled states is based on first defining the non-entangled states—
after specifying which modes constitute the sub-systems. This work mainly focuses on the two
mode entanglement for massive bosons, but is put in the context of tests of local hidden variable
theories, where one may not be able to make the above restrictions. The review provides the
detailed arguments necessary for the conclusions of a recent paper, where the question of how to
rigorously demonstrate the entanglement of a two-mode Bose—Einstein condensate (BEC) has
been examined. In the accompanying review paper (II), we consider spin squeezing and other
tests for entanglement that have been proposed for two-mode bosonic systems. We apply the
approach of review (I) to determine which tests, and which modifications of the tests, are useful
for detecting entanglement in massive bosonic (BEC), as opposed to photonic, systems. Several
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new inequalities are derived, a theory for the required two-mode interferometry is presented, and

key experiments to date are analyzed.

Online supplementary data available from stacks.iop.org/ps/92/023004 /mmedia

Keywords: entanglement, identical massive bosons, super-selection rules, spin squeezing,

correlation, quadrature squeezing, phase reference

1. Introduction

Since the paradoxes of Einstein—Podolski—Rosen (EPR) [1],
Schrodinger [2, 3] and Bell [4], entanglement has been
recognized as a key feature that distinguishes quantum phy-
sics from classical physics. Entangled quantum states underlie
the EPR and Bell paradoxes, which reveal the conflict
between quantum mechanics and local realism, and the
famous Schrodinger cat paradox, where a cat is apparently
prepared in a state simultaneously both dead and alive.
Entanglement not only provides a way to rigorously test
quantum principles, but is the basis for the many quantum
information tasks like quantum cryptography. Despite the
fundamental interest, there have been only a few experimental
tests of entanglement for systems of massive particles. Yet,
the substantial recent progress in cooling atomic systems, in
particular to form Bose—FEinstein condensates (BECs), makes
such entanglement tests much more feasible.

In this review (I), we explain the meaning of entangle-
ment, and examine how to verify entanglement, for systems
of identical boson particles. This leads us to focus on sym-
metrization and superselection rules, and to consider their
implication for entanglement criteria when applied to massive
bosonic particles. This paper provides the theoretical back-
ground for a recent paper [5] and a subsequent paper (I) [6]
that analyses the suitability of specific criteria, new and old, to
detect entanglement in massive bosonic systems, and applies
the criteria to interpret experimental findings.

As well as reviewing the topic and presenting some new
results in paper II, these two articles are intended as com-
prehensive papers for post docs and postgraduates who are
changing field or starting work in a new one and need to gain
a thorough understanding of the present state of knowledge.
With this aim in mind we have not followed the conventional
approach in review articles of merely quoting formulae and
giving references, but instead have presented full proofs of the
key results. To really understand a field, we believe it is
necessary to work through the derivations. However, in order
to shorten the main body of the articles, we have included
many of the details in appendices. The appendices are
available as online supplementary material (stacks.iop.org/
ps/92/023004 /mmedia). References [108]-[122] are dis-
cussed therein.

1.1. Entanglement: definitions and historical context

Entanglement arises in the context of composite quantum
systems composed of distinct components or sub-systems and
is distinct from other features of quantum physics such as
quantization for measured values of physical quantities,

probabilistic outcomes for such measurements, uncertainty
principles involving pairs of physical quantities and so on.
Such sub-systems are usually associated with sub-sets of the
physical quantities applying to the overall system, and in
general more than one choice of sub-systems can be made.
The formalism of quantum theory treats pure states for sys-
tems made up of two or more distinct sub-systems via tensor
products of sub-system states, and since these product states
exist in a Hilbert space, it follows that linear combinations of
such products could also represent possible pure quantum
states for the system. Such quantum superpositions which
cannot be expressed as a single product of sub-system states
are known as entangled (or non-separable) states.

The concept of entanglement can then be extended to
mixed states, where quantum states for the system and the
sub-systems are specified by density operators. The detailed
definition of entangled states is set out in section 2. This
definition is based on first carefully defining the non-entan-
gled (or separable) states. The set of non-entangled states
must allow all possible quantum states for the given sub-
system, but in addition these states must be preparable via
processes involving separate operations on each sub-system
after which correlated sub-system quantum states are com-
bined in accordance with classical probabilities. Thus,
although the sub-system states retain their quantum natures
the combination resulting in the overall system state is formed
classically rather than quantum mechanically. This overall
process then involves local operations on the distinct sub-
systems and classical communication (LOCC) to prepare a
general non-entangled state. The entangled states are then just
the quantum states which are not non-entangled states. The
general idea that in all composite systems the non-entangled
states all involve LOCC preparation processes was first sug-
gested by Werner [7]. The notion of gquantum states, the
nature of the systems and sub-systems involved and the spe-
cific features required in the definition of non-entangled states
when identical particles are involved is discussed in detail in
section 3. Entangled states underlie a number of effects that
cannot be interpreted in terms of classical physics, including
spin squeezing and non-local measurement correlations-such
as for the EPR paradox and violations of Bell Inequalities
[1, 2, 4, 8-11]. The quantum theory of measurement [12—15]
invokes entangled states of the system and measuring appa-
ratus as key concepts in the theory. More recently, entangled
states have been recognized as a resource that can be used in
various quantum technologies for applications such as tele-
portation, quantum cryptography, quantum computing and so
on. Recent expositions on the effects of entanglement and its
role in quantum information science include [15-20].
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It would be pointless to characterize states as entangled
unless such states have some important properties. The key
requirement is that entangled states exhibit a novel quantum
feature that is only found in composite systems. As will be
seen in section 2.3, separable states are such that the joint
probability for measurements of all physical quantities asso-
ciated with the sub-systems can be found from separate
measurement probabilities obtained from the sub-system
density operators and the overall classical probability for
creating particular products of sub-system states. In general,
entangled states do not exhibit this feature of separable
probabilities, and it is this key non-separability feature that
led Schrodinger to call these states ‘entangled’. Where the
sub-systems are spatially separated, one can define spacelike
separated local measurement events on each. This was his-
torically the reason why the sub-systems and their measure-
ments are often referred to as local. The EPR paper [1]
suggested the possibility that although the predictions of
quantum theory were correct, the theory was incomplete and
there was an underlying reality in the form of classical hidden
variables. Averaging over the unknown values of the hidden
variables would be required to produce the same measure-
ment probabilities as quantum theory. Local hidden variable
(LHV) theories are discussed in section 2.5, and it will be
seen that the joint probabilities for measurements of sub-
system physical quantities are of the same form as for
separable states. As will be seen in sections 2.6 and 2.7, states
for which local measurements can be described by LHV
theories satisfy Bell inequalities. This includes the separable
states. States described by a LHV theory are referred to as
Bell-local states—all other states are Bell non-local states. If a
state violates a Bell inequality it must be entangled, since
separable states are Bell local. Hence there is a direct link
between Bell inequality violations and both the failure of
LHYV theories and the presence of entanglement. The fact that
certain entangled states do not exhibit the feature of separable
probabilities shown in classical LHV theories highlights
entanglement being a non-classical feature found in compo-
site systems.

Note that although an EPR or Bell inequality violation
requires the quantum state to be entangled, there are examples
of mixed entangled states that do not violate a Bell inequality.
For pure states of qubits Gisin [21] showed that entangled
states always violated Bell inequality, but for mixed states
Werner [7] and others [22-24] have shown there are entan-
gled states (Werner states [17]) for which a hidden variable
theory (HVT) can be constructed that gives the same joint
probability function for measurement outcomes as quantum
theory. These specific entangled states will therefore satisfy
Bell inequalities, so some entangled states are Bell local. For
completeness, the important mixed entangled states con-
sidered by Werner are described in appendix A. At present
detailed LHV theories have not been developed which can
independently determine the LHV measurement probability
functions for the sub-systems as a function of the hidden
variables, but as Werner showed for certain composite states
that such measurement probability functions could be found
which would be consistent with the overall quantum

probability functions for joint measurements on the composite
system state. So in that sense the LHV theory could account
for the results from quantum theory even though at present it
does not have the predictive power of quantum theory—even
for states not violating Bell inequalities.

The issue of how best to treat the quantum aspects of
correlations in measurement outcomes in composite quantum
systems is still an active area of research and is beyond the
scope of these two papers. Quantum entanglement is clearly
relevant to the discussion, but concepts such as quantum
discord [25, 26] and EPR steering [1, 3, 27-29] are now being
used to describe quantum correlations. The link between these
concepts is discussed in [30]. In these recent discussions of
quantum correlation, it turns out that some separable states are
regarded as exhibiting quantum correlations. In [27-29] the
concept of local hidden state (LHS) is introduced within LHV
theory to describe states of sub-systems for which a density
operator exists that is determined by the hidden variables, and
which can be used to account for measurements on the sub-
system in accordance with standard quantum expressions. It
can also be used [27] to construct a quantum state for the sub-
system with the LHS that is the conditional quantum state
obtained resulting from the outcome of a local measurement
on the other sub-system. The absence of such a LHS results in
EPR steering being possible—a paradoxical non-classical
effect identified by both Einstein et al [1] and by Schrédinger
[3]. In [27-29] it is seen that some entangled Bell local states
exhibit EPR steering, in addition to the Bell non-local states.
In [27] the parameter regions for Werner states being (a)
separable (b) entangled, Bell local but non-steerable (c)
entangled, Bell local and steerable (d) entangled, Bell non-
local and steerable are determined, along with similar con-
siderations for so-called isotropic states. The development of
tests for EPR steering is still an active area of
research [31, 32].

It is now generally recognized that entanglement is a
relative concept [17, 33-37] and not only depends on the
quantum state under discussion but also on which sub-systems
are being considered as entangled (or non-entangled). A
quantum state may be entangled for one choice of the sub-
systems but may be non-entangled if another choice of sub-
systems is made. A simple example often cited is that for the
hydrogen atom [35], a system made up of two distinguishable
particles, a proton and an electron. Here the energy eigen-
states are non-entangled if the sub-systems refer to the center
of mass of the entire atom and the relative position of the
electron and the proton, but which would be entangled if the
sub-systems were the positions of the electron and proton. It
could be argued that the center of mass and the relative
position are not really independent sub-systems—one always
accompanies the other—but as unrelated center of mass and
relative position quantum states can be prepared, they can be
regarded as distinct sub-systems. The individual positions of
the electron and the proton are also distinct sub-systems, and
the ground state of the hydrogen atom is indeed entangled—
the electron position is tightly correlated with the proton
position. Another example involves two different choices of
single particle states in a two mode BEC—a system with a
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large number of identical particles. The issue of defining sub-
systems will be dealt with below, but taking the original two
sub-systems to be bosonic modes (or single particle states)
denoted |¢,) and |¢p), a well known N boson entangled state
of these two modes A and B (with mode annihilation opera-
tors @ and b) is the binomial state given by |P) =
((cos 0 exp(ix/2)a + sin exp(—ix/2)b) )N /J/NT |0) (see
[38] and paper II, section 3.6) which is a quantum super-
position of Fock states (ﬁT)k/\/F (ET)N*"/ (N —k)! |0)
with k=0,...,N. Introducing new modes via ¢ =
(cos @ exp(ix/2)a + sin&exp(—iX/Z)l;) and d = (—sinf
exp(ix/2)a + cos exp(—ix/Z)I;) we see that we can also
write |®) = (&")V/J/N! |0), so that the same quantum state
is a separable state if the sub-systems are chosen to be the
new modes C and D. Another example is the ground state of
the single mode non-interacting BEC trapped in a harmonic
oscillator (HO) potential. This is a separable state, with all
bosons in the lowest energy mode if the sub-systems are
chosen as the HO modes. However, if single particle position
states spatially localized in two different regions are chosen as
two sub-systems, then the same ground state for the identical
particle system is spatially entangled, as pointed out by Goold
et al [39].

1.2. Measures and tests for entanglement

Various measures of entanglement have been defined for
certain types of quantum state—see [17, 18, 26, 36, 37,
40, 41], for details of these, and are aimed at quantifying
entanglement to determine which states are more entangled
than others. This is important since entanglement is con-
sidered as a resource needed in various quantum technologies.
Calculations based on such measures of entanglement confirm
that for some choices of sub-systems the quantum state is
entangled, for others it is non-entangled. For two mode pure
states the entanglement entropy-being the difference between
the entropy for the pure state (zero) and that associated with
the reduced density operator for either of the two sub-systems
—is a useful entanglement measure. As entropy and infor-
mation changes are directly linked [17, 18], this measure is of
importance to quantum information science. Measurements of
entanglement based on Renyi entropy and purity are discussed
in [42-44]. Another entanglement measure is particle
entanglement, defined by Wiseman et al [40, 45, 46] for
identical particle systems and based on projecting the quant-
um state onto states with definite particle numbers. One of the
problems with entanglement measures is that there is often no
simple way to measure the quantities required.

In the case of bipartite entanglement in qubit systems
[47, 48] obtained a sufficient condition for a quantum state to
be entangled (PPT condition) (see [36, 37], for details).
Suppose the density operator p is changed into p7 by map-
ping the matrix elements associated with one of the sub-
systems into their transpose. Then provided the new operator
p’ is a valid density operator (with real, non-negative
eigenvalues that add to unity), the original density operator
represents a separable state. Thus, if it is shown that some of

the eigenvalues of p’ are negative, then the state p is entan-
gled. However, it is often not practical to use this as an
entanglement test for systems with large numbers of basis
states, as it requires being able to measure all the density
matrix elements. It was also later realized [49] that in general,
the PPT condition was not a necessary condition for entan-
glement, apart from cases of 2 x 2 and 2 x 3 subsystems—
that is, showing that p7 has only positive eigenvalues will not
guarantee that p is separable, as counter-examples for 2 x 4
and 3 x 3 subsystems showed. Toth and Guhne [50] con-
sidered the effect of permutational symmetry on the PPT
condition for entanglement in bipartite systems.

Although not directly related to the various quantitative
measures of entanglement, the results for certain measure-
ments can play the role of being signatures or witnesses or
tests of entanglement [36, 37, 40]. These are in the form of
inequalities for variances and mean values for certain phy-
sical quantities, which are dependent on the inequalities
applying for non-entangled quantum states. If such inequal-
ities are violated then it can be concluded that the state is
entangled for the relevant sub-systems. In the case of entan-
glement witnesses, the idea is to find a Hermitian operator w
such that for separable states Tr(Wﬁ) >0, so that if
Tr(VV\/A)) < 0 the state must be entangled. Here we note that
the density operator occurs linearly when evaluating the
quantities involved. Some of the correlation tests discussed in
paper II are cases involving entanglement witnesses.
However, in more general tests for entanglement the
density operator appears nonlinearly. For example, a spin
squeezing test for entanglement may require showing that the
variance for a spin operator is less than a multiple of the
magnitude of the mean value of another spin operator—thus

for example (A@CZ ) < |(S.)|/2. This could be written as

Tr((§x2 + S’;/Z)ﬁ) — (TI‘(S;)ﬁ))Z < 0, which is of a more
general form than for an entanglement witness. Nonlinear
tests are discussed in [37]. One of the advantages of entan-
glement tests is that the quantities involved can be measured.
It cannot be emphasized enough that these tests provide suf-
ficiency conditions for establishing that a state is entangled.
So if the test is satisfied we can conclude that the state is not
separable. The failure of a test does not mean that the state is
not entangled—sufficiency does not imply necessity. The
violation of a Bell inequality is an example of such a signature
of entanglement, and the demonstration of spin squeezing is
regarded as another. However, the absence of spin squeezing
(for example) does not guarantee non-entanglement, as the
case of the NOON state in section 3.5 of the accompanying
paper II shows. A significant number of such inequalities
have now been proposed and such signatures of entanglement
are the primary focus of the accompanying paper, which is
aimed at identifying which of these inequalities really do
identify entangled states, especially in the context of two
mode systems of identical bosons.

At present there is no clear linkage between quantitative
measures of entanglement (such as entanglement entropy) and
the quantities used in conjunction with the various entangle-
ment tests (such as the relative spin fluctuation in spin
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squeezing experiments). Results for experiments demon-
strating such non-classical effects cannot yet be used to say
much more than the state is entangled, whereas ideally these
experiments should determine how entangled the state is.
Again we emphasize that neither the entanglement tests nor
the entanglement measures are being used to define entan-
glement. Entanglement is defined first as being the quantum
states that are non-separable, the tests for and measures of
entanglement are consequential on this definition.

1.3. Particle versus mode entanglement

These two papers deal with identical particles—bosons or
fermions. In the second quantization approach used here the
system is regarded as a set of quantum fields, each of which
may be considered as a collection of single particle states or
modes. We now take into account the situation where systems
of identical particles are involved. This requires us to give
special consideration to the requirement that quantum states
in such cases must conform to the symmetrization principle.
What sub-systems are possible must take into account that
entanglement requires the specification of sub-systems that
are distinguishable from each other and on which measure-
ments can be made. In addition, the sub-systems must be able
to exist as separate systems which can be prepared in
quantum states for that sub-system alone. These key
requirements that the sub-systems must be distinguishable,
susceptible to measurements and can exist in separate
quantum states are necessary for the concept of entanglement
to make physical sense, and have important consequences for
the choice of sub-systems when identical particles are
involved. These three key logical requirements for sub-sys-
tems rule out considering labeled identical particles as sub-
systems and lead to the conclusion that sub-systems must be
modes. Thus both the system and sub-systems will be spe-
cified via the modes that are involved, so here the sub-systems
in terms of which non-entangled (and hence entangled) states
are defined are modes or sets of modes, not particles [17, 33—
35, 51, 52]. In this approach, particles are associated with the
occupancies of the various modes, so that situations with
differing numbers of particles will be treated as differing
quantum states of the same system, not as different systems—
as in the first quantization approach. Note that the choice of
modes is not unique-original sets of orthogonal one particle
states (modes) may be replaced by other orthogonal sets. An
example is given in section 2 of accompanying paper IL
Modes can often be categorized as localized modes, where the
corresponding single particle wavefunction is confined to a
restricted spatial region, or may be categorized as delocalized
modes, where the opposite applies. Single particle HO states
are an example of localized modes, momentum states are an
example of delocalized modes. This distinction is significant
when phenomena such as EPR violations and teleportation
are considered.

However, even if the system consists entirely of distin-
guishable particles we can still regard the sub-systems as
collections of modes. Each distinguishable particle is still
associated with a set of single particle states or modes

(momentum eigenstates, HO eigenstates, etc) that can be
occupied. More general states associated with a single particle
may be quantum superposition states of those with a single
particle occupancy of the modes. If the overall system con-
sists of a number of distinguishable particles each of which is
considered as a sub-system, then each such sub-system can
equally be regarded as the set of modes associated with the
particular distinguishable particle. Overall system states
involving just one particle of each type would be simulta-
neous eigenstates of the number operators for each of the
distinguishable particles, with an eigenvalue of unity
corresponding to there being only one particle of each type.
The second quantization approach can still be used, but is
somewhat superfluous when the modes for each particle are
only occupied once.

Although multi-mode systems are also considered, in this
paper we mainly focus on two mode systems of identical
bosonic atoms, where the atoms at most occupy only two
single particle states or modes. For bosonic atoms this
situation applies in two mode interferometry, where if a single
hyperfine component is involved the modes concerned may
be two distinct spatial modes, such as in a double well
magnetic or optical trap, or if two hyperfine components are
involved in a single well trap each component has its own
spatial mode. Large numbers of bosons may be involved since
there is no restriction on the number of bosons that can
occupy a bosonic mode. For fermionic atoms each hyperfine
component again has its own spatial mode. However, if large
numbers of fermionic atoms are involved then as the Pauli
exclusion principle only allows each mode to accommodate
one fermion, it follows that a large number of modes must
considered and two mode systems would be restricted to at
most two fermions. Consideration of multi-mode entangle-
ment for large numbers of fermions is outside the scope of the
present paper (see [53] for a treatment of this), and unless
otherwise indicated the focus will be on bosonic modes. The
paper focuses on identical bosonic afoms—whether the paper
also applies to photons is less clear and will be discussed
below.

