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Abstract
We propose a scheme for realizing broadband and tunable transmission non-reciprocity by
utilizing two-photon near-resonant transitions in thermal atoms as single-photon far-detuned
transitions can be eliminated. Our basic idea is to largely reduce the Doppler broadenings on a pair
of two-photon, probe and coupling, transitions and meanwhile make the only four-photon
transition Doppler-free (velocity-dependent) for a forward (backward) probe field. One main
advantage of this scheme lies in that the transmission non-reciprocity can be realized and
manipulated in a frequency range typically exceeding 200 MHz with isolation ratio above 20 dB
and insertion loss below 1.0 dB by modulating an assistant field in frequency and amplitude. The
intersecting angle between four applied fields also serves as an effective control knob to optimize
the nonreciprocal transmission of a forward or backward probe field, e.g. in a much wider
frequency range approaching 1.4 GHz.

1. Introduction

Nonreciprocal optical devices [1–4] permitting photon transport in one direction but not in the opposite
direction, like isolators and circulators, are essential in a wide range of modern science and technology,
ranging from classical light communications to quantum information processing. Though a lot of advances
have been made, it is still challenging to achieve optical non-reciprocity with high isolation ratios and low
insertion losses for weak light signals due to the time-reversal symmetry of most (linear) optical materials.
Traditionally, magneto-optical media are used to break the time-reversal symmetry with the Faraday rotation
effect, which requires however bulky magnets making against real applications involving integrated photonic
devices [5–8]. Hence, significant efforts have been made recently to develop the magnet-free optical
non-reciprocity by exploring different mechanisms, including nonlinear effects [9–17], spatiotemporal
modulations [18–22], optomechanical interactions [23–28], moving atomic lattices [29–31], chiral quantum
systems [32–36], and atomic thermal motions [37–46]. Note also that nonreciprocal amplification has
aroused particular interests and achieved significant progresses since it can facilitate the optical read-out of
sensitive signals and simplify the construction of complex optical networks by avoiding the amplification of
undesired reflections [46–48].

Magnet-free optical isolation exploiting thermal atoms coherently driven into the regime of
electromagnetically induced transparency (EIT) is conceptually different and admirable because relevant
realizations are simpler than those utilizing other mechanisms. In the typical three-level Λ configuration, for
instance, the EIT response of thermal atoms may exhibit a broken time-reversal symmetry with the
underlying quantum destructive interference depending critically on the propagation directions of a weak
probe and a strong coupling field [37–39, 46]. That is, a forward (backward) probe field will experience a
high (low) transmissivity due to the well preserved (largely destroyed) quantum destructive interference
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when its two-photon resonance along with a forward coupling field is kept Doppler-free
(velocity-dependent), which can be operated even at the single-photon level [45]. Such an interesting
mechanism utilizing the direction-dependent interplay of EIT responses and Doppler broadenings has been
extended to the four-level N configuration, exhibiting a chiral cross-Kerr nonlinear response for a probe field
coming from two opposite directions [2, 40, 41, 46].

Previous studies are limited to only single-photon transitions, which can be made under appropriate
conditions however negligible as compared to two-photon transitions by eliminating some intermediate
states [49]. This motivates us to consider whether the direction-dependent EIT mechanism for achieving a
transmission non-reciprocity, if extended to two-photon transitions [50], will provide some advantages and
additional degrees of manipulation? In fact, most previous studies examine the non-reciprocal transmission
of a single probe field due to limited natural linewidths of single-photon transitions, though it is possible to
achieve the nonreciprocal bandwidths over 100MHz and up to 1.0 GHz through nonlinear optical
processes [41–43]. It is also known that the simultaneous manipulation of a vast number of light signals is
required in all-optical networks, and wavelength division multiplexing (WDM) [51–53] is an effective
technique for enlarging the information capacity of optical fiber communication [54–59]. Then, a specific
question arises, whether the linear non-reciprocal transmission, if extended to systems dominated by
two-photon transitions, can be realized in a wide enough frequency range appropriate for the WDM
manipulation of multiple probe fields?

With above considerations, here we investigate a five-level Λ system for achieving two-photon EIT
responses sensitive to the propagating direction of a probe field as it can be reduced to a three-level Λ system
with two intermediate states being adiabatically eliminated. This is attained by making a probe and an
assistant field as well as two coupling fields to keep two-photon near resonance, respectively, when the two
pairs of oppositely propagating fields are far detuned from relevant single-photon transitions. Taking
thermal atoms into account, we find that the probe field incident upon one side exhibits very low losses while
that upon the other side is strongly absorbed in a frequency range of tens of natural linewidths (>200MHz)
controlled by the assistant field. This broadband transmission non-reciprocity, facilitating WDM, of high
isolation ratios (>20 dB) and low insertion losses (<1.0 dB) is a result of the direction-dependent Doppler
effect on the only four-photon transition and the largely reduced Doppler broadenings on both two-photon
transitions. It is also of interest that the intersecting angle between the two pairs of oppositely traveling fields
can be tuned to realize a broader nonreciprocal bandwidth (i.e. up to 1.4GHz for instance).

