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Abstract
Recently, there has been considerable interest in the application of information geometry to
quantum many body physics. This interest has been driven by three separate lines of research,
which can all be understood as different facets of quantum information geometry. First, the study
of topological phases of matter characterized by Chern number is rooted in the symplectic
structure of the quantum state space, known in the physics literature as Berry curvature. Second, in
the study of quantum phase transitions, the fidelity susceptibility has gained prominence as a
universal probe of quantum criticality, even for systems that lack an obviously discernible order
parameter. Finally, the study of quantum Fisher information in many body systems has seen a
surge of interest due to its role as a witness of genuine multipartite entanglement and owing to its
utility as a quantifier of quantum resources, in particular those useful in quantum sensing. Rather
than a thorough review, our aim is to connect key results within a common conceptual framework
that may serve as an introductory guide to the extensive breadth of applications, and deep
mathematical roots, of quantum information geometry, with an intended audience of researchers
in quantum many body and condensed matter physics.
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1. Overview andmotivations

The importance of geometry to the study of quantum many body systems has emerged in several major
contexts. First, in the groundbreaking work of Thouless et al [1], who noticed the relationship between the
geometric phase [2, 3] of a single electron wave function, and the topology of the band structure in
two-dimensional insulators. Second, in the work of Zanardi and Paunkovíc [4], who applied the notion of
state space geometry to the study of quantum phase transitions, and termed the resulting geometric quantity
fidelity susceptibility [5]. The fidelity susceptibility and geometric phase are two halves of a deeper whole.
The former defines the Riemannian structure of the state space [6] while the latter defines the symplectic
structure. Taken together, the study of these two structures is the subject of quantum information
geometry [7]. The word information here arises due to the relationship between the geometry of the state
space, and the degree to which the parameters that define the location of a state in state space may be
estimated in a fixed number of measurements. In classical statistics this is the concept of Fisher
information [8], which was generalized to the quantum context for pure states by Wootters [9], and then to
the case of mixed states by Braunstein and Caves [10]. As we shall see, the relationship between geometry and
information has important implications for a number of fields, including quantum many body physics,
quantum sensing and quantum computing.

Many of the topics touched upon in the present guide have been the subject of a dedicated review. For
example, for a review of fidelity susceptibility one can consult [5] or more recently [11], and for a review of
the applications of the geometric phase to condensed matter systems one might consult [12]. A recent and
very thorough review of quantum Fisher information (QFI) in the context of metrology can be found in
[13]. For a mathematically rigorous review of the classical Fisher information in the context of statistical
physics, one can consult [14]. In its bibliographical notes, this review also contains a very complete history of
the field of information geometry from a mathematical perspective. Nonetheless, over the last decade a
number of important connections have emerged between state space geometry, quantum sensing [15–18],
multipartite entanglement [19, 20], topology [21–23], and response functions [24, 25], which demand a
contemporary perspective, easily accessible to a quantum many-body audience. The present guide intends to
serve two purposes. First, as a pedagogical introduction, using a unified notation and conceptual framework,
to information geometry in quantum many body physics. Second, as a guide where key results in the field
from the last two decades are gathered in one place, offering new researchers an opportunity to orient
themselves in the field, and providing experienced researchers with an entry point for future inquiries. While
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we avoid rigorous proofs, we strive to summarize the key foundational ideas in the mathematics literature,
providing references to the original research literature.

Much of the utility of quantum information geometry arises from the distinction between classical
fluctuations and quantum fluctuations that will play an important role in the application of quantum
information geometry to condensed matter systems. To get a sense of what is meant by this distinction, we
introduce the following example, which we refer to as the classical case. Imagine a collection of N rotors
obeying the laws of classical mechanics, with orientations, n⃗, and angular momenta, L̂, in three dimensions
given by, x≡ {n⃗1, . . . , n⃗N, L̂1, . . . , L̂N} ∈ Ω, where Ω is the classical phase space. The time dependence of the
state can be found by solving the classical equations of motion for a given set of initial conditions, yielding a
particular trajectory χ(t). Then, any macroscopic property of the system can be described by the function,
Λ{χ(t)}. In practice, it is intractable in most cases to specify the initial conditions for any macroscopic
collection of particles. Even theoretically, solving the equations of motion is only possible for systems with
sufficient symmetry. Thus, in both theory and practice, we consider averages of this function over either
fixed intervals of time, or ensembles of possible states, which are equivalent as long as the conditions for
ergodicity are met [26]. Classical systems are thus modelled by a probability distribution p(x), called a state.
Observable properties are characterized by their averages over this state,

⟨Λ⟩p =
ˆ

p(x)Λ(x)dx (1)

and their variances and covariances,

Varp{Λ}= ⟨Λ2⟩p −⟨Λ⟩2p (2a)

Covp{Λ1,Λ2}= ⟨Λ1,Λ2⟩p −⟨Λ1⟩p⟨Λ2⟩p. (2b)

In the classical case, fluctuations arise out of our ignorance of the precise conditions of the system at any
given instant. We call these fluctuations classical fluctuations, or sometimes, incoherent fluctuations. The
distribution for a system of rotors in equilibrium with a bath of inverse temperature β is captured by the
Gibbs distribution,

p(x) =
e−βE(x)

Z
(3)

where,

Z =

ˆ
e−βE(x) dx. (4)

Fluctuations that arise due to equilibration with a bath (whether or particles, energy, volume, etc. . .) are
termed thermal fluctuations. All thermal fluctuations are classical, though not all classical fluctuations are
thermal.

Classically, a pure state is one that is specified without any degree of uncertainty (so far as our physical
theory allows). For any particular solutions of the equations of motion χ(t), we have the pure state,

p(x;χ(t)) = δ(x−χ(t)). (5)

An important albeit obvious property of classical pure states is that they are pure on all subsystems. Consider
a subsystem V and its complement V̄, such that the phase space is decomposed into Ω= ΩV ⊕ΩV̄, with
points in phase space factorizing as x= xV ⊕ xV̄ and trajectories as χ(t) = χV(t)⊕χV̄(t). Then the state of
the subsystem will be given by,

pV(xV;χV(t)) =

ˆ
ΩV̄

p(x;χ(t))dxV̄ = δ(xV −χV(t)). (6)

As long as our above factorizations are possible, the above state will also be pure. This is what we mean when
we say that a classical pure state is pure on its subsystems.

The revelation of quantum mechanics is that, at the time-energy scales of Planck’s constant, the
properties of even a single particle undergoing the simplest imaginable dynamics are subject to persistent,
irrevocable fluctuations. Where classically we defined a point in phase space explicitly in terms of the
microscopic degrees of freedom that we might, in principle, know and measure, the quantum state space is
defined by a unit norm vector in Hilbert space called the wavefunction, |Ψ⟩ in a Hilbert spaceH [27]. The
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wavefunction induces a probability distribution on an observable represented a Hermitian operator Λ̂ via the
amplitude of projection onto the eigenbasis of Λ̂, p(λ) = |⟨Ψ |λ⟩|2.

Once we grant that the state of a quantum system is given by a vector in a Hilbert space rather than by a
complete set of observable values, all the reasoning of the classical case can be applied. Namely, it is
practically very difficult to determine precisely what state a quantum many-body system is in at any given
moment, and consequently we consider mixtures of quantum systems represented by the density matrix,

ρ̂=
∑
j

pj|j⟩⟨j | (7)

where pj is a classical probability distribution over the pure states labelled by j. Such mixtures introduce
incoherent fluctuations, that is, fluctuations not caused by the wave-like nature of quantum phenomena. Just
as in the classical case, the mixture in equation (7) can be reduced to a pure state, |ψ ⟩ by taking pj = δj,ψ . In
this case, fluctuations arise entirely from quantum mechanical effects, as we shall see. The extent to which a
quantum state represented by the density matrix ρ̂ is pure is captured by the purity,

P = Tr{ρ̂2}. (8)

A purity of 1 is only achieved if pj = δj,ψ , corresponding to the density matrix associated to the pure state
|ψ ⟩. An important example of a quantum mixed state is that of a system governed by a Hamiltonian Ĥ in
thermal equilibrium with a bath of inverse temperature β, which we refer to as a Gibbs state,

ρ̂Gibbs =
exp{−βĤ}

Z
, (9)

where,

Z = Tr{exp−βĤ} (10)

is the partition function.
This formal transition, from points in classical phase space to vectors in Hilbert space, facilitates the

introduction of two new physical principles. The first is the principle of superposition. Whereas the pure
states on the right-hand side of equation (7) are combined incoherently, quantum states can also combine
coherently in superposition,

|ψ ⟩=
∑
j

cj|j⟩ (11)

where cj = ⟨j |ψ ⟩ are complex numbers such that
∑

j |cj|2 = 1. Unlike the mixture of states in equation (7),
the superposition of states in equation (11) preserves the wave-like nature of quantum effects, allowing for
the resulting fluctuations to become correlated in ways not possible when considering incoherent
superpositions. One way to understand the difference is that the mixture decreases the purity, whereas super
position does not. It is the principle of superposition that gives rise to entanglement. The second is the
principle of uncertainty. That is the fact that for pairs of observables, say Λ̂1 and Λ̂2, have a minimum
amount of simultaneous fluctuation,

Varρ̂{Λ̂1}Varρ̂{Λ̂2}⩾
1

4

∣∣∣∣〈[Λ̂1, Λ̂2

]〉
ρ̂

∣∣∣∣2 . (12)

Hence, if Λ̂1 and Λ̂2 do not commute, [Λ̂1, Λ̂2] ̸== 0, this establishes limits on Varρ̂{Λ̂1} and Varρ̂{Λ̂2}. The
fluctuations that arise from these two principles are collectively termed quantum fluctuations.

An important implication of the principle of superposition is the emergence of entanglement. In direct
analogy with the discussion surrounding equation (6), we may consider the state of a many-body pure state
on one of its subsystems, V. In direct analogy with equation (6) we have,

ρ̂ψV = TrV̄{ρ̂ψ}. (13)

Unlike in the case of classical pure states, the state ρ̂ψV will only have unit purity if the state |ψ ⟩ admits the
decomposition |ψ ⟩= |ϕV⟩|ϕV̄⟩. If ρ̂ψ is not pure, we say that the subsystems V and V̄ are entangled in the
state |ψ ⟩.

