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Abstract
Semi-device-independent certification of an unsharp instrument has recently been demonstrated
(2019 New J. Phys. 21 083034) based on the sequential sharing of quantum advantages in a
prepare-measure communication game by assuming the system to be qubit. In this work, we
provide device-independent (DI) self-testing of the unsharp instrument through the quantum
violation of two Bell inequalities where the devices are uncharacterized and the dimension of the
system remains unspecified. We introduce an elegant sum-of-squares approach to derive the
dimension-independent optimal quantum violation of Bell inequalities which plays a crucial role.
Note that the standard Bell test cannot self-test the post-measurement states and consequently
cannot self-test unsharp instrument. The sequential Bell test possess the potential to self-test an
unsharp instrument. We demonstrate that there exists a trade-off between the maximum
sequential quantum violations of the Clauser–Horne–Shimony–Holt inequality, and they form an
optimal pair that enables the DI self-testing of the entangled state, the observables, and the
unsharpness parameter. Further, we extend our study to the case of elegant Bell inequality and we
argue that it has two classical bounds—the local bound and the non-trivial preparation
non-contextual bound, lower than the local bound. Based on the sharing of preparation
contextuality by three independent sequential observers, we demonstrate the DI self-testing of two
unsharpness parameters. Since an actual experimental scenario involves losses and imperfection,
we demonstrate robustness of our certification to noise.

1. Introduction

Measurement plays a pivotal role in quantum theory which is in stark contrast to classical theory. The
textbook version of a quantum measurement is modeled by a set of orthogonal projectors belonging to the
Hilbert space. However, there exist more general measurements defined in terms of positive-operator-valued
measures (POVMs) satisfying the completeness relation. Note that the POVMs can be defined in many
different ways. However, in this paper, we are concerned about those POVMs which are noisy or unsharp
variants of the projective measurements.

In a sharp projective measurement [1], the system collapses to one of the eigenstates of the measured
observable, and the system is completely disturbed by the process of sharp measurement, so that, no residual
coherence remains in the system. On the other hand, in the case of unsharp measurements that are
characterized by the POVMs, the system is less disturbed compared to the sharp projective measurement.
Since a projective measurement maximally disturbs the quantum system and hence extracts more
information from the system compared to POVMs, one may think that a sharp measurement is more
advantageous in information processing tasks. However, there exist certain information processing tasks
where POVMs are proven to be more useful compared to sharp measurement.

Advantage of POVMs over sharp measurement has been explored in the context of quantum state
discrimination [2, 3], randomness certification [4–7], quantum tomography [8], state estimation [9],
quantum cryptography [10], information acquisition from a quantum source [11], quantum violation of
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certain Bell inequalities [12], and many more. There is one more advantage that is particularly relevant in the
present work is the sequential sharing of various forms of quantum correlations [13–18]. For example, a
sequential Bell test by multiple independent observers inevitably requires the prior observers to perform the
unsharp quantum measurements.

In this work, we aim to provide device-independent (DI) self-testing of the unsharp measurements,
which are noisy variants of the sharp projective measurements. Self-testing [19–23] is the strongest form of
certification protocol where the devices are treated as black boxes. Also, the dimension of the quantum
system is assumed to be finite but unbounded. In that, observed experimental statistics uniquely certify the
state and measurement observables of an unknown dimension. DI self-testing is advantageous over the
standard certification methods such as those based on quantum tomography. Essentially, a self-testing
protocol requires optimal quantum violation of a suitable Bell’s inequality [24]. For example, optimal
violation of Clauser–Horne–Shimony–Holt (CHSH) inequality self-tests the maximally entangled state and
mutually anticommuting local observables in any arbitrary dimension. Note that the DI certification
encounters practical challenges arising from the requirement of a loophole-free Bell test. Such tests have
recently been realized [25–29] enabling experimental demonstrations of DI certification of randomness
[30, 31]. Of late, the DI certification is used as a resource for secure quantum key distribution [32–35],
randomness certification [36–39], witnessing Hilbert space dimension [40–46] and for achieving advantages
in communication complexity tasks [47].

We provide DI self-testing schemes to certify the unsharpness parameters through the quantum violation
of two well-known Bell inequalities viz., the CHSH inequality [24] and the elegant Bell inequality [48]. Note
that optimal quantum violations of such Bell inequalities can be obtained only for sharp measurement. Any
value less than the optimal quantum value may originate due to various reasons. It may come from the
unsharp measurements of local observables but may also come from the nonideal preparation of the state or
the inappropriate choices of the local observables than the ones required for the optimal quantum violation.
However, a more serious issue regarding DI self-testing of unsharp measurement through a Bell test arises
due to Neimark’s theorem. It states that every non-projective measurement can be modeled as a projective
measurement in a larger Hilbert space by introducing suitable ancilla in a higher dimension. Since in the DI
Bell test, there is no bound on the dimension, a stubborn physicist may argue that the sub-optimal quantum
violation is arising due to the inappropriate choice of observables in a higher dimension and not due to the
unsharpness of the measurement. Hence, to self-test unsharp measurements, one needs to introduce a
protocol that certifies the state, the observables, and the unsharpness parameters without referring to the
dimension of the system.