1.4. Symmetrization and super-selection rules (SSRs)

The work presented here begins with the fundamental issue of
how an entangled state should be defined in the context of
systems involving identical particles. To reiterate—in the
commonly used mathematical approach for defining entan-
gled states, this requires first defining a general non-entangled
state, all other states therefore being entangled. We adhere to
the original definition of Werner [7] in which the separable
states are those that can be prepared by local operations and
classical communication (LOCC). This approach is adopted
by other authors, see for example [28, 54, 55]. However, in
other papers—see for example [56, 57] so-called separable
non-local states are introduced, where the authors do not
incorporate the requirement of LOCC in their definition of
separable states. (See section 3.4.2 for an example.)

In the present LOCC based paper it is contended that the
density operators both for the quantum states of the overall
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system and those for the non-entangled (local) sub-systems in
the context of non-entangled states must be compatible with
certain principles and rules that have been found to be both
necessary and sufficient for understanding physical experi-
ments in non-relativistic many-body systems. In some other
work (discussed below) this has not been the case. A key
feature required of all quantum states for systems involving
identical particles, entangled or not is that they satisfy the
symmetrization principle [58]. This places restrictions both on
the form of the overall density operator and also on what can
be validly considered to be a sub-system. In particular this
rules out individual identical particles being treated as sub-
systems, as is done in some papers (see below). If the system
consists entirely of distinguishable particles then the sym-
metrization principle is not relevant. In addition, super-
selection rules (SSR) [59] only allow density operators which
have zero coherences between states with differing total
numbers of particles to represent valid quantum states, and
this will be taken into account for all quantum states of the
overall system, entangled or not. This is referred to as the
global particle number SSR In non-entangled or separable
states the density operator is a sum over products of sub-
system density operators, each product being weighted by its
probability of occurring (see below for details). For the non-
entangled or separable quantum states, a so-called local
particle number SSR will also be applied to the density
operators describing each of the sub-systems. These sub-
system density operators must then have zero coherences
between states with differing numbers of sub-system parti-
cles. This additional restriction excludes density operators as
defining non-entangled states when the sub-system density
operators do not conform to the local particle number SSR.
Consequently, density operators where the local particle
number SSR does not apply would be regarded as entangled
states. This viewpoint is discussed in papers by Bartlett et al
[54, 60] as one of several approaches for defining entangled
states. However, other authors such as [56, 57] state on the
contrary that states where the sub-system density operators do
not conform to the local particle number SSR are still
separable, others such as [61, 62] do so by implication—the
latter papers applied to atomic as well as photon modes. So in
these two papers we are advocating a different definition to
some other definitions of entanglement in identical particle
systems, the consequence being that the set of entangled
states is now much larger. This is a key idea in this paper—
not only should SSRs on particle numbers be applied to the
overall quantum state, entangled or not, but it also should be
applied to the density operators that describe states of the
modal sub-systems involved in the general definition of non-
entangled states. As Werner’s [7] original LOCC based
approach invoked the idea that separate sub-system states
could be created, we contend that applying the constraints of
symmetrization and local particle number SSRs for the sub-
system states that occur in separable states is consistent with
Werner’s approach, even though he did not consider the
specific physics of identical massive particle systems at
the time.

Note that for systems entirely consisting of N distin-
guishable particles the SSRs are still true, but are now
superfluous. Each sub-system is the set of modes or one
particle states of the specific distinguishable particle and the
overall state is an N particle state in which the sub-systems
only contain one particle. Consequently there are no sub-
system or system coherences between states with differing
particle number.

The detailed reasons for adopting the viewpoint that the
entanglement criteria be compliant with the requirement of
the local particle number SSR for the sub-system are set out
below. As will be seen, the local particle number SSR
restriction firstly depends on the fundamental requirement
that for all composite systems—whether identical particles
are involved or not—non-entangled states are only those that
can be prepared via processes that involve only LOCC. The
requirement that the sub-system density operators in identical
particle cases satisfy the local particle number SSR is con-
sequential on the sub-system states being possible sub-system
quantum states. As mentioned before, the general definition of
non-entangled states based on LOCC preparation processes
was first suggested by Werner [7]. Apart from the papers by
Bartlett ef al [54, 60] we are not aware that this LOCC/SSR
based criteria for non-entangled states has been invoked
previously for identical particle systems, indeed the opposite
approach has been proposed [56, 57]. However, the idea of
considering whether sub-system states should satisfy the local
particle number SSR has been presented in several papers—
[54, 56, 57, 60, 63—-65], mainly in the context of pure states
for bosonic systems, though in these papers the focus is on
issues other than the definition of entanglement—such as
quantum communication protocols [56], multicopy distilla-
tion [54], mechanical work and accessible entanglement
[63, 64] and Bell inequality violation [65]. The consequences
for entanglement of applying this SSR requirement to the sub-
system density operators are quite significant, and in the
accompanying paper II important new entanglement tests are
determined. Not only can it immediately be established that
spin squeezing requires entangled states, but though several
of the other inequalities (accompanying paper II) that have
been used as signatures of entanglement are still valid,
additional tests can be obtained which only apply to entan-
gled states that are defined to conform to the symmetrization
principle and the SSRs.

It is worth emphasizing that requiring the sub-system
density operators satisfy the local particle number SSR means
that there are less states than otherwise would be the case
which are classed as non-entangled, and more states will be
regarded as entangled. It is therefore not surprising that
additional tests for entanglement will result. If further
restrictions are placed on the sub-system density operator—
such as requiring them to correspond to a fixed number of
bosons again there will be more states regarded as entangled,
and even more entanglement tests will apply. A particular
example is given in appendix C of paper II, where the sub-
systems are restricted to one boson states.

The symmetrization requirement for systems involving
identical particles is well established since the work of Dirac
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There are two types of justification for applying the SSRs for
systems of identical particles (both massive and otherwise).
The first approach for invoking the superselection rule to
exclude quantum superposition states with differing numbers
of identical particles is based on simple considerations and
may be summarized as:

(1) No way is known for creating such SSR non-com-
pliant states.

(2) No way is known for measuring the properties of
such states.

(3) Coherence and interference effects can be understood
in terms of SSR compliant states.

The second approach is more sophisticated and involves
linking the absence or presence of SSR to whether or not
there is a suitable reference frame in terms of which the
quantum state is described [40, 56, 57, 60, 63, 64, 66-71].
This approach will be described in section 3.2 and appendix
K, the key idea being that SSR are a consequence of con-
sidering the description of a quantum state by a real observer
(Charlie) whose phase reference frame has an unknown phase
difference from that of a hypothetical observer (Alice), both
studying the same system. Alice is assumed to possess a
phase reference frame such that her description of the
quantum state of the system violates the SSR. Charlie, on the
other hand is an actual observer with no such phase reference
frame. Thus, while Alice’s description of the system involves
a quantum state may violate the SSR, the description of the
same system by Charlie will involve a quantum state that is
SSR compliant. In the main part of this paper the density
operator p used to describe the various quantum states will be
that of the external observer (Charlie). Note that if well-
defined phase references do exist and the relationship between
them is known, then the SSR can be challenged (see
sections 3.3 and appendix K), but this situation does not apply
in the case of massive bosons (or fermions).

It should be noted that both of these justifications for
applying the SSR are dependent on what is practical in terms
of measurements in non-relativistic quantum physics. Here
the situation is much clearer for systems of massive particles
such as atoms than for massless particles such as photons.
Applying SSR for photons is discussed in section 3.2.3 and in
appendix L.

However, to allow for quantum states that as far as we
know cannot be made or measured, and for which there are no
known physical effects that require their presence is an
unnecessary feature to add to the non-relativistic quantum
physics of many body systems or to quantum optics. Con-
siderations based on the general principle of simplicity
(Occam’s razor) would suggest not doing so until a clear
physical justification for including them is found. The
quantum state is intended to specify what is known about a
quantum system and how it was prepared. It is used to
determine the probabilities for possible measurements on the
system. Clearly there is no point in including non-SSR
compliant terms in the density operator for the quantum state.
Such terms would neither allow for possible preparation
processes, or contribute to measurement probabilities asso-
ciated with physical effects. Furthermore, experiments can be

carried out on each of the mode sub-systems considered as a
separate system, and essentially the same reasons that justify
applying the SSR to the overall system also apply to the
separate mode sub-systems in the context of defining non-
entangled states. Hence, unless it can be justified to ignore the
SSR for the overall system it would be inconsistent not to
apply it to the sub-system as well. As we will see, for
separable states the requirement that the overall state is SSR
compliant generally implies that the sub-system states are
SSR compliant—though in some special cases this is not the
case (see section 4.3.3 of paper II). The onus is on those who
wish to ignore the SSR for the separate sub-systems to justify
why it is being applied to the overall system. In addition, joint
measurements on all the sub-systems can be carried out, and
the interpretation of the measurement probabilities requires
the density operators for the sub-system states to be physi-
cally based. The general application of SSRs has however
been challenged (see section 3.2) on the basis that SSRs are
not a fundamental requirement of quantum theory, but are
restrictions that could be lifted if there is a suitable system that
acts as a reference for the coherences involved. In section 3
and in appendix M an analysis of these objections to the SSR
is presented, and in appendix K we see that the approach
based on phase reference frames does indeed justify the
application of the SSR both to the general quantum states for
multi-mode systems of identical particles and to the sub-
system states for non-entangled states of these systems.

The sceptic who wishes to ignore the SSRs in the defi-
nition of entanglement—and consequently only consider as
valid tests for entanglement where SSR compliance is not
used in their derivation—needs to carry out a research pro-
gram analogous to that which resulted in parity non-con-
servation becoming a basic feature of weak interaction
theory. The successful incorporation of parity non-conserva-
tion involved first proposing (on symmetry grounds) possible
interactions in which parity was not conserved, second
working out possible experiments that could confirm parity
non-conservation and third carrying out key experiments that
did confirm this. At this stage no such work in regard to SSR
violation in the non-relativistic many body physics of massive
particles has been carried out or is likely to be in the near
future. As we will see in paper II, none of the experimental
methods for entanglement tests that we examine can detect
SSR non-compliance—none involve a suitable phase refer-
ence. To ignore SSR in non-relativistic entanglement theory
and experiment on the grounds of scepticism would be ana-
logous to including parity non-conservation in quantum
chemistry or atomic physics—areas which are well-under-
stood in terms of parity being conserved (apart from the well-
known parity violating effects of external electric fields).
When and if SSR violation in non-relativistic many body
physics is found would then be the time to revise the defi-
nition of quantum entanglement. In these two papers we will
utilize the definition of entanglement and derive tests based
on SSR compliance, though of course recognizing that there
are also tests that do not require SSR compliance which are
also valid for SSR compliant states. Although other defini-
tions of entanglement will be considered for comparison, to



Phys. Scr. 92 (2017) 023004

Invited Comment

avoid confusion the SSR compliant definition will be the one
which we mean when we refer to entanglement.

A further sound scientific argument can be presented in
favor of studying SSR compliant entanglement tests (as is our
aim in these papers (I) and (I)). This involves a consideration
of what can be concluded from such tests by supporters or
sceptics of SSR. For example, one such test (see paper II)
involves spin squeezing in two mode systems. If the state is
separable and the sub-system states comply with local SSR
then there is no spin squeezing. However, if experimental
tests do demonstrate spin squeezing, then what can we con-
clude? The supporters of SSR compliance being required for
the sub-systems would conclude that the state was not
separable and hence entanglement is present between the
subsystems. On the other hand, the sceptic who does not
believe local SSR compliance is required would have no
option but to conclude either that entanglement is present
between the subsystems or (if they argue there is no entan-
glement) the state is separable but one or both of the quantum
sub-systems violates the SSR. The sceptic may favor the
second conclusion, but that would then imply an actual
experimental circumstance where superselection rules did not
apply to the sub-system states. In that case, the issues raised in
the last four paragraphs regarding lack of phase references or
SSR violating preparation processes etc must be addressed
directly. Either way, the study of such SSR based experiments
is clearly important. Put another way, suppose the sceptic
were to derive a different test using the separability require-
ment alone, for which an experimental outcome shows that
the two subsystems were indeed notentangled. This would
seem to require a test for entanglement which is necessary as
well as being sufficient—the latter alone being usually the
case for entanglement tests. Such criteria and measurements
are a challenge, but not impossible even though we have not
met this challenge in these two papers. If the conclusion from
the earlier SSR based experiment was either entanglement or
separability with non-SSR compliance, then if the result from
the different test based only on separability ruled entangle-
ment out, it follows that the system must be in a separable
state in which the sub-system states violate the SSR. Con-
versely, the latter test may confirm the entanglement possi-
bility found in the earlier test. Thus, in principle there could
be a pair of experiments that give evidence of entanglement,
or failure of the Super Selection Rule. For such investigations
to be possible, the use of entanglement criteria that do invoke
the local SSRs is also required.

1.5. Entanglement tests and experiments—paper Il

The main focus of the accompanying paper II [6] is to derive
the SSR compliant criteria and to consider the experimental
implementation. This leads to important links between spin
squeezing and entanglement. The link with quantum corre-
lation functions (as proposed in [61, 62]) is also treated.
Heisenberg uncertainty principle (HUP) inequalities invol-
ving spin operators [72] and the consequent property of spin
squeezing have been well-known in quantum optics for many
years. The importance of spin squeezing in quantum

metrology is discussed in the paper by Kitagawa et al [73] for
general spin systems. It was suggested in this paper that
correlations between the individual spins was needed to
produce spin squeezing, though no quantitative proof was
presented and the more precise concept of entanglement was
not mentioned. For the case of two mode systems the earliest
paper linking spin squeezing to entanglement is that of
Sgrensen et al [74], which considers a system of identical
bosonic atoms, each of which can occupy one of two internal
states. This paper states that spin squeezing requires the
quantum state to be entangled, with a proof given in the
appendix. A consideration of how such spin squeezing may
be generated via collisional interactions is also presented. The
paper by Sgrensen et al is often referred to as establishing the
link between spin squeezing and entanglement—see for
example Micheli ef al [75], Toth et al [76], Hyllus et al [77].
However, the paper by Sgrensen et al [74] is based on a
definition of non-entangled states in which the sub-systems
are the identical particles, and this is inconsistent with the
symmetrization principle. However, the accompanying paper
II establishes the link between spin squeezing and entangle-
ment based on a definition of entanglement consistent with
the system and sub-system density operators representing
quantum states.

It is also important to consider which components of the
spin operator vector are squeezed, and this issue is also
considered in the accompanying paper. In the context of the
present second quantization approach to identical particle
systems the three spin operator components for two mode
systems are expressed in terms of the annihilation, creation
operators for the two chosen modes. Spin squeezing can be
defined (see section 2 in the accompanying paper II) in terms
of the variances of these spin operators, however the covar-
iance matrix for the three spin operators will in general have
off-diagonal elements, and spin squeezing is also defined in
terms of rotated spin operators referred to as principal spin
operators for which the covariance matrix is diagonal. The
principal spin operators are related to new mode annihilation,
creation operators in the same form as for the original spin
operators, where the new modes are two orthogonal linear
combinations of the originally chosen modes. In discussing
the relationship between spin squeezing and entanglement,
the modes which may be entangled are generally those
associated with the definition of the spin operators.

A further focus of the accompanying paper is on the
relationship between entanglement and certain correlation
properties of sub-system operators. Tests for entanglement
based on such correlations have also been published—see for
example [61, 62]. These tests were based on ignoring the
SSRs, so in the accompanying paper we present revised
correlation tests for entanglement when the SSRs are defi-
nitely complied with. We also show the link between corre-
lation tests and tests involving spin operators.

The accompanying paper also deals with the important
question of what measurement systems are suitable for mak-
ing spin and correlation tests for entanglement. We first
consider a simple two mode interferometer which involves
coupling the two modes employing a resonant classical field
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pulse which is associated with a variable pulse area for its
amplitude and has an adjustable phase. It is shown that
measurement of the mean value and variance of the popula-
tion difference between the two modes affer the inter-
ferometer pulse enables measurements of the mean value and
covariance matrix elements of the spin operators for the
quantum state that existed before the pulse was applied. The
mean values and variances of certain spin operators are
relevant for correlation and spin squeezing entanglement
tests.

Paper 1II is focused on two mode systems of massive
bosons. These are of particular interest because cold atomic
gases cooled well below the Bose-Einstein condensation
(BEC) transition temperature can be prepared where essen-
tially only two modes are occupied [38, 78]. This can be
achieved for cases involving a single hyperfine components
using a double well trap potential or for two hyperfine com-
ponents using a single well. At higher temperatures more than
two modes may be occupied, so multi-mode systems are also
of importance and thus are considered in paper II.

1.6. Outlines of papers | and Il

The plan of the present paper is as follows. In section 2 the
key definitions of entangled states are covered, and a detailed
discussion on why the symmetrization principle and the SSR
is invoked in discussed in section 3. The final section 4
summarizes and discusses the key features about entangle-
ment treated in this paper. Details are in the appendices
(stacks.iop.org/ps/92/023004 /mmedia).

Challenges to the necessity of the SSR are outlined, with
arguments against such challenges dealt with in appendices K
and M. Two key mathematical inequalities are derived in
appendix E and the Werner states (relevant to LHV theory)
are defined in appendix A. LHV violations in the entangled
GHZ state is discussed in appendix D. The proof of the Bell
inequality is presented in appendix G. Classical entanglement
is described in appendix B, and applying the SSRs for pho-
tons is discussed in appendix L. The concept of entanglement
due to symmetrization and how this might be recognized is
treated in appendix I. Details regarding the EPR paradoxes are
given in appendix F. Detailed proofs relating to quantum
correlations are given in appendices H and J. Mathematical
expressions regarding conditional probabilities are set out in
appendix C and criteria for local and global SSR are proven in
appendix N.

In the accompanying paper II [6], section 2 sets out the
definitions of spin squeezing and in the following section 3 it
is shown that spin squeezing is a signature of entanglement,
both for the original spin operators with entanglement of the
original modes and the principle spin operators with entan-
glement of the two new modes, and also for multi-mode
cases. Details of the latter are in appendices A and D. The
significnce of the spin squeezing test is discussd in appendix
C. A number of other tests for entanglement proposed by
other authors are considered in sections 4—-6, with details of
these treatments set out in appendices E, F, G, H, I, J and L.
In section 7 it is shown that a simple two mode interferometer

can be used to measure the mean values and covariance
matrix for the spin operators involved in entanglement tests.
The treatment is then generalized to situations involving
measurements on multi-mode systems. Details are covered in
appendices M and N. Actual experiments aimed at detecting
entanglement via spin squeezing tests are examined in section
8. The final section 9 summarizes and discusses the key
results regarding entanglement tests. Appendices K and O
provide details regarding certain important states whose fea-
tures are discussed in the paper—the ‘separable but non-local’
states and the relative phase eigenstate.