2. Model & equations

We consider in figure 1(a) a five-level atomic system coherently driven into the Λ configuration with two
lower ground states |1⟩ and |2⟩, two intermediate excited states |3⟩ and |4⟩, and an upper excited state |5⟩. A
probe field of frequency ωp (amplitude Ep), an assistant field of frequency ωa (amplitude Ea), a first coupling
field of frequency ωc1 (amplitude Ec1) and a second coupling field of frequency ωc2 (amplitude Ec2) act upon
four transitions |1⟩ ↔ |3⟩, |3⟩ ↔ |5⟩, |2⟩ ↔ |4⟩, and |4⟩ ↔ |5⟩, respectively. The corresponding (real) Rabi
frequencies are Ωp = d13Ep/2h̄, Ωa = d35Ea/2h̄, Ωc1 = d24Ec1/2h̄, and Ωc2 = d45Ec2/2h̄, respectively, with dmn

being electric dipole moment on transition |m⟩ ↔ |n⟩. In addition, we have defined∆p = ωp −ω31 and
∆a = ωa −ω53 as single-photon detunings on the two left-arm transitions while∆c1 = ωc1 −ω42 and
∆c2 = ωc2 −ω54 as single-photon detunings on the two right-arm transitions. To be more specific, here we
consider 87Rb atoms as an example with hyperfine states |1⟩= |5S1/2,F= 1⟩, |2⟩= |5S1/2,F= 2⟩,
|3⟩= |5P1/2,F= 1⟩, |4⟩= |5P1/2,F= 2⟩, and |5⟩= |7S1/2,F= 2⟩, exhibiting transition wavelengths
λp = λc1 = 795.0 nm and λa = λc2 = 728.7 nm as well as spontaneous decay rates Γ31 = Γ32

= Γ41 = Γ42 = 2.87 MHz and Γ53 = Γ54 = 0.19 MHz [60, 61]. Zeeman sublevels are not specified since all of
them will be inevitably populated due to random atomic collisions.

Then, under the electric-dipole and rotating-wave approximations, it is straightforward to construct the
interaction Hamiltonian HI and write down dynamic equations for the five-level Λ system with respect to 25
density matrix elements ρmn for {m,n} ∈ {1,2,3,4,5} [62]. Setting∆p +∆a ≃ 0 and∆c1 +∆c2 ≃ 0 to
enable near-resonant two-photon transitions while |∆p,a| ≫ Ωp,a and |∆c1,c2| ≫ Ωc1,c2 to ensure large
single-photon detunings, it is viable to simplify the five-level Λ system into a three-level Λ system as shown
in figure 1(b) described by an effective Hamiltonian He. The validity for eliminating intermediate states |3⟩
and |4⟩ can be verified by comparing probe absorption spectra obtained by solving density matrix equations
for the five-level Λ system and those for the three-level Λ system. Details for above discussions are given in
the two appendices, where we have introduced Rabi frequency Ωpe =−ΩpΩa/∆p (Ωce =−Ωc1Ωc2/∆c2) for
the effective probe (coupling) field and dynamic Stark shift∆2d ≃−|Ωc1|2/∆c1 (∆5d ≃ |Ωa|2/
∆a + |Ωc2|2/∆c2) for the ground (upmost) state |2⟩ (|5⟩).
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Figure 1. (a) An original five-levelΛ system driven by a probe field ωp, an assistant field ωa, and two coupling fields ωc1,c2 set with
large single-photon detunings while in appropriate two-photon resonances. Energy levels |1⟩, |2⟩, |3⟩, |4⟩, and |5⟩ refer,
respectively, to hyperfine states |5S1/2,F= 1⟩, |5S1/2,F= 2⟩, |5P1/2,F= 1⟩, |5P1/2,F= 2⟩, and |5⟩= |7S1/2,F= 2⟩ of 87Rb
atoms. (b) An equivalent three-level Λ system driven by an effective probe field ωpe = ωp +ωa and an effective coupling field
ωce = ωc1 +ωc2 on different two-photon transitions. (c) An illustration of nonreciprocal light propagation in warm 87Rb atoms
for counter-traveling probe fields with wavevectors kp and−kp, respectively. Other fields have been arranged to largely reduce
Doppler broadenings on both two-photon transitions with effective probe±kpe =±(kp − ka) and coupling kce = kc1 − kc2
wavevectors. PBS1-PBS4: polarization beam splitters; DM1-DM2: dichroic mirrors; PD1-PD2: photodetectors.

In the limit of a weak effective probe field (Ωpe → 0), solving the three-level Λ system by setting
∂tρmn = 0, we can obtain the atomic population in state |5⟩

ρ55 =
2γ|Ωpe|2∆2

12e/Γ

|Ωce|4 − 2|Ωce|2∆12e∆15e +(Γ2 +∆2
15e)∆

2
12e

, (1)

with∆12e =∆12 +∆2d and∆15e =∆15 +∆5d being effective detunings on transitions |1⟩ ↔ |2⟩ and
|1⟩ ↔ |5⟩, respectively. We have considered Γ51 = Γ52 = Γ for the chosen states of 87Rb atoms and
γ51 = γ52 = Γ+ γl with γ l being the common linewidth of all laser fields while neglecting the much smaller
decoherence rate γ21 arising from atomic collisions. Then it is viable to further obtain the absorption
coefficient and the probe transmissivity (see the appendix B) as given below

αp =
Nd213
h̄ε0

πΓ

λp

ρ55
|Ωp|2

, (2a)

Tp = e−αpL, (2b)

where N and L are introduced to denote the density and length of a thermal atomic sample,
respectively.