Against this backdrop, we demonstrate that the sequential Bell test has such potential where the
sub-optimal sequential quantum violations of a Bell inequality by multiple independent observers on one
side can enable such a self-testing. Such a scheme successfully bypasses the constraints that would arise from
Naimark’s theorem as the optimization of sequential Bell expression is performed without imposing any
constraint on the dimension of Hilbert space. As far as our knowledge goes, the DI self-testing of
non-projective measurements through the Bell test has not hitherto been demonstrated. However, semi-DI
certification of non-projective measurements has been demonstrated by using the qubit system. In [49–51],
the extremal qubit POVMs were experimentally certified based on the theoretical proposal [4]. Those
experiments [49–52] do certify the non-projective character of measurement, but not how it relates to a
specific target POVM. The semi-DI certification of qubit unsharp measurements (noisy variants of projective
measurement) in the prepare-measure scenario has recently been proposed [53–57]. The proposal of [53]
has been experimentally verified [52, 58, 59].

Specifically, in our self-testing protocol, two sequential sub-optimal quantum violations of a Bell
inequality form an optimal pair powering the DI certifications of the state, the local observables, and the
unsharpness parameter of one of the two parties. We also note here that all the previous works that
demonstrated the sharing of various quantum correlations [16, 17, 56, 57,60–67], the dimension of the
system was assumed. In contrast, throughout this work, we impose no bound on the dimension of the
Hilbert space, and we consider that the measurement devices are black boxes. We first demonstrate that, at
most, two independent sequential observers on one side can violate the CHSH inequality. We simultaneously
maximize the quantum violations of CHSH inequality for two sequential observers on one side and
demonstrate that there is a trade-off between the two sub-optimal quantum violations. This, in turn, certifies
the state, and the observables for both the sequential observers and the unsharpness parameter of the first
observer. Since in a practical implementation there remains imperfection, we show how a range of an
unsharpness parameter can be self-tested in that scenario.

The protocol developed for the CHSH inequality is further extended to the case of elegant Bell inequality,
where we demonstrate that, at most, two observers can share the quantum advantage when considering the
inequality’s local bound. However, we argue that the elegant Bell inequality has two classical bounds, the
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local and the preparation non-contextual bound, and the latter is smaller than the former. We show that if we
consider the preparation non-contextual bound of the elegant Bell inequality, then at most three observers
can share the quantum advantage. Further, we demonstrate that if the quantum advantage is extended to a
third sequential observer, then the range of the values of the unsharpness parameter for the first observer can
be more restricted, thereby self-testing a narrow range of the values of the unsharpness parameter in the
sub-optimal scenario.

This paper is organized as follows. In section 2, we demonstrate the optimal quantum violation of CHSH
inequality using an elegant sum-of-squares approach. In section 3, we explicitly show the sequential violation
of CHSH inequality and self-testing of the unsharpness parameter. In section 4, we briefly introduce the
notion of the preparation non-contextuality in an ontological model and provide the preparation
non-contextual bound of elegant Bell inequality. In section 5, we extend the sharing of preparation
contextuality by three sequential observers based on the quantum violation of elegant Bell inequality and
demonstrate the self-testing of two unsharpness parameters along with the states and the observables.
Finally, we discuss our results in section 6.

2. Optimal quantum violation of CHSH inequality

The CHSH scenario consists of two space-like separated parties (say, Alice and Bob) who share a common
physical system. Alice (Bob) performs local measurements on her (his) subsystem upon receiving inputs
x ∈ {1,2}(y ∈ {1,2}), and returns outputs a ∈ {−1,+1}(b ∈ {−1,+1}). RepresentingMx and Ny as
respective dichotomic observables of Alice and Bob, the CHSH form of Bell’s inequality can be written as

B = (M1 +M2)N1 +(M1 −M2)N2 ⩽ 2. (1)

The optimal quantum value of the CHSH expression is (B)optQ = 2
√
2, commonly known as Tirelson bound

[68]. The optimal value can be obtained when the shared state is maximally entangled in a two-qubit system
and the local qubit observables are mutually anticommuting. However, one does not need to impose the
bound on the dimension to obtain the optimal value. Also, the measurement of Alice and Bob remains
uncharacterized. In other words, the optimal value (B)optQ can be achieved if Alice and Bob perform

dichotomic measurements on a maximally entangled state |ψ⟩AB ∈ Cd ⊗ Cd where d⩾ 2 is arbitrary.
For our purpose, we provide a derivation of the (B)optQ without imposing a bound on the Hilbert space

dimension by introducing an elegant sum-of-squares (SOS) approach. Let us assume that (B)Q ⩽ Ω2, where
Ω2 is a positive quantity and the upper bound of (B)Q. Equivalently, one can argue that there is a positive
semi-definite operator η ⩾ 0, that can be expressed as

⟨η⟩Q =Ω2 − (B)Q (2)

for a quantum state |ψ⟩AB. This can be proven by considering two suitable positive operators, L1 and L2,
which are polynomial functions ofMx and Ny, so that

η =
1

2

(
ω1L

†
1L1 +ω2L

†
2L2
)
. (3)

For our purpose, we suitably choose L1 and L2 as

L1|ψ⟩AB =
M1 +M2

ω1
|ψ⟩AB −N1|ψ⟩AB

L2|ψ⟩AB =
M1 −M2

ω1
|ψ⟩AB −N2|ψ⟩AB (4)

where ω1 = ||(M1 +M2) |ψ⟩AB||2 an ω2 = ||(M1 −M2) |ψ⟩AB||2. Here ||.||2 is the Frobenius norm of a vector,
|| O ||2 =

√
Tr[O†Oρ]. Plugging equation (4) into equation (3) and by noting thatM†

xMx = N †
yNy = I, we

get

(B)Q = (ω1 +ω2)−⟨η⟩Q. (5)

Optimal value of (B)Q can be obtained when ⟨η⟩Q = 0, i.e.