2. Entanglement—general features

2.1. Quantum states

The standard Copenhagen quantum theory notions of physical
systems that can exist in various sfates and have associated
properties on which measurements can be made are presumed
in this paper. The measuring system may be also treated via
quantum theory, but there is always some component that
behaves classically, so that quantum fluctuations in the
quantity recorded by the observer are small. The term
quantum state (or ‘physical quantum state’ or just ‘state’ for
short) refers to a state that can either be prepared via a process
consistent with the laws of quantum physics and on which
measurements can be then performed and the probabilistic
results predicted from this state (prediction), or a state whose
existence can be inferred from later quantum measurements
(retrodiction). We may also refer to such states as allowed
quantum states, and our approach is intended to be physically
based. In quantum theory, quantum states are represented
mathematically by density operators for mixed states or state
vectors for pure states. For identical particle systems these
representations must satisfy symmetrization and other basic
requirements in accordance with the laws of quantum theory.
The probabilities of measurement outcomes and the prob-
abilities associated with retrodiction can be interpreted as
Bayesian probabilities [79, 80], and the quantum state is
observer dependent. The quantum state, the system it is
associated with and the quantities that can be measured are
considered here as entities that are viewed as being both
ontological and epistemological. Different observers may
have different information about how the quantum state was
prepared, hence the quantum state is in part epistemological,
and would be described differently by different observers.
Hence the observer is important, but as there is actually
something out there to be studied, quantum states also have
an ontological aspect. We will avoid the unqualified term
‘physical state’ because this term is generally invoked in
discussions about the pre-Copenhagen notion of reality and
refers to some as yet unknown but more fundamental
description of the system which underlies the quantum state
[81]. HVTs attempt to describe this more fundamental phy-
sical state that is assumed to exist—attempts that so far have
been unsuccessful if locality is also invoked (see below). In
addition to those associated with physical quantum states,
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other density operators and state vectors may be introduced
for mathematical convenience. For physical quantum states,
the density operator is determined from either the preparation
process or inferred from the measurement process—quantum
tomography—and in general it is a statistical mixture of
density operators for possible preparation processes. Mea-
surement itself constitutes a possible preparation process.
Following preparation, further experimental processes may
change the quantum state and dynamical equations give the
time evolution of the density operator between preparation
and measurement, the simplest situation being where mea-
surement takes place immediately after preparation. A full
discussion of the predictive and retrodictive aspects of the
density operator is given in papers by Pegg et al [79, 82].
While there are often different mathematical forms for the
density operator that lead to the same predictive results for
subsequent measurements, the results of the measurements
can also be used to retrodictively determine the preferred
form of the density operator that is consistent with the
available preparation and measurement operators. An exam-
ple is given in [82].

2.2. Entangled and non-entangled states

2.2.1. General considerations. Here the commonly applied
physically based approach to mathematically defining
entangled states will be described [18]. The definition
involves vectors and density operators that represent states
than can be prepared in real experiments, so the mathematical
approach is to be physically based. The concept of quantum
entanglement involves composite systems made up of
component sub-systems each of which are distinguishable
from the other sub-systems, and where each could constitute a
stand-alone quantum system. This means the each sub-system
will have its own set of physically realizable quantum states
—mixed or pure—which could be prepared independently of
the quantum states of the other sub-systems. As will be seen,
the requirement that sub-systems be distinguishable and their
states be physically preparable will have important
consequences, especially in the context of identical particle
systems. The formal definition of what is meant by an
entangled state starts with the pure states, described via a
vector in a Hilbert space. The formalism of quantum theory
allows for pure states for composite systems made up of two
or more distinct sub-systems via tensor products of sub-
system states
) = |B1) ® |Pp) @ |Dc).... (1)
Such products are called non-entangled or separable states.
However, since these product states exist in a Hilbert space, it
follows that linear combinations of such products of the form
|B) = 3 Capy 195) @ |@p) @ |7.)... )

afy..

could also represent possible pure quantum states for the
system. Such quantum superpositions which cannot be
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expressed as a single product of sub-system states are
known as entangled (or non-separable) states.

The concept of entanglement can be extended to mixed
states, which are described via density operators in the Hilbert
space. If A, B, ... are the sub-systems with ﬁ?, ﬁlf, being
density operators the sub-systems A, B, then a general non-
entangled or separable state is one where the overall density
operator p can be written as the weighted sum of tensor
products of these sub-system density operators in the form [7]

P=> Prig ® Pp® g @ .. 3)

R

with Y-, Pr = 1 and F; > 0 giving the probability that the
specific product state g, = ﬁl‘: ® ﬁlf ® ﬁg ® ... occurs. It is
assumed that at least in principle such separable states can be
prepared [7]. This implies the possibility of turning off the
interactions between the different sub-systems, a task that
may be difficult in practice except for well-separated sub-
systems. Entangled states (or non-separable states) are those
that cannot be written in this form, so in this approach
knowing what the term entangled state refers to is based on
first knowing what the general form is for a non-entangled
state. The density operator p = |®) (®| for the pure state in (2)
is not of the form (3), as there are cross terms of the form
Cay. City (103 () ® (1) (B3] © .. involved.

The concepts of separability and entanglement based on
the equations (1) and (3) for non-entangled states do not
however just rest on the mathematical forms alone. Implicitly
there is the assumption that separable quantum states
described by the two expressions can actually be created in
physical processes. The sub-systems involved must therefore
be distinguishable quantum systems in their own right, and
the sub-system states |®4), |Pp), ... or ,51‘.?, ﬁlf, ... must also
be possible quantum states for the sub-systems. We will
return to these requirements later. The issue of the physical
preparation of non-entangled (separable) states starting from
some uncorrelated fiducial state for the separate sub-systems
was introduced by Werner [7], and discussed further by
Bartlett ef al (see [54], section IIB). This involves the ideas of
LOCC dealt with in the next section.

The key requirement is that entangled states exhibit a
novel quantum feature that is only found in composite
systems. Separable states are such that the joint probability
for measurements of all physical quantities associated with
the sub-systems can be found from separate measurement
probabilities obtained from the sub-system density operators
ﬁl?, ﬁlf, etc and the overall classical probability Pg (see
section 2.3). This feature of separable probabilities is absent
in certain entangled states, and because of this key non-
separability  feature Schrodinger called these states
‘entangled’. The separability feature for the joint probabilities
is essentially a classical feature and applies in HVTs (see
section 2.5) applied to quantum systems—as well as to
quantum separable states. The fact that entangled states are
quantum states that can exhibit the failure of this separability
feature for classical LHV theories highlights entanglement
being a non-classical feature for composite systems.
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An alternative operational approach to defining
entangled states focuses on whether or not they exhibit
certain non-classical features such as Bell Inequality violation
or whether they satisfy certain mathematical tests such as
having a non-negative partial transpose [36, 47], and a
utilitarian approach focuses or whether entangled states have
technological applications such as in various quantum
information protocols. As will be seen in section 3.4, the
particular definition of entangled states based on their non-
creatability via LOCC essentially coincides with the approach
used in the present paper. It has been realized for some time
that different types of entangled states occur, for example
states in which a Bell inequality is not violated or states
demonstrating an EPR paradox [83]. Wiseman et al [27-29]
and Reid et al [19, 20, 30, 84] discuss the concept of a
hierarchy of entangled states, with states exhibiting Bell non-
locality being a subset of states for which there is EPR
steering, which in turn is a subset of all the entangled states,
the latter being defined as states whose density operators
cannot be written as in equation (3) though without further
consideration if additional properties are required for the sub-
system density operators. The operational approach could
lead into a quagmire of differing interpretations of entangle-
ment depending on which non-classical feature is highlighted,
and the utilitarian approach implies that all entangled states
have a technological use—which is by no means the case. For
these reasons, the present physical approach based on the
quantities involved representing allowed sub-system states is
generally favored [18]. It is also compatible with later
classifying entangled states in a hierarchy.

Finally, we should mention that in addition to quantum
entanglement, there is a body of work dealing with so-called
classical entanglement. This is essentially of mathematical
rather than physical interest, but for completeness a brief
summary is presented in appendix B.

2.2.2. Local systems and operations. As pointed out by
Vedral [17], one reason for calling states such as in
equations (1) and (3) separable is associated with the idea
of performing operations on the separate sub-systems that do
not affect the other sub-systems. Such operations on such
local systems are referred to as local operations and include
unitary operations U, U, that change the states via
Py — @ﬁl’:ﬁ;, Pe — 173@1:[7;, etc as in a time
evolution, and could include processes by which the states
Dy D, are separately prepared from suitable initial states.
We note that performing local operations on a separable
state only produces another separable state, not an entangled
state. Such local operations are obviously facilitated in
experiments if the sub-systems are essentially non-interact-
ing-such as when they are spatially well-separated, though
this does not have to be the case. The local systems and
operations could involve sub-systems whose quantum states
and operators are just in different parts of Hilbert space, such
as for cold atoms in different hyperfine states even when
located in the same spatial region. Note the distinction
between local and localized. As described by Werner [7], if
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one observer (Alice) is associated with preparing separate
sub-system A in an allowed quantum state ﬁl? via local
operations with a probability Pk, a second observer (Bob)
could be then advised via a classical communication channel
to prepare sub-system B in state ﬁlf via local operations. After
repeating this process for different choices R of the correlated
pairs of sub-system states, the overall quantum state prepared
by both observers via this local operation and classical
communication protocol (LOCC) would then be the bipartite
non-entangled state p = . Pr ,5]‘;‘ ® ﬁlf . Multipartite non-
entangled states of the form (3) can also be prepared via
LOCC protocols involving further observers. As will be seen,
the separable or non-entangled states are just those that can be
prepared by LOCC protocols.

2.2.3. Constraints on sub-system density operators. A key
issue however is whether density operators p and ,ﬁ;?, ﬁlf , in
equation (3) always represent possible quantum states, even if
the operators p and pg, pf, etc satisfy all the standard
mathematical requirements for density operators—
Hermitiancy, positiveness, trace equal to unity, trace of
density operator squared being not greater than unity. In this
paper it will be argued that for systems of identical massive
particles there are further requirements not only on the overall
density operator, but also (for separable states) on those for
the individual sub-systems that are imposed by
symmetrization and SSRs.

2.3. Separate and joint measurements, reduced density
operator

In this section we consider separate and joint measurements
on systems involving several sub-systems and introduce
results for probabilities, mean values for measurements on
one of the sub-systems which are conditional on the results
for measurements on another of the sub-systems. This will
require consideration of quantum theoretical conditional
probabilities. The measurements involved will be assumed
for simplicity to be von Neumann projective measurements
for physical quantities represented by Hermitian operators Q,
which project the quantum state into subspaces for the
eigenvalue ); that is measured, the subspaces being associated
with Hermitian, idempotent projectors II; whose sum over all
eigenvalues is unity. These concepts are treated in several
quantum theory textbooks, for example [15, 85]. For com-
pleteness, an account setting out the key results is presented in
appendix C.

2.3.1. Joint measurements on sub-systems. For situations
involving distinct sub-systems measurements can be carried
out on all the sub-systems and the results expressed in terms
of the joint probability for various outcomes. If Q4 is a
physical quantity associated with sub-system A, with
eigenvalues A\ and with ﬁ,A the projector onto the subspace
with eigenvalue \#, Qp is a physical quantity associated with
sub-system B, with eigenvalues /\33 and with ﬁf the projector
onto the subspace with eigenvalue /\f etc, then the joint
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probability Py (i, j, ...) that measurement of (AZA leads to
result A\, measurement of Qp leads to result Af, etc is given
by

) =Te(@ T .. p). 4)
This joint probability depends on the full density operator p
representing the allowed quantum state as well as on the
quantities being measured. Here the projectors (strictly
ﬁiA ® i? X .., i ® ﬁf ® ..., etc) commute, so the
order of measurements is immaterial. An alternative
notation in which the physical quantities are also specified
is Py (QA, i QB,], o).

P (i, ], ..

2.3.2. Single measurements on sub-systems and reduced
density operator. The reduced density operator p, for sub-
system A given by

&)

and enables the results for measurements on sub-system A to
be determined for the situation where the results for all joint
measurements involving the other sub-systems are discarded.
The probability P,(7) that measurement of Q4 leads to result
A\ irrespective of the results for measurements on the other
sub-systems is given by

ﬁA = TrB,C,...(ﬁ)

PA(I): ZPAB(l’]’ )
k.
— ([} ) ©)
= Try (T ) )

using >, ﬁ? = 1, etc. Hence the reduced density operator P
plays the role of specifying the quantum state for mode A
considered as a separate sub-system, even if the original state
p is entangled. An alternative notation in which the physical
quantity is also specified is P, ((AZA, 0).

2.3.3. Mean value and variance. The mean value for
measuring a physical quantity 24 will be given by

= > MPi(i)

i

NA
= Tra (2 pA),

> AL /\iA ﬁ;q
The variance of measurements of the physical quantity
Q4 will be given by

®)

~A
where we have used ()" =

((AQ )2 (Qa))2P ()

ol -

= T’A((Q — Q)2 2 €)

so both the mean and variance only depend on the reduced
density operator p,.

On the other hand the mean value of a product of sub-
system operators QA ® QB [029] (A)C ® ..., where QA, (AZB, ﬁc, .
are Hermitian operators representing physical quantities for
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the separate sub-systems, is given by

ZE )\A)\B PAB (l ], .o

)\ /\

o Bl .) )
=Tr( @ O @ Qc ® )P
(10)

which involves the overall system density operator,
expected.

as

2.3.4. Conditional probabilities. Treating the case of two sub-
systems for simplicity we can use Bayes theorem (see
appendix C, equation (103)) to obtain expressions for
conditional probabilities [18]. The conditional probability
that if measurement of () associated with sub-system B leads
to eigenvalue )\f then measurement of ), associated with sub-

system A leads to eigenvalue A\ is given by

o ~A =B =B_

Pag(ilj) = Tr(T; 11 ) /Te(TT; 7). (11)
In general, the overall density operator is required to
determine the conditional probability. An alternative

notation in which the physical quantities are also specified
is Pap (S, il€2p, j)-
As shown in appendix C the conditional probability is
given by
=A ~
= Tr(Hi pc()nd (QB’ )\f))’

Pap (il ) (12)

where

PN ~B _ ~B ~B
Peona i, Xy =TI} p T,/ Te(TT; ) (13)
is the so-called conditioned density operator, corresponding
the quantum state produced following the measurement of (g
that obtained the result /\f . The conditional probability result
is the same as

. =A 3
Pyp (il j) = Tr(Il; Pegng (s X))

which is the same as the expression (6) with p replaced by
Prond (s, X}). This is what would be expected for a
conditioned measurement probability.

Also, if the measurement results for QB are not recorded
the conditioned density operator now becomes

ZPBU)ﬁmd@B, X5

14)

ﬁcond (QB) =
(15)

This is still different to the original density operator p because
a measurement of ()3 has occurred, even if we don’t know the
outcome. However, the measurement probability for €y is
now

. . A oy
PAB (llAny .]) = Tr(H[ pcond (QB))
— Tr(fi; )
=P (D),

16)
(7)
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where we have used the cyclic properties of the trace,
(H )2 — 117 and > X H — 1. The results in equations (16)

and (17) are the same as the measurement probability for QA if
no measurement for () had taken place at all. This is perhaps
not surprising, since the record of the latter measurements was
discarded. Another way of showing this result is that Bayes
theorem tells us that > Pas G pHP(j) = > Pag (i, j) = Pa(),

since ZJ. Py (i, j) is the probability that measurement of QA

./'

will lead to \{* and measurement of Qp will lead to any of the
)\f. This result is called the no-signalling theorem [18].

Also, as Pyp(i|Any j)
(7) that

= Tr(ﬁ?ﬁcond (ﬁB)) we see from

ﬁA = TrB(ﬁcond (QB)) (18)

showing that the trace over B of the conditioned density
operator for the state obtained by measuring any observable

Q4 and then discarding the results just gives the reduced
density operator for sub-system A.

2.3.5. Conditional mean and variance. As explained in
appendix C, to determine the conditioned mean value of A
after measurement of (2 has led to the eigenvalue A; we use

Peond (Q, i) rather than p in the mean formula (A ) = Tr(Ap)
and the result is given in terms of the conditional probability
P(Kj@i). Here we refer to two commuting observables and
include the operators in the notation to avoid any
misinterpretation. Hence

(M) = Tr(Apgpa (4 1))
=>"u; PN, I, ). (19)
J

For the conditioned variance of A after measurement of

Q2 has led to the eigenvalue \; we use Prond (€0, i) rather than p
and the conditioned mean <7\\>Ql rather than (A) in the
variance formula (AK2> = Tr((A — (K)zﬁ). Hence

(AR")q, =Tr(A -

=2

J

(R)0,1)*Poona (2, 1))
— (M. )? PN, I, ). (20)

If we weighted the conditioned mean by the probability
P(ﬁ, i) that measuring Q has led to the eigenvalue ); and
summed over the possible outcomes \; for the Q) measure-
ment, then we obtain the mean for measurements of A after
unrecorded measurements of ) have occurred. From Bayes
theorem ZiP(X,jlﬁ, i)P(ﬁ, i) = P(K,j) so this gives the
unrecorded mean (N)g as

(K=" (K)a, P )
=2 P, )
(&) 1)

which is the usual mean value for measurements of A when
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no measurements of () have occurred. Note that no such
similar result occurs for the unrecorded variance (AK2>§
~2 ~2 P
(AN )= (AN )q:P(Q, i)
i

= (ARY). (22)

2.4. Non-entangled states

In this section we will set out the key results for measure-
ments on non-entangled states.

2.4.1. Non-entangled states—joint measurements on sub-
systems. In the case of the general non-entangled state we
find that the joint probability is

Pag (s jy ) = Y PR PRDPE () -, 23)
R
where
PR(i) = Tr(H ) PR = Tr(H Pr)- (24)
are the probabilities for measurement results for QA, QB, ...on

the separate sub-systems with density operators ﬁé‘, ﬁlf, etc
and the overall joint probability is given by the products of
the probabilities Pf (i), Pg (), .. for the measurement results
AL, X, .. for physical quantities Oy, g, ... if the sub-systems
are in the states p;, pp, etc. Note that here Pf (i), Pj (j), are
given by quantum theory formulae for the subsystem states.
For simplicity only quantized measured values will be
considered—the extension to continuous values is
straightforward. Thus the results for the probabilities of
joint measurements when the system is in a separable
quantum state are determined by the measurement
probabilities in possible quantum states for the sub-systems,
combined with a classical probability for creating the
particular set of sub-system quantum states. Note the
emphasis on ‘possible’—some of the separable states
described in [56] are not possible.

Furthermore, if we consider measurements of the
physical quantity Q4 ® Qp then for a separable state the
mean value for measurement of this quantity is given by

(O @ Q) = Tr( Oy © Qp ) = ZPR Qa)z W)z . (25)

where (QA)Q = Tr,(Qa ﬁA) and <QB>R = Trb(QB pR) are the
mean values of QA and QB for the sub-system states p and pR
respectively. If (4 @ Q) = () (Qp) then the state is said
to be uncorrelated. Separable states are correlated except for
the case where p, = p* ® p”, but the correlation is
essentially non-quantum and attributable to the classical
probabilities Pr. However, for separable states the inequality
1 ® Qp) P < (040 ® Qb8 that if
[y ® Q;) P> @0 QZQQ then the state is entangled.

In the simple non-entangled pure state situation in
equation (1) the joint probability only involves a single

applies, so
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product of sub-system probabilities

Pap. (i, j, ) = Pa(D)Pp())-.., (26)

where

Puli) = (T 104)  Py(j) = (Bl 10p) .. (27)

just give the probabilities for measurements in the separate
sub-systems.