With thermal atoms under consideration, frequencies of the probe, assistant, and two coupling fields are
shifted to different extents for different atoms of velocity v in a Maxwell distribution depending on their
propagating directions. In this regard, we have a total of sixteen geometric arrangements for the Doppler
shifts of four applied fields as they propagate along either the z or the−z direction. Two among these
arrangements, referred to as the cases of (i) forward and (ii) backward probes, are of our special interest as
shown in figure 1(c). In both cases, the probe and assistant fields of horizontal linear polarization as well as
the two coupling fields of vertical linear polarization have been arranged to propagate in the opposite
directions so as to well suppress the Doppler broadenings on two-photon transitions |1⟩ ↔ |5⟩ and
|2⟩ ↔ |5⟩. This is realized by separating light beams of horizontal and vertical polarizations via four
polarization beam splitters PBS1-PBS4 while light beams of wavelengths 795.0 nm and 728.7 nm via two
dichroic mirrors DM1-DM2.

More specifically, the single-photon detunings should be replaced by∆p + kpv,∆a − kav,∆c1 + kc1v, and
∆c2 − kc2v in case (i) while by∆p − kpv,∆a + kav,∆c1 + kc1v, and∆c2 − kc2v in case (ii) with ‘+’ and ‘−’
denoting the z and−z directions, respectively. Here we have introduced wavenumbers ki = 2π/λi and
wavelengths λi for relevant light fields with i ∈ {p,a, c1, c2}. Accordingly, the two-photon detunings should
be replaced by∆15 + kpev and∆15 −∆12 + kcev in case (i) while by∆15 − kpev and∆15 −∆12 + kcev in case
(ii) with largely reduced effective wavevectors kpe = kp − ka and kce = kc1 − kc2, which must result in well
suppressed Doppler broadenings on two-photon transitions. On the other hand, the four-photon detuning
should be replaced by∆12 +(kpe − kce)v in case (i) while by∆12 − (kpe + kce)v in case (ii). Hence, it is
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Doppler-free and velocity-dependent, respectively, in cases (i) and (ii) due to kpe = kce with kp = kc1 and
ka = kc2, which is crucial for realizing the transmission non-reciprocity of a weak probe field.

It is worth noting that same results can be attained in other two cases where the travelling directions of
probe, assistant, and coupling fields are all reversed as compared to cases (i) and (ii), respectively. In the
remaining twelve cases, however, Doppler broadenings on one or both two-photon transitions will be greatly
enhanced so that the original five-level Λ system cannot be treated as a reduced three-level Λ system again by
eliminating states |3⟩ and |4⟩ via large single-photon detunings. Consequently, the transmission of a probe
field does not depend critically on its travelling direction and we cannot attain broadband and tunable
transmission non-reciprocity in the absence of largely narrowed Doppler broadenings.

With above considerations, it is viable to calculate the mean populations in state |5⟩ by making following
integrations for the two cases of our interest

ρ±55 =

ˆ
dvf(v)ρ55

(
±kpv,∓kav;kc1v,−kc2v

)
, (3)

where f(v) = e−v2/v2p/(vp
√
π) denotes the Maxwell velocity distribution with vp =

√
2kBT/M being the most

probable atomic velocity, kB the Boltzmann constant, T the atomic temperature, andM the atomic mass.
With ρ±55 in hand, we can further calculate the absorption coefficients and the probe transmissivities via

α±
p =

Nd213
h̄ε0

πΓ

λp

ρ±55
|Ωp|2

, (4a)

T±
p = e−α±

p L, (4b)

which should be direction-dependent due to ρ+55 ̸= ρ−55. In addition to the qualitative evaluations via
T+
p ̸= T−

p , the transmission non-reciprocity for a probe field can also be quantified via two figure of merits

IR = 10 log10

(
T+
p

T−
p

)
, (5a)

IL =−10 log10T
+
p , (5b)

referring to isolation ratio and insertion loss, respectively. Here we have considered that T+
p ≫ T−

p around
the four-photon resonance∆12 +∆2d = 0 where a two-photon EIT window can be found in case (i) due to
the Doppler-free arrangement but is smeared out in case (ii) by the residual Doppler effect. Below, we will
adopt IR > 20 dB (i.e. T+

p /T
−
p > 100) and IL < 1.0 dB (i.e. T+

p > 0.794) as two basic criteria for realizing a
high-performance isolator based on the transmission non-reciprocity.