Entanglement comes down to the producibility of a state, that is, the extent to which it can be factored
into subsystems. Since the study of entanglement is a major application of information geometry, we take a

4



New J. Phys. 25 (2023) 081201 J Lambert and E S Sørensen

Figure 1. (a) Statistical structure of classical mechanics, with all observable subordinated to a single classical probability
distribution. (b) Statistical structure of quantum mechanics, showing the subordination of different sets of observables to
different distributions generated by the state ρ̂.

moment to formalize this idea. Let |Ψ⟩ be an N body state. Now consider a factorization of this state intoM
subsystems,

|Ψ⟩=
M⊗
l=1

|ψl⟩ (14)

where each subsystem has N l particles with
∑

lNl = N. Now letm be an integer such thatm⩾ Nl for all ℓ.
We then say that |Ψ⟩ ism-producible. If a state ism-producible but no (m− 1)-producible, we say that |Ψ⟩
ism-partite entangled.

Thus, we have two kinds of fluctuations that coexist in many-body systems. The classical (thermal)
fluctuations caused by limitations in our precise knowledge of the state of the system at a given instant, and
the quantum fluctuations that seem to be intrinsic to the definition of the states themselves. These quantum
fluctuations can give rise to correlations beyond classical physics, of which entanglement is a particular
example. The Relationship between the two is depicted schematically in figures 1(a) and (b). In classical
statistical mechanics, a single underlying probability distribution governs the outcome of all possible
observables by assigning a probability to the classical pure states. In the classical case discussed above this
means assigning a probability to each set of orientations and angular momenta. In the quantum case,
however, each pure state gives rise to a probability distribution for each non-commuting set of observables.
We will return to this fact in section 2.2.2 when we generalize classical Fisher information to the quantum
case. Using information theory, we can understand these fluctuations, both classical and quantum, as the
notion of distance that induces the aforementioned geometrical structure, and in turn, reveal the presence of
quantum correlations.

The guide is laid out as follows. In the next section, we introduce the concept of quantum information
geometry, by beginning with the classical case and then progressing to the quantum case. In section three, we
go over key results in several different fields. Finally, we offer some discussion of the overall state of the field
and suggest possible new lines of research. In addition, for readers interested in a more thorough discussion
of many aspects of quantum information geometry, we note here some textbook length works that we
recommend and cite throughout [30–32].

2. Introduction to information geometry

The study of information geometry, in both the quantum and classical contexts, has a rich mathematical
history that predates quantum mechanics itself, with the work of Fubini [33] and Study [34], who first
studied the Riemannian structure of complex projective spaces. Soon after this, the notion of Fisher
information [8] emerged, which quantifies the precision with which a parameter can be estimated based on
measurements sampled from a distribution which depends on the parameter (e.g. we might try to estimate
the mean of a Gaussian distribution based on the sample average). The idea of Fisher information explicitly
developed into a geometrical idea with the work of Rao [35], and hence, the classical notion of information
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geometry was born. Some time later, mathematical physicists made the final connection, generalizing the
classical Fisher information to the quantum context and, in the process, rediscovering the Fubini-Study
metric [6, 9]. For a thorough review of the history of information geometry, one can refer to the
bibliographic notes in [14].

Before introducing the notion of Fisher information, which will lead ultimately to our geometrical
picture of the space of probability distributions, we review the more family concept of Shannon information.

2.1. Classical information geometry
2.1.1. Shannon information
In developing our notions of information, it helps to consider a particular problem. We imagine a
meteorological laboratory with a number of field stations in various different locations. Each hour, the
stations transmit the current weather conditions. The transmissions occur in binary, with each possible
forecast in the set {xi}Di=1 having encodings with lengths {Li}Di=1. For example, x1, which might correspond
to clear skies, could be encoded as 001 (with L1 = 3), while x2, which might correspond to overcast skies,
could be encoded as 0100 (with L2 = 4), and so on. When determining an encoding of forecasts into binary,
it is important that we ensure that no forecast’s encoding is contained in the prefix of another forecast’s
encoding, lest we confuse our receiver (for example we do not want to use 1 as an encoding for clear skies if
10 is an encoding for cloudy skies). Codes with this property are called prefix codes, and they are always
possible provided that the lengths of the encodings, {L1, . . . ,LD}, satisfy the inequality [36],

D∑
i=1

2−Li ⩽ 1. (15)

This inequality can be generalized to alphabets of any size by replacing 2 with the length of the alphabet. In
the interest of efficiency, we should aim to assign the shortest encoding to the most likely forecast, so that on
average we transmit as few bits as possible. If the probabilities for each forecast are given by the set {pi}Di=1,
then we want to minimize the expected length of a transmission,

⟨L⟩=
D∑

i=1

piLi (16)

subject to the constraint given by equation (15). In doing so, we find that the optimal encoding length of a
forecast occurring with probability pi is,

ℓi =− log2(pi). (17)

In general we might imagine that our probabilities, pi = p(xi|λ⃗) depend on some other parameters, λ⃗ (such
as temperature). In this case, equation (17) is called the log-likelihood. It can be read as the logarithm of the
likelihood that λ⃗ has a particular value given the observed result xi. We will encounter it again shortly. From
equation (16) we can see that the optimal average message length is bounded from below by,

⟨L⟩⩾
D∑

i=1

piℓi. (18)

This lower bound is our first measure of information,

S=−
∑
i

pi log2(pi) (19)

and, as it was introduced by Shannon [37] a little less than a year before Kraft introduced the inequality in
equation (15) [36], we call it the Shannon Information. To gain an understanding of its properties, let us first
consider the trivial case where there is a single possible forecast with probability one hundred percent, i.e.
pi = δ1i where δ1i is the Kronecker delta function. Then the shortest possible encoding has average length
zero. After all, what would be the point in even transmitting? Assuming now a uniform probability
distribution on si, we see that the average length of the encoding will grow monotonically with the number of
forecasts, N. This property is called monotonicity, and it is a natural property to demand from a measure of
information.

The Shannon Information can tell us much more, however, than the average length of an optimal
encoding. Considering the case of two possible forecasts, it is clear that the minimal encoding will be one bit
(say dot for x1 and dash x2), regardless of the relative values of p1 and p2. If, however, we know that p1 is very
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nearly 1 and p2 is very close to zero, we can see that the Shannon information tells us something about how
much the receiver learns from reading the message. If, at station P, the forecast is sunny nine out of every ten
days, we learn relatively little when we receive a forecast of sunshine. The power of Shannon information is
that it captures an intuitive aspect of information: the less probable an event is thought to be, the more
information is gained when that event is observed.

For the mathematically inclined reader, one may wonder to what degree Shannon information is unique.
In 1961, Rényi [38] found an entire family of information measures by imposing a number of conditions (see
appendix A) that are considered sensible for a measure of information. These so-called Rényi entropies
contain the Shannon information as a special case. The Shannon information is singled out by its property of
recursion (its appearance in the prefix coding problem above).

Physicists will recognize that the Shannon information is a generalization of the concept of entropy.
There is no particular reason why we should have to measure information in bits, and we can just as well take
the logarithm in equation (19) to have base e, (in which case we say we are measuring information in nats).
Given a thermodynamic ensemble ofW possible microstates, all taken to be equally likely with pi =

1
W , we

see that the Shannon information is simply the Boltzmann entropy,

S= k ln(W). (20)

For this reason we tend to use the words entropy and information interchangeably. Since changing the base
of the logarithm simply amount to a redefinition of the units of information, we will do so frequently in the
following text as a matter of convenience.

2.1.2. Fisher information
At our meteorological laboratory, we are interested in producing models that determine the distribution of
forecasts from our field stations. To this end, we make a statistical model P(λ⃗) = {pi(λ)} where λ⃗ ∈ Rd is a
parameterization of possible distributions. As we receive data from the field stations, we want to determine as
accurately as possible the values of λ⃗ that fit the data. For simplicity, let us consider the case of only one
parameter. Let λ represent a parameter such as a temperature, and let λ̃ be an estimator for this parameter
(such as the sample mean of some number of temperature measurements). The function p(x|λ) gives the
likelihood of the temperature x given the value of the mean temperature in the model λ. We assume our
estimator is unbiased, which means that ⟨λ̃⟩= λ (this condition can be relaxed without substantially
changing the discussion),

0=

ˆ
dx(λ̃(x)−λ)p(x|λ). (21)

Differentiating both sides with respect to λ, we can write,

0=

ˆ
dx (λ̃(x)−λ)∂λp(x|λ)−

ˆ
dx p(x|λ). (22)

Notice that we assume that the estimator itself does not depend on λ. This makes sense since the estimator is
the processing that we do to our data to estimate λ and if it depended on λ it would be ill-defined.
Performing the integral in the second term and rearranging we arrive at,

ˆ
dx (λ̃(x)−λ)p(x|λ)

(
1

p(x|λ)
∂λp(x|λ)

)
= 1. (23)

Now we notice that the left-hand side of the above equation is just the covariance of the estimator with the
logarithmic derivative of the probability. Squaring both sides of the above equation and applying the
Cauchy-Schwarz inequality, yields

1⩽ VarP{λ̃}VarP{∂λ ln(p(x|λ))}. (24)

Notice here that we are assuming that the expected value of the derivative of the log-likelihood is zero. This is
straightforward to show,

⟨∂λ ln(p(x|λ))⟩=
ˆ

p(x|λ)(∂λ ln(p(x|λ)))dx= ∂λ

ˆ
p(x|λ)dx= 0 (25)

The variance of λ̃ is thus bounded from below as,

VarP(λ̃)⩾
1

CovP
{
λ̃,∂λ ln(p(x|λ))

} . (26)
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Figure 2. Shannon information (red) in bits and Fisher information (blue) for a weather forecast with p(Sun) = λ. The location
with λ= 0.5 is simultaneously the least predictable (high Shannon information), and the hardest to distinguish from its
neighbors (low Fisher information).

Reintroducing the multidimensional nature of the problem and the definition of the Fisher information, we
arrive at the Cramér-Rao bound,

CovP{λ̃µ, λ̃ν}⩾
1

4Fµν
(27)

where,

Fµν =
1

4

ˆ
Ω

dx
1

p(x|λ⃗)
∂p(x|λ⃗)
∂λa

∂p(x|λ⃗)
∂λb

(28)

is the definition of the Fisher information [39]. We’ve added the factor of 1
4 for reasons that will become

apparent in a moment. The inequality in equation (27) is known as the Cramér-Rao bound [35]. It
quantifies how much information can be learned about the parameters λ⃗ by sampling from p(x|λ⃗). The
appearance of the derivative of the log-likelihood implies a connection between the Shannon information,
which is the expectation value of the log-likelihood, and the Fisher information which is the covariance of
the partial derivatives of the log-likelihood, and we will explore this connection in more detail momentarily.