This key result (23) showing that the joint measurement
probability for a separable state only depends on separate
measurement probabilities for the sub-systems, together with
the classical probability for preparing correlated product
states of the sub-systems, does not necessarily apply for
entangled states [7]. However the key quantum feature for
composite systems of non-separability for joint measurement
probabilities applies only to entangled states. This strange
quantum feature of entangled states has been regarded as
particularly unusual when the sub-systems are spatially well-
separated (or non-local) because then measurement events
can become space-like separated. This is relevant to quantum
paradoxes such as FEinstein—Poldolsky—Rosen and Bell’s
theorem which aim to show there could be no causal classical
theory explaining quantum mechanics [1, 2]. Measurements
on sub-system A of physical quantity (AZA affect the results of
measurements of () at the same time on a distant sub-system
B, even if the choice of measured quantity ﬁB is unknown to
the experimenter measuring Q4. As will be shown below, a
similar result to (23) also occurs in HVT—a classical theory
—s0 non-separability for joint measurements resulting from
entanglement is a truly non-classical feature of composite
systems.

2.4.2. Non-entangled states—single sub-system measurements.
For the general non-entangled state, the reduced density
operator for sub-system A is given by
Py =D _Pr Dg- (28)
R
A key feature of a non-entangled state is that the results of a
measurement on any one of the sub-systems is independent of
the states for the other subsystems. From equations (7) and
(28) the probability P,(i) that measurement of {4 leads to
result A\ is given by

Pa(i) = Y_Pr PX (D), (29)
R
where the reduced density operator is given by equation (28)
for the non-entangled state in equation (3). This result only
depends on the reduced density operator p,, which represents
a state for sub-system A and which is a statistical mixture of
the sub-system states ;31?, with a probability Py that is the
same for all sub-systems. The result for the measurement
probability P4(i) is just the statistical average of the results
that would apply if sub-system A were in possible states ,51‘;‘.
For all quantum states the final expression for the
measurement probability P,(i) only involves a trace of
L A
quantities II;, p, that apply to sub-system A, but for a non-
entangled state the reduced density operator g, is given by an
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expression (28) that does not involve density operators for the
other sub-systems. Thus for a non-entangled state, the
probability P(i) is independent of the states ﬁlf, ﬁRC,
associated with the other sub-systems. Analogous results
apply for measurements on the other sub-systems.

2.4.3. Non-entangled states—conditional probability. For a
general non-entangled bipartite mixed state the conditional
probability is given by
Pap(ilj) = Y Pr Px () P5 ())/3_PrPg () (30)
R R
which in general depends on QB associated with sub-system B
and the eigenvalue )\f . This may seem surprising for the case
where A and B are localized sub-systems which are well
separated. Even for separable states a measurement result for
sub-system B will give immediate information about a totally
separated measurement on sub-system A—which is space-like
separated. However it should be remembered that the general
separable system can still be a correlated state, since each
sub-system density operator ﬁlf for sub-system B is matched
with a corresponding density operator ﬁ,? for sub-system A.
Results at A can be correlated with those at B, so the observer
at A can potentially infer from a local measurement on the
sub-system A the result of a local measurement on sub-system
B. Tt is therefore not necessarily the case that measurement
results for A are independent of those for B. However, as we
will see below, such correlations (usually) have a classical
interpretation. Result (30) is not a case of the ‘spooky action
at a distance’ that Einstein [1] referred to.
However, for a non-entangled pure

~

p = pA ® p? we do find that
Pag(ilj) = Pa(D),

where P, (i) = Tr(ﬁ?ﬁ*‘). For separable pure states the

state where

€1V

conditional probability is independent of Qp associated with
sub-system B and the eigenvalue )\f .

Also of course > Pas G )P (j) = Pai) is true for
separable states since it applies to general bipartite states.
Hence if the measurement results for QB are discarded then
the probability distribution for measurements on Q4 will be

determined from the conditioned density operator p,, 4 ©Qp)
and just result in P4(i{)—as in shown in equation (17) for any
quantum state.

2.4.4. Non-entangled states—mean values and correlations.
For non-entangled states as in equation (3) the mean value for
measuring a physical quantity O ® O ® Q¢ @ ..., where
O, O, ﬁc, .. are Hermitian operators representing physical
quantities for the separate sub-systems can be obtained from
equations (3) and (10), and is given by

0 ® Q%0 @.) = PR ()i (Qc)f. (32)
R

where

Qx)f =TrCk p). (K=A.B,..) (33)

is the mean value for measuring QK in the K sub-system when
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its density operator is ,?),f . Since the overall mean value is not
equal to the product of the separate mean values, the
measurements on the sub-systems are said to be correlated.
However, for the general non-entangled state as the mean
value is just the products of mean values weighted by the
probability of preparing the particular product state—which
involves a LOCC protocol, as we have seen—the correlation
is classical rather than quantum [18]. In the case of a single
product state where p = p4 ® pf ® p¢° ® ... we have
Q4 ® O @ Qc ® ..) = ()4 (Qp)B (Qc)C ... which is just
the product of mean values for the separate sub-systems, and
in this case the measurements on the sub-systems are said to
be uncorrelated. For entangled states however the last result
for (QA ® O ® QC ® ...) does not apply, and the correlation
is strictly quantum.

2.5. LHV theories

In a general LHV theory as envisaged by Einstein et al [1]
and Bell [4], physical quantities associated with the sub-
systems are denoted )4, (g etc, which are real numbers not
operators. Their values are assumed to be \#, /\f etc—having
the same ranges as in quantum theory, since HVT does not
challenge the quantization feature. In the realist viewpoint of
HVT all the physical quantities have definite values at any
time, the probabilities for measuring these values being
determined from a set of hidden variables & which are
themselves given by a probability function P (§) for each state
preparation process. Measurement is not required for the
values for physical quantities to be created, as in quantum
theory, nor do the hidden variables change as a result of the
act of measurement itself (though they may change as a result
of local interactions of the system with the measurement
apparatus [86, 87]. As in classical physics, ideal measurement
is assumed not to change the state of the system—the hidden
variables would only change in accord with the (as yet
unknown) dynamical equations that govern their evolution.
The hidden variables are regarded as the elements of reality
that constitute the fundamental way of describing the system
[1]. There may be just a single hidden variable or a set, and
the hidden variables could be discrete or continuous—these
details do not matter in a general HVT. In the original treat-
ment of Bell [4] the hidden variables uniquely determine the
actual values that physical quantities would have when
measured. However, in a so-called ‘fuzzy’ HVT [9, 19, 86—
89] (see also section 7.1 of [17]) the values for £y, 25 etc are
determined probabilisticly from the hidden variables, the
probability functions being classical and allow for the hidden
variables not being known—just as in classical statistical
mechanics, where the unknown (but real) positions and
momenta of the classical particles are described via prob-
abilities. The probabilistic treatment of the hidden variables
attempts to replicate the probabilistic nature of quantum
theory. For our purposes we will consider only LHV theories
—this is sufficient to demonstrate key results such as the Bell
inequalities. For LHV theories although the hidden variables
& are global, they act locally even for spatially separable sub-
systems. For particular hidden variables ¢ the probability that
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Q4 has value A will be given by P, (i, £) and the probability
that (g has value )\f will be given by Pz (j, &), etc. The LHVT
joint probability for measurement outcome for {24, {23, etc will
be given by

Pip. (i) = [dEPOPG OPR(j O (34
States where the joint probabilities are given by (34) are the
Bell local states, all other states are Bell non-local. Here
P (£)d€ is the probability that the hidden variables are in the
range d¢ around &, the HV being assumed continuous—which
is not a requirement [4]. The probabilities satisfy the usual
sum rules for all outcomes giving unity, thus >, P4 (i, §) = 1,
etc, f déP (&) = 1. The sub-system probabilities Py (i, &),
Ps(j, &) etc only depend on the hidden variables £. Bell
inequalities are constraints derived on the basis of the
assumption (34), and if violated therefore falsify all LHV
theories. The Bell inequalities will be discussed further in
section 2.7.

The formal similarity between the HVT expression
for the joint probability (34) and the quantum expression
(23) for a separable state is noticeable. We could map
E—R, P — P [d= Y, P& — PLG@) and
P3(j, €) — P& (j). The Werner preparation process [7] would
then determine the setting for the hidden variables &. If a HVT
underpinned quantum theory, it follows that the quantum
probabilities PX (i) and PZ(j) would always be equivalent to
hidden variable probabilities Py (i, &) or Pz(j, &) for each of
the sub-systems (it would not be consistent to only have this
apply to one of the sub-systems and not the other). Thus, all
separable states are Bell local. From the expression (34) for
the joint probability general HVT expressions for the mean
value (4 x Qp)gyr for the product of the measurement
results for observables {24 and () for subsystems A, B
respectively (see (36) below) can be obtained that are ana-
logous to the quantum expression (32) for a separable state.
There is of course no independent fully developed classical
HVT that can actually predict the P, (i, &), P3(j, &) etc.

However, as we will see both the HVT (see [18] for a
proof) and the quantum separable state predictions are con-
sistent with Bell Inequalities, and it therefore requires a
quantum entangled state to violate Bell inequalities and to
demonstrate failure of the LHV theory model (34). Naturally
it follows that such quantum entangled states cannot be
described via a LHV theory. Hence the experimental violation
of Bell inequalities would also show that the particular
quantum state must be entangled. Note however that as
Werner [7] showed, some entangled states are also Bell local,
so although all Bell non-local states are entangled, not all
entangled states are Bell non-local (see [27-29]).

A clear example of an entangled quantum state which
cannot be described via LHV theory [90-92] is the GHZ state.
This involves three sub-systems each with two basis states
and measurements involving Pauli spin operators. A discus-
sion of LHV violation in the GHZ state is included for
completeness in appendix D.
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2.5.1. LHV—mean values and correlation. The actual values
that would be assigned to the physical quantities )y, {2p etc
will depend on the hidden variables but can be taken as the
mean values of the possible values A\, A etc. We denote
these mean values as (€4(£)), (2(£)) etc where

(U (©) =S MNPk, &) (K=A,B, ...).

K
)‘k

(35)

These expressions my be compared to equatlon (33) for the
mean values of physical quantities O, Qp etc in quantum
separable states.

We can then obtain an expression for the mean value in
HVT of the physical quantity €34 x €2 X Q¢ X ..., where
Q4, g, etc are physical quantities for the separate sub-
systems. This is obtained from equations (34) and (35) and is
given by

<QA X QB X QC X ~>LHV

= [a€ POOU©) (B©) (2 ©) . (6)

This may be compared to equatlon (32) for the mean value of
the physical quantity (4 ® € ® Q¢ ® .. in quantum separ-
able states.

2.6. Paradoxes

The EPR and Schrodinger cat paradoxes figured prominently
in early discussions about entanglement. Both paradoxes
involve composite systems and the consideration of quantum
states which are entangled Both these paradoxes reflect the
conflict between quantum theory, in which the values for
physical quantities only take on definite values when mea-
surement occurs and classical theory, in which the values for
physical quantities always exist even when measurement is
not involved. The latter viewpoint is referred to as realism.
Quantum theory is also probabilistic, so although the possible
outcomes for measuring a physical quantity can be deter-
mined prior to measurement, the actual outcome in a given
quantum state for any measurement is only known in terms of
a probability. However, from the realist viewpoint, quantum
theory is incomplete and a future theory based around hidden
variables would determine the actual values of the physical
quantities, as well as the quantum probabilities that particular
values will be found via measurement.

While the EPR and Schrodinger cat paradoxes are of
historical interest and have provoked much debate, it was the
formulation of the Bell inequalities (which are described in
the next section 2.7) and the conditions under which they
could be violated that provided the first clear case of where
the predictions of quantum theory could differ from those of
HVTs. It then became possible to carry out actual experiments
to distinguish these two fundamentally different theories. The
actual experimental evidence is consistent with quantum
theory and (apart from a small number of remaining loop-
holes) rules out LHV theories.

2.6.1. EPR paradox. In the original version of the EPR
paradox, Einstein ez al [1] considered a two-particle system A,
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B in which the particles were associated with positions Xy, Xz
and momenta p,, py. They envisaged a quantum state in
which the pairs of physical quantities X, Xp or p,, pg had
highly correlated values—measured or otherwise. To be
specific, one may consider a simultaneous eigenstate |®) of
the two commuting operators Xy — Xz and p, + pg, Where
(%) — Xp)|P) = 2x|®) and (P, + Pp)|P) = 0|®). This state is
an example of an entangled state, as may be seen if it is
expanded in terms of position eigenstates |x4xz). If the system
is in state |®) then from standard quantum theory if A had a
mean momentum p then B would have a mean momentum
—p. Alternatively, if A had a mean position x then B would
have a mean position —x. Then if the eigenvalue 2x is very
large so that the two particles will be well-separated (in
quantum theory their spatial wave functions would be
localized in separate spatial regions) it follows that if the
position of B was measured then the position of A would be
immediately known, even if the particles were light years
apart. On the other hand, if the momentum of B was measured
instead, then the momentum of A would immediately be
known. From the realist point of view both A and B always
have definite positions and momenta, even if these are not
known, so all these measurements do is reveal these (hidden)
values. It would seem then that measurements of position and
momentum on particle B could lead to a knowledge of the
position and momentum at a far distant particle A, perhaps
with an accuracy that would violate the HUP. As we will see,
this is not the case when quantum theory is applied correctly.
However, what Einstein ef al pointed out as being particularly
strange was that the choice of whether the momentum or
position of B was measured (and found to have a definite
value) would instantly determine which of the position or
momentum of A would then have a definite value—even if A
and B were separated by such a large distance that no signal
could have been passed from B to A regarding which quantity
was measured. Einstein referred to this as ‘spooky action at a
distance’ to highlight the strangeness of what came to be
referred to as entangled states. Thus a somewhat paradoxical
situation would seem to arise. Einstein stated that this did not
demonstrate that quantum theory was wrong, only that it was
incomplete.

The EPR argument assumes local realism, to justify that
the possibility of an exact prediction of the position of the far-
away particle A (based on the measurement of the position for
the particle B) implies the realist viewpoint that the position
of particle A was predetermined. The same argument applies
to the momentum of particle A, and hence EPR conclude that
both the position and momentum of particle A are precisely
predetermined—in conflict with the HUP derived from
quantum mechanics. Since the argument is based on the
assumption of local realism, the modern interpretation of the
EPR analysis is that it reveals (for the appropriate entangled
state) the inconsistency of local realism with the completeness
of quantum mechanics.

Discussions of the EPR paradox [1] in terms of HVTs
has been given by numerous authors (see [17-19, 89] for
example). The papers and reviews by Reid ef al [19, 83, 89],
give a full account taking into consideration the ‘fuzzy’
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version of local HVT (LHV) and determining the predictions
for the conditional variances for x4 and p4 based both on
separable quantum states and states described via local
HVT. This treatment successfully quantifies the somewhat
qualitative considerations described in the previous para-
graph. If the position for particle B is measured and the result
is x, then the original density operator p for the two particle
system is changed into the conditional density operator
Prona G X) = L9 T, /Tr(T1 7). where 11, = () (x)p is
the projector onto the eigenvector |x)z (the eigenvalues x are
assumed for simplicity to form a quasi-continuum). Similarly,
if the momentum for particle B is measured and the result is p,
then the original density operator p for the two particle system
is changed into the conditional density operator
Prona P> ) = T, p 11, /Te(@, ), where T, = (Ip) (pl)s
is the projector onto the eigenvector |p)p (the eigenvalues p
are assumed for simplicity to form a quasi-continuum). Here
we outline the discussion based on quantum separable states.
Conditional variances for position and momentum for sub-
system A are considered based on measurements for sub-
system B of position. It can be shown that for these
conditional variances the HUP still applies. The same
conclusion is obtained if the measurements on sub-system B
had been the momentum. As the experimenter on sub-system
A could not know whether the measurement on sub-system B
was on position or momentum, the action at a distance feature
of quantum entanglement is confirmed.

The question is whether the conditional variances
(A%3);, for measuring %, for sub-system A having measured
3 for sub-system B, and (Ap?) 5, for measuring p, for sub-
system A having measured p, for sub-system B violate the
HUP [83]

(AR5, (8525, < 4% G7)
where the measurements on sub-system B are left unrec-
orded. If this inequality holds we have an EPR violation.
However for separable states it can be shown that
(AR5, (APF)5, = %fi 2. The proof of this result is set
out in appendix F. Thus if the EPR violations as defined in
equation (37) are to occur then the state must be entangled.
Progress towards experimental confirmation of EPR viola-
tions is reviewed in [9, 19].

In [89] an analogous treatment based on LHV theory also
shows that the HUP is satisfied for the conditioned variances.
The details of this treatment will not be given here, but the
formal similarity of expressions for conditional probabilities
in LHV theories and for separable states indicates the steps
involved.

The EPR paradox is not confined to position and
momentum measurements on two sub-systems. A related
paradox [93] occurs in the case of measurements on spin
components S, and .SA‘az—with «a = x, y, z—associated with
two sub-systems 1 and 2. The spin operators also satisfy non-
zero commutation rules (see paper II for details)

[Su1s Sl = i8S, [S.2, Sp2] = iS5, (38)
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where «, 3, 7 are x, y, z in cyclic order. The question is
o . a2 ~

whether the conditional variances (AS))s, (A%3)s,

measuring S, for sub-system 1 having measured S,, for

for

sub-system 2, and <A§}21> 5,, for measuring §y1 for sub-system
1 having measured 3‘;2 for sub-system 2 violate the HUP

1

<ASXI>§,@ <ASyl>§y2 < Zl <Szl> |2 . (39)

Again we find that for separable states that the product of

iy . a2 a2
conditional variances (AS,)s, (AS,))s,, 2%

|(S1) P showing
that if the EPR violations as defined in (39) occur, then the
state must be entangled. For completeness, this spin version
of the EPR paradox is set out in appendix F.
An effect related to the EPR paradox is EPR steering. As
we have seen, the measurement of the position for particle B
changes the density operator and consequently the probability
distributions for measurements on particle A will now be
determined from the conditional probabilities, such as
Pup (X4, xalXp, xg) or Pyg(Py. p4|Xs, xp). Thus measurements
on B are said to steer the results for measurements on A.
Steering will of course only apply if the measurement results
for xp are recorded, and not discarded. A discussion of EPR
steering (see [19, 30]) is beyond the scope of this article.

2.6.2. Schrédinger cat paradox. The Schrodinger -cat
paradox [2, 94] relates to composite systems where one
sub-system (the cat) is macroscopic and the other sub-system
is microscopic (the radioactive atom). The paradox is a clear
consequence of quantum theory allowing the existence of
entangled states. Schrodinger envisaged a state in which an
alive cat and an undecayed atom existed at an initial time, and
because the decayed atom would be associated with a dead
cat, the system after a time of one hour corresponding to the
half-life for radioactive decay would be described in quantum
theory via the entangled state

1

NG

in an obvious notation. The quantum state defined by (40)
represents the knowledge that an observer outside the box
would have about the combined atom-cat system one hour
after the live cat was placed in the box along with an
undecayed atom. The combined system is in an enclosed box,
and opening the box and observing what is inside constitutes
a measurement on the system. According to quantum theory if
the box was opened at this time there would be a probability
of 1/2 of finding the atom undecayed and the cat alive, with
the same probability for finding a decayed atom and a dead
cat. From the realist viewpoint the cat should be either dead
or it should be alive irrespective of whether the box is opened
or not, and it was regarded as a paradox that in the quantum
theory description of the state prior to measurement the cat is
in some sense both dead and alive. This paradox is made
worse because the cat is a macroscopic system—how could a
cat be either dead or alive at the same time, it must be one or
the other? From the quantum point of view in which the
actual values of physical quantities only appear when

|\Ij> = (|e>Atom|Alive>Cal + |g>Alom|Dead>Cat) (40)
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measurement occurs, the Schrodinger cat presents no
paradox. The two possible values signifying the health of
the cat are ‘alive’ and ‘dead’, and these values are found with
a probability of 1/2 when measurement takes place on
opening the box, and this would entirely explain the results if
such an experiment were to be performed. Thus the cat is
neither dead nor alive until measurement has taken place
when the box is opened. There is of course no paradox if the
quantum state is only considered to represent the observer’s
information about what is inside the box. If the box is closed
then at one half life after the cat was put into the box, the state
vector (40) enables the outside observer to correctly assess the
probability that the cat will be alive is 1/2. If the box is then
opened and the cat is found to be dead, then the observer’s
information changes and the state vector for the cat-atom
system is now

|‘l’/> = |g>Atom |Dead>Cat .