(B)optQ =max(ω1 +ω2)

=max
(√

2+ ⟨{M1,M2}⟩+
√
2−⟨{M1,M2}⟩

)
. (6)

3
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Thus, the maximization requires {M1,M2}= 0 implying Alice’s observables have to be anticommuting. In
turn, we find the values ω1 = ω2 =

√
2, and consequently the optimal value (B)optQ = 2

√
2. The explicit

conditions for the optimization are L1|ψ⟩AB = 0 and L2|ψ⟩AB = 0, i.e. N1 = (M1 +M2)/
√
2 and

N2 = (M1 −M2)/
√
2. It can be easily checked that {N1,N2}= 0, i.e. Bob’s observables are also

anticommuting.
Note also that for the state ρAB = |ψAB⟩⟨ψAB| ∈ Cd ⊗Cd, optimal violation requires Tr[N1 ⊗N1ρAB]

= Tr[N2 ⊗N2ρAB] = 1, which again confirms that ρAB has to be a pure state. Let us choose the state in
Hilbert–Schmidt form as

ρAB =
1

d2

[
I⊗ I+

d2−1∑
i=1

Ni ⊗Ni

]
(7)

where {Ni,Nj}= 0 and consequently [Ni ⊗Ni,Nj ⊗Nj] = 0 for any arbitrary dimension d. For a density
matrix ρAB, Tr[ρAB] = 1 has to be satisfied. This in turn provides Tr[N1] = Tr[N2] = 0. Also, Tr[ρ2AB] = 1
ensures that the observables in the summation in equation (7) contains full set of mutually anticommuting
observables {Ni ⊗Ni}. Consequently, TrA[ρAB] = TrB[ρAB] =

I
d , i.e. partial trace of ρAB is maximally mixed

state for both Alice and Bob. Thus, the optimal violation of the CHSH inequality is achieved for the
maximally entangled state |ψAB⟩. We thus derive the optimal quantum value (B)optQ which uniquely certifies
the state and observables. The entire derivation is done without assuming the dimension of the system.

3. Sequential sharing of nonlocality and self-testing of unsharpness parameter

The sequential Bell-CHSH test in the DI scenario is depicted in figure 1. There is only one Alice, who always
performs sharp measurement and arbitrary k number of sequential Bobs (say, Bobk). Alice and Bob1 share an
entangled state ρAB1 . Our aim is to demonstrate the sharing of nonlocality by multiple sequential observers.
Since a projective measurement inevitably disturbs the system maximally; hence, in the sequential Bell test, if
the first Bob (Bob1) performs a sharp measurement, the entanglement is lost after the measurement. In such
a case, no residual entanglement remains for the second sequential observer (Bob2); consequently, the Bell
inequality cannot be violated. If both the sequential observers obtain the sub-optimal quantum violations,
then the first observer must have to perform an unsharp measurement.

In this work, the unsharp measurement corresponds to the noisy variant of projective measurements,
i.e. the number of measurement operators is restricted to two. After performing the unsharp measurement,
Bob1 relays the post-measurement state to Bob2, who performs an unsharp measurement intending to
violate the Bell inequality. The chain runs up to arbitrary kth Bob (Bobk) until the quantum violation of Bell’s
inequality is obtained. The kth Bob may perform the sharp measurement. It is quite known that in the
standard scenario at most, two Bobs can sequentially demonstrate nonlocality through the violation of
CHSH inequality [13]. We stress again that, before our work all the studies that demonstrated the sharing of
nonlocality, the dimension of the system was assumed.

We consider that Alice, upon receiving input x= {1,2}, always performs the projective measurements of
observables A1 and A2. The CHSH form of Bell’s inequality can be written as

B = (A1 +A2)B1 +(A1 −A2)B2 ⩽ 2. (8)

There are arbitrary k number of sequential Bobs (say, Bobk), who upon receiving input yk ∈ {1,2} perform
measurements of B1 and B2 producing outputs bk ∈ {−1,+1}. We demonstrate how sequential quantum
violations of CHSH inequality by multiple independent Bobs enable the DI certification of the unsharpness
parameter.