It is worth noting that, effective Rabi frequencies and dynamic Stark shifts in the reduced three-level Λ
system are also velocity-dependent as shown below

Ω±
pe =−

ΩpΩa

∆p ± kpv
, (6a)

Ω±
ce =− Ωc1Ωc2

∆c2 − kc2v
, (6b)

∆±
2d =− |Ωc1|2

∆c1 + kc1v
, (6c)

∆±
5d =

|Ωa|2

∆a ∓ kav
+

|Ωc2|2

∆c2 − kc2v
, (6d)

which may destroy the two-photon EIT effect in case (i). Fortunately, their values are very small and more
importantly change little for most atomic velocities even at a room temperature as we choose large enough
|∆p,a,c1,c2|. Last but not least, the assistant (second coupling) field may intersect the oppositely propagating
probe (first coupling) field with a misaligned angle 180◦ − θ while the latter is kept to always travel along the
±z (z) direction with ‘+’ and ‘−’ referring to cases (i) and (ii), respectively. Then, wavevectors ka,c2 should be
replaced with the effective ones keff

a,c2 = ka,c2 cos(180◦ − θ) in calculating ρ±55. The velocity-insensitive
{Ω±

pe,ce,∆
±
2d,5d} and angle-dependent keff

a,c2 can be explored to bring additional degrees of dynamic
manipulation on the transmission non-reciprocity discussed in the next two sections.
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Finally, we note that the two coupling fields suffer little absorption because ρ55,22 → 0 and ρ11 → 1 in the
limit of Ωpe ≪ Ωce. The assistant field also suffers little absorption because Ωp ≪ Ωa and the loss of a h̄ωa

photon must be accompanied by the loss of a h̄ωp photon. That is, the assistant field is not significantly
attenuated even if the probe field has been totally absorbed. Hence, their negligible attenuation during
propagation will not comprise the probe field’s isolation ratio and insertion loss.

3. Broadband non-reciprocity

In this section, we examine via numerical calculations the broadband transmission non-reciprocity of a probe
field incident upon a sample of thermal 87Rb atoms driven into the five-level Λ configuration in figure 1(a)
equivalent to the three-level Λ configuration in figure 1(b) with dominant two-photon transitions. Half
Doppler broadenings can be estimated by δωD =

√
ln2vp/λi and are about 250 (274) MHz on the lower

(upper) single-photon transitions with i ∈ {p, c1} (i ∈ {a, c2}) but reduced to 22.8 MHz on the two-photon
transitions with i ∈ {pe, ce} at the temperature T≃ 300 K (vp ≃ 240 m s−1). It is hence appropriate to choose
∆a,c1/≃−∆p,c2 ≃ 1000MHz and Ωa,c1,c2 ≲ 50MHz so that the single-photon transitions can be neglected
for all atomic velocities while the two-photon transitions are kept near resonances by setting∆15 ≃ 0 and
∆15 −∆12 −∆12d ≃ 0 with∆12d being small and∆15d negligible (due to∆a =−∆c2).

In figure 2, we plot two-photon absorption coefficients α±
p as functions of probe detuning∆p for three

typical temperatures spanning a wide range. We can see from figures 2(a1) and (a2) that there exist no
observable differences between α+

p and α−
p at a low enough temperature T= 1.0mK, leaving the cold atomic

sample reciprocal in absorption to a weak probe field incident from the left or right side. Moreover, it is clear
that each absorption spectrum of α+

p and α−
p on the two-photon transition |1⟩ ↔ |5⟩ exhibits a typical EIT

doublet with an in-between dip at∆p ≃−∆a, which can be attributed as usual to the quantum destructive
interference generated by an effective coupling field Ωce acting upon the two-photon transition |2⟩ ↔ |5⟩. As
the temperature increases to T= 10K in figures 2(b1) and (b2) or to T= 300K in figures 2(c1) and (c2), we
find that α+

p and α−
p become evidently different around∆p ≃−∆a where the two-photon EIT dips remain

unchanged in depth, though become narrower, for α+
p but entirely disappear for α−

p . The underlying physics
is related to the four-photon detunings

∆±
12 =∆12 +

(
kep ∓ kec

)
v−∆±

2d, (7)

for α±
p with∆+

2d =∆−
2d depending on but not sensitive to v. This equation indicates that α+

p is roughly
Doppler-free around∆12 = 0 due to kep − kec = 0 so that the EIT window remains perfect while α−

p is
velocity-dependent everywhere due to kep + kec = 2kep so that the EIT window entirely disappears. It is worth
noting that the increase of α±

p with Ωpe observed for all three temperatures is a feature absent in the
three-level Λ system dominated by single-photon transitions and will be used later to manipulate the
transmission non-reciprocity.

Above results indicate that the forward probe field can exhibit a rather high transmissivity, while the
backward probe field will be strongly absorbed, around the four-photon resonance∆p +∆a ≃∆c1 +∆c2 in
a sample of thermal atoms described by α±

p . Such an evident transmission non-reciprocity, enabling an
efficient optical isolation, has been numerically examined in figure 3 in terms of transmissivities T±

p ,
isolation ratio IR, and insertion loss IL as functions of probe detuning∆p. We find from figure 3(a) that T+

p

approaches unity with a transmission bandwidth of the order of MHz determined here by the effective
coupling Rabi frequency Ωce while figure 3(b) shows that T−

p remains low in a much wider range though
decreases slowly as |∆p| becomes smaller due to an increase of the effective probe Rabi frequency Ωpe. It is
also clear from figures 3(c) and (d) that IR could reach the maximum of 22.5 dB while IL might be as low as
0.3 dB, indicating the possibility for achieving a high-performance optical isolator. Note however that the
effective coupling Rabi frequency Ωce should not be too small, otherwise the insertion loss will exceed 1.0 dB
on one hand and the non-reciprocal transmission bandwidth will reduce to be invisible on the other hand
(not shown).