In this interpretation of quantum states, the notion of there
being some sort of underlying reality that exists prior to
measurement is rejected. It is only this notion that such a
reality must exist—perhaps described via hidden variables—
that leads to the paradox. EPR paradoxes can also be
constructed from the entangled state (40), as outlined
in [95, 96].

In recent times, experiments based on a Rydberg atom in
a microwave cavity [97] involving states such as (40) have
been performed showing that entanglement can occur
between macroscopic and microscopic systems, and it is
even possible to prepare states analogous to
%(lAlive)Cat + |Dead)c,) in the macroscopic system itself.

(41)

In such experiments the different macroscopic states are large
amplitude coherent states of the cavity mode. Coherent states
are possible for microwave photons as they are created from
classical currents with well-defined phases. A coherent
superposition of an alive and dead cat within the cat sub-
system itself can be created by measurement. The entangled
state in (40) can also be written as

1 (1 1
|\Ij> = f{f(|e>/\tom + |g>Atom)f
x (|Alive)cy + |Dead)cy)

1 1
+ ﬁ(le%tom - |g>Atom)f

x (JAlive)ca — |Dead>Cat)} (42)
so that measurement on the atom for an observable in which
the superposition states %(|6>Atom + |g)awm) are the eigen-
states for this observable would result in the cat then being in
the corresponding macroscopic  superposition  states
%(lAlive)Cm + |Dead)cy) of an alive and dead cat.

2.7. Bell inequalities

Violations of Bell’s Inequalities represent situations where
neither HVT nor quantum theory based on separable states
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can account for the result, and therefore provide a clear case
where an entangled quantum state is involved. Recent papers
on Bell inequality violations include [8—11].

2.7.1. LHV result. A key feature of entangled states is that
they are associated with violations of Bell inequalities [4] and
hence can exhibit this particular non-classical feature. The
Bell inequalities arise in attempts to restore a classical
interpretation of quantum theory via hidden variable
treatments, where actual values are assigned to all
measurable quantities—including those which in quantum
theory are associated with non-commuting Hermitian
operators. In this case we consider two different physical
quantities €, for sub-system A, which are listed A;, A,, etc,
and two 23 for sub-system B, which are listed By, B,, etc. The
corresponding quantum Hermitian operators Qu, O, etc are
Kl, 22 and, B’\], §2. The Bell inequalities involve the mean
value (A; x Bj)uyr of the product of observables A; and B, for
subsystems A, B respectively, for which there are two possible
measured values, +1 and —1. For simplicity we consider a
local HVT. In a LHV theory we see using (34) for Bell local
states that the mean values (A; x Bj) gy are given by

(i % Bjuny = [ d€ P©(Ai(©) (B(©),

where (A;(€)) and (B;(£)) (as in equation (35)) are the values
are assigned to A; and B; when the hidden variables are &, and
P (&) is the hidden variable probability distribution function.
If the corresponding quantum Hermitian operators are such
that their eigenvalues are +1 and —1—as in the case of Pauli
spin operators—then the only possible values for (4;(£)) and
(B;(&)) are between +1 and —1, since HVT does not conflict
with quantum theory regarding allowed values for physical
quantities. However, LHV theory predicts certain inequalities
for the mean values of products of physical quantities for the
two sub-systems.

The form given by Clauser et al [86] for Bell’s
inequalityis

(43)

IS] < 2, 44)
where
S =(Ai X B)ruv + (A X Bo)iuv
+ (A2 X Bi)Lav — (A2 X Ba)ruv. 45)

The minus sign can actually be attached to any one of the four
terms The proof of this important result that all Bell local
states must satisfy is given in [18] but for completeness is set
out in appendix G.

2.7.2. Bell inequality violation and entanglement. We also
confirm in appendix G that for a general two mode non-
entangled state, |S| cannot violate the Bell inequality upper
bound of 2. This of course also follows directly from
separable states being seen as examples of Bell local states.
Thus, the violation of Bell inequalities proves that the
quantum state must be entangled for the sub-systems
involved, so Bell inequality violations are a test of
entanglement. An example of an entangled state that
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violates the Bell inequality is the Bell state |[U_) (see [18],
section 2.5) written in terms of eigenstates of @A and @B

L

) = \/E(H_l)A @ |-1)p — |-1)4 @ |[+1)p)  (46)
we find that
E@ g"®@b-g"=-a-b 47)

The Bell inequality given in the appendix equation (179) can
be violated for the choice where bjand b, are orthogonal and
ay, a, are parallel to by + b,, by — b, respectively (see [18],
section 5.1). Furthermore, such a quantum state cannot be
described via a HVT, since Bell inequalities are always
satisfied using a HVT. Experiments have been carried out in
optical systems providing strong evidence for the existence of
quantum states that violate Bell inequalities with only a few
loopholes remaining (see [9, 19, 36] for references to
experiments). Such violation of Bell inequalities is clearly a
non-classical feature, since the experiments rule out all LHV
theories. As Bell inequalities do not occur for separable states,
the experimental observation of a Bell inequality indicates the
presence of an entangled state. These violations are not
without applications, since such Bell entangled states can be
useful in device-independent quantum key distribution
[17, 18, 36].

2.8. Non-local correlations

Another feature of entangled states is that they are associated
with strong correlations for observables associated with
localized sub-systems that are well-separated, a particular
example being EPR correlations between non-commuting
observables. Entangled states can exhibit this particular non-
classical feature, which again cannot be accounted for via
a HVT.

2.8.1. LHV theory. Consider two operators @A and ﬁB
associated with sub-systems A and B. These would be
Hermitian if observables are involved, but for generality this
is not required. In a LHV theory these would be associated
with functions Q¢(§) (C = A, B) of the LHVs &, with the

Hermitian adjoints QTC being associated with the complex
conjugates Q5(€). In LHV theory correlation functions are
given by the following mean values

(% % Qv = [ A€ POLRO%(©
(5 X QE )iy = f de P ()
S EINGIINGL(311(3)

which then can be shown to satisfy the following correlation
inequality

(48)

(% % Qp)iay P < (5% x Q5QB)ay - (49)
This result is based on the inequality
2
Jacr©c© > ([ereyc®) (50)
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for real, positive functions C(£), P(§) and where
f d¢ P(¢) = 1, and which is proved in appendix E. In the

present case we have C (£) = Q5(6)Qu(6)Q5(6)Qp(€), which
is real, positive. A violation of the inequality in equation (49)
is an indication of strong correlation between sub-systems A
and B. It would also demonstrate Bell non-locality.

2.8.2. Correlation violation and entanglement. As separable
states are particular cases of Bell local states it follows that the
corresponding result to (49), namely

Q) @ Bp)P = 10 ® QR P < (404 ® Q50) (51

applies for separable states. The direct proof of this result is
included for completeness in appendix H.

Hence if it is found that the correlation inequality is
violated |2 @ Q)P = (0 © Q)P > (@40 © Qp0)
then the state must be entangled, so the correlation inequality
violation is also a sufficiency test for entanglement.

3. Identical particles and entanglement

We now take into account the situation where systems of
identical particles are involved. This requires us to give
special consideration to the requirement that quantum states
in such cases must conform to the symmetrization principle
[58]. Further, entanglement is defined as a property that
involves systems with two (or more) sub-systems, and the
definition requires the specification of sub-systems that are
distinguishable from each other and on which measurements
can be made. In addition, the sub-systems must be able to
exist as separate systems which can in principle be prepared
in quantum states for that sub-system alone. This feature is
vital to the definition of separable (or non-entangled) states on
which the definition of entangled states is based. These key
requirements that the sub-systems must be distinguishable,
susceptible to measurements and can exist in separate
quantum states are necessary for the concept of entanglement
to make physical sense, and will have important con-
sequences for the choice of sub-systems when identical par-
ticles are involved. These three key logical requirement for
sub-systems rule out considering labeled identical particles as
sub-systems and lead to the conclusion that sub-systems must
be modes or sets of modes.

3.1. Symmetrization principle

Whether entangled or not the quantum states for systems of
identical particles must conform to the symmetrization prin-
ciple, whereby for mixed states the overall density operator
has to be invariant under permutation operators, or if pure
states are involved, the state vector is either unchanged
(bosons) or changes sign (fermions) if the permutation
operator is odd. Either a first quantization approach in which
the basis states are written as symmetrized products of single
particle states occupied by labeled identical particles can be
used, or a second quantization approach where the basis states
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are products of Fock states for all single particle states
(modes), each Fock state specifying the number of identical
particles occupying the particular mode. In first quantization
the symmetrization process removes any distinction between
identical particles, whereas in second quantization only mode
creation operators are involved, and these do not involve
labeled particles. Symmetrization is built into the definition of
the Fock states. The two approaches are equivalent, but as we
will see the second quantization approach is more suited to
identifying sub-systems and defining entanglement in systems
of identical particles.

3.1.1. General considerations. 1t is useful to clarify some of
the issues involved by considering a simple example. Since
density operators can always be expressed in a diagonal form
involving their orthonormal eigenstates |®) with real, positive
eigenvalues P(®) as p = Y g P(P)|P)(P| and each |P) can
always be written as a linear combination of basis vectors |¥),
we will focus on these basis vectors and their forms in both
first and second quantization. We consider a system with
N = 2 particles, which may be identical and are labeled 1 and
2, or they may be distinguishable and labeled o and (. In
each case a particle has a choice of two modes which it may
occupy. Thus there are two distinct single particle states
(modes) designated as |A) and |B) in the identical particle
case, and four distinct single particle states (modes)
designated as |A,), |B,) and |Ag), |Bs) in the distinguishable
particle case for particles v and [ respectively. The notation
in first quantization is that |C (i)) refers to a vector in which
particle i is in mode |C). The notation in second quantization
is that |n)c refers to a vector where there are n particles in
mode |C).

For the case of the identical particles we consider basis
states for two bosons or for two fermions, which are written in
terms of first quantization as

1

v oson —
W) 7

(A()) @ 1B(2)) + |1B(1)) ® |A(2))),
(52)

L

|\Ij>fermion = \/E

(A() ® [B(2)) — IB(1)) ® A(2)))
(53)

and clearly satisfy the symmetrization principle. In second
quantization the basis state in both the fermion and boson
cases is

|\I/>boson,fermion = |1>A & |1>B (54)

In both first and second quantization this basis state involves
one identical particle in mode |A) and the other in mode |B).

These examples highlight two possibilities for specifying
sub-systems for systems of identical particles. The two
possibilities have differing consequences in terms of whether
specific pure states are regarded as separable or entangled in
terms of the general form in equation (1) for separable pure
states, depending on whether the first or second quantization
approach is used. The first option is to regard the labeled
identical particles as sub-systems—in which case using first
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quantization the boson or fermion basis states in
equations (52) and (53) would be regarded as entangled
states of the two sub-systems consisting of particle 1 and
particle 2 [15, 74, 77]. This is a more mathematical approach,
and suffers from the feature that the sub-systems are not
distinguishable and measurements cannot be made on
specifically labeled identical particles. In the case of identical
particles the option of regarding labeled identical particles as
the sub-systems leads to the concept of entanglement due to
symmetrization. In the textbook by Peres ([15], see pp 126-8)
it is stated that ‘two particles of the same type are always
entangled’. Peres obviously considers such entanglement is a
result of symmetrization. The second option would be to
regard the modes or single particle states as sub-systems [35]
—in which case using second quantization the basis state for
both fermions or bosons in equation (54) would be regarded
as a separable state of two sub-systems consisting of modes
|A) and |B). This is a more physically based approach, and has
the advantage that the sub-systems are distinguishable and
measurements can be made on specific modes. Noting that in
the example the same quantum state is involved with one
identical particle in mode |A) and the other in mode |B), the
different categorization is disconcerting. It indicates that a
choice must be made in regard to defining sub-systems when
identical particles are involved (see section 3.1.2).

Now consider the case where the particles are distin-
guishable. Each distinguishable particle «, [ has its own
unique set of modes A,, B,, Ag, Bs. There are two cases in
which one particle o occupies mode |A,, ) or|B,) and the other
particle 3 occupies mode |Ag) or |Bs). Basis states analogous
to the previous ones are given in first quantization as

[W)aist = 1Aa (@) & |B3(8))
[W)aist = |1Ba (@) ® |A5(5)).

The somewhat surplus particle labels («) and (3) have been
added for comparison with (52) and (53). The states (57) are
not required to satisfy the symmetrization principle since the
particles are not identical. Each may be either a boson or a
fermion. In second quantization the basis states are

[W)aist = (1) 4, ® 10)5,) @ (10)a, @ |1)5,)
or

[W)aist = (10)4, @ [1)5,) ® (I1)a, @ 10)5,).

or
(35

(56)

In both first and second quantization, the first case
corresponds to particle o being in mode |A,) and particle 3
being in mode |Bs) with the other two modes empty, and the
second case corresponds to particle o being in mode |B,,) and
particle § being in mode |Az) with the other two modes
empty.

These examples also highlight two possibilities for
specifying sub-systems for systems of distinguishable
particles. In this case the two possibilities have similar
consequences in terms of whether specific pure states are
regarded as separable or entangled, based on the general form
in equation (1) for separable pure states, irrespective of
whether the first or second quantization approach is used.
Here the first option is to regard the labeled distinguishable
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particles as sub-systems—in which case using first quantiza-
tion the boson or fermion basis states in equation (55) would
be regarded as separable states of the two sub-systems
consisting of particle « and particle 5. The second option
would be to regard the modes or single particle states as sub-
systems—in which case using second quantization the basis
state for both fermions or bosons in equation (56) would be
regarded as a separable state of four sub-systems consisting
of modes |A,), |B,) and |Ag), |Bs). Both expressions refer to
the same quantum state, and the same result regarding
separability is obtained in both first and second quantization,
even though the number of sub-systems differ. It indicates
that either option may be chosen in regard to defining sub-
systems when distinguishable particles are involved. How-
ever, it is simpler if the same option—particles or modes as
sub-systems—is made for treating either identical or distin-
guishable particle systems and we will adopt this approach.
To highlight the distinction between the identical and
distinguishable particles situation, we note that for the two
distinguishable particle case treated previously we can also
form entangled states from the basis states (55) or (56)

_ L

(IAa (@) ® |B5(8)) £ [Ba(@)) ® |A3(3)))
(57)

which are similar in mathematical form to (52) and (53) when
written in first quantization, and which are given by

- %«lmﬂ 9 10)5,) © (10)4, ® |1)g,)

+ (|O>A“ X |1>B“) & (|1>AJ ® |O>Ba))

¥)
(58)

when written in second quantization. However, in this case
both the first and second quantization forms are clearly cases
of entangled states. Whether they are regarded as entangled
states of two sub-systems consisting of particle o and particle
0 (first option) or entangled states of the four sub-systems
consisting of modes |A, ), |B,) and |Ag), |Bs) (second option)
depends on whether particle or modes are chosen as sub-
systems.

Note however that nor all basis states result in separable/
entangled distinctions even in the case of identical particles.
For the same two mode, two particle case as considered
previously for bosons the basis vectors |[A(1)) ® |A(2)) or
[B(1)) ® |B(2)) (first quantization) or equivalently
[2)4 ® |0)p or |0)4 ® |2)p (second quantization) would be
regarded as separable states irrespective of whether particle or
modes were chosen as the sub-systems. Entangled states such
as (JA()) ® JAQ2)) £ |B(1)) ® |B(2))/\/§ (first quantiza-
tion) or equivalently (|2)4 ® |0) % [0)4 ® |2)5)/~/2 (sec-
ond quantization) can also be formed from the two doubly
occupied basis states. There are no analogous states for
fermions due to the Pauli principle.

It is worth noting that these examples illustrate the
general point that just the mathematical form of the state
vector or the density operator alone is not enough to
determine whether a separable or an entangled state is
involved. The meaning of the factors involved also has to be
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taken into account. Failure to realize this may lead to states
being regarded as separable when they are not (see section 3.4
for further examples).

In the above discussion the symmetrization principle was
complied with both in the first and second quantization
treatments. It should be noted however that some authors
disregard the symmetrization principle. In describing BECs
[74, 98] consider states of the form

P=D Prig® Py ® Pr® ...
R

(59)

as defining non-entangled states, where /312 is a density
operator for particle i. However such a state would not in
general be allowed, since the symmetrization principle would
be violated unless the f)}e were related. For example, consider
the state for two identical bosonic atoms given by

p=hc' @& + Py 0 O (60)
and apply the permutation P = P (1 < 2). The invariance of
P general requires G = E and 6= 7, giving
=P ®c*+ P 0" © 0°. This is a statistical mixture
of two states, one with both atoms in state &, the other with
both atoms in state 6. Thus only special cases of (60) are
compatible with the symmetrization principle. Of course if the
atoms were all different (atom 1 a Rb® atom, atom 2 a Na**
atom, ...) then the expression (60) would be a valid non-
entangled state, but there the atomic sub-systems are
distinguishable and symmetrization is not required. Such
authors are really ignoring the symmetrization principle, and
in addition are treating the individual identical particles in the
BEC as separate sub-systems—a viewpoint we have
described previously and will discuss further in the next
section. For the present we just point out that valid quantum
states must comply with the symmetrization principle.

in

3.1.2. Sub-systems—particles or modes? As highlighted in
the previous section 3.1, when the quantum system involves
identical particles the very definition of entanglement itself
requires special care in regard to identifying legitimate sub-
systems. There is a long-standing debate on the issue, with at
present two schools of thought—see reviews such as [36] or
[40]. As explained in the previous section, the first approach
is to identify mathematically labeled individual identical
particles as the sub-systems [15, 74, 77, 98]. Sub-systems
may of course also be sets of such individually labeled
particles. This approach leads to the conclusion that
symmetrization creates entanglement of identical particles.
The second approach is to identify single particle states or
modes that the identical particles may occupy as the sub-
systems [35]. The sub-systems may of course also be sets of
distinguishable modes. This approach leads to the conclusion
that it is interaction processes between modes that creates
entanglement of distinguishable modes.