Now, if Bobk’s instrument is represented by measurement operators {Kbk|yk} then after (k− 1)th Bob’s
measurement, the average state shared between Alice and Bobk is

ρABk =
1

2

∑
bk∈±

2∑
yk=1

K†
bk|yk ρAB(k−1)

Kbk|yk (9)

where ∀k,
∑

bk=±1K
†
bk|ykKbk|yk = I. Also, Kbk|yk =

√
Ebk|yk where Ebk|yk is the POVM. We consider that ∀k and

∀yk the POVM [69, 70] is of the form

E±|yk =
1±λk

2
Π+

yk +
1∓λk

2
Π−

yk (10)

4
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Figure 1. Black box diagram for sequential Bell test consisting of one Alice and multiple sequential Bobs (Bobk). Alice shares an
entangled state with Bob1. After Bob1’s unsharp measurement, the average state is relayed to Bob2 and so on.

where {Π±
yk} are the projectors corresponding to the observable Byk satisfying Π

+
yk +Π−

yk = I, and λk is the

unsharpness parameter for kth Bob. The measurement operators can then be written as, K±|yk = αkI±βkByk

where

αk =
1

2

(√
(1+λk)

2
+

√
(1−λk)

2

)

βk =
1

2

(√
(1+λk)

2
−
√

(1−λk)

2

)
, (11)

satisfying α2
k +β2

k = 1/2 with αk ⩾ βk.
We derive the maximum quantum value of CHSH expression for Alice and Bob1 as

(B1)Q = λ1(B)optQ (12)

which is independent of assuming the dimension. Here, λ1 is the unsharpness parameter of Bob1.
After his unsharp measurement, Bob1 relays the average state to Bob2. From equation (9), the reduced

state for Alice and Bob2 can be written as

ρAB2 =
1

2

∑
b1∈{+,−}

2∑
y1=1

(
I⊗Kb1|y1

)
ρAB1

(
I⊗Kb1|y1

)
= 2α2

1ρAB1 +β2
1

2∑
y1=1

(I⊗By1)ρAB1(I⊗By1). (13)

For the time being, let us consider that each sequential Bob measures same set of observables B1 and B2, i.e.
∀k, Byk=1 ≡ B1 and Byk=2 ≡ B2. By using equation (13), the maximum quantum value of CHSH expression
for Alice and Bob2 can be written as

(B2)Q =max
(
Tr[ρAB2B]

)
=max

(
Tr
[
ρAB1

(
(A1 +A2)B̃1 +(A1 −A2)B̃2

)])
(14)

where we assume Bob2 performs sharp measurement. We derive the explicit forms of B̃1 and B̃2 as

B̃1 = (2α2
1 +β2

1)B1 +β2
1B2B1B2

B̃2 = (2α2
1 +β2

1)B2 +β2
1B1B2B1. (15)

Note that, equation (14) has a similar form of CHSH expression as in equation (8), if B̃1 and B̃2 are
considered to be effective observables of Bob2. We can use the earlier SOS approach to obtain the maximum
quantum value. However, (B̃1)

2 ̸= I and (B̃2)
2 ̸= I, and hence they need to be properly normalized. By

considering ω̃1 = ||B̃1|| and ω̃2 = ||B̃2||, and by using the SOS approach we have

(B2)Q =max(ω1ω̃1 +ω2ω̃2) . (16)

5
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As we already proved earlier, to obtain the optimal quantum value Alice’s and Bob’s observables have to be
mutually anticommuting. Hence, for Bob’s (unnormalized) observables B̃1 and B̃2 we require,

{B̃1, B̃2}= 4α2
1(α

2
1 + 2β2

1){B1,B2}+β4
1{B1,B2}3 = 0. (17)

Since α1 > 0 and β1 ⩾ 0, equation (17) gives {B1,B2}= 0. In other words, the observables of Bob2 have to be
anticommuting to obtain the maximum quantum value of the Bell expression (B2)Q. This, in turn, provides

ω̃1 =
√
(2α2

1)
2 +(2α2

1 +β2
1)β

2
1{B1,B2}2 = 2α2

1, (18)

and ω̃2 = ω̃1 = 2α2
1. Note that the above result is obtained by considering that Bob1 and Bob2 perform the

measurements on the same set of observables B1 and B2. In appendix A, we prove that to obtain the
maximum quantum value (B2)Q the choices of observables of Bob2 have to be the same as Bob1.

Using equations (6) and (18), from equation (16) we can then write

(B2)Q = 2α2
1 max

(
ω1 +ω2

)
= 2α2

1(B)
opt
Q .

Putting the value of α1, we write (B2)Q in terms of unsharpness parameter λ1 of Bob1 as

(B2)Q =
1

2

(
1+

√
1−λ21

)
(B)optQ . (19)

Hence, we have derived the maximum quantum values of Bell expressions for two sequential Bobs where
(B)optQ is common, but they differ by the coefficients, which are solely dependent only on λ1. Using
equation (12), the quantum value of the CHSH expression (B2)Q in equation (19) can be written in terms of
(B1)Q as

(B2)Q =
√
2

1+

√√√√1−

(
(B1)Q

(B)optQ

)2
 . (20)

This implies that if (B1)Q increases, then (B2)Q decreases, i.e. the more the Bob1 disturbs the system, the
more he gains the information, and consequently the quantum value (B2)Q of Bob2 decreases. Hence, there
is a trade-off between (B2)Q and (B1)Q, which eventually form an optimal pair demonstrating the
certification of unsharpness parameter.