We are committed in particular to achieving the nonreciprocal transmission of a controlled broad
bandwidth based on thermal atoms dominated by two-photon transitions under consideration here.
Working in the regime of near-resonant two-photon and four-photon transitions, the single-photon
detunings can be tuned in a relatively wide range yet without changing too much the four important
quantities plotted in figure 4, which then facilitates the essential WDM function in an all-optical network.
This has been examined by modulating∆p =−∆a in the range of {−1200,−800}MHz to ensure that
two-photon transitions are dominant over single-photon transitions. In this range, it is found that slight
changes of effective Rabi frequency Ωpe has resulted in the evident changes in T±

p , IR, and IL, which is

5
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Figure 2. Absorption coefficients α+
p (upper) and α−

p (lower) as functions of probe detuning∆p with T= 1.0mK (a1), (a2), 10 K
(b1), (b2), and 300K (c1), (c2) forΩa = 50MHz (red-solid) and 40MHz (blue-dashed). Other parameters areΩp = 0.1MHz,
Ωc1 =Ωc2 = 50MHz,∆a =∆c1 = 1000MHz,∆c2 =−1002.5MHz, Γ53 = Γ54 = 0.19MHz, γl = 0.05MHz, γ21 = 2.0 kHz,
θ = 180◦, N= 2.0× 1012 cm−3, L= 1.0 cm, λp = 795.0 nm, and d13 = 2.537× 10−29 Cm.

Figure 3. Probe transmissivities T+
p (a) and T−

p (b) as well as isolation ratio IR (c) and insertion loss IL (d) against probe
detuning∆p forΩc1 =Ωc2 = 50MHz (red-solid) and 40MHz (blue-dashed). Other parameters are the same as in figure 2 except
T= 300 K and Ωa = 50MHz. Gray dotted lines refer to IR = 20 dB in (c) or IL = 1.0 dB in (d) as a reference.

impossible in a typical three-level Λ system. More importantly, figure 4 shows that the isolation ratio of
IR > 20 dB and the insertion loss of IL < 1.0 dB can be attained in a wide frequency range of
150∼ 250MHz, indicating that it is viable to achieve the nonreciprocal transmission by simultaneously
handling tens of light signals with different frequencies. Figure 5 further shows that the nonreciprocal
transmission exhibits a maximal bandwidth up to 1.4 GHz with IR > 20 and IL < 1.0 dB as we choose
θ = 158◦ so as to have the smallest Doppler broadenings on both two-photon transitions |1⟩ ↔ |5⟩ and
|2⟩ ↔ |5⟩. This big enlargement of nonreciprocal bandwidth can be understood by resorting to numerical
results shown in the next section.
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Figure 4. Probe transmissivities T+
p (a) and T−

p (b) as well as isolation ratio IR (c) and insertion loss IL (d) against probe
detuning∆p forΩc1 =Ωc2 = 50MHz (red-solid) and 40MHz (blue-dashed). Other parameters are the same as in figure 3 except
∆a =−∆p. Gray dotted lines refer to IR = 20 dB in (c) or IL = 1.0 dB in (d) as a reference.

Figure 5. Probe transmissivities T+
p (a) and T−

p (b) as well as isolation ratio IR (c) and insertion loss IL (d) against probe
detuning∆p forΩc1 =Ωc2 = 50MHz (red-solid) and 40MHz (blue-dashed). Other parameters are the same as in figure 4 except
θ = 158◦. Gray dotted lines refer to IR = 20 dB in (c) or IL = 1.0 dB in (d) as a reference.

4. Nonreciprocal tunability

In this section, we examine two flexible ways for manipulating the transmission non-reciprocity by
modulating additional parameters, Rabi frequency Ωa and misaligned angle θ, to gain further insights into
nonreciprocal optical responses. This is intrinsic to the reduced three-level Λ system dominated by
two-photon near-resonant transitions and expected to facilitate the signal or information processing in an
all-optical network.

First, we plot in figure 6 probe transmissivities T±
p together with isolation ratio IR and insertion loss IL

against Rabi frequency Ωa of the assistant field. It is easy to see from figures 6(a) and (b) that a large variation
of Ωa in the range of {0,60}MHz, corresponding to a small variation of Ωpe in the range of {0,6} kHz, will
result in the evident variations of T±

p , which cannot be attained in a typical three-level Λ system since it is
independent of probe Rabi frequency Ωp. We should note, however, that T+

p just reduces a few percentage
from 1.0 to 0.90 or 0.86 (depending on coupling Rabi frequencies Ωc1 =Ωc2) while T−

p suffers a much
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Figure 6. Probe transmissivities T+
p (a) and T−

p (b) as well as isolation ratio IR (c) and insertion loss IL (d) against Rabi
frequencyΩa forΩc1 =Ωc2 = 50MHz (red-solid) and 40MHz (blue-dashed). Other parameters are the same as in figure 3
except∆p =−1000MHz. Gray dotted lines refer to IR = 20 dB in (c) or IL = 1.0 dB in (d) as a reference.

sharper reduction from 1.0 to 5× 10−4 or 4× 10−4 (less sensitive to the change of Ωc1 =Ωc2). Accordingly,
we find from figures 6(c) and (d) that isolation ratio IR increases faster than insertion loss IL with the
increase ofΩa, and we can achieve IR > 20 dB only withΩa > 47.5MHz (Ωa > 47.0MHz) while IL < 1.0 dB
holds for Ωa ⩽ 60MHz no matter Ωc1 =Ωc2 = 50 MHz or Ωc1 =Ωc2 = 40 MHz. It is also clear that the
assistant field should be carefully modulated in order to ensure an ideal trade-off between IR and IL, relevant
to a high-performance optical isolator, with the working range of Ωa depending on Ωc1 =Ωc2 for a fixed Ωp.