The approach based on particle entanglement is still
being used [77]. As explained in section 3.1 this is not the
same as mode entanglement so tests and measures for particle
entanglement will differ from those for mode entanglement. A
further discussion about the distinction is given in [41]. In a
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recent paper Killoran et al [99] considered original states such
as (la0(1)) ® |al(2)) £ |a0(2)) @ |al(1))/y2 involving
two modes a0 and al—which were considered (based on
first quantization) as an entangled state for two sub-systems
consisting of particles 1 and 2, but would be considered (in
second quantization) as a separable state |1),0 ® |1),; for two
sub-systems consisting of modes a0 and al. In addition there
were two modes b0 and b1 which are initially unoccupied.
The particles may be bosons or fermions. They envisaged
converting such an input state using interferometer processes
which couple A modes a0 and al to previously unoccupied B
modes b0 and b1, into an output state—which is different.
Projective measurements would then be made on the output
state, based on having known numbers of particles in each
of the A mode pairs a0 and al and in the B mode pairs
b0 and bl. The projected state with one particle in the
A modes and one particle in the B modes would be of the
form (in second quantization) (|1),0 ® [0)y; @ [0)p0 & |1)p1 £
0)a0 ® [1)a1 ® [1)po @ [0)1)/¥2, which is a bipartite
entangled state for the two pairs of modes A and B and is
mathematically of the same form as the first quantization form
for the original A modes state considered as an example of
particle entanglement if the correspondences |a0(1)) —
[Dao ® 10)a1, 1al(2)) — 0o @ [L)p1, 1a0(2)) — [1)p0l0)s1
and |al(1))— |0)0|1), are made. Even the minus sign is
obtained in the fermion case. Details are given in appendix L.
Killoran et al stated that this represented a way of extracting
the original symmetrization generated entanglement. How-
ever, another point of view is that the two mode inter-
ferometer process created an entangled state from a non-
entangled state, and as the final measurements are still based
on entanglement of modes it is hard to justify the claim that
entanglement due to symmetrization exists as a directly
observable basic feature in composite quantum systems—
though the mapping identified in [99] is mathematically
correct. Furthermore, all quantum states for identical particles
are required to be symmetrized, so if symmetrization causes
entanglement it differs from the numerous other controllable
processes that produce entanglement by coupling the sub-
systems. Since the idea of extracting entanglement due to
symmetrization is of current interest, a fuller discussion of the
approach by Killoran et al [99] is set out in appendix L.
However, it is generally recognized that sub-systems
consisting of individually labeled identical particles are not
amenable to measurements. What is distinguishable for
systems of identical bosons or fermions is not the individual
particles themselves—which do not carry labels, boson 1,
boson 2, etc—but the single particle states or modes that the
bosons may occupy. For bosonic or fermionic atoms with
several hyperfine components, each component will have its
own set of modes. For photons the modes may be specified
via wave vectors and polarizations. Although the quantum
pure states can be specified via symmetrized products of
single particle states occupied by specific particles using a
first quantization approach, it is more suitable to use second
quantization. Here, a basis set for the quantum states of such
sub-systems are the Fock states [n)y (n =0, 1,2, ...) etc,
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which specify the number of identical particles occupying the
mode A, etc, so in this approach the mode is the sub-system
and the Fock states give different quantum states for this sub-
system. Symmetrization is built into the definition of the Fock
states, so the symmetrization principle is automatically
adhered to. If the atoms were fermions rather than bosons
the Pauli exclusion principle would of course restrict n = 0, 1
only. In this second quantization approach situations with
differing numbers of identical particles are recognized as
being different states of a system consisting of a set of modes,
not different systems as would be the case in first
quantization. The overall system will be associated with
quantum states represented in the theory by density operators
and state vectors in Fock space, which includes states with
total numbers of identical particles ranging from zero in the
vacuum state right up to infinity. Finally, the artificial concept
of entanglement due to symmetrization is replaced by the
physically realistic concept of entanglement due to mode
coupling.

The point of view in which the possible sub-systems A, B,
etc are modes (or sets of modes) rather than particles has been
adopted by several authors [17, 33-35, 51, 52] and will be the
approach used here—as in [5]. To emphasize—what are or
are not entangled in the present treatment involving systems
of identical particles are distinguishable modes not labeled—
indistinguishable—particles. Overall, the system is a collec-
tion of modes, not particles. Particles are associated with
mode occupancies, and therefore related to specifying the
quantum states of the system, rather than the system itself.

As pointed out in section 3.1, in the case of systems
consisting entirely of distinguishable particles the sub-
systems may still be regarded as sets of modes, namely those
single particle states associated with the particular distin-
guishable particle. In this case the particle descriptor (He
atom, Na atom, ...) is synonymous with its collection of
modes. Here all the sub-system states are one particle states.

3.1.3. Physical examples of modes. In terms of this
approach, for non-interacting identical particles at zero
temperature, the ground states for BECs and Fermi gases
trapped in a harmonic potential provide examples of non-
entangled states for bosonic and fermionic atoms respectively,
when the sub-systems are chosen as the HO modes. In the
bosonic case all the bosons occupy the lowest energy HO
state, in the fermionic case one fermion occupies each HO
state from the lowest up to a high energy state (the Fermi
energy) until all the fermions are accommodated. On the other
hand, if one particle position states spatially localized in two
different regions are chosen as two sub-systems, then the
same zero temperature state for the identical particle system is
spatially entangled, as pointed out by Goold et al [39]. Note
that in this approach states where there is only a single atom
may still be entangled states—for example with two spatial
modes A, B the states which are a quantum superposition of
the atom in each of these modes, such as the Bell state
(I1)4]0)% + [0)4]1))/~/2 are entangled states. For entangled
states associated with the EPR paradox or for quantum
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teleportation, the mode functions may be localized in well-
separated spatial regions—spooky action at a distance—but
spatially overlapping mode functions apply in other
situations. This distinction is important in discussions of
quantum non-locality. Atoms in states with overall spin zero
only have one internal state, but two mode systems can be
created for their spatial motion using double-well trap
potentials. If the wells are separated then two spatially
separated modes can be created for studies of quantum non-
locality. On the other hand atoms with spin 1/2 have two
internal states, which constitute a two mode system. However
these two modes may be associated with the same or
overlapping spatial wave functions, in which case studies of
quantum non-locality are precluded. These latter situation can
however still lead to what is referred to as intrasystem
entanglement [100]. Furthermore, as well as being
distinguishable the modes can act as separate systems, with
other modes being ignored. For interacting bosonic atoms this
is much harder to accomplish experimentally than for the case
of photons, where the relatively slow processes in which
photons are destroyed in one EM field mode and created in
another may require the presence of atoms as intermediaries.
Two bosonic atoms in one mode may collide and rapidly
disappear into other modes. However, atomic boson
interactions can be made very small via Feshbach
resonance methods. Near absolute zero the basic physics of
a BEC in a single trap potential is describable via a one mode
theory. Hence with A, B, ... signifying distinct modes, the
general non-entangled state is given in equation (3) though
the present paper mainly involves only two modes.

3.1.4. Multi-mode sub-systems. As well as the simple case
where the sub-systems are all individual modes, the concept
of entanglement may be extended to situations where the sub-
systems are sets of modes, rather than individual modes, In
this case entanglement or non-entanglement will be of these
distinct sets of modes. Such a case in considered in section
4.3 of paper II, where pairs of modes associated with distinct
lattice sites are considered as the sub-systems. Another
example is treated in He et al [31], which involves a double
well potential with each well associated with two bosonic
modes, these pairs of modes being the two sub-systems.
Entanglement criteria for the mode pairs based on local spin
operators associated with each potential well are considered
(see sections 4.2 and 5.3 of paper II). A further example is
treated by Heaney et al [101], again involving four modes
associated with a double well potential. As in the previous
example, each mode pair is associated with the same well in
the potential, but here a Bell entanglement test was obtained
for pairs of modes in the different wells. The concept of
entanglement of sets of modes is a straightforward extension
of the basic concept of entanglement of individual modes.

3.2. Super-selection rule

As well as the symmetrization principle there is a further
requirement that quantum states of systems of identical par-
ticles must satisfy—these are known as SSRs. These rules
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restrict the allowed quantum states of such systems to those in
which the coherences between states with differing numbers
of particles are zero. This applies at the global level for the
overall quantum state, but also—as will be discussed in a later
sub-section—to the sub-system states involved in the defini-
tion of separable or non-entangled states. The justification of
the SSR at both the global and local level will be considered
both in terms of simple physics arguments and in terms of
reference frames. Examples of SSR and non-SSR compliant
states will be given, both for overall states and for separable
states. The validity of the SSR for the case of massive bosons
or fermions is generally accepted, but in the case of photons
there is doubt regarding their applicability. As papers I and II
are focused on massive bosons, the situation for massless
photons is discussed briefly in section 3.2.3 and then more
fully in appendix L rather than in the main part of this paper.
As pointed out in the Introduction, in the case of systems
consisting entirely of single distinguishable particles the sub-
systems may still be regarded as sets of modes, namely those
single particle states associated with the particular distin-
guishable particle. Here all the sub-system states are one
particle states and the overall system is an N particle state, so
the local and global particle number SSRs, though true are
irrelevant.

3.2.1. Global particle number SSR. The question of what
quantum states—entangled or not—are possible in the non-
relativistic quantum physics of a system of identical bosonic
particles—such as bosonic atoms or photons—has been the
subject of much discussion. Whether entangled or not it is
generally accepted that there is a SSR that prohibits quantum
superposition states of the form

)= D> GuIN),  p= D IGPIN) (NI
N=0 N=0

+ Z Z(l — én.m) Cy CHINY (M| 61)
N=0 M=0

being quantum states when they involve Fock states |[N) with
differing total numbers N of particles. The density operator for
such a state would involve coherences between states with
differing N. Although such superpositions—such as the Glauber
coherent state |o), where Cy = exp(—|a?/2)aV //N!—do
have a useful mathematical role, they do not represent actual
quantum states according to the SSR. The papers by Sanders
et al [68] and Cable et al [102] are examples of applying the
SSR for optical fields, but also using the mathematical
features of coherent states to treat phenomena such as
interference between independent lasers. The SSR indicates
that the most general quantum state for a system of identical
bosonic particles can only be of the form

p= > Pon(IPy)(Pn])
N=0 ¢
[on) = >2GNIN i), (62)

where |®y) is a quantum superposition of states |N i) each of
which involves exactly N particles, and where different states
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with the same N are designated as |N i). This state p is a
statistical mixture of states, each of which contains a specific
number of particles. Such a SSR is referred to as a global SSR,
as it applies to the system as a whole. Mathematically, the
global particle number SSR can be expressed as

[N, p] =0, (63)

where N is the total number operator.

3.2.2. Examples of global particle number ssr compliant
states. Examples of a state vector |®y) for an entangled
pure state [34] and a density operator p for a non-entangled
mixed [39] state for a two mode bosonic system, both of
which are possible quantum states are

N
[Py) = DS CIN, b)k)a ® IN — k)g,
k=0

(64)

N
Z () lk)a (kla @ IN = ks (N — k. (65)
The entangled pure state is a superposition of product states
with k bosons in mode A and the remaining N — k bosons in
mode B. Every term in the superposition is associated with the
same total boson number N. The non-entangled mixed state is
a statistical mixture of product states also with k bosons in
mode A and the remaining N — k bosons in mode B. Every
term in the statistical mixture is associated with the same total
boson number N. For the case of a two mode fermionic system
the Pauli exclusion principle restricts the number of possible
fermions to two, with at most one fermion in each mode.
Expressions for a state with exactly N = 2 fermions are

|P2) = [1)a @ |1)3,
p=10a(lla ® |L)s(1l5.

Neither state is entangled and both are the same pure state
since p = |®,) (D,|. Although the SSRs and symmetrization
principle also applies to fermions, as indicated in the
Introduction this paper is focused on bosonic systems, and
it will be assumed that the modes are bosonic unless indicated
otherwise.

Bell states [17, 18] for N = 1 bosons provide important
examples of entangled two mode pure quantum states that are
compliant with the global particle number SSR. The modes
are designated A, B and the Fock states are in general |ny, ng).
These Bell states may be written

(66)
(67)

_ 1
[Wyp) = fﬂom 1g) — |14, Op)
1
W) = (104, 1) + [14, Op) (68)

V2
Neither of these states is separable. There are also two other
two mode Bell states given by

|Pap) = (104, 0g) — |14, 15))

V2

(104, 0g) + [14, 15)). (69)
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These however are not compliant with the global particle
number SSR. Linear combinations (|¥,z) + |®fz)) / V2=
|04, 05) and (—|@;5) + |®f5))/V2 = |14, 15) are global
particle number SSR compliant and also separable, corresp-
onding to states with N = 0 and N = 2 bosons respectively.

3.2.3. SSRs and conservation laws. It is important to realize
that such SSRs [59] are different constraints to those imposed
by conservation laws, as emphasized by Bartlett er al [67].
For example, the conservation law on total particle number
only leads to the requirement on the superposition state |P)
that the |Cy|?* are time independent, it does not require only
one Cy being non-zero. They are however related, as is
discussed in section 3.3.1 and appendix K where the SSRs
based on particle number are related to invariances of the
density operator under changes of phase reference frames.
This involves considering groups of phase changing operators
T, = exp(i}/\Zl 6,) when considering local particle number
SSR for single modes in the context of separable states, or
T () = exp(i]/\/\ #) when considering global particle number
SSR in the context of multimode entangled states. SSRs are
broad in their scope, forbidding quantum superpositions of
states of systems with differing charge, differing baryon
number and differing statistics. Thus a combined system of a
hydrogen atom and a helium ion does not exist in quantum
states that are linear combinations of hydrogen atom states
and helium ion states—the SSRs on both charge and baryon
number preclude such states. The basis quantum states for
such a combined system would involve symmetrized tensor
products of hydrogen atom and helium ion states, not linear
combinations—symmetrization being required because the
system contains two identical electrons. On the other hand,
SSRs do not prohibit quantum superpositions of states of
systems with differing energy, angular or linear momenta—
other physical quantities that may also be conserved. Thus in
a hydrogen atom quantum superpositions of states with
differing energy and angular momentum quantum numbers
are allowed quantum states.

However, conservation laws on total particle number
(such as apply in the case of massive bosons) are relevant to
showing that multi-mode states generated via total particle
number conserving processes from an initial separable state
will be global SSR compliant if the sub-systems in the initial
state are local particle number SSR compliant, and will not be
if the initial state involves a sub-system state that is not local
particle number SSR compliant. For simplicity we consider
two sub-systems A and B with the initial state
(70)

p(0) = Pr g ® Py
R

If U() is the evolution operator where p(r) =

U (t)ﬁ(O)ﬁ (1)} and the processes are number conserving
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then [N, U (1)] = 0. We then have

[N, 2()1=U@®)[N, p(0)] U ()
=U 0 Pr(IN, p1 ® pE
R

+ P ® [Ng, pgDU @) (71)

Hence if ﬁl? and ﬁlf are local particle number SSR compliant,
then [I/V;, ﬁl?] and []/V;;, ﬁlf] are zero, showing that
[ZV , p(®)] = 0 so the state is global particle number SSR
compliant. On the other hand if N, p()] = 0 we see that
[N, pO)] = S Pe(INa, 91 ® pg + P ® [Ng, p1) = 0.
By taking Try, and Trp of this result gives
S g Pe[Na, Pl = Sog Pr [Ng, pE1 = 0. This shows that both
of the reduced density operators > 5 Pr ﬁlg‘ and >, Pr ﬁlf must
be local particle number SSR compliant, which amounts to
requiring the sub-system density operators to be local particle
number SSR compliant. This situation applies even when
there is coupling between modes, provided the interaction is
number conserving—such as a coupling given by
V = xab' + HC. Analogous results apply for systems of
massive bosons if there are more than two modes involved,
where again global SSR compliance involves the total particle
number since even with interactions there is total number
conservation. For example with three modes in coupled
BECs, interactions of the form V = \(¢)%a'h' + HC in
which two bosons are annihilated in mode C and one boson is
created in each of modes A and B are consistent with total
particle number conservation and lead to global SSR
involving the total particle number.

Although outside the focus of this paper, it is worth
pointing out that somewhat different considerations apply to
photons. Single non-interacting modes, such as are discussed
in the context of separable states do have a conservation law
for the photon number in that mode. The applicability (or
otherwise) of the local particle number SSR for the sub-
system density operators in a separable state is discussed in
appendix L. In the case of interacting photonic modes there
may be no conservation law associated with total photon
number and it may be thought that no global SSR would
apply. However, other global SSR involving combinations of
the mode photon numbers may still apply. As an example, we
consider a three mode situation in a non-degenerate
parametric amplifier, where the basic generation process
involves one pump photon of frequency wc = wy + wp being
destroyed and one photon created in each of modes A and B.
The interaction term is V = Aéa'h' + HC. It is straight-
forward to show that a total quanta number operator
Nt = Ny + Np + 2N; commutes with the Hamiltonian.
The situation is analogous to the atom—molecule system
treated in appendix M. Thus Niot is conserved and we can then
consider a group of phase changing operators
T = exp(il/\]\mte) and show that there could be a global
SSR for the three mode system, but now involving the total
quanta number N; + Nz + 2Nc. The pure state which is often
used in a quantum treatment of the non-degenerate parametric
amplifier [T)= >, C, [n)a @ |n)g ® I[N — n)c is global SSR
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compliant in terms of the modified Niots since in every term
Ny + N + 2Nc = 2N and there are no coherences between
terms with different N,. For the non-degenerate parametric
amplifier case an analogous treatment to that for number
conserving processes shows that if

p(0) = ZR;PR Pp ® Pr © Dy (72)
then using [N, U ()] = 0 we have
Nt 2] = U0 [Neot» PO U @) =T (r)ZRjPR
y [(Ni, 921 @ pE @ pS + Pt @ [Ng, pE1 @ pS 0.
+2p7 ® pE ® [Ne, pE] 73)

Hence if ,ﬁl‘;‘, ﬁlf and ﬁRC are local particle number SSR
compliant, then []/V\tm, p()] =0 so the state is SSR
compliant, but with global total quanta number ]/\Zot. On the
other hand if [N, p(f)] = 0 we find that Y Pk [Ny, Pl =
g Pr [Ng, 51 = Sp Px [N, p§1 = 0. This shows that each
of the reduced density operators Y, Prpp, S pPrpy and
>rbr ﬁlg must be local particle number SSR compliant, which
amounts to requiring the sub-system density operators to be
local particle number SSR compliant.

3.2.4. SSR justification and no suitable phase reference.
There are two types of justification for applying the SSRs for
systems of identical particles. The first approach is based on
simple considerations and will be outlined below in this
subsection. The second approach [40, 60, 63, 64, 66-71] is
more sophisticated and involves linking the absence or
presence of SSR to whether or not there is a suitable reference
frame in terms of which the quantum state is described, and is
outlined in the next subsection and appendix K. The key idea
is that SSR are a consequence of considering the description
of a quantum state by an external observer (Charlie) whose
phase reference frame has an unknown phase difference from
that of an observer ((Alice) more closely linked to the system
being studied. Thus, while Alice’s description of the quantum
state may violate the SSR, the description of the same
quantum state by Charlie will not. In the main part of this
paper the density operator p used to describe the various
quantum states will be that of the external observer (Charlie).
There is a further reference frame based justification for
the SSRs proposed by Stenholm [103] involving Galilean
transformations—corresponding to describing the system
from the point of view of an observer moving with a constant
velocity with respect to the original observer, and where the
two observers have identical clocks. A consideration of where
the relative velocity is unknown might lead to the conclusion
that SSR non-compliant coherences do not occur. For
completeness, a brief discussion is included in appendix K.

3.2.5. SSR |justification and physics considerations. A
number of straightforward reasons have been given in the
Introduction for why it is appropriate to apply the
superselection rule to exclude quantum superposition states
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of the form (61) as quantum states for systems of identical
particles, and these will now be considered in more detail.