We can begin to get a sense of the meaning of the Fisher information by considering the case of a weather
station with only two forecasts. Let λ be the probability of Sun and λ− 1 be the probability of rain. We can
see that when λ= 0.5, the Shannon information—the information we learn by reading the forecast—is
maximal, whereas the Fisher information—our ability to estimate λ—is minimal. As λ approaches 1 or 0,
the Shannon information decreases while the Fisher information grows. This behavior is shown in figure 2
where the Shannon information is given by,

S=−λ log2(λ)− (1−λ) log2(1−λ), (29)

and the Fisher information for each measurement is,

Fλλ =
1

4

1

λ(1−λ)
. (30)

2.1.3. From information to geometry
To better understand the connection between Shannon information, Fisher information and geometry, we
consider the above scenario, that of estimating the value of the parameter λ, from a slightly different
perspective. Considering again the model p(x|λ), we can ask how distinguishable P= p(x|λ) is from
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Q= p(x|λ ′). The degree of distinguishability can be quantified in terms of the informational difference
between P and Q by introducing the relative entropy [40],

S(P|Q) =
D∑

j=1

pj log2

(
pj
qj

)
. (31)

If P=Q then the relative entropy is zero, and the distributions are indistinguishable. On the other hand, we
can imagine that P corresponds to a place that is always sunny, while Q corresponds to a place that is always
rainy. Letting x1 be sunshine and x2 be rain. Then pi = δ1i and qi = δ2i, and we can see that the relative
entropy is infinite.

Let us imagine now that P and Q correspond to the information arriving from different field stations.
What are the chances that we might mistake one for the other? The relative entropy can be used to bound the
probability, E, that we would obtain a sequence of reports corresponding to the expected sequences for the
distribution, P, when samplingN times from the distribution Q,

E⩽ (N + 1)D2−N S(P|Q). (32)

This result is called Sanov’s theorem [41]. In our above example, there is no chance, even on a single
transmission, of mistaking the forecast for a town that always rains for a town that is always sunny.

Still considering a situation where the only two possible forecasts are Sun or rain, we consider a place P
which has, on any given day, a fifty percent chance of either, and compare it to a place Q where the
probability of Sun is λ. If we take the limit λ→ 1, then the relative entropy S(P|Q)→∞. The asymmetry of
the relative entropy is apparent here, as S(Q|P) = 1. We interpret this to mean that there is zero chance that
the typical sequence of N reports from P would be recovered by Q if Q is always sunny. By contrast, there is a
chance, which decays with 2N , that the typical sequence of Q will be produced by P, albeit one that is
vanishingly small.

This notion of distinguishability is at the heart of information geometry. Intuitively, the more easily
distinguishable two distributions, the further they ought to be. This geometry is interesting because it arises
naturally in the course of scientific investigation. The example of weather modelling is just one example, and
will see several more in the quantum context. But first, we must explain exactly how distinguishability can be
used as a metric.

The relative entropy is, asymmetric, and thus unsuitable as a metric in and of itself. However, we can do
slightly better if we consider the case where P is varied only infinitesimally. Concretely we define the
distributions, P= {pi} and P+ dP= {pi + dpi}, and expand the relative entropy in powers of dpi,

S(P|P+ dP) =
D∑

i=1

pi ln

(
pi

pi + dpi

)
≈ 1

2

D∑
i=1

dpi dpi
pi

. (33)

Here we have changed to measuring our relative entropy in nats for convenience. This infinitesimal
expansion is symmetric, with the asymmetry of the relative entropy entering only at higher order. If we
imagine that this infinitesimal expansion is a distance, then we can infer the line element,

ds2 =
D∑

i,j=1

Fijdpi dpj =
1

4

D∑
i,j=1

dpidpi
pi

(34)

with the Fisher-Rao metric,

Fij =
1

4

δij
pi
. (35)

We can normalize the metric in any way we like, but the choice of 1
4 is particularly convenient. To see why, let

us make a change of variables ui =
√
pi. Now we find, that the line element is,

ds2 =
D∑

i,j=1

dui dui (36)

subject to the constraint,

1=
D∑

i=1

u2i (37)

9
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coming from the normalization of the probability distribution. We recognize immediately the equation for
an N-sphere of unit radius. The constraint that 0⩽ ui ⩽ 1 confines us to the first octant of this sphere. Each
point on the octant corresponds to a probability distribution, and the geodesic distance between two
distributions in terms of the probabilities is simply,

DB(P,Q) = cos−1

(
D∑

i=1

√
piqi

)
(38)

where we recognize the argument of the inverse cosine as the standard dot product in terms the uj variables.
We call this dot product the classical fidelity and the corresponding distance the Bhattacharyya distance [42].
From equation (38) we can see that pure states are always separated by π

2 . Geometrically, the fact that all
classical mixtures of pure points are unique means that the space of classical probability distributions is a
simplex [43]. We make these points because they will no longer be true when we pass from classical to
quantum mechanics.

The Fisher-Rao metric is unique in the sense that it is the only Riemannian metric on the space of
probability distributions that is also monotone. The meaning of this is as follows. Let T be a stochastic
map, then a monotone function is one for which, given any distributions P and Q, DB(TP,TQ)⩽ DB(P,Q).
This property corresponds to the introduction of noise over the channels connecting our laboratory to the
field stations. As the channels become noisier, all the incoming transmissions should become less
distinguishable. If distinguishability is our notion of distance, then under such stochastic mappings,
limn→∞DB(TnP,Tn,Q)→ 0.

To complete the connection between the Fisher-Rao metric and the Fisher information derived in the
previous section, let us re-express the Fisher-Rao metric in terms of the parameters λ⃗. By the chain rule, the
metric in equation (35) induces a metric on the space of parameterizations as,

Fµν =
1

4

D∑
i,j=1

∂pi
∂λµ

∂pj
∂λν

Fij. (39)

Using our definition of the Fisher-Rao metric we arrive at the classical Fisher information metric (CFIM),
which we give in both discrete and continuous form,

Fµν =
1

4

D∑
i=1

1

pi(λ⃗)

∂pi(λ⃗)

∂λµ

∂pi(λ⃗)

∂λν
, (40a)

Fµν =
1

4

ˆ
Ω

dx
1

p(x|λ⃗)
∂p(x|λ⃗)
∂λµ

∂p(x|λ⃗)
∂λν

. (40b)

here Ω is sample space if x is continuous [32]. Up to the normalization, this metric is the Fisher information
that appears in the Cramér-Rao bound from equation (27). From now on we will write ∂

∂λµ
≡ ∂µ

There are two other ways of expressing the metric above that we will find useful later. The first takes
advantage of the log-likelihood introduced in equation (17). Notice that equations (40) are, in fact,
covariances in the log-likelihood’s partial derivatives (recalling equation (25)),

Fµν = CovP {∂µℓ,∂νℓ} . (41)

The covariance can be taken as an inner product, and the derivatives of the log-likelihoods as tangent vectors,
allowing us to recover a familiar form of the metric from differential geometry. What is the base space? The
Shannon information is the mean of the log-likelihoods, and so we can imagine that the log-likelihood of a
probability pi is the information conveyed by that particular event. The derivatives of the log-likelihood are
then tangent vectors on this space of information.

For certain special choices of coordinate system, it becomes possible for us to represent the metric in
terms of a potential function. While these coordinate systems may not always be physically relevant, they can
always be defined over a given space of probability distributions. For example, we might parametrize the
space of probability distributions by creating linear mixtures of some subset of probability distributions (for
example, the pure points). This is the case of themixture family of probability distributions,

p(x|λ⃗) =
N∑
µ=1

λµpµ(x), (42)

10
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where pµ(x) are some probability distributions (possible discrete or continuous, possibly mixed or pure) and
the parameters λµ are chosen such that normalization is respected. The two-forecast distribution discussed
above can be considered as a mixture family by taking p1 = {p(Sun) = 1,p(Rain) = 0} and
p2 = {p(Sun) = 0,p(Rain) = 1}. If one considers the mixture family in equation (42) then the metric can be
given by the Hessian of the Shannon information [32],

Fµν =−1

4
∂µ∂νS. (43)

This relationship is not true in general, in particular it fails whenever the second derivative of the probability
distribution with respect to the parameters is non-zero. This equation can be checked for the two forecast
example by comparing equations (29) and (30).

A similar statement can be made when one instead considers the exponential family of distributions,

p(x|λ⃗) = q(x)exp

{
N∑
µ=1

λµHµ(x)−ψ(λ⃗)

}
, (44)

which are especially relevant in thermodynamics. Here, x is some state in the phase space Ω, q(x) gives the
distribution at λ⃗= 0 and ψ(λ⃗) is the normalization which plays the role of the thermodynamic potential or
free energy,

ψ(λ⃗) = ln

(ˆ
Ω

exp

{
N∑
µ=1

λµHµ

}
q(x)dx

)
. (45)

In this case we can treat ψ(λ⃗) as the potential for the metric via [14],

Fµν =−1

4
∂µ∂νψ(λ⃗) (46)

For a detailed discussion on the metric potential one can see [32]. For a discussion of the role of that this
relationship plays in classical thermodynamics, one can refer to [14].

2.2. Quantum information geometry
We now generalize the concepts developed above in a classical setting to the quantum case.

2.2.1. von Neumann entropy
We first consider the quantum analogue of the Shannon information, which will allow us to ultimately
quantify the entanglement between subsystems. Starting from equation (19), we can apply a heuristic
mapping from the classical to the quantum,

p(x)→ ρ̂, Λ(x)→ Λ̂,

ˆ
(·)dx→ Tr{·}. (47)

We immediately arrive at the von Neumann entropy,

S =−Tr{ρ̂ ln(ρ̂)} (48)

where we measure the information in nats. In doing so, we introduce our convention that the quantum
analogue of a classical information measure is written in script font. We can see that the von Neumann
entropy will be zero for pure quantum states, just as the Shannon entropy was zero for pure classical states.