Then, we try to plot in figure 7 probe transmissivities T±
p together with isolation ratio IR and insertion

loss IL against misaligned angle θ between wavenumbers kp (kc1) and−ka (−kc2) in the case of∆p =−∆a.
Figure 7(a) shows that T+

p decreases slowly above a quite high value until θ reduces from 180◦ to 157.3◦,
while approaches quickly 4× 10−3 (5× 10−6) for Ωc1 =Ωc2 = 50 MHz (Ωc1 =Ωc2 = 40 MHz) as θ further
reduces from 157.3◦ to 156.5◦. Figure 7(b) shows instead that T−

p exhibits an extremely small minimum
around θ = 157.3◦, decreases more evidently as θ reduces from 180◦ to 157.3◦, and increases surprisingly
back to 1.0 as θ further reduces from 157.3◦ to 156.5◦. The joint variations of T+

p and T−
p due to an effective

control of Doppler broadenings on two-photon transitions by modulating angle θ then lead to the results
shown in figures 7(c) and (d), where IR exhibits a very large maximum at θ = 157.3◦ while IL increases
continuously to a saturation value as θ reduces to 156.5◦. It is worth noting that the critical requirements of
IR > 20 dB and IL < 1.0 dB could be simultaneously attained only with θ > 158.6◦ (θ > 160.3◦) for
Ωc1 =Ωc2 = 50 MHz (Ωc1 =Ωc2 = 40 MHz), while the maximum of IR at θ = 157.3◦ is meaningless as the
corresponding IL is too large. Anyway, we can get a better trade-off between IR and IL for realizing a
high-performance optical isolation by modulating θ in the range of {157.3◦,180◦}.

To better understood what are observed in figure 7, we examine in figure 8 absorption coefficients α±
p as

functions of probe detuning∆p for three typical values of angle θ. Figure 8(a) shows that the EIT window of
α+
p becomes shallower and shallower and meanwhile more and more asymmetric as θ gradually reduces.

Figure 8(b) shows that α−
p changes in a way similar to α+

p as far as their spectral widths are concerned,
i.e. both become narrower as θ gradually reduces. An evident change of α−

p different from α+
p lies in that the

two-photon EIT dip is absent for both θ = 180◦ and θ = 160◦ but can be observed like α+
p for θ = 156.5◦.

This can be understood by considering that θ = 156.5◦ corresponds to the case where both two-photon
transitions |1⟩ ↔ |5⟩ and |2⟩ ↔ |5⟩ become Doppler free due to kp,c1 = keff

a,c2 so that it is impossible to attain
the transmission non-reciprocity around four-photon resonance without residual Doppler broadenings. As
to the asymmetric features of α+

p and α−
p spectra, they arise in fact from effective Rabi frequencies Ω±

pe and

Ω±
ce as well as dynamic Stark shifts∆±

2d and∆±
5d, whose velocity dependence cannot be eliminated via

appropriate arrangements of the probe, assistant, and coupling fields. Fortunately, the four quantities exhibit
quite small values and change just a little for different atomic velocities so that the EIT dip remains well
developed. With above discussions, we conclude that the quenching of T+

p for θ < 157.3◦ and the minimum

8
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Figure 7. Probe transmissivities T+
p (a) and T−

p (b) as well as isolation ratio IR (c) and insertion loss IL (d) against angle θ for
Ωc1 =Ωc2 = 50MHz (red-solid) and 40MHz (blue-dashed). Other parameters are the same as in figure 3 except
∆p =−1000MHz. Gray dotted lines refer to IR = 20 dB in (c) or IL = 1.0 dB in (d) as a reference.

Figure 8. Absorption coefficients α+
p (a) and α−

p (b) as functions of probe detuning∆p for T= 300K with θ = 180◦ (red-solid),
160◦ (blue-dashed), and 156.5◦ (green-dotted). Other parameters are the same as in figure 3.

of T−
p at θ = 157.3◦ in figure 7 arise from the Doppler-free asymmetric EIT spectra of α±

p and a slight
velocity-dependent shift of the EIT dip away from four-photon resonance.