Firstly, no way is known for creating such states. The
Hamiltonian for such a system commutes with the total boson
number operator, resulting in the |Cy|?> remaining constant, so
the quantum superposition state would need to have existed
initially. In the simplest case of non-interacting bosonic
atoms, the Fock states are also energy eigenstates, such Fock
states involve total energies that differ by energies of order
the rest mass energy mcz, so a coherent superposition of states
with such widely differing energies would at least seem
unlikely in a non-relativistic theory, though for massless
photons this would not be an issue as the energy differences
are of order the photon energy /a. The more important
question is: Is there a non-relativistic quantum process could
lead to the creation of such a state? Processes such as the
dissociation of M diatomic molecules into up to 2M bosonic
atoms under Hamiltonian evolution involve entangled atom—
molecule states of the form

M
|(I)> = ZC’" M — I’)’l>m0] (9 |2m>alom

m=0

(74)
but the reduced density operator for the bosonic atoms is

M
ﬁutoms = Z |Cm|2 (|2m> <2m|)atom

m=0

(75)

which is a statistical mixture of states with differing atom
numbers with no coherence terms between such states. Such
statistical mixtures are valid quantum states, corresponding to
a lack of a priori knowledge of how many atoms have been
produced. To obtain a quantum superposition state for the
atoms alone, the atom—molecule state vector would need to
evolve at some time into the form

M M
|(I)> = ZB’" IM - m>m01 ® ZAZn |2n>at0ma
n=0

(76)

m=0

where the separate atomic system is in the required quantum
superposition state. However if such a state existed there would
be terms with at least one non-zero product of coefficient
B, Ay, involving product states [M — mpne ® |21)aom With
n = m if the state |®) is not just in the entangled form (74).
However, the presence of such a term would mean that the
conservation law involving the number of molecules plus two
times the number of atoms was violated. This is impossible, so
such an evolution is not allowed.

Secondly, no way is known for measuring all the
properties of such states, even if they existed. If a state such
as (61) did exist then the amplitudes Cy would oscillate with
frequencies that differ by frequencies of order we = mc?/7%
(the Compton frequency, which is >10% Hz for massive
bosons) even if boson-boson interactions were included
Suppose a SSR violating state such as (61) could be created.
To distinguish the phases of the Cy in order to verify the
existence of the non-SSR-complying state, we need to
measure the mean value (€}3) of observables—such as
quadrature operators in the case of a single mode
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% = (@ + a" /2 and p, = @ — a')/iv/2,—which have
non-zero matrix elements between states with differing N. To
observe the oscillations in <§A> that would demonstrate the
existence of a non-SSR-complying state, the mean value <§A>
of such an observable would need to change by a defectable
amount in a time scale At short compared to the period of the
oscillations—that is, short compared to the Compton period
27/we. A reasonable measure for the minimal detectable
change would be the original standard deviation

Ay = (AQi) for measurements on (), (where the

fluctuation is AQA = @A — <§A>). However there is an
uncertainty principle relationship between the time scale At
during which the mean value changes by a standard deviation

and the standard deviation in the energy AHy = +/(AH, f)
that applies for the quantum state being studied, namely
AHy At > 72/2. As we have seen, we require At < 27/wc
so that from the energy—time uncertainty principle we see that
AH, > /we = mc?. The consequence is that the uncertainty
in energy for the proposed SSR violating quantum state must
be large compared to the rest mass energy in order to observe
the effects of SSR-non-compliance. This shows that the
proposed observation is not possible for the non-relativistic
quantum systems we are considering, since the energy
uncertainty is large enough to allow the existence of boson—
anti-boson pairs. This argument about the non-observability
of non-SSR-complying states in the case of massive particles
is an in-principle demonstration that the SSR non-complying
oscillations are too large to be followed, and is much stronger
than one that is merely based on the current lack of an
appropriate technology. We note in passing that the same
discussion does not apply to photons, whose rest mass energy
is zero.

Thirdly, there is no need to invoke the existence of such
states in order to understand coherence and interference
effects. It is sometimes thought that states involving quantum
superpositions of number states are needed for discussing
coherence and interference properties of BECs, and some
papers describe the state via the Glauber coherent states.
However, as Leggett [78] has pointed out (see also Bach et al
[104], Dalton and Ghanbari [38]), a highly occupied number
state for a single mode with N bosons has coherence
properties of high order n, as long as n < N. The
introduction of a Glauber coherent state is not required to
account for coherence effects. Even the well-known presence
of spatial interference patterns produced when two indepen-
dent BECs are overlapped can be accounted for via treating
the BECs as Fock states. The interference pattern is built up
as a result of successive boson position measurements
[68, 102, 105].

3.2.6. Global SSR compliant states and quantum correlation
functions. We now prove a theorem concerning quantum
correlation functions for bosonic systems with two modes A
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and B. This theorem is relevant for possible tests on whether
the SSR apply, as we will see in the next section.

Theorem. If a state is global particle number SSR compliant
then all quantum correlation functions ((@"y" (@)™ (b b k)
for which n + 1 = m + k must be zero. The proof of this
theorem is given in appendix J.

3.2.7. Testing the SSRs. The last result for the general two
mode quantum correlation function <(6*)”(6)m(5T)1(5)"> is
relevant to the various experimental measurements that are
discussed in the accompanying paper II. For example, as we
@y @y (6" (b)*) with
n=0m=1,1=1,
would involve terms

~

will see (S,), is a combination of (
n=1,m=0,l=0,k=1 and
k=0, and (AS),=(S)), — (8}
such as (@h"@" b6 with n=2,m=0,1=0,
k=2 and n=0,m=2,1=2,k=0, and n=1,
m=1,1=1,k=1 from <§Xz>p. All of these have
n+ 1 =m+ k, so they can be non-zero for globally SSR
compliant states. The question then arises—what sort of
quantity of the form ((@'y"@)" (6" (6)*) could be used to
see if the quantum state was not globally SSR compliant? The
answer is seen in terms of two corollaries to the last theorem.
The proof of these corollaries is given in appendix J.

Corollary 1. If we find that any of the quantum correlation
functions — {(@""@y" b b )y are  non-zero  when
n+ 1 = m + k then the state is not global particle number
SSR compliant.

Corollary 2. Measurements of the QCF ((@"y'@)"(b ") ()¥)
when n + | = m + k cannot determine whether or not the
state includes a contribution that is global particle number
SSR non-compliant.

The first corollary indicates what type of measurement is
needed to see if SSR non compliant states exist. Quantities of
the type (@""@)"(b") (b)) are measured for which
n+1=m+ k. If we find any that are non-zero we can
then conclude that we have found a state which is nor global
particle number SSR compliant. The second corollary shows
that measurements of this type with n + [ = m + k would
not respond to the presence of contribution to the density
operator that is not globally SSR compliant.

Hence the conclusion is that a quantum correlation
function of the form ((a®)" (@)™ (b 0 )¥) must be measured
for cases where n + [ = m + k and a non-zero measurement
result must be found. If it is, then we would have
demonstrated that the state is not globally SSR compliant.
The simplest case would be to find a non-zero result for (@),

or (b),.

S/i]milar considerations apply to local SSR compliance in
the sub-system states. For sub-system a a QCF of the form
((@""(@)™) must be measured for cases where n = m and a
non-zero measurement result must be found. If it is, then we

would have demonstrated that the state is not locally SSR
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compliant. The simplest case would be to find a non-zero
result for (@)),.

3.2.8. Farticle entanglement measure. Various measures of
entanglement have been referred to in the Introduction. The
so-called particle entanglement measure is one that takes into
account both the SSR and particle identity. Wiseman et al
have also treated entanglement for pure states [45] and mixed
states [106] in identical particle systems, applying both the
symmetrization principle and SSRs, invoking the argument
that without a phase reference the quantum state must be
comply with the local (and global) particle number SSR. This
is essentially the same approach as in [5, 60, 71] and in the
present paper. For two mode systems the observable system
density operator 7 is obtained from the density operator 5 that
would apply if such a phase reference existed via the
expression

ﬁ = Z HnAnB ﬁ HnAnB = Z ﬁ(nAnB),

nang naAng

where ﬁnAnB = ﬁiﬂg is a projector onto sub-system states
with ny, ng particles in modes A, B respectively. Note that
pane) =11, . p II,,,,, is not normalized to unity. In fact the
probability that there are nu, np particles in modes A, B
respectively is given by B, , = Tr(ﬁ,ws D ﬁmng) =
Tr(p®m)), so Tr(p) = 3,,.,. Buny = 1. For separable states
defined here as in equation (3), the expression in (77) for the
density operator is the same as that used here, since with p

given by equation (3) and with -, ﬁnA,,B(ﬁI? ® D Vg =

(77)

Pp © Py it is easy to show that p = . For general mixed
states Wiseman et al introduce in [45] the idea of particle
entanglement by defining its measure Ep(p ) by

Ep(p) = P EM(p™") = Ep(p ),

nanpg

(78)

where Ey (p"™™)) is a measure of the mode
associated with the (unnormalized) state p™). This
might be taken as the entropy of mode entanglement
Ey (G) = —Tr(64 In6y) for normalized density operators &,
where the reduced density operator for mode A is
04 = Trg(c). Note that from ﬁ,lA,,Bﬁ
ﬁnAnB the particle entanglement measure Ep(p) is the same
for p, the observable density operator for the system. The
operational definition of Ep is the maximal amount of
entanglement which can be produced between the two (non-
SSR-constrained sub-systems by local operations. In the case
of the separable state for modes A, B given in (3) it is
straightforward to show that

ZPR(ﬁnA ﬁ]? ﬁnA) ® (ﬁﬂgﬁg ﬁng)’
R

entanglement

mamg — 6”A ma 6"3 mp

" =

(79)

psep

nang

=2 Pk B (D) Py (PR (80)
R

where ﬁnA and ﬁnB are projectors onto sub-system states

in modes A, B respectively with n4 and np particles

in the respective modes (II,,,, = II,, ® II,,), with

B, () = Tr(L,pg) and By, (pf) = Tip(IL, pg) being

the probabilities of finding n, and np particles in the
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respective modes when the corresponding sub-system states
are p7 and pf. Since the state ﬁs(:;”") is clearly a separable
state of the form (3) for the modes A, B, the corresponding
measure of mode entanglement must be zero. It then follows
from the general expression (78) that the particle
entanglement measure is also zero for the separable state.
This is as expected.

Ep(Pp ) = 0. 81)

For the pure states considered in [45] we note that among
them is the two boson state |1)4 ® |1)z which has one boson
in each of the two modes A, B. The particle entanglement
measure Ep(p) is zero for this state (where
p=(1{1a ® (1)(1)p), consistent with it being a
separable rather than an entangled state. This indicates that
Wiseman et al [45] do not consider that entanglement occurs
due to symmetrization, as the first quantization form for the
state might indicate. However, finding Ep (p) to be zero does
not always shows that the state is separable, as the case of the
relative phase state (defined in appendix O of paper II, see
also [38]) shows. As is shown there, Ep(p) = 0 for the
relative phase state, yet the state is clearly an entangled one.
Just as some entangled states have zero spin squeezing, some
entangled states may be associated with a zero particle
entanglement measure. Nevertheless a non-zero result for the
particle entanglement measure Ep(p ) shows that the state
must be entangled—again we have a sufficiency test.
However, as in the case of other entanglement measures the
problem with using the particle entanglement measure to
detect entangled states is that there is no obvious way to
measure it experimentally.

3.3. Reference frames and violations of superselection rules

Challenges to the requirement for quantum states to be con-
sistent with SSRs have occurred since the 1960s when
Aharonov and Susskind [66] suggested that coherent super-
positions of different charge eigenstates could be created. It is
argued that SSRs are not a fundamental requirement of
quantum theory, but the restrictions involved could be lifted if
there is a suitable system that acts as a reference for the
coherences involved—[40, 60, 63, 64, 66-71] provide dis-
cussions regarding reference systems and SSR.

3.3.1. Linking SSR and reference frames. The discussion of
the SSR issue in terms of reference systems is quite complex
and too lengthy to be covered in the body of this paper.
However, in view of the wide use of the reference frame
approach a full outline is presented in appendix K. The key
idea is that there are two observers—Alice and Charlie—who
are describing the same prepared system in terms of their own
reference frames and hence their descriptions involve two
different quantum states. The reference systems are
macroscopic systems in states where the behavior is
essentially classical, such as large magnets that can be used
to define Cartesian axes or BEC in Glauber coherent states
that are introduced to define a phase reference. The
relationship between the two reference systems is
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represented by a group of unitary transformation operators
listed as T (g), where the particular transformation (translation
or rotation of Cartesian axes, phase change of phase
references, ...) that changes Alice’s reference system into
Charlie’s is denoted by g. Alice describes the quantum state
via her density operator, whereas Charlie is the external
observer whose specification of the same quantum state via
his density operator is of most interest. There are two cases of
importance, Situation A—where the relationship between
Alice’s and Charlie’s reference frame is is known and
specified by a single parameter g, and Situation B—where
on the other hand the relationship between frames is
completely unknown, all possible transformations g must be
given equal weight. Situation A is not associated with SSR,
whereas Situation B leads to SSR. The relationship between
Alice’s and Charlie’s density operators is given in terms of
the transformation operators (see appendix equation (221) for
Situation A and appendix equation (222) for Situation B).
In Situation B there is often a qualitative change between
Alice’s and Charlie’s description of the same quantum state,
with pure states as described by Alice becoming mixed states
when described by Charlie. It is Situation B with the U(1)
transformation group—for which number operators are the
generators—that is of interest for the single or multi-mode
systems involving identical bosons on which the present
paper focuses. An example of the qualitative change of
behavior for the single mode case is that if it is assumed that
Alice could prepare the system in a Glauber coherent pure
state—which involves SSR breaking coherences between
differing number states—then Charlie would describe the
same state as a Poisson statistical mixture of number states—
which is consistent with the operation of the SSR. Thus the
SSR applies in terms of external observer Charlie’s
description of the state. This is how the dispute on whether
the state for single mode laser is a coherent state or a
statistical mixture is resolved—the two descriptions apply to
different observers—Alice and Charlie. On the other hand
there are quantum states such as Fock states and Bell states
which are described the same way by both Alice and Chatrlie,
even in Situation B. The general justification of the SSR for
Charlie’s density operator description of the quantum state
in Situation B is derived in terms of the
representations of the transformation group, there being no
coherences between states associated with differing
irreducible representations (see appendix equation (246)).
For the particular case of the U(/) transformation group the
irreducible representations are associated with the total boson
number for the system or sub-system, hence the SSR that
prohibits coherences between states where this number
differs. Finally, it is seen that if Alice describes a general
non-entangled state of sub-systems—which being separable
have their own reference frames—then Charlie will also
describe the state as a non-entangled state and with the same
probability for each product state (see appendix equations
(251) and (252)). For systems involving identical bosons
Charlie’s description of the sub-system density operators will

irreducible
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only involve density operators that conform to the SSR. This
is in accord with the key idea of the present paper.

3.3.2. Can coherent superpositions of atom and molecules
occur? Based around the reference frame approach Dowling
et al [106] and Terra Cunha et al [35] propose processes using
a BEC as a reference system that would create a coherent
superposition of an atom and a molecule, or a boson and a
fermion [106]. Dunningham et al [107] consider a scheme for
observing a superposition of a one boson state and the
vacuum state. Obviously if SSRs can be overcome in these
instances, it might be possible to produce coherent
superpositions of Fock states with differing particle
numbers such as Glauber coherent states, though states with
N ~ 10® would presumably be difficult to produce. However,
detailed considerations of such papers indicate that the states
actually produced in terms of Charlie’s description are
statistical mixtures consistent with the SSRs rather than
coherent superpositions, which are only present in Alice’s
description of the state (see appendix K). Also, although
coherence and interference effects are demonstrated, these can
also be accounted for without invoking the presence of
coherent superpositions that violate the SSRe. As the paper by
Dowling et al [106] entitled ‘Observing a coherent
superposition of an atom and a molecule’ is a good
example of where the SSRs are challenged, the key points
are described in appendix M. Essentially the process involves
one atom A interacting with a BEC of different atoms B
leading to the creation of one molecule AB, with the BEC
being depleted by one B atom. There are three stages in the
process, the first being with the interaction that turns separate
atoms A and B into the molecule AB turned on at Feshbach
resonance for a time ¢ related to the interaction strength and
the mean number of bosons in the BEC reference system, the
second being free evolution at large Feshbach detuning A for
a time 7 leading to a phase factor ¢ = A7, the third being
again with the interaction turned on at Feshbach resonance for
a further time ¢. However, it is pointed out in appendix M that
Charlie’s description of the state produced for the atom plus
molecule system is merely a statistical mixture of a state with
one atom and no molecules and a state with no atom and one
molecule, the mixture coefficients depending on the phase ¢
imparted during the process. However a coherent
superposition is seen in Alice’s description of the final
state, though this is not surprising since a SSR violating initial
state was assumed. The feature that in Charlie’s description of
the final state no coherent superposition of an atom and a
molecule is produced in the process is not really surprising,
because of the averaging over phase differences in going from
Alice’s reference frame to Charlie’s. It is the dependence on
the phase ¢ imparted during the process that demonstrates
coherence (Ramsey interferometry) effects, but it is shown in
appendix M that exactly the same results can be obtained via
a treatment in which states which are coherent superpositions
of an atom and a molecules are never present, the initial BEC
state being chosen as a Fock state. In terms of the description
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by an external observer (Charlie) the claim of violating the
SSR has not been demonstrated via this particular process.

3.3.3. Detection of SSR violating states. Whether such SSR
violating states can be detected has also not been justified. For
example, consider the state given by a superposition of a one
boson state and the vacuum state (as discussed in [107]). We
consider an interferometric process in which one mode A for a
two mode BEC interferometer is initially in the state
al0) + G|1), and the other mode B is initially in the state
|0)—thus |¥@)) = («]|0) + S|1))4 ® |0)p in the usual
occupancy number notation, where |af* + |3/*> = 1. The
modes are first coupled by a beam splitter, then a free
evolution stage occurs for time 7 associated with a phase
difference ¢ = A7 (where A = wp — wy is the mode
frequency difference), the modes are then coupled again by
the beam splitter and the probability of an atom being found
in modes A, B finally being measured. The probabilities of
finding one atom in modes A, B respectively are found to only
depend on |3[?> and ¢. Details are given in appendix M. There
is no dependence on the relative phase between a and (3, as
would be required if the superposition state «|0) 4+ 5|1) is to
be specified. Exactly the same detection probabilities are
obtained if the initial state is the mixed state p(i) =
P (0)4 (0l ® 10} (Ols) + 18P (1) (114 © 10} (Olp), i
which the vacuum state for mode A occurs with a
probability |a|*> and the one boson state for mode A occurs
with a probability |3|?. In this example the proposed coherent
superposition associated with the SSR violating state would
not be detected in this interferometric process, nor in the more
elaborate scheme discussed in [107].

Of course, the claim that in isolated systems of massive
particles it is not possible in non-relativistic quantum physics
to create states that violate the particle number SSR—either
for the sub-system states in a separable state or for any
quantum state of the overall system—can be questioned.
Ideally the claim should be zested by experiment, in particular
when the number of particles is large in view of the interest in
macroscopic entanglement since the Schrodinger cat was first
described. The simplest situation would be to test whether
states that violate the (local) particle number SSR could be
created for a single mode system. Clearly, a specific proposal
for an experiment in which the SSR could be violated is
required, but to our knowledge no such proposal has been
presented. BECs, in which all the bosons can occupy a single
mode would seem an ideal candidate as a suitable bosonic
system, and the Glauber coherent state is an example of a
non-SSR compliant state. For fermions, the Pauli exclusion
principle would limit the number of fermions in a one mode
system to be zero or one, but coherent superpositions of a zero
and one fermion state are examples of non-SSR compliant
pure states. As pointed out above, some authors such as
[56, 57, 61, 62], base their definition of entanglement by
allowing for the possible presence of non-SSR compliant sub-
system states when defining separable states. The approach in
[5] is based on the physical assumption that states that are
non-compliant with particle number SSR—both local and
global—do not come into the realm of non-relativistic
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quantum physics, in which the concept of entanglement is
useful. Until clear evidence is presented that non-SSR-
compliant states can be prepared, and in view of the
theoretical reasons why they cannot, it seems preferable to
base the theory of entanglement on their absence when
defining separable and entangled quantum states.