At first glance, the von Neumann entropy does not seem particularly useful for detecting entanglement,
since it will give zero for all pure states. In fact, this is exactly its utility. If the von Neumann entropy of the
subsystem state ρ̂ΨV is non-zero, then we know that the subsystem V is entangled with its complement, V̄ as
per our earlier discussion. For this reason, the von Neumann entropy of a subsystem SV is called the
entanglement entropy. Useful in this interpretation is the fact that SV = SV̄, that is, V is entangled with V̄
exactly as much as V̄ is entangled with V. This is true even if V and V̄ are not the same size, as long as they
form a disjoint and complete partition of the system.

To see how the entanglement entropy works, we can consider the simple example of the entanglement
between the two spins for the state,

|GHZN⟩=
1√
2

(
| ↑⟩⊗N + | ↓⟩⊗N

)
(49)

with N = 2. In this case, the von Neumann entropy between the subsystems will be 1 bit.
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The entanglement entropy has seen extensive application in quantum information and many-body
physics. A significant triumph is the scaling laws of entanglement entropy with subsystem size, which
characterize the central charge of conformal field theories in models where such theories describe the low
energy degrees of freedom [44–46]. For many-body systems with local interactions, the entanglement
entropy tends to scale with the area of the subsystem under consideration [47]. This fact is crucial to the
efficiency of the density matrix renormalization group family of algorithms [48].

Taking equation (48) as the expectation value of the operator− ln(ρ̂), we define the latter as the
entanglement Hamiltonian,

Ĥent =− ln(ρ̂). (50)

Phases exhibiting symmetry protected topological order have been shown to exhibit non-trivial degeneracies
in the spectrum of the entanglement Hamiltonian (the entanglement spectrum) [49, 50]. Another significant
aspect of the entanglement entropy is that, for phases with long range topological order in two dimensions
and greater, the area law scaling of the entanglement entropy is modified by a negative subleading correction,
the topological entanglement entropy [51].

These facts have made the entanglement entropy ubiquitous as a theoretical probe of quantum
fluctuations and correlations. Experimentally, however, the application of equation (48) is quite limited. In
particular, computing the entanglement entropy requires complete knowledge of the density matrix,
something which is only possible in highly controlled experimental settings.

2.2.2. QFI
When generalizing the concept of Fisher information to the quantum case, we must address the fact that
quantummechanics allows us to choose between sets of measurements that are decoherent with one another.
For example, we might orient our Stern–Gerlach devices along any spin axis we like, and in doing so will be
sampling from distinct probability distributions corresponding to the different choices of measurement
basis. To formalize this, we introduce the concept of the positive operator valued measure (POVM). See for
instance [52, 53]. Let {|ξ ⟩⟨ξ |}Mξ=1 be a set of positive semi definite operators (hereafter projectors) acting on
the Hilbert space satisfying the resolution of the identity,

I=
∑
ξ

|ξ ⟩⟨ξ | (51)

In general we do not require that the projectors be orthogonal as they would be if they represented the
spectrum of a Hermitian operator. Equation (51) represents the most general possible kind of measurement
that can be made on a quantum state. For each set of observables that commute with each other, there exists
a corresponding POVM which we might label with an additional superscript, α. Referring back to
figure 1(b), each of the probability distribution branching off of the density matrix correspond formally to,

p(ξα) = Tr{|ξα⟩⟨ξα|ρ̂} (52)

When considering the quantum generalization of the Fisher information, we see that we would in fact have a
QFI for each possible choice of POVM. What is conventionally called the QFI then corresponds to
maximizing the classical Fisher information over all possible choices of POVM [10, 54]. We make this point
only briefly because it is relevant in the case of quantum sensing, which we return to later. For now, we move
straight to the quantum generalization of the geometrical structure introduce in section 2.1.3.

2.2.3. Quantum geometric tensor
In contrast to classical states, quantum states can vary in two distinct ways. To see this we consider a general
mixed state depending on the parameter λ,

ρ̂(λ) =
∑
j

pj(λ)|j(λ)⟩⟨j(λ)|. (53)

A change in the parameter λmight cause a change in the eigenvalues and/or a change in the eigenvectors.
The former of these changes induces a distance identical to the kind that we considered in the classical case.
Those parameterizations that change the eigenvectors give rise to quantum information geometry. We can
study this case in detail by first considering a pure state, |Ψ(λ⃗)⟩. Now we can expand this state to leading
order for a small change in the component of the parameter λµ,

|Ψ(λµ+ dλµ)⟩= |Ψ(λµ)⟩+ dλµ|∂µΨ(λ)⟩, (54)
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where ∂µ ≡ ∂λµ
. Intuitively, the distance between states is the size of the change in the state. We need to take

care however to ensure that our notion of distance is independent of the global phase, since physical states
are defined by rays in the Hilbert space. We thus define the quantum geometric tensor (QGT),

Qµν = ⟨∂µΨ |(I− |Ψ⟩⟨Ψ |)|∂µΨ⟩ (55)

where we have subtracted off the projection of the change in the state |∂µΨ⟩ onto the subspace of the
unchanged state defined by the projector |Ψ⟩⟨Ψ |.

The object in equation (55) admits a decomposition into a real symmetric component and an imaginary
antisymmetric component,

Qµν = Fµν + iΩµν . (56)

The real part, Fµν gives the Riemannian metric on the quantum state space [33, 34], while the imaginary
antisymmetric part, Ωµν gives the Berry curvature [3]. From this point on, we focus in particular on the real
symmetric component, which we term the QFI metric (QFIM). The reason for this decomposition is that the
Hilbert space in which we have formulated our geometry is complex. Consequently, the metric tensor is
required to be Hermitian, but not purely real. The imaginary component will not contribute to the line
element due to the fact that it is antisymmetric. The state space thus has two parallel geometric structures.
On the one hand, the real Riemannian structure, Fµν , and on the other hand the symplectic structure
determined by Ωµν

The distance on the space of pure states is a direct analogue of the Bhattacharyya distance in
equation (38) [9],

DQB(Ψ1,Ψ2) = cos−1 (|⟨Ψ1|Ψ2⟩|) (57)

where the argument of the inverse cosine is now the quantum analogue of the fidelity. In [55], the quantum
fidelity is defined at |⟨Ψ1|Ψ1⟩|2 in place of the classical fidelity. The distance between pure states is sometimes
called the quantum angle. Where classically, pure states are always separated by the maximal distance of π2 ,
now it is only orthogonal pure states that are separated by π

2 . Instead of the positive octant of a hypersphere,
the space of quantum pure states can be visualized as a Bloch hypersphere, with anti-podal points identified
as orthogonal states.

All physical pure states must be normalized, and so in the pure state limit only unitary parameterizations
are relevant. Without loss of generality, we can always express a unitary parameterization via the Schrödinger
equation,

∂µ|Ψ⟩=−iΛ̂µ|Ψ⟩ (58)

where Λ̂µ is a Hermitian operator corresponding to a change in the parameter λµ. By substituting
equation (58) into equation (55) we see that the QFIM for unitary parameterizations is given by,

Funitary
µν = 4Re[CovΨ{Λ̂µ, Λ̂ν}] (59)

For mixed states, unitary parameterizations are slightly more subtle. As a first attempt, we may try to take
equations (40) and directly apply the mapping in equation (47). The problem with this is that, in general,
[ρ̂,∂µρ̂] ̸= 0. Resolving this ambiguity is, to a degree, a matter of convention. We proceed along the lines of
Braunstein and Caves [10], who resolve this ambiguity by introducing the superoperator,

L−1
ρ̂ {Ô}= 1

2
(ρ̂Ô+ Ôρ̂). (60)

In the eigenspace of the density matrix, the inverse of this operator is given by,

Lρ̂(Ô) =
∑
j,k

2

pj + pk
Ojk|j⟩⟨k|, (61)

with the sum running only over terms with pj + pk > 0. Notice that the above form is the inverse of
equation (60) in the sense that Lρ̂{L−1

ρ̂ {Ô}}= Ô. Applying the inverse to the derivative of the density
matrix,

Lρ̂,µ = Lρ
(
∂ρ̂

∂λµ

)
(62)
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Table 1. A partial reproduction of the table in [25] listing several different forms of the QFIM along with the associated monotone
function.

QFIM Monotone function

Symmetric logarithmic derivative 1+x
2

Bogoliubov-Kubo-Mori x−1
log(x)

Right logarithmic derivative x
Left logarithmic derivative 1

Skew information (α= 1) (
√
x+1)2

4

gives us a logarithmic derivative wherein the ambiguity in the ordering of the operators is resolved
symmetrically, hence we call equation (62) the symmetric logarithmic derivative (SLD). Now we can write the
QFIM for mixed states as,

Fµν = 4Re [Covρ̂{Lρ̂,µ,Lρ̂,ν}] . (63)

The above equation can be taken as the quantum analogue of equation (41). It includes the special case
where only the eigenvalues of the density matrix are modified, and in that instance reduces to the classical
Fisher information matrix (CFIM). Parameterizations that modify the eigenvectors of the density matrix are
captured by the von Neumann equation,

∂µρ̂= i
[
ρ̂, Λ̂µ

]
. (64)

which described unitary evolutions generated by the Hermitian operator Λ̂µ
As we mentioned, the choice of resolving the ambiguity in ordering through the SLD is just one choice.

Morozova and Chentsov [56] demonstrated that for every operator monotone function, we can define a
metric on the space of mixed states. Skipping the rigorous details, we present here the relationship between
metrics and operator monotone functions. First we introduce the superoperators [25],

Rρ̂(Ô) = Ôρ̂ (65a)

Lρ̂(Ô) = ρ̂Ô (65b)

(Lf
ρ̂)

−1 = f(Lρ̂R
−1
ρ̂ )Rρ̂. (65c)

Here f is the operator monotone function. For the case of the SLD, we can find that,

f SLD(x) =
1+ x

2
. (66)

There are many other possible choices (we list several in table 1). These types of operator monotones were
studied extensively in the work of Dénes Petz, see [57–59].

The QFIM is distinguished by the fact that it finds the maximal distance between states, and is, in this
sense, unique [32].