What we observe in figures 7 and 8 answer why the nonreciprocal bandwidth can be greatly enlarged by
replacing θ = 180◦ with θ = 158◦ at T= 300 K as shown in figure 5. Finally, we examine in figure 9 the joint
effects of angle θ and temperature T on the transmission non-reciprocity in terms of isolation ratio IR and
insertion loss IL in the case of∆p =−∆a. We can see from figure 9(a) that the maximum of IR (∼ 150 dB)
moves slowly from T≃ 2.5 K to T≃ 7.0 K as θ decreases from 180◦ to 165◦, but turns to move quickly
toward T≃ 13 K, T≃ 39 K, and T≃ 147 K as θ further decreases to 162.5◦, 160◦, and 158◦, respectively.
Figure 9(b) shows that IL always decreases slowly as T increases in the visible range for θ ≳ 162.5◦ and
remains well below 0.5 dB, but starts to increase quickly as T increases to be high enough for θ ≲ 162.5◦ and
may far exceed 1.0 dB. These findings can be attributed to the fact that, since T and θ together determine
Doppler broadenings, the same change of Doppler broadenings resulted from the same change of θ requires
a larger change of T as θ approaches the critical value 157.3◦ referring to vanishing Doppler broadenings. To
conclude, this figure tells that it is viable to attain a better trade-off between IR and IL for realizing a
high-performance optical isolator by modulating both θ and T in appropriate ranges. The main benefit of
such a joint modulation lies in that it promises a flexible manipulation on both residual Doppler
broadenings of two-photon transitions and inevitable Doppler shifts of effective Rabi frequencies and
dynamic Stark shifts.

9
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Figure 9. Isolation ratio IR (a) and insertion loss IL (b) against temperature T and angle θ. Relevant parameters are the same as
in figure 3 except∆p =−1000MHz.

Table 1. Basic requirement, influence of parametersΩa, θ, and T, and main conclusion.

Basic requirement: Ωc = 40∼ 50 MHz,∆c2 ≃−∆c1 =−1000 MHz, and∆p =−∆a ≲−800 MHz
for attaining a large non-reciprocal transmission bandwidth (∼200 MHz for
θ = 180◦ while∼ 1.4 GHz for θ = 158◦).

Influence of Ωa: An increase of Ωa results in an increase of both IR and IL so that the transmission
non-reciprocity characterized by IR > 20 dB and IL < 1.0 dB can be attained only
for moderate values of Ωa.

Influence of θ: A decrease of θ from 180◦ to∼160◦ can be explored to attain a high-performance
optical isolation for a certain value of∆p =−∆a by increasing IR from 20 dB
while leaving IL below 1.0 dB.

Influence of T: The optimal value of T corresponding to the maximum of IR (∼150 dB) increases
first slowly and then quickly from 2.5 K to 147 K with IL keeping below 1.0 dB as θ
reduces from 180◦ to 158◦.

Main conclusion: It is viable to optimize the transmission non-reciprocity with a large tunable
bandwidth via a joint variation of parameters Ωa, θ, and T in order to attain a
better trade-off between IR and IL.

5. Conclusions

In summary, we have investigated an efficient scheme for achieving the magnet-free optical non-reciprocity
in a three-level Λ system dominated by two-photon transitions by considering free-space thermal 87Rb
atoms. The forward probe field is found to experience a Doppler-free EIT window and hence suffers very low
losses in transmission, while the backward probe field is strongly absorbed because the EIT window is
smeared out as the Doppler shifts on two-photon transitions |1⟩ ↔ |5⟩ and |2⟩ ↔ |5⟩ do not cancel out
again. It is of particular interest that the non-reciprocal transmission may be well controlled by modulating
the frequency and amplitude of an assistant field as well as a common misaligned angle between the two
pairs of {ωp,ωa} and {ωc1,ωc2} fields. It is also important that this transmission non-reciprocity can exhibit
high isolation ratios and low insertion losses in a wide frequency range, benefiting from largely reduced
Doppler broadenings on two-photon transitions |1⟩ ↔ |5⟩ and |2⟩ ↔ |5⟩. That means, our scheme allows to
manipulate hundreds of probe fields as multiple light signals at the same time with similar isolation ratios
and insertion losses due to their insensitivities to single-photon detunings and hence facilitate WDM
applications in all-optical networks. The most important figures of merit in our present work are
summarized in table 1.
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Appendix A. Hamiltonians and dynamic equations

For the five-level Λ system under consideration, we can write down the interaction Hamiltonian

HI =−h̄


0 0 Ω∗

p 0 0
0 ∆12 0 Ω∗

c1 0
Ωp 0 ∆13 0 Ω∗

a

0 Ωc1 0 ∆14 Ω∗
c2

0 0 Ωa Ωc2 ∆15

 , (A.1)

with∆12 =∆p +∆a −∆c1 −∆c2,∆13 =∆p,∆14 =∆p +∆a −∆c2, and∆15 =∆p +∆a.
Working in the regime of∆p +∆a ≃ 0,∆c1 +∆c2 ≃ 0, |∆p,a| ≫ Ωp,a, and |∆c1,c2| ≫ Ωc1,c2, the five-level

Λ system can be reduced to a three-level Λ system by eliminating intermediate states |3⟩ and |4⟩. Then, it is
viable to derive through the time-averaged adiabatic-elimination method [50] the effective Hamiltonian

He =−h̄

 0 0 Ω∗
pe

0 ∆12 +∆2d Ω∗
ce

Ωpe Ωce ∆15 +∆5d

 , (A.2)

where we have introduced a new Rabi frequency Ωpe =−ΩpΩa/∆p (Ωce =−Ωc1Ωc2/∆c2) for the effective
probe (coupling) field of frequency ωpe = ωp +ωa (ωce = ωc1 +ωc2) acting upon the two-photon
near-resonant transition |1⟩ ↔ |5⟩ (|2⟩ ↔ |5⟩). Note also that∆2d ≃−|Ωc1|2/∆c1 (∆5d ≃ |Ωa|2/
∆a + |Ωc2|2/∆c2) describes the dynamic Stark shift of state |2⟩ (|5⟩) as a direct result of the virtual
absorption and emission of ωc1 (ωa and ωc2) photons, which will result in a slight deviation of the
four-photon (two-photon) resonance from∆12 = 0 (∆15 = 0).