3.4. SSR—separate sub-systems

In this sub-section the important case of SSR in separable
states will be dealt with, since this is key to understanding
what entangled states are allowed in systems involving
identical particles. This forms the basis for the treatment of
entanglement tests presented in the second part of this review

(paper II).

3.4.1. Local particle number SSR. We now consider the role
of the SSR for the case of non-entangled states. The global
SSR on fotal particle number has restricted the physical
quantum state for a system of identical bosons to be of the
form (62). Such states may or may not be entangled states of
the modes involved. The question is—do similar restrictions
involving the sub-system particle number apply to the modes,
considered as separate sub-systems in the definition of non-
entangled states ? The viewpoint in this paper is that this is so.
Note that applying the SSR on the separate sub-system
density operators p, pY, ... is only in the context of non-
entangled states. Such a SSR is referred to as a local SSR, as
it applies to each of the separate sub-systems. Mathematically,
the local particle number SSR can be expressed as

[Nx. 91 =0, (82)
where Ny is the number operator for sub-system
X=A,B, ... The SSR restriction is based on the
proposition that the density operators py, pu. ... for the

separate sub-systems A, B, ... should themselves represent
possible quantum states for each of the sub-systems,
considered as a separate system and thus be required to
satisfy the SSR that forbids quantum superpositions of Fock
states with differing boson numbers. Note that if the local
particle number SSR applies in each sub-system the global
particle number SSR applies to any separable state. The proof
is trivial and just requires showing that [N, Piepl =0

The justification of applying the local particle number
SSR to the density operators py, ﬁ};, ... for the sub-system
quantum states that occur in any separable state is simply that
these are possible quantum states of the sub-systems when the
latter are considered as separate quantum systems before
being combined as in the Werner protocol [7] to form the
separable state. Hence all the justifications based either on
simple physical considerations or phase reference systems
that were previously invoked for the density operator p of any
general quantum states of the combined sub-systems to
establish the global particle number SSR apply equally well
here. No more need be said. It is contended that expressions
for the non-entangled quantum state p in which p2, pZ, pf ...
were not allowed quantum states for the sub-systems would
only be of mathematical interest.
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Applying the local particle number SSR to the sub-
system density operators for non-entangled states is discussed
in papers by Bartlett er al [54, 60] as one of several
operational approaches for defining entangled states. As
pointed out above other authors [56, 57] define separable (and
hence entangled) states differently by specifically allowing
sub-system density operators that are not consistent with the
local particle number SSR, though the overall density
operator is globally SSR consistent. The corresponding
overall states are termed separable but non-local, and states
that they would regard as separable would here be regarded as
entangled. Examples of such states are given in equations (83)
and (85). There are also other authors [61, 62] who define
separable (and hence entangled) states via (3) but leave
unspecified whether the sub-system density operators are
consistent or inconsistent with the local particle number SSR.
Note that any inequalities involving measured quantities that
are found for separable states in which local SSR compliance
is neglected must also apply to separable states where it is
required. The consequent implications for entanglement tests
where local particle number SSR compliance is required is
discussed in the accompanying paper II. Hence, in this paper
we are advocating a revision to a widely held notion of
entanglement in identical particle systems, the consequence
being that the set of entangled states is now much larger. This
is a key idea in this paper—not only should SSRs on particle
numbers be applied to the the overall quantum state,
entangled or not, but it also should be applied to the density
operators that describe states of the modal sub-systems
involved in the general definition of non-entangled states.
The reasons for adopting this viewpoint have been discussed
above—basically it is because in separable states the sub-
system density operators must represent possible quantum
states for the sub-systems considered as isolate quantum
systems, so the general reasons for applying the SSR will
apply to these density operators also. Apart from the papers
by Bartlett et al [54, 60] we are not aware that this definition
of non-entangled states has been invoked previously, indeed
the opposite approach has been proposed [56, 57]. However,
the idea of considering whether sub-system states should
satisfy the local particle number SSR has been presented in
several papers—I[54, 56, 57, 60, 63—-65], mainly in the context
of pure states for bosonic systems, though in these papers the
focus is on issues other than the definition of entanglement,
such as quantum communication protocols [56], multicopy
distillation [54], mechanical work and accessible entangle-
ment [63, 64] and Bell inequality violation [65]. However,
there are a number of papers that do not apply the SSR to the
sub-system density operators, and those that do have not
studied the consequences for various entanglement tests.
These tests are also discussed in the accompanying paper II.

3.4.2. Global but not local particle number SSR compliant
states. There is a connection between global SSR
compliance for separable states in general and local SSR
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compliance for the component sub-system states. This may be
stated in the form of a theorem:

Theorem. A necessary and sufficient condition for all
separable states for a given set of sub-system density
operators py, ,ﬁlg to be global particle number SSR compliant
is that all such sub-system states are local particle number
SSR compliant.

The proof of this theorem is set out in appendix N. It
deals with the case where the probabilities Py for preparing a
particular product ,61? ® ﬁlf of sub-system states in the
Werner process can be arbitrarily varied. The theorem shows
that in general global and local SSR compliance always occur
together in separable states.

However, it should be noted that some authors [56, 57]
consider sub-system density operators in the context of two
mode systems which comply with the global particle number
SSR but not the local particle number SSR. These involve
special choices of both the sub-system states and the product
preparation probabilities. Such a case involving four zero and
one boson superpositions is presented by Verstraete et al
[56, 57]. The overall density operator is a statistical mixture

5= iuwo (i ® [) (ils

+ %aw» (i ® 1) (i

1

+ Z(I%O (VoiDa @ o) (viDe

+ iaw_» (eDa ® 1) (6o De. (83)

where |1,) = (|0) + w|1)/+/2, with w =1, i, —1, —i. The
|1),) are superpositions of zero and one boson states and
consequently the local particle number SSR is violated by
each of the sub-system density operators |¢,) (1) and
[,y (¥,])p. Although the expression in equation (83) is of the
form in equation (3), the subsystem density operators
[1,) (Wu))a and |9} (¢ Dp do not comply with the local
particle number SSR, so in the present paper and in [5] the
state would be regarded as entangled. However, Verstraete
et al [56, 57] regard it as separable. They refer to such a state
as separable but non-local.

On the other hand, the global particle number SSR is
obeyed since the density operator can also be written as

p= %(|0> (D4 @ 10) (0 + %<|1><1|>A @ 1) (15

4 %(I\I@) (W Dass (84)

where | ¥, )45 = (|0)4]1)5 + [1)4]0)5)/~/2. This is a statistical
mixture of N = 0, 1, 2 boson states. Note that equation (84)
indicates that the state could be prepared as a mixed state
containing two terms that comply with the local particle
number SSR in each of the sub-systems plus a term which is
an entangled state of the two sub-systems. The presence of an
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entangled state in such an obvious preparation process
challenges the description of the state as being separable.

To further illustrate some of the points made about SSRs
—Ilocal and global—it is useful to consider a second specific
case also presented by Verstraete et al [56, 57]. This mixture
of two mode coherent states is represented by the two mode
density operator

. rde
p= [Tl a)(aal

= [ 1) ala ® (1) (0, (85)
2w
where )¢ is a one mode coherent state for mode C = A, B
with o = |a| exp(—i6), and modes A, B are associated with
bosonic annihilation operators a, b. The magnitude |af
is fixed.
This density operator appears to be that for a non-
entangled state of modes A, B in the form
p=> Prpp®py (86)
R
with Y, P — f% and pf — (o) (aps and pf —
(lev) {a)g. However although this choice of pj, pf satisfy
the Hermitiancy, unit trace, positivity features they do not
conform to the requirement of satisfying the (local) sub-
system boson number SSR. From equation (85) we have

at (a)*m

Jnt Jm!
) a? (a)*1
WL
so clearly for each of the separate modes there are coherences
between Fock states with differing boson occupation
numbers. In the approach in the present paper the density
operator in equation (85) does not represent a non-entangled
state. However, in the papers of Verstraete et al [56, 57],
Hillery et al [61, 62] and others it would represent an
allowable non-entangled (separable) state. Indeed, Verstraete
et al [56] specifically state ‘..., this state is obviously
separable, though the states |«) are incompatible with the
(local) super-selection rule’. Verstraete et al [56] introduce
the state defined in equation (85) as an example of a state that
is separable (in their terms) but which cannot be prepared
locally, because it is incompatible with the local particle
number SSR.
The mixture of two mode coherent states does of course
satisfy the fotal or global boson number SSR. The matrix
elements between two mode Fock states are

((nla @ (plp)p(m)a ® |q)s)
@
27

(nl(la) (al) lm)a = exp(—|al?)

(pl(a)(al) lg)s = exp(—|af? (87)

|a|n+m |a|p+q

T ot

x exp(—i(n —m + p — q)0)
a|n+m |a|p+q

|
\/FM \/]j\/? 6n+p,m+q'

matrix  elements

— exp(—2Jaf?

= exp(—2lal’) (88)

These overall are zero unless
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n+p=m+ q, showing that there are no coherences
between two mode Fock states where the total boson number
differs. The mixture of two mode coherent states has the
interesting feature of providing an example of a two mode
state which satisfies the global but not the local SSR.

The reduced density operators for modes A, B are

~ do N do
Py = IE(W) (aDa Pp = fgqa) (aDs

and a straightforward calculation gives

g4—-exp(—4cm2)§j' — (1) (n

B—umfmmzﬂ —(p) (P

which are statistical mixtures of Fock states with the expected
Poisson distribution associated with coherent states. This
shows that the reduced density operators are consistent with
the separate mode local SSR, whereas the density operators
,51‘;‘ = (la) (al)a, P B —(la) (a|)p are not. Later we will revisit
this example in the context of entanglement tests.

Note that if a twirling operation (see appendix equation
(263)) were to be applied to mode A, the result would be
equivalent to applying two independent twirling operations to
each mode. In this case the density operator for each mode is
a Poisson statistical mixture of number states, so each mode
has a density operator that complies with the local particle
number SSR.

3.4.3. General form of non-entangled states. To summarize:
basically the sub-systems are single modes that the identical
bosons can occupy, the SSR for identical bosons, massive or
otherwise, prohibits states which are coherent superpositions
of states with different numbers of bosons, and the only
physically allowable py, pg, ... for the separate mode sub-
systems that are themselves compatible with the local particle
number SSR are allowed. For single mode sub-systems these
can be written as statistical mixtures of states with definite

numbers of bosons in the form

Z Z

Ana) (mal  pp = 2 ng) (npl... (39)

However, in cases where the sub-systems are pairs of
modes the density operators p., pg, ... for the separate sub-
systems are still required to conform to the symmetrization
principle and the SSR. The forms for py', pF, ... are now of
course more complex, as entanglement within the pairs of
modes A, A, associated with sub-system A, the pairs of
modes By, B, associated with sub-system B, etc is now
possible within the definition for the general non-entangled
state equation (3) for these pairs of modes. Within each pair
of modes A;, A, statistical mixtures of states with differing
total numbers N, bosons in the two modes are possible and
the sub-system density operators are based on states of the
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form given in equation (64). We have

M
[Pya =D Cao(Na, )Nk)a, @ INy — k)a,

k0

Z > Pon, [y)a

=0 ¢

(Pl (90)

with analogous expressions for the density operators ﬁlf etc
for the other pairs of modes. Note that |®y,)4 only involves
quantum superpositions of states with the same total number
of bosons N, The expression (248) in appendix D of paper II
is of this form.

3.5. Bipartite systems

We now consider the bipartite case where there are just two
sub-systems involved. The simplest case is where each sub-
system involves only a single mode, such as for two modes in
a double well potential when only a single hyperfine state is
involve. Another important case is where each sub-system
contains two modes, such as in the double well case where
modes with two different hyperfine states are involved.

3.5.1. Two single modes—coherence terms. The general
non-entangled state for modes @ and b is given by

p=2 Prig ®Pg
R

O

and as a consequence of the requirement that ﬁl‘: and ﬁlf are

allowed quantum states for modes & and b satisfying the SSR,
it follows that

(@) =Tr(p, (@)*0
(@h"e = Tr(pg@hm =0
<@wn:ﬂ((mw—o
(BN, =Te@EGH™ = 0. 92)

Thus coherence terms are zero. As we will see these results
will limit spin squeezing to entangled states of modes a and
b. Note that similar results also apply when non-entangled
states for the original modes ¢ and d are considered-
(@)™). =0, etc.

3.5.2. Two pairs of modes—coherence terms. In this case the
general non-entangled state where A and B are pairs of modes
—a,, a, associated with sub-system A, and modes 51, 52
associated with sub-system B, the overall density operator is
of the form (91). Consistent with the requirement that the sub-
system density operators ﬁ?, ﬁlf conform to the
symmetrization principle and the SSR, these density
operators will not in general represent separable states for
their single mode sub-systems 4y, d, or I;l, l;z—and may even
be entangled states. As a result when considering non-
entangled states for the sub-systems A and B we now have

(@ayma=Trpp@fayy =0 i,j=1,2
(b, b))A—Tr( B, by =0

~F

aa]

ij=1,2  (93)
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in general. In this case where the sub-systems are pairs of
modes the spin squeezing entanglement tests as in equations
(37)—(39) in paper II for sub-systems consisting of single
modes cannot be applied, as we will see. Nevertheless, there
are still tests of bipartite entanglement involving spin
operators.

4. Discussion and summary of key results

This paper is mainly concerned with two mode entanglement
for systems of identical massive bosons, though multimode
entanglement is also considered. These bosons may be atoms
or molecules as in cold quantum gases. In the present paper
we focus on the definition and general features of entangle-
ment, while in the accompanying paper we consider spin
squeezing and other tests for entanglement.

The present paper starts with the general definition of
entanglement for a system consisting of several sub-systems,
and highlights the distinctive features of entangled states in
regard to measurement probabilities for joint measurements
on the sub-systems in contrast to the results for non-entangled
or separable states. The relationship between entanglement
and HVT is then explored followed by a discussion of key
paradoxes such as EPR and violations of Bell inequalities.
The notion of entanglement measures and entanglement fests
was briefly introduced, the latter being covered more fully in
the accompanying paper II [6].

The paper then focuses on entanglement for systems of
identical massive particles in the regime of non-relativistic
quantum physics. A careful analysis is first given regarding
the proper definition of a non-entangled state for systems of
identical particles, and hence by implication the proper defi-
nition of an entangled state. Noting that entanglement is
meaningless until the subsystems being entangled are speci-
fied, it is pointed out that whereas it is not possible to dis-
tinguish identical particles and hence the individual particles
are not legitimate sub-systems, the same is not the case for the
single particle states or modes, so the modes are then the
rightful sub-systems to be considered as being entangled or
not. In this approach where the sub-systems are modes,
situations where there are differing numbers of identical
particles are treated as different quantum states, not as dif-
fering physical systems, and the symmetrization principle
required of quantum states for identical particle systems will
be satisfied by using Fock states to describe the states.

Furthermore, it is argued that the overall quantum states
should conform to the superselection rule that excludes
quantum superposition states of the form (61) as allowed
quantum states for systems of identical particles—massive or
otherwise. Although the justification of the SSR in terms of
observers and their reference frames formulated by other
authors has also been presented for completeness, a number
of fairly straightforward reasons were given for why it is
appropriate to apply this superselection rule for massive
bosons, which may be summarized as: (1) No way is known
for creating such states; (2) No way is known for measuring
all the properties of such states, even if they existed; and (3)
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There is no need to invoke the existence of such states in
order to understand coherence and interference -effects.
Invoking the existence of states that as far as we know cannot
be made or measured, and for which there are no known
physical effects that require their presence seems a rather
unnecessary feature to add to the non-relativistic quantum
physics of many body systems, and considerations based on
the general principle of simplicity (Occam’s razor) would
suggest not doing this until a clear physical justification for
including them is found. As two mode fermionic systems are
restricted to states with at most two fermions, the focus of the
paper is then on bosonic systems, where large numbers of
bosons can occupy two mode systems.

However, although there is related work involving local
particle number SSRs, this paper differs from a number of
others by extending the SSR to also apply to the density
operators ﬁ,?, ﬁ]f’ ... for the mode sub-systems A, B, ... that
occur in the definition (3) of a general non-entangled state for
systems of identical particles. Hence it follows that the defi-
nition of entangled states will differ in this paper from that
which would apply if density operators py, p2, ... allowed for
coherent superpositions of number states within each mode.
In fact more states are regarded as entangled in terms of the
definition in the present paper. Indeed, if further restrictions
are placed on the sub-system density operators—such as
requiring them to specify a fixed number of bosons—the set
of entangled states is further enlarged. The simple justification
for our viewpoint on applying the local particle number SSR
has three aspects. Firstly, since experimental arrangements in
which only one bosonic mode is involved can be created, the
same reasons (see last paragraph) justify applying the SSR to
this mode system as applied for the system as a whole. Sec-
ondly, measurements can be carried out on the separate
modes, and the joint probability for the outcomes of these
measurements determined. For a non-entangled state the joint
probability (23) for these measurements depends on all the
density operators ﬁ,?, ﬁ,f, ... for the mode sub-systems as well
as the probability Pg for the product state f)I? ® f)lf ®
occurring when the general mixed non-entangled state is
prepared, which can be accomplished by local preparations
and classical communication. For the non-entangled state the
form of the joint probability Pyg (i, j, ...) for measurements
on all the sub-systems is given by the products of the indi-
vidual sub-system probabilities PX (i) = Tr(ﬁ? Py, etc that
measurements on the sub-systems A, B, ... yield the out-
comes )\iA etc when the sub-systems are in states ﬁ?, ﬁlf, ey
the overall products being weighted by the probability Py that
a particular product state is prepared. If ﬁl‘.?, ﬁlf, ... did not
represent allowed quantum states then the interpretation of the
joint probability as this statistical average would be unphy-
sical. Thirdly, attempts to allow the density operators p;, pe .,
... for the mode sub-systems to violate the SSR provided that
the reduced density operators p,, p for the separate modes are
consistent with it are shown not to be possible in general.

As well as the above justifications for applying the SSR
to both the overall multi-mode state for systems of identical
particles and the separate sub-system states in the definition of
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non-entangled states, a more sophisticated justification based
on considering SSR to be the consequence of describing the
quantum state by an observer (Charlie) whose phase reference
is unknown has also been presented in detail in appendix K
for completeness. For the sub-systems local reference frames
are involved. The SSR is seen as a special case of a general
SSR which forbids quantum states from exhibiting coher-
ences between states associated with irreducible representa-
tions of the transformation group that relates reference frames,
and which may be the symmetry group for the system.

In regard to entanglement measures, we discussed the
particle entanglement measure of Wiseman et al [45, 46] and
found that a non-zero result for the particle entanglement
measure shows that the state must be entangled. However, as
for other entanglement measures the problem with using the
particle entanglement measure to detect entangled states is
that there is no obvious way to measure it experimentally. On
the other hand, as will be seen in the accompanying paper II,
the quantities involved in entanglement tests can be measured
experimentally.
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