The SLD QFIM can be used to define the Bures distance between mixed states in analogy with
equation (57) [60],

DBures(ρ̂1, ρ̂2) = cos−1
(√

F(ρ̂1, ρ̂2)
)
, (67)

where

F(ρ̂1, ρ̂2) = Tr(
√√

ρ̂1ρ̂2
√
ρ̂1)

2 (68)

is the mixed state generalization of the quantum fidelity, often termed the Uhlmann fidelity [61]. The above
expression can be interpreted as the transition amplitude between mixed states, in exactly the same way as
the quantum fidelity can be interpreted as the transition amplitude between pure states. Taking the SLD
QFIM for granted, the Bures distance is the broadest generalization of Riemannian distance on the quantum
state space.

Focusing on the symmetric part of equation (55) it is useful to explicitly decompose the QFIM into a
component that arises due to changes in the eigenvectors of the density matrix (the unitary component), and
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a component that arises due to changes in the eigenvalues (the non-unitary component) (see for example the
supplementary material of [24]),

Fµν = Fnon-unitary
µν +Funitary

µν , (69)

where,

Fnon-unitary
µν =

1

4

∑
j

1

pj
∂µpj∂νpj, (70)

and

Funitary
µν = 2

∑
j,k

(pj − pk)2

pj + pk
[Λµ]jk[Λν ]

∗
kj. (71)

Equation (70) is the direct analogue of equations (40). Equation (71) has no direct classical analogue. It
emerges specifically due to the non-commutativity of quantum observables. Often times, the expression in
equation (71) is called the QFI, due to this fact. To maintain our symmetry with the notation used in the
discussion of von Neumann entropy, we prefer to call the entire metric, containing both unitary and
non-unitary components the QFIM, and instead refer to the unitary and non-unitary components as
needed. Because the Berry curvature is antisymmetric, there is no such ambiguity.

2.2.4. Topological invariants and volumes
The QFIM allows for the construction of two distinct but related topological invariants. We discuss these
invariants specifically in the case of a two-dimensional submanifold of states,M, which might be given by
the parameters of a Hamiltonian, or by the first Brillouin zone.

The first emerges from the Berry curvature, which, when integrated over a two-dimensional manifold,
gives the Chern number of the manifold,

C=
1

2π

ˆ
M

Ωµνdλ1dλ2. (72)

The second is the Euler characteristic, which is given by Gauss–Bonnet theorem [62],

χ =
1

2π

(ˆ
M

K dA+

˛
∂M

kg dℓ

)
. (73)

In the above expression, K is the Gaussian curvature and kg the geodesic curvature of the boundary. In order to
express these explicitly in terms of the QFIM, we model our notation on [63]. Let us write the metric in first
fundamental form, by expressing the line element as

ds2 = Edλ21 + 2Fdλ1dλ2 +Gdλ2. (74)

We denote the determinant of the metric by omitting the Greek indices,

F = detFµν = EG− F 2. (75)

We also recall the Christoffel symbols,

Γk
ij =

1

2
F km

(
∂jF im + ∂iF jm − ∂mF ij

)
. (76)

Now we can express the Gaussian curvature and the geodesic curvature,

K=
1√
F

(
∂2

(√
F Γ2

11

E

)
− ∂1

(√
F Γ2

12

E

))
(77a)

kg =
√
FG− 3

2Γ1
22, (77b)

along with the line and area elements,

dA=
√
Fdλ1dλ2 (78a)
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dℓ=
√
Gdλ2 (78b)

The metric can of also be used to evaluate the volume of the parameter manifold in n dimensions via,

Volg =

ˆ √
det(g)dλ1 ∧ dλ2 ∧ . . .∧ dλn (79)

In sections 3.6 and 3.7 we offer further discussion of the analysis of these topological invariants in several
systems.

3. Information geometry in practice

So far, we have laid out the geometrical structure of the quantum state space. In this section, we try to
understand what this structure means from a physical perspective, with a particular focus on the applications
of this structure to many-body systems. There are two main topics to be addressed here. The first is
understanding what, in physical terms, the quantum information geometry is actually describing. A hint is
already given by the fact that the metric is the real part of the covariance. The second is understanding several
fundamental choices of parameter manifold, and the contexts in which these emerge.

For the reader’s convenience, we identify three main categories of manifolds that appear in the literature.
The first is the Brillouin zone in a band system parametrized by the momenta (kx,ky) with kα ∈ [0,2π). The
non-trivial topology of the band structure, which leads to the classification of topological phases of matter,
emerges from the symplectic component of the QGT: the Berry curvature. Several results in this direction
have found interested geometrical properties associated with this geometry [21, 64–71].

In the second case are manifolds of ground state parametrized by fields and couplings in a parent
Hamiltonian (see, for example, references [4, 5, 72–86]). This kind of geometry emerges especially in the
context of the Fidelity susceptibility, and we treat in some details the structure of the QGT in section 3.4.
Finally, in the context first of metrology and increasingly in many body physics, are manifolds generated by
the application of some unitary operator Û= exp{−iλΛ̂} to the state |ψ ⟩ with Λ̂ a bounded Hermitian
operator with spectrum.

In the case of metrology, Λ̂might play the role of the coupling between the probe state and the system
being studied, with λ the parameter to be estimated. In the context of many body spin systems, Λ̂ is usually a
sum over operators defined on each degree of freedom in the system, such as the collective spin operator,

Λ̂ =
∑
j

Sαj (80)

along some particular axis α ∈ {x,y,z} (see for example [19, 20, 24, 87–95]). In this case the components of
the quantum metric correspond to the integrated dynamical response of the system. Operators of the form
given in equation (80) are called local, because the summand depends on a bounded number of sites even in
the thermodynamic limit. Along this line of reasoning, [96] found super-extensive scaling of the QFI in the
topologically non-trivial Kitaev wire by choosing a non-local operators,

Λ̂(α) =
∑
j

(−i)δα,x

(
â†j e

iπ
∑j−1

i=1 n̂l +(−1)δα,ye−iπ
∑j−1

i=1 n̂âj
)

(81)

where âj is the fermionic annihilation operator and n̂ is the number operator. We discuss the relationship
between these three branches of research more in the following sections.

3.1. Relationship to linear response
Considering the fact that the QFIM quantifies the degree of distinguishability along the path generated by
the hermitian operator Λ̂µ, it is not surprising that the unitary component of QFI has a convenient
representation in terms of the dissipative part of the linear response [24],

Funitary
µν =

4

π

ˆ ∞

0
dω tanh

( ω
2T

)
χ ′ ′
µν(ω). (82)

where,

χ(ω) =

ˆ ∞

0
dte−iωtTr

{
ρ̂
[
Λ̂µ(t), Λ̂ν

]}
. (83)
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Analogous formulae can be shown to hold for all QFIM’s (that is, for any choice of monotone function f ).
The general relationship is given by,

Funitary
µν {f}= 2

π

ˆ ∞

0
dω

1− e−βω

f(e−βω)
χ ′ ′
µν . (84)

The connection between quantum geometry and response functions has been exploited in a number of
proposed [22, 23, 97] and realized [70, 98] experiments.

This connection is particularly significant in light of the relationship between quantum geometry and
entanglement, which we discuss further in section 3.3. In particular, the low temperature properties of the
entanglement are strongly controlled by the static structure factor, as demonstrated in [88, 99].

3.2. The quantum variance
In the introduction, we promised that quantum information geometry would offer us a means by which to
separate the classical fluctuations from the quantum fluctuations in a given system. The quantum
covariance [100, 101] makes this concept explicit by decomposing the covariance between two operators as,

Covρ̂{Λ̂µ, Λ̂ν}= CovQρ̂ {Λ̂µ, Λ̂ν}+CovCρ̂{Λ̂µ, Λ̂ν} (85)

where CovQρ̂ {·, ·} is the quantum component of the covariance and CovCρ̂{·, ·} is the classical component of
the covariance.

To define the classical covariance, we begin by considering the mixed state defined in equation (9),

ρ̂=
e−βĤ

Z
(86)

where,

Z = Tr{e−βĤ} (87)

which can be used to describe any mixed state for a suitable choice of Ĥ. Now add to the Hamiltonian the

operators
ˆ⃗
Λ which are coupled via the parameters

ˆ⃗
λ

ρ̂(λ⃗) =
e−β(Ĥ+λ⃗·

ˆ⃗
Λ)

Z
(88a)

Z(λ⃗) = Tr{e−β(Ĥ+λ⃗·
ˆ⃗
Λ)}. (88b)

Using the free energy,

F=− 1

β
ln(Z(h)). (89)

we can now define the classical covariance as,

CovCρ̂{Λ̂µ, Λ̂ν}=
1

β

∂2F

∂λµ∂λν
(90)

where the second derivative of the free energy can be recognized as the static thermal susceptibility. The
quantum covariance is then defined directly by rearranging equation (85),

CovQρ̂ {Λ̂µ, Λ̂ν}= Covρ̂{Λ̂µ, Λ̂ν}−CovCρ̂{Λ̂µ, Λ̂ν} (91)

To understand the meaning of this definition, let us first consider the case where [Ĥ,
ˆ⃗
Λ] = 0. From the

perspective of information geometry, this kind of perturbation will change the eigenvalues of the density
matrix, but not the eigenvectors. In this case, the classical covariance will be precisely the covariance, and the
quantum covariance will be zero.