In figure 2, we plot the optimal trade-off characteristics between (B1)Q and (B2)Q. The green line
corresponds to the maximum classical value of the CHSH expression where Bob2 can get a maximum value
independent of Bob1, i.e. there is no trade-off in classical theory. The blue curve exhibits the trade-off
between quantum values of (B2)Q and (B1)Q where each point on it certifies a unique value of unsharpness
parameter λ1. For example, when (B2)Q = (B1)Q, the value of λ1 = 4/5= 0.80 is certified, as shown in the
figure by brown dot.

Note that in our protocol we consider Alice always performs sharp measurements. Before making the
self-testing statements of our protocol, let us examine whether our protocol certifies sharp measurements of
Alice. As mentioned earlier that the blue curve in figure 2 represents the optimal trade-off between (B2)Q
and (B1)Q. If Alice performs unsharp measurement then the trade-off curve will always be below the blue
curve. For instance, (B2)Q = (B1)Q = 8

√
2/5 (represented by the brown dot over the blue line) can never be

reached unless Alice performs the sharp measurement of her anti-commuting observables. The same
argument holds for any point over the blue curve in figure 2. We are now in the position to make the DI
self-testing statements of our protocol.

3.1. DI self-testing statements
The sub-optimal quantum values (B1)Q and (B2)Q form an optimal pair {(B1)Q,(B2)Q} that uniquely
certifies the shared state between Alice and Bob1, the set of observables, and the unsharpness parameter λ1.
The self-testing statements are the following,

(a) Alice performs sharp measurements of two mutually anticommuting observables on her local subsystem
in any arbitrary local dimension.

(b) Bob1 performs unsharp measurement corresponding to two observables which are also mutually
anticommuting in any arbitrary local dimension. The set of observables for Bob1 and Bob2 are the same.

(c) Alice and Bob1 share a maximally entangled state in any arbitrary dimension.

6
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Figure 2. Optimal trade-off between quantum bound of CHSH inequality of Bob1 and Bob2 is shown by the solid blue curve
while the shaded portion gives the suboptimal range. The solid green line is for classical bound of CHSH inequality for the same
two observers.

(d) The optimal pair {(B1)Q,(B2)Q} self-tests the unsharpness parameter λ1 which in turn certifies the
shared entangled state between Alice, Bob1 and Bob2. In figure 2, each point on the surface of blue curve
certifies a unique value of unsharpness parameter λ1.

3.2. Robust certification of unsharpness parameter
Note, however, that the experimental implementation of any protocol inevitably introduces noise and
imperfections. We provide an argument to demonstrate how our certification protocol is robust to the noise.
In the real experimental scenario, the maximum values of CHSH expressions (B2)Q and (B1)Q may not be
achieved, and hence unique certification of λ1 may not be accurate. In such a case, we can certify the range
within which λ1 can belong.

The quantum advantage for Bob1 requires (B1)Q > 2, which fixes the (λ1)min = 1/
√
2≈ 0.707 as

(B)optQ = 2
√
2. Thus, any value of λ1 ∈ [1/

√
2,1] provides quantum advantage for Bob1. However, this range

has to be further restricted if the nonlocality is extended to Bob2. To obtain advantage for Bob2, two
sequential Bob requires (B1)Q,(B2)Q > 2 and in turn necessitates λ2 = 1. From equation (19), we get

λ1 <

√√√√1−

(
2(B2)Q

(B)optQ

− 1

)2

(21)

which in turn fixes the upper bound of (λ1)max =
√
2(
√
2− 1)≈ 0.912. Hence, when both Bob1 and Bob2

get quantum advantage, the interval 0.707< λ1 < 0.912 is certified.
Now, as an example, let us consider an experiment in which we attempt to certify the desired value of

λ1 = 0.74 corresponding to the optimal pair {(B1)Q,(B2)Q}. In such a scenario, we need the value of
{(B1)Q,(B2)Q} ≈ {2.093,2.365}. However, due to imperfections, accurate quantum values may not be
obtained. Instead, experimentalist gets {(B1)Q,(B2)Q} ≈ {2.05,2.34}. In such a case, we cannot obtain the
desired value of λ1 but will deduce a range of λ1 within which it has to be confined. From equations (12)
and (21), we can calculate the range of λ1 as 0.724< λ1 < 0.755. Thus, depending upon the observed
quantum values, the range of λ1 can be confined, i.e. the more perfect the experimental determination of
{(B1)Q,(B2)Q}, the certified range of λ1 becomes narrower.

7
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3.3. Sharing of nonlocality by the third Bob
We examine whether the sharing of nonlocality can be extended to the third Bob (Bob3). If so, we can certify
two unsharpness parameters. Also, the range of λ1 can be made more restrictive if the third Bob
can share the nonlocality. By using equation (9), the maximum quantum value of CHSH expression
(B3)Q =max(Tr[ρAB3(B)]) between Alice and Bob3 can be calculated where ρAB3 is the average state shared
between Alice and Bob3. Then,

(B3)Q =max

Tr

(2α2
2ρAB2 +β2

2

2∑
y2=1

(I⊗By2)ρAB2(I⊗By2)
)
B

 (22)

which can be re-written in a similar form as in equation (14), is given by

(B3)Q =max

(
Tr
[
ρAB1

(
(A1 +A2)

˜̃B1 +(A1 −A2)
˜̃B2

)])
. (23)