For simplicity, below we just write down the dynamic equations of density matrix elements ρmn for the
reduced three-level Λ system starting from equation (A.2)

∂tρ22 = Γ52ρ55 + iΩ∗
ceρ52 − iΩceρ25, (A.3a)

∂tρ11 = Γ51ρ55 + iΩ∗
peρ51 − iΩpeρ15, (A.3b)

∂tρ52 =−g52ρ52 + iΩpeρ12 + iΩce (ρ22 − ρ55) , (A.3c)

∂tρ51 =−g51ρ51 + iΩceρ21 + iΩpe (ρ11 − ρ55) , (A.3d)

∂tρ21 =−g21ρ21 + iΩ∗
ceρ51 − iΩpeρ25, (A.3e)

which are restricted by ρij = ρ∗ji and ρ11 + ρ22 +(1+ η53 + η54)ρ55 = 1 with η53ρ55 = Γ53/(Γ31 +Γ32)ρ55 and
η54ρ55 = Γ54/(Γ41 +Γ42)ρ55 accounting for populations in states |3⟩ and |4⟩, respectively, due to the
inevitable spontaneous decay. Above, we have defined the complex decoherence rates
g52 = γ52 + i(∆15 −∆12 +∆5d −∆2d), g51 = γ51 − i(∆15 +∆5d) and g21 = γ21 − i(∆12 +∆2d) after
including the dynamic Stark shifts∆2d and∆5d. Typically, the real dephasing rate γmn of coherence ρmn

depends on the spontaneous decay rates Γmk and Γ nk of populations ρmm and ρnn through
γmn =

∑
k(Γmk +Γnk)/2. We have also defined Γ51 = Γ31η53 +Γ41η54 and Γ52 = Γ32η53 +Γ42η54 as the

effective decay rates from state |5⟩ to states |1⟩ and |2⟩, respectively.

Appendix B. Absorption coefficient

Here, we try to derive the two-photon absorption coefficient of a probe field based on population ρ55 in state
|5⟩ as the five-level Λ system in figure 1(a) reduces to the three-level Λ system in figure 1(b). To this end, we
first note that the probe field exhibits an intensity defined as Ip = cϵ0E2p/2= 2h̄2cϵ0|Ωp|2/d213. Then, the
number of probe photons, passing through a section of the atomic sample at position z, per time is given by

Np (z)

dt
=

πr2p
h̄ωp

Ip (z) =
h̄ϵ0λpr2p
d213

|Ωp (z) |2, (B.1)

where rp denotes the probe beam radius. With this consideration, we can further attain the number of
photons lost per time in an atomic slice from z to z+ dz

dNp

dt
=

h̄cϵ0λpr2p
d213

dIp, (B.2)
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Figure B1. Absorption coefficients αp (red-solid) and α̃p (blue-dashed) as functions of probe detuning∆p with
∆a =∆c1 = 1000 MHz (a) and∆a =∆c1 = 5000 MHz (b). Other parameters are the same as in figure 2 except Ωa = 50 MHz
and∆c2 =−∆c1 −∆5d +∆2d changes with∆a =∆c1.

with dNp = Np(z+ dz)−Np(z) and dIp = |Ωp(z+ dz)|2 − |Ωp(z)|2. Meanwhile, the number of atoms in state
|5⟩ lost per time, due to spontaneous decay after absorbing probe photons, in this atomic slice is given by

δna
dt

= Nπ r2pρ55Γdz, (B.3)

where we have considered that the probe field interacts with Nπr2pdz atoms in this slice of density N.
According to the requirement of energy conservation dNp/dt=−δna/dt, we can derive the probe

transmissivity for an atomic sample of length L

Tp =
Ip (L)

Ip (0)
=

∣∣∣∣Ωp (L)

Ωp (0)

∣∣∣∣2 = e−αpL, (B.4)

with the absorption coefficient being

αp =
Nd213
h̄ϵ0

πΓ

λp

ρ55
|Ωp|2

, (B.5)

which should be Ωp-independent since ρ55 ∝ |Ωp|2 in the limit of a weak probe field. It is worth noting that
the absorption coefficient may also be expressed as

α̃p =
Nd213
h̄ϵ0

2π

λp

Imρ31
Ωp

, (B.6)

with ρ31 ∝ Ωp obtained by solving density matrix equations of the original five-level Λ system in the steady
state. Equations (B.5) and (B.6) allow us to examine the validity of a reduced three-level Λ system by
presenting a numerical comparison between the two absorption coefficients with appropriate parameters as
shown in figure B1. The results tell that absorption coefficients αp and α̃p are in good agreement for
|∆a,c1,c2|/Ωa,c1,c2 = 20 and fit better for |∆a,c1,c2|/Ωa,c1,c2 = 100 in the case of two-photon near resonances
∆p ≃−∆a and∆c1 ≃−∆c2.
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