In the case where the commutator of the Hamiltonian with the perturbation is non-zero. The evaluation
of the second derivative in equation (90) must now be performed by taking a Taylor series expansion of the
exponential about the point where λ⃗= 0⃗. In general the thermal covariance will be strictly less than the total
covariance (except at infinite temperature), and the difference is made up for by the quantum fluctuations
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quantified by the quantum covariance. Notice that the quantum variance is just the diagonal of the quantum
covariance matrix,

VarQρ̂ {Λ̂µ} ≡ CovQρ̂ {Λ̂µ, Λ̂µ} (92)

The physical meaning of the quantum covariance at finite temperature can be gleaned by considering the
case of a free particle in equilibrium with a thermal bath. The quantum variance associated with the position
operator is then [100],

VarQρ̂ (x̂; ρ̂) =
1

24π
λ2dB (93)

where λdB =
√

2πh̄2

mkBT
is the thermal de Broglie wavelength. It decreases monotonically to zero as the

temperature increases, and thus indicates the falling off of quantum fluctuations at finite temperature.
The quantum covariance appears to be behaving exactly as we would expect the unitary component of

the QGT to behave. To better understand the relationship between the two, we recall a special case of the
QGT, the Wigner-Yanase-Dyson (WYD) skew information, [102, 103],

Iα,ρ̂(Λ̂µ, Λ̂ν) =−1

2
tr
([

Λ̂µ, ρ̂
α
][

Λ̂ν , ˆρ1−α
])
. (94)

This QGT corresponds to the following choice of monotone function [25],

fα(x) = α(1−α)
(x− 1)2

(xα− 1)(x1−α− 1)
. (95)

It is shown in [100] that the quantum covariance may be written as,

CovQρ̂ (Λ̂µ, Λ̂ν) =

ˆ 1

0
dα Iα(Λ̂; ρ̂). (96)

So we see that the quantum variance is the average over a particular family of QGT’s. The diagonal entries of
the SLD QFIM are bounded from above and below by the diagonal entries of the quantum covariance (recall
that the Berry curvature does not have diagonal entries),

4VarQρ̂ (Λ̂µ)⩽ Fµµ ⩽ 12VarQρ̂ (Λ̂µ) (97)

Using the representation of the WYD information in terms of response functions, equation (96) can be
written as [104],

VarQ(Λ̂; ρ̂) = h̄

ˆ ∞

0

dω

π
L

(
βh̄ω

2

)
χ ′ ′
Λ̂
(ω) (98)

where,

L(x) = coth(x)− 1

x
(99)

is the Langevin function. We thus see that the quantum variance corresponds directly to the unitary
component of the QFIM described in equation (71), making explicit the fact that this component
corresponds to quantum fluctuations by subtracting off the thermal fluctuations that would give rise to the
non-unitary component of the QFIM in equation (70).

To understand the difference between the quantum variance and SLD QFIM we consider a single qubit in
thermal equilibrium with a bath of inverse temperature β. We denote explicitly the gap of the qubit with∆

ρ=
1

Z
e−β∆σ

z

. (100)

It is easy to rewrite the density matrix explicitly as,

ρ=
1

2
(I− tanh(|∆|β)σ̂z). (101)

We consider parameterizations of the Hilbert space generated unitarily by the magnetization operator in
direction n̂,

Λ̂(θ,ϕ) = n̂ · σ⃗ = cos(θ) sin(ϕ)σ̂x + sin(θ) sin(ϕ)σ̂y + cos(ϕ)σ̂z. (102)
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Figure 3. Plots of the variance, quantum variance, and QFI for two choices of the magnetization operator.

Below we calculate the variance, its quantum and thermal components, and the QFI as a function of β, θ,
and ϕ. It is helpful for this purpose to compute the partition function with a source term,

Z(h) = tr{exp(−β(∆σ̂z − hΛ̂(θ,ϕ)))}.

The variance, QV (from equation (91)), and QFI (from equation (71)), for ϕ = π
2 and ϕ = π

4 are shown
in figure 3 with details of the calculations given in appendix B.1. We can see that regardless of the orientation,
the variance will always saturate at its maximal value in the limit of infinite temperature (β→ 0). If we
imagine the Bloch sphere with its interior as the prototypical representation of the space of pure and mixed
states, then the infinite temperature limit corresponds to the center of this sphere. From an information
theory perspective, it is the equivalent of a black hole, as all states taken to this limit become
indistinguishable. This manifests in the QFI going to zero. We see that the quantum variance also tends to
zero. While both the QV and QFIM must go to zero in this limit, they do so at slightly different rates. Their
difference is not constant but peaks at some value of β that scales with the energy gap of the system.

3.3. QFI and entanglement
Among the most significant aspects of the geometrical structure of quantum state space is its explicit
relationship to multipartite which was, as far as we are aware, first made explicit in [105], and later
elaborated on in [19, 20]. The diagonal components of the QFIM may be related explicitly to bounds on the
amount of multipartite entanglement. These bounds are significant for three reasons. First, they apply even
at finite temperature. Second, they are directly accessible through the linear response functions discussion in
section 3.1. Third, the detection of entanglement depends in particular on the direction in state space that we
choose to examine, thus allowing us to consider a richer structure of entanglement than would be accessible
if we only considered the von Neumann entropy. Below we derive the bounds explicitly following the
discussion in [20].

Consider an N body system and a Hermitian operator composed of a sum of one-body operators,

Λ̂ =
N∑

j=1

Âj (103)

each with maximum eigenvalue amax, minimum eigenvalue amin. Let∆a = amax − amin be the spectral width.
The first bound we derive relies only on the component of the QFIM associated with the operator in
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equation (103), which we hereafter refer to simply as the QFI, F , omitting the indices for simplicity. We also
note the following

(a) The set of k-producible states is convex. That is to say, the producibility is non-increasing under mixture.
(b) The Fisher information is convex under mixture, F{pρ̂1 +(1− p)ρ̂2}⩽ pF{ρ̂1}+(1− p)F{ρ̂2} for

p ∈ [0,1]
(c) For a N body state |Ψ⟩= |ψA⟩⊗ |ψB⟩ we have Var|Ψ⟩(Λ̂) = Var|ψA⟩(Λ̂

(A))+Var|ψB⟩(Λ̂
(B))

(d) For a N body pure state |Ψ⟩, 4Var|Ψ⟩(Λ̂)⩽∆aN2 with the maximum achieved by the GHZ state,

|GHZN⟩=
1√
2

(
|amin⟩⊗N + |amax⟩⊗N

)
. (104)

By (a) and (b) the maximal QFI will occur for pure states, so we limit our discussion to that case. Now we
consider the k producible state,

|Ψ⟩=
M⊗
ℓ=1

|ψℓ⟩ (105)

where each factor |ψℓ⟩ contains Nℓ particles and the largest Nl is equal to k. For a given value of k, the largest
possible QFI is achieved by a state with s= ⌊Nk ⌋ factors in a |GHZk⟩ state with the remaining particles in a
|GHZr⟩ state where r= N− sk. The QFI for a k-producible state is thus bounded from above,

F ⩽∆a(sk
2 + r2) (106)

with the bound for separable states given by [105],

F(ρ̂separable)⩽ N. (107)

In [19, 20], a second inequality is derived, which is aimed specifically at systems whose degrees of
freedom can be represented in terms of the spin. Let’s consider the case where the local operators in
equation (103) are given by,

Aj = nj · Sj (108)

where nj = (cos(θj) sin(ϕj), sin(θj) sin(ϕj),cos(ϕj)) where θ ∈ [0,2π) and ϕ ∈ [0,π). Let us consider the case
where the orientation on each site is the same by dropping the subscript j on the unit vector. We denote the
corresponding generator, Λ̂n and the corresponding QFI Fn. We can now consider the direction averaged
QFI,

F̄ =

ˆ
P(n)Fn sin(ϕ)dθdϕ (109)

where P(n) is a function such that 1=
´
P(n) sin(ϕ)dθdϕ. If we choose the case of P(n) = δ(n− a) we find

the QFI for the particular orientation a of the generator and the inequality in equation (106) would apply.
Instead, we consider the uniform case where P(n) = 1

4π , for which

F̄ =
Fx+Fy+Fz

3
. (110)

In [20] the above expression is given the following bound for k-producible states,

F̄(ρ̂k-producible) =
1

3

(
s
(
k2 + 2k− δk,1

)
+ r2 + 2r− δr,1

)
(111)

where s= ⌊Nk ⌋ and r= N− sk are defined as earlier. For fully separable states the above bound reduces to,

F̄(ρ̂separable) =
2

3
N. (112)

To illustrate the applications of equations (106) and (112) we consider the case of 2 partite states. In the
following discussion, we consider the QFI density, which we indicate with f = F

N or f̄= F̄
N .
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Figure 4. Fisher information and Entanglement entropy of the states in equations (113a) and (113b). Here the Fisher information
is taken with respect to the parameter λ itself, and is identical for both states. The EE for |ψ ⟩ attains a maximum of one bit when
the state is maximally entangled, while the EE for |ϕ⟩ is always zero.

The extent to which the above inequalities detect entanglement depend sensitively on the choice of the
operator Λ̂ in equation (103), or equivalently, on the direction in state space in which we choose to perturb
the state. To see this, consider the following two states,

|ψ(α)⟩= cos(α)| ↑A↓B⟩− sin(α)| ↓A↑B⟩, (113a)

|ϕ(α)⟩= cos(α)| ↑A↓B⟩+ sin(α)| ↓A↓B⟩ (113b)

on the interval α ∈ [0, π2 ]. At α= π
4 the first state is the singlet, which we know is maximally entangled. This

state is maximally entangled, containing one bit of entanglement entropy, as can be seen from the solid red
curve in figure 4. The second state is separable for all possible values of λ and therefor has an entanglement
entropy of zero. For both states, we can compute the QFI associated with the parameter λ and find that they
are identical. The QFI associated with this parameter tells us nothing about the entanglement content of the
state. It’s easy to see that any single parameter family of states that interpolates smoothly between two
orthogonal states in the form given about will always yield the QFI,

Fαα = sec2(α)csc2(α). (114)

To distinguish between entangled and separable spin states, we must consider a path generated by an
operator that is local in the spin degrees of freedom. Even for two spins, there is considerable freedom in
which operators we might choose. Two natural choices are the ferromagnetic and anti-ferromagnetic
combinations of each of the three spin operators,

Λ̂±
µ = ŜµA ± ŜµB (115)

where µ ∈ {x,y,z}.
Each of these generators defines a unitary operator, which induces an infinitesimal displacement in the

state along a path parameterized by λ,

|α,dλµ⟩= eidλµΛ
±
µ |α⟩. (116)

The distance between |λ,0⟩ and |λ,dh⟩ is then given by (following equation (59)),

F±
µµ{ψ}= 4Covψ(Λ̂

±
µ , Λ̂

±
µ ). (117)

The QFI densities generated by the ferromagnetic and anti-ferromagnetic operators are give in figure 5.
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Figure 5. Diagonal entries of the QFIM matrix associated with the three ferromagnetic (blue) and anti-ferromagnetic (red)
generators defined in equation (115). The three line styles correspond to the x (dashed), y (dotted), and z (solid) lab frame
directions. The gray region indicates the bound given in equation (112).