Here, ˜̃B1 and
˜̃B2 represent effective observables of Bob3 are derived as

˜̃Bi = (4α2
1α

2
2 + 2β2

1β
2
2)Bi +(2α2

2β
2
1 + 2α2

1β
2
2)(Bi +BjBiBj)+β2

1β
2
2(BjBiBj +BiBjBiBjBi) (24)

with i( j)i̸=j ∈ {1,2}. Again (˜̃Bi)
2 ̸= I and hence ˜̃Bi’s need to be properly normalized. Following the earlier

argument, we can use the aforesaid SOS approach to obtain the optimal value of (B3)Q. By considering
˜̃ω1 = ||˜̃B1|| and ˜̃ω2 = ||˜̃B2||, and by using the SOS approach we obtain

(B3)Q =max
(
ω1

˜̃ω1 +ω2
˜̃ω2

)
. (25)

Note that, to obtain the maximum quantum value, ˜̃B1 and
˜̃B2 have to be mutually anticommuting, i.e.

{˜̃B1,
˜̃B2}=

(
8(4α2

1α
4
2β

2
1 + 2α4

1(α
4
2 + 2α2

2β
2
1)− 3β4

1β
4
1)
)
{B1,B2}

+
(
4(α4

2β
4
1 + 2α2

2β
2
1(2α

2
1 +β2

1)β
2
2 +α2

1(α
2
1 + 2β2

1)β
4
2)
)
{B1,B2}3

+(β2
1β

2
2)

2{B1,B2}5 = 0

which provides {B1,B2}= 0. Then, Bob3 also requires the anticommuting observables to obtain the
maximum quantum value. We then calculate

˜̃ω1 =

(
16α4

1α
4
2 +
(
4α4

2β
4
1 + 2α2

1α
2
2β

2
1(α

2
2 + 2β2

2)+α4
1(2α

2
2β

2
2 +β4

2)
)

×{B1,B2}2 +
(
2α2

2β
4
1β

2
2 +β2

1(2α
2
1 +β2

1)β
4
2

)
{B1,B2}4

)1/2

. (26)

Since, {B1,B2}= 0, we obtain ˜̃ω1 = 4α2
1α

2
2, and similarly we find ˜̃ω2 = ˜̃ω1 = 4α2

1α
2
2.

Then, the maximum quantum value (B3)Q in equation (25) becomes

(B3)Q = 4α2
1α

2
2 max

(
ω1 +ω2

)
= 4α2

1α
2
2(B)

opt
Q .

Putting the values of α1 and α2, we write (B3)Q in terms of unsharpness parameters of Bob1 and Bob2 as

(B3)Q =
1

4

(
1+

√
1−λ21

)(
1+

√
1−λ22

)
(B)optQ . (27)

Now, to exhibit the quantum violation for three sequential Bobs, we have to show that
(B1)Q,(B2)Q,(B3)Q > 2. For (B1)Q > 2, the lower bound on λ1 is λ1 > 1/

√
2. From equation (19), we can

calculate the lower bound of λ2 for (B2)Q > 2 is

λ2 >
4

(B)optQ

(
1+

√
1−

(
2

(B)
opt
Q

)2 =
2√
2+ 1

≈ 0.828. (28)

By considering that Bob1 and Bob2 implement their unsharp measurements with minimum required
values of unsharpness parameters at their respective sites, and by substituting the values of (λ1)min ≈ 0.707
and (λ2)min ≈ 0.828 in equation (27), we get (B3)Q = 1.89. This means Alice and Bob3 cannot violate CHSH
inequality when both Bob1 and Bob2 violate it.

8
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4. Elegant Bell inequality and its local and preparation non-contextual bounds

We extend the sequential sharing of nonlocality by using another well-known Bell inequality known as
Gisin’s elegant Bell inequality [48]. The elegant Bell expression can be written as,

E= (A1 +A2 +A3 −A4)⊗B1 +(A1 +A2 −A3 +A4)⊗B2 +(A1 −A2 +A3 +A4)⊗B3. (29)

whose local bound is (E)l ⩽ 6. We show that the elegant Bell expression has two bounds, the local bound
(which can be considered as trivial preparation non-contextual bound) and a nontrivial preparation
non-contextual bound when there exists a relational constraint between the observables of Alice and Bob. We
show that the non-trivial preparation non-contextual bound (E)pnc ⩽ 4.

Before proceeding further, we briefly introduce the notion of preparation non-contextuality in an
ontological model of quantum theory. Consider that a preparation procedure P prepares a density matrix ρ,
and a measurement procedureM realizes the measurement of a POVM Ek. Quantum theory predicts the
probability of obtaining a particular outcome k is p(k|P,M) = Tr[ρEk]—the Born rule. In an ontological
model of quantum theory, preparation procedures assign a probability distribution µP(λ|ρ) on ontic states
λ ∈ Λ where Λ is the ontic state space. Given the measurement procedure, the ontic state λ assigns a response
function ξM(k|λ,Ek). A viable ontological model must reproduce the Born rule, i.e.
∀k,ρ,Ek : p(k|P,M) =

´
Λ
µP(λ|ρ)ξM(k|λ,Ek)dλ.