While the separable state, |ϕ⟩ never exceeds the bound given in equation (107), we can see the for the
entangled state |ψ ⟩ the bound is exceeded by three of the different paths chosen. First, for the path given in
terms of the z component for the anti-ferromagnetic spin combination, bipartite entanglement is detected
for a window the parameter space λ ∈

[
π
8 ,

3π
8

]
. The bound is also always violated for the parameterizations

generated by the anti-ferromagnetic x and y operators for the entire span of λ except at the separable points.
The three ferromagnetic operators defined in equation (115) (or, equivalently, the three

anti-ferromagnetic spin operators), are related to each other by global rotations. We can thus consider the
QFIM corresponding to the three-dimensional submanifold whose parameterization is generated by these
operators and take its trace. The results for the ferromagnetic and anti-ferromagnetic operators are given in
figure 6. The bound corresponding to equation (112) is again given in gray. Here we see that only the
anti-ferromagnetic spin combinations detect entanglement.

Notice that at the point, α= π
4 all three components of the QFIM for the ferromagnetic combination are

zero. The singlet is an eigenstate of the magnetization operator, having total magnetization zero in any of the
three spin directions. This special case implies a general principle. If a state |ψ ⟩ is an eigenstate of the
generator of a parameterization, then its QFI along that parameterization will be zero. This is easy to see if
one considers the fact that the QFI for a pure state is just the covariance of the generator for that
state.

More generally, if the Hamiltonian of a system commutes with the generator, then the ground state of
that Hamiltonian will tend to exhibit zero QFI. An exception is in the case where the ground state is
degenerate. For example, the ferromagnetic Heisenberg chain has a three-fold degenerate ground state
manifold, which can be used to construct entangled states for which the QFI associated with the
ferromagnetic generator does detect entanglement.
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Figure 6. Trace of the QFIM matrix for the three symmetric (blue) and antisymmetric (red) generators defined in equation (115).
The gray region indicates the bound on entanglement given in equation (112) for detecting 2-partite entanglement. Notice that
only the symmetric choice detects the bipartite entanglement in the state |ψ ⟩.

3.4. Fidelity susceptibility
The geometrical structure of the Hilbert space introduced in section 2 applies to any parameterization of the
state space. One case of particular physical interest is when that parameterization is generated by considering
the ground state of the Hamiltonian,

Ĥ(Λ⃗) =H0 + λ⃗ · ˆ⃗Λ (118)

where the parameters λ⃗ can be used to drive phase transitions in the ground state manifold. In this case, the
QFIM is called the fidelity susceptibility [4, 5, 75] (up to a conventional factor of four, which we omit). It is
also possible to consider the fidelity susceptibility with respect to parameters that are not driving the phase
transition, such as a twist in the boundary conditions [72, 106, 107], in which case it would be more
appropriate to associate it with the QFIM.

To construct the QGT explicitly, let |Ψ0(λ)⟩ be the ground state of equation (118) (we consider one
component for simplicity). The infinitesimally neighboring state |Ψ(λ+ dλ)⟩ can be found by applying
perturbation theory,

|Ψ0(λµ+ dλµ)⟩= |Ψ0(λµ)⟩+ dλµ
∑
n̸=0

⟨Ψn|Λ̂µ|Ψ0⟩|Ψn⟩
En − E0

(119)

where, for simplicity, we consider one parameter at a time. Then, applying equation (55) and taking the real
part, we recognize the QGT as,

Q̃µν =
∑
n ̸=0

⟨Ψ0|Λ̂µ|Ψn⟩⟨Ψn|Λ̂ν |Ψ0⟩
(En − E0)2

. (120)

Provided that we avoid level crossings, the change in the parameters λ can be represented by the unitary
operator [78],

Û=
∑
n

|Ψ(λ⃗+ dλ⃗)⟩⟨Ψ(λ⃗)|. (121)

We may identify the associated Hermitian operator via,

ˆ̃Λµ = i(∂µÛ)Û (122)

and rewrite the QGT in the covariance form,

Q̃µν = CovΨ0

{
ˆ̃Λµ,

ˆ̃Λν

}
. (123)
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We denote the above QGT with a tilde in order to make a distinction between two different but related
approaches to quantum metrology. Both approaches involve first defining a Hermitian operator Λ̂. In the
first approach, the associated unitary exp{−iλΛ̂} is applied directly to our initial state. The resulting QGT is
denotedQµν , where

Qµν = ⟨Ψ0|Λ̂µΛ̂ν |Ψ0⟩− ⟨Ψ0|Λ̂µ|Ψ0⟩⟨Ψ0|Λ̂ν |Ψ0⟩

= CovΨ0

{
Λ̂µ, Λ̂ν

}
. (124)

In the second approach, the initial state is taken to be the ground state of a Hamiltonian to which Λ̂ is applied
as a perturbation. This is the QGT denoted Q̃µν in equation (123). The two are in fact related by a series of
inequalities [78] which we reproduce here for completeness.

Let ϵnm = En − Em and let ϵ10 be the smallest spectral gap. Now we may rewrite equation (120) as

Q̃µν =
∑
n̸=0

⟨Ψ0|Λ̂µ|Ψn⟩⟨Ψn|Λ̂ν |Ψ0⟩
ϵ2n0

=
1

ϵ2n ′0

∑
n ̸=0

ϵ210
ϵ2n0

⟨Ψ0|Λ̂µ|Ψn⟩⟨Ψn|Λ̂ν |Ψ0⟩

⩽ 1

ϵ210

∑
n ̸=0

⟨Ψ0|Λ̂µ|Ψn⟩⟨Ψn|Λ̂ν |Ψ0⟩

=
1

ϵ210

(∑
n

⟨Ψ0|Λ̂µ|Ψn⟩⟨Ψn|Λ̂ν |Ψ0⟩− ⟨Ψ0|Λ̂µ|Ψ0⟩⟨Ψ0|Λ̂ν |Ψ⟩0

)

=
1

ϵ210
Qµν . (125)

Thus we find that, Q̃µν ⩽ 1
ϵ210
Qµν .

At a level crossing critical point, we expect the QGT to diverge. The nature of this divergence was
determined in [74, 85, 108]. In order to analyze the scaling of the QGT it is useful to consider the QGT
density,

q̃µν = L−dQ̃µν (126)

where d is the spatial dimension of the system. Following [108], we consider a scale transform x→ αx and
τ → αζτ . Here ζ is the dynamical critical exponent. Let∆µ be the scaling dimension of the operator Λ̂µ. If
λc is the critical point, the correlation length will diverge as ξ ∼ |λ−λc|−ν . In the region approaching the
critical point the QGT density will diverge as,

q̃µν ∼ |λ−λc|ν(∆µ+∆ν−2ζ−d). (127)

This also leads to a finite size scaling relation at the critical point itself where,

q̃µν ∼ L−(∆µ+∆ν−2ζ−d). (128)

If the operator Λ̂µ drives the transition, as is the case when considering the fidelity susceptibility, then
∆µ = d+ ζ − 1/ν and the diagonal terms in equation (128) become [74, 85]:

q̃∼ L2/ν−d. (129)

These scaling relations can be contrasted with the scaling of the QGT for a unitary perturbation
generated directly by the operator Λ̂. In this case the dynamical critical exponent does not enter in, and we
instead have,

qµν ∼ |λ−λc|ν(∆µ+∆ν−d) (130)

and at the critical point itself the finite size scaling,

qµν ∼ L−(∆µ+∆ν−d). (131)

As above, if we assume∆µ =∆ν = 2+ ζ − 1/ν, we obtain for the diagonal term:

q∼ L2/ν−d−2ζ . (132)
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For comparison, it is useful to note that the closely related energy susceptibility, χe =−∂2e0/∂λ2, with e0 the
ground-state energy per site, scales as

χe ∼ L2/ν−d−ζ . (133)

This result follows immediately from the scaling of the critical free energy density, fs ∼ |λ−λc|ν(d+ζ), with
χe the second derivative of fs. Notice that the dynamical critical exponent appears in equations (127)
and (128) but not in equations (130) and (131). This is due to the fact that the two metrics consider different
parameterizations. In particular, the metric Q̃µν determines the distance between the ground state of a
Hamiltonian at some value of the Hamiltonian parameter λµ and some nearby value λµ+ dλµ, where λµ
couples to the operator Λ̂µ. The metricQµν , however, determines the distance between a state |ψ ⟩ and the
infinitesimally neighboring state exp{−idλµΛ̂µ}|ψ ⟩. As we describe in equation (122), the perturbation to
the Hamiltonian may be recast as a unitary transformation on the ground state provided that the change in
parameters occurs adiabatically. The contribution of the dynamical critical exponent in the Fidelity
susceptibility reflects the necessity of the transformation being adiabatic if we are to keep ourselves in the
ground state. This difference in scaling turns out to have important implications for quantum sensing [109].

The above scaling discussion coupled with the relationship between the QFIM and genuine multipartite
entanglement implies that as long as Λ̂ is relevant in the sense of the renormalization group, the associated
entanglement will diverge. In particular, if one had knowledge of both the dynamical critical exponent and
the fidelity susceptibility, one could determine the scaling of a lower bound on the QFI associated with the
operator Λ̂ and hence the multipartite entanglement. Reciprocally, if one knew both the scaling of the QFI
and the dynamical critical exponent, one could compute the scaling of an upper bound on the associated
fidelity susceptibility.

3.5. Quantum sensing
Quantum sensing is the utilization of quantum resources, such as entanglement, to enhance the precision
and sensitivity of measurements [15, 16]. The example of the weather stations describing in section 3 can be
mapped directly onto a general quantum framework, whereby a probe is made to interact with a system for
some amount of time, during which the probe acquires a parameter dependent phase [110]. The probe is
then measured and the phase estimated. The maximum precision with which the parameter can be estimated
is given by the Cramér-Rao bound,

CovP{λ̃µ, λ̃ν}⩾
1

4Fµν
. (134)

which we derived in section 2.1.2. For an extensive review of quantum sensing, see [18] as well as [17].
In [111], the authors introduce a bound on the metrological usefulness of a state ρ̂ for a parameterization

generated by the operator Λ̂. In particular, if gseparableλλ is a component of the metric generated by Λ̂ optimized
over all separable states, then the metrological gain, G can be quantified as,

G{Λ̂} := gλλ(ρ̂)

gseparableλλ

. (135)

For any state with G ⩾ 1 there is some metrologically useful entanglement.
The bounds in equations (107) and (112) imply that the sensitivity of a probe to quantum measurements

is enhanced by the presence of entanglement. This fact can be used to exploit quantum critical regions for
increased measurement sensitivity, as discussed in [112]. As mentioned in section 3.4, the difference in the
scaling relations for parameterizations controlled adiabatically by a parent Hamiltonian, and those generated
directly by a bounded unitary operator lead to different scaling in measurement sensitivity at the critical
point [109]. Topological spins chains [96] and atomic ensembles have also been proposed as useful platforms
for quantum sensing due to their geometrical properties [113].

Recent work has also examined the applications of the QFIM to the detection of periodically oscillating
magnetic fields, using spin chains as intermediates [114]. Recently, the dynamical phase corresponding to a
time crystal has also been shown to have a robust quantum advantage in measurement sensitivity.

3.6. Chern number and the Euler characteristic
Topology is playing an increasingly central role in the study of condensed matter and many body
systems [115–117]. Quantum information geometry facilitates a link between the geometry of state space
manifolds, response function, and the topological invariants that characterize those systems. A recent
achievement was the classification of N level fermionic and bosonic systems according to a generalization of
the Bloch-sphere [21].
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Another studies have found that the Euler Characteristic in the first Brillouin zone is also indicative of
topologically non-trivial phases [66, 118]. In this line of research, one considers the topology and geometry
of the single particle states in a system that is well described by band theory. Recently such systems have been
studied in the context of quantum sensing, see for example [64]. An especially important result in this
context is given by [119] which bounds the volume of a two-dimensional parameter manifold (see
equation (79)) with the Chern number (see equation (72)),

Volg ⩾ π |C|. (136)

The quantum geometric tensor associated with non-trivial band structures has also been measured
experimentally using the relationship between the quantum geometric tensor and the response function
discussed in section 3.1 (see [70]).

3.7. State space curvature
The curvature associated with different many-body phases has also been examined in several contexts [77,
89, 120]. While the physical implications of the state space curvature are not yet fully understood, it has been
shown to clearly indicate quantum criticality, including in systems that lack a local order parameter [87]. In
[77] it was shown that the state space curvature–with inverse temperature as one parameter, and the driving
parameter of a quantum phase transition as the other–detects different scaling regimes in the vicinity of the
critical point.

In [89] some progress was made in interpreting the state space curvature through its apparent
relationship to multipartite entanglement. By considering spherical slices of state space generated by
perturbing the Hamiltonian with the staggered magnetization operator,

Λ̂n(θ,ϕ) =
∑
r

(−1)rn(θ,ϕ) · S. (137)

where n̂= (cos(θ) sin(ϕ), sin(θ) sin(ϕ),cos(ϕ)), coupled to a source Hamiltonian via the field h,

H=H0 + hΛ̂n(θ,ϕ) (138)

The size of these manifolds can then be computed using equation (79),

Volψ =

ˆ
Ω

√
det(Fµν {ψ(θ,ϕ)})dθdϕ (139)

where Fµν is the metric for the sphere with tangent operators,

Λ̂θ =
∑
r

(−1)r∂θn · Sr (140)

Λ̂ϕ =
∑
r

(−1)r∂ϕn · Sr (141)

and the curvature is estimated by comparing the scaling of this volume as a function of the coupling field to
the scaling of the volume (surface area) of a sphere in flat space. For the 2-manifold parameterized by the
orientation of n, we expect the volume to scale as,

Vflat = 4π (ah)2 (142)

where a is some constant that depends on the spin moment. The ratio of the volume centered on the ground
state, ψ of the source Hamiltonian in equation (138) to the volume flat space is then given by,

Vψ
Vflat

≈ 1− bRh2 (143)

with b a constant and R the scalar curvature.
In the XY chain, the Euler characteristic was examined for a manifold parameterized by the spin

anisotropy and by a global rotation. The topology of the resulting manifold was shown to change depending
on whether or not the model was in a paramagnetic or ordered phase, with the former phase resulting in an
irrational Euler characteristic due to the emergence of a cusp like singular [65].

Another application of quantum curvature is in the context of variational quantumMonte Carlo, where
the QFIM is used to find the energetic minimum using stochastic reconfiguration [121]. In this case, the
local curvature of the state space can be used to infer the robustness of the variational calculation, as
discussed in [122].
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4. Summary and outlook

In this paper, we have presented a pedagogical introduction to information geometry. Though the formal
foundations of information geometry were laid over a century ago, it is in the last two decades that we have
seen a rapid growth in research interest in the many fields to which this geometry is applicable. In particular,
there are now an abundance of studies examining Fidelity susceptibility and Fisher information in various
models from condensed matter systems to cold atom setups. We expect that this interest will only grow.
Beyond equilibrium physics, concepts from quantum information geometry are finding application in the
study of dynamical phases [86] and quantum chaos [123].

There is still much to be learned about the geometrical structure of quantum state space and in particular
about interpretations of geometric invariants such as the curvature as discussed in [120]. If one recalls
equation (43), we see that in classical information geometry, the metric is sourced by the Shannon
information. In quantum information geometry, the analogous quantity is the Kähler potential (see, for
example, [32]). Investigation of this quantity in many-body systems is only just beginning, and there are no
doubt many exciting results to be found in this direction.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A. Properties of Shannon information

In this appendix we discuss some properties of information measures. We use P= {p1, . . . ,pN} to denote a
discrete distribution. The Shannon information defined in equation (19) has the following properties [32],

• Positivity, S(P)⩾ 0
• Continuity, S(P) will vary continuous with the distribution P.
• Expansibility, S(p1, . . . ,pN) = S(p1, . . . ,pN,0).
• Concavity, S(αP1 +(1−α)P2)⩾ αS(P1)+ (1−α)S(P2). The mixing of distributions always increases the
information.

• Subadditivity For two random variables, not necessarily independent, where p12 is the joint probability dis-
tribution,

S(P12)⩽ S(P1)+ S(P2) (A1)

with equality only if the two distributions are independent.
• Recursion. We can coarse grain a distribution P= p1, . . . ,pN, via,

qj =

kj∑
i=kj−1+1

pi (A2)

where j = 1, . . . , r and k0 = 0. The discrete distribution has been partition according to the sum N=∑r
i=1 ki. Then the Shannon information is given by,

S(P) = S(Q)+ q1S

(
p1
q1
, . . . ,

pk1
q1

)
+ . . .+ qrS

(
pkN−kr+1

qr
, . . . ,

pN
qr

)
(A3)

It is the property of recursion that makes the Shannon information unique amongst all possible choices of
information measure. It appears in many other interesting contexts. In particular in the field of signal
transmission where it was originally developed.

Appendix B. Example calculations

B.1. Single qubit
We may compute the trace explicitly by diagonalizing the Hamiltonian with source term. We denote the
coefficients of the magnetization operator asmα (no hat) and temporarily suppress the explicit dependence
on θ and ϕ

Ĥ
.
=

(
∆− hmz h(mx − imy)

h(mx + imy) −(∆− hmz)

)
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We can immediately read off the eigenvalues for this matrix,

λ± =±
√
(∆− hmz)2 + h2(mx − imy)(mx + imy)

=±
√
∆2 − 2∆mzh+ h2

and thus find,

Z(h) = 2cosh(β
√

∆2 − 2∆mzh+ h2) (B1)

The variance is given by,

Var(M̂) = tr(ρM̂2)− tr(ρM̂)2

= 1− tanh2(β|∆|)cos2(ϕ) (B2)

The thermal variance can be evaluated by first computing the first and second derivatives of the partition
function with respect to the driving field,

∂h=0Z = ∂h=02cosh(β
√
∆2 − 2∆mzh+ h2)

= 2β

(
sinh(β

√
∆2 − 2∆mzh+ h2)√

∆2 − 2∆mzh+ h2
(h−∆mz)

)
h=0

=−2βsgn(∆)mz sinh(β|∆|) (B3a)

∂2h=0Z =

(
2β2 cosh(β

√
∆2 − 2∆mzh+ h2)

∆2 − 2∆mzh+ h2
(h−∆mz)

2

− 2β
sinh(β

√
∆2 − 2∆mzh+ h2)

(∆2 − 2∆mzh+ h2)
3
2

(h−∆mz)
2

+ 2β
sinh(β

√
∆2 − 2∆mzh+ h2)√

∆2 − 2∆mzh+ h2

)
h=0

= 2β2 cosh(β|∆|)m2
z − 2β

sinh(β|∆|)
|∆|

m2
z + 2β

sinh(β|∆|)
|∆|

= 2β2 cosh(β|∆|)m2
z + 2β(1−m2

z)
sinh(β|∆|)

|∆|
. (B3b)

No we substitute these relations into the definition of the thermal variance which we restate below,

VarT (M̂; ρ̂) =
1

β2

(
1

Z(h= 0)

(
∂2Z
∂h2

)
h=0

− 1

Z2(h= 0)

(
∂Z
∂h

)2

h=0

)

=
1

β2

(
β2m2

z +β(1−m2
z)
tanh(β|∆|)

|∆|
−β2m2

z tanh
2(β|∆|)

)
=m2

z +(1−m2
z)
tanh(β|∆|)
β|∆|

−m2
z tanh

2(β|∆|)

=m2
z(1− tanh2(β|∆|))+ (1−m2

z)
tanh(β|∆|)
β|∆|

. (B4)

The QV can be computed by substituting equations (B2) and (B4) into equation (91),

VarQ(M̂; ρ̂) = 1− tanh2(β|∆|)m2
z −m2

z(1− tanh2(β|∆|))− (1−m2
z)
tanh(β|∆|)
β|∆|

= (1−m2
z)

(
1− tanh(β|∆|)

β|∆|

)
. (B5)

Using equation (71), we can calculate an explicit form of the QFI for the single qubit as well. Since diagonal
entries do not contribute to the QFI, we consider only off diagonal terms, and denote by λ± =±∆ the two
eigenvalues and eigenstates of the Hamiltonian. We denote the corresponding eigenstates of σz by |±⟩. The
QFI given by,
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F(M̂; ρ̂) = 2
∑
λ,λ ′

(pλ− pλ ′)2

pλ+ pλ ′
|⟨λ|M̂|λ ′⟩|2

= 4
(p+ − p−)2

p+ + p−
|⟨+|M̂|−⟩|2

=
4

Z
(e−β|∆| − eβ|∆|)2

e−β|∆| + eβ|∆| (m2
x +m2

y)

=
4

Z
4sinh2(β|∆|)
2cosh(β|∆|)

(1−m2
z)

= 4tanh2(β|∆|)(1−m2
z)

= 4tanh2(β|∆|) sin2(ϕ). (B6)
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