The dependencies of P andM do not appear if the ontological model is preparation and measurement
non-contextual, respectively. Two preparation procedures P and P′ are said to be operationally equivalent if
they can not be distinguished by any measurement, implying, ∀k,M : p(k|P,M) = p(k|P ′,M). In quantum
theory, such preparation procedures are realized by the density matrix ρ. Such equivalence in operational
theory can be reflected in the ontic state level, assuming preparation non-contextuality [71]. An ontological
model of an operational quantum theory is considered to be preparation non-contextual if two preparation
procedures P and P′ prepare the same density matrix ρ, and no measurement can operationally distinguish
the context by which ρ is prepared, i.e. ∀k,M : p(k|P,M) = p(k|P ′,M)⇒∀λ : µ(λ|ρ,P) = µ(λ|ρ,P ′),
implying two ontic state distributions are equivalent irrespective of the contexts P and P′ [71–75].

Let us intuitively understand the notion of preparation non-contextuality in the CHSH scenario.
Consider that Alice and Bob share an entangled state ρAB and Alice measures A1 and A2. Alice’s
measurements on her local system produces density matrices ρA1 and ρA2 on Bob’s side corresponding to
measurement contexts A1 and A2, respectively. The non-signaling condition demands that ρA1 and ρA2

cannot be distinguishable by any measurement of Bob, i.e. ρA1 = ρA2 ≡ σ. Equivalently, in an ontological
model we assume that µ(λ|σ,A1) = µ(λ|σ,A2), i.e. the distribution of ontic states are preparation
non-contextual. Intuitively, preparation non-contextuality implies the locality assumption in the Bell
scenario. In other words, every probability distribution that violates a Bell inequality can also be regarded as
proof of preparation contextuality as proved in [76]. Here, we provide a modified version of the proof.

For this, by using Bayes’ theorem we write the joint probability distribution in the ontological model as

p(a,b|Ai,Bj) =
∑
λ

p(a|Ai,Bj)p(λ|a,Ai)p(b|Bj,λ). (30)

Now, the no-signaling condition implies the marginal probability of Alice’s side is independent of Bob’s
input and hence we can write

p(a,b|Ai,Bj) =
∑
λ

p(a|Ai)p(λ|a,Ai)p(b|Bj,λ). (31)

Using Bayes’ theorem we can write p(a|Ai)p(λ|a,Ai) = µ(λ|Ai)p(a|λ,Ai) where we specifically denoted the
probability distribution p(λ|Ai) as µ(λ|Ai).

From equation (31), we then obtain

p(a,b|Ai,Bj) =
∑
λ

µ(λ|Ai)p(a|λ,Ai)p(b|Bj,λ). (32)

Due to the assignment of the same ontic-state distribution for the different preparation procedures on
Bob’s side, the assumption of preparation non-contextuality is enforced. Then the preparation
non-contextual assumption for Bob’s preparation reads as µ(λ|ρ,A1) = µ(λ|ρ,A2)≡ µ(λ), which in turn
provides

p(a,b|Ai,Bj) =
∑
λ

µ(λ)p(a|λ,Ai)p(b|λ,Bj), (33)

9
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which is the desired factorizability condition commonly derived for a local hidden variable model. Therefore,
we can argue that whenever in an ontological model p(a,b|Ai,Bj) satisfies preparation non-contextuality,
this, in turn, satisfies locality in a hidden variable model.

Here we go one step further. The above case involving the CHSH scenario is a trivial one. We introduce a
nontrivial form of preparation non-contextuality in the Bell experiment involving more than two inputs.
Consider a Bell experiment where Alice receives four inputs and performs the measurements of four
observables A1, A2, A3 and A4. Bob receives three inputs and performs the measurement of three observables
B1 , B2 and B3. In quantum theory, when Alice and Bob share an entangled state ρAB

ρa|Ai
+ ρa⊕1|Ai

= ρa|Ai ′
+ ρa⊕1|Ai ′

≡ σ (34)

where i, i ′ = 1,2,3,4 with i ̸= i ′, and ρa|Ai
= TrA [ρABΠAi ⊗ I]. This is within the premise of preparation

non-contextuality in an ontological model as the distribution of ontic states is assumed to be equivalent for
those two preparation procedures i and i′. As argued above, such a trivial preparation non-contextuality can
be attributed to the locality in a Bell experiment. In that case, the local bound of the elegant Bell expression
(E)l ⩽ 6.

We introduce a nontrivial form of preparation non-contextuality in an ontological model of quantum
theory by imposing an additional relational constraint on Alice’s measurement observables. For this, we
consider that the joint probability satisfies

∀b, j,P(a,b|A1,Bj)+
4∑

i=2

P(a⊕ 1,b|Ai,Bj) = P(a⊕ 1,b|A1,Bj)+
4∑

i=2

P(a,b|Ai,Bj) (35)

which in quantum theory implies that

ρa⊕1|A1
+ ρa|A2

+ ρa|A3
+ ρa|A4

= ρa|A1
+ ρa⊕1|A2

+ ρa⊕1|A3
+ ρa⊕1|A4

. (36)

Since ρa|Ai
= TrA [ρABΠAi ⊗ I] with ΠAi = (I+Ai)/2, the above equation (36) implies that

A1 −A2 −A3 −A4 = 0. Along with the equivalence in equation (34) a non-trivial constraint equation (36) is
also imposed on Alice’s preparation procedures. In such a case, the local bound reduces to the preparation
non-contextual bound (E)l ⩽ 4 as A1 = A2 +A3 +A4. Thus, the quantum violation of it provides a weaker
notion of nonlocality, which we call nontrivial preparation contextuality. It is well-known that steering is a
weaker form of nonlocality, but the relation between steering and nontrivial preparation contextuality needs
to be properly explored. While we plan to do it in another occasion, interested reader may see a relevant work
[76]. However, for our present purpose it is not directly relevant and hence we skip such discussion.

Note that the quantum value of (E)Q has also to be calculated by considering this constraint. Below we
show that the optimal quantum value (E)optQ = 4

√
3 satisfies the constraint A1 = A2 +A3 +A4.

5. Sharing preparation contextuality and certification of multiple unsharpness
parameters

We derive the optimal quantum value (E)optQ without using the dimension of the system. For this, we again
use the SOS approach developed in section 2. We define a positive semidefinite operator ⟨χ⟩Q ⩾ 0 so that
⟨χ⟩Q +E=Ω3 where Ω3 is a positive quantity. By considering suitable positive operators L1, L2 and L3 we
can write

χ=
1

2

(
ω1L

†
1L1 +ω2L

†
2L2 +ω3L

†
3L3
)

(37)

where ω1, ω2 and ω3 are positive numbers that will be determined soon. For our purpose, we choose

L1|ψ⟩AB =
A1 +A2 +A3 −A4

ω1
|ψ⟩AB −B1|ψ⟩AB

L2|ψ⟩AB =
A1 +A2 −A3 +A4

ω2
|ψ⟩AB −B2|ψ⟩AB

L3|ψ⟩AB =
A1 −A2 +A3 +A4

ω3
|ψ⟩AB −B3|ψ⟩AB (38)

where ω1 = ||(A1 +A2 +A3 −A4)|ψ⟩AB||2,ω2 = ||(A1 +A2 −A3 +A4)|ψ⟩AB||2 and
ω3 = ||(A1 −A2 +A3 +A4)|ψ⟩AB||2. Substituting equation (38) in equation (37), we get

⟨χ⟩Q =−(E)Q +
3∑

i=1

ωi. (39)

10
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Hence, the optimal value (E)optQ is obtained if ⟨χ⟩Q = 0, i.e.

(E)optQ =max(ω1 +ω2 +ω3) (40)

where

ω1 =
√
4+ ⟨{A1,(A2 +A3 −A4)}+ {A2,(A3 −A4)}−{A3,A4}⟩ (41)

and similarly for ω2 and ω3.

We use the concavity inequality
∑n

i=1ωi ⩽
√

n
∑n

i=1(ωi)2 where the equality holds when ωi’s are equal

to each other. We can then write

(E)Q ⩽max
(√

3(ω2
1 +ω2

2 +ω2
3)
)
. (42)

Now, by using the expressions of ω1, ω2 and ω3 we can write

ω2
1 +ω2

2 +ω2
3 = AB⟨ψ|(12+ δ)|ψ⟩AB (43)

where

δ = ({A1,(A2 +A3 +A4)}−{A2,(A3 +A4)}−{A3,A4}). (44)

To maximize δ, we consider that there exist a state |ψ ′⟩ which can be written as
|ψ ′⟩= (A1 −A2 −A3 −A4)|ψ⟩AB such that |ψ⟩AB ̸= 0. We can show that ⟨ψ ′|ψ ′⟩= 4−⟨δ⟩. By rearranging
we can write ⟨δ⟩= 4−⟨ψ ′|ψ ′⟩. Clearly, the maximum value ⟨δ⟩max = 4 is obtained when ⟨ψ ′|ψ ′⟩= 0.
Since, |ψ⟩AB ̸= 0, we find the condition of maximization

A1 −A2 −A3 −A4 = 0. (45)

Since, ⟨δ⟩max = 4, we find max(ω2
1 +ω2

2 +ω2
3) = 16. From equation (42) we can then write (E)Q ⩽ 4

√
3.

Using equation (45), a few steps of calculations gives the following relations that need to be satisfied by
Alice’s observables given by

{A1,A2}= {A1,A3}= {A1,A4}=
2

3
, (46)

{A2,A3}= {A2,A4}= {A3,A4}=−2

3
. (47)

Putting equations (46) and (47) in equation (41), we get ω1 = 4/
√
3. A similar calculation gives us

ω2 = ω3 = 4/
√
3. Since, ω1 = ω2 = ω3, the optimal quantum value of elegant Bell expression is

(E)optQ = 4
√
3. Note here again that we have not imposed any bound on the dimension of the system

throughout the derivation.
As mentioned, the optimal quantum value of E for any given dimension is obtained when ⟨χ⟩Q = 0,

implying that

∀i ∈ [3], Li|ψ⟩AB = 0. (48)

Further, using the conditions in equation (38), Bobs observables B1, B2, and B3 can be written as

B1 =

√
3(A1 +A2 +A3 −A4)

4
,

B2 =

√
3(A1 +A2 −A3 +A4)

4
,

B3 =

√
3(A1 −A2 +A3 +A4)

4
. (49)

It is straightforward to show that Bob’s observables satisfy,

{B1,B2}=
√
3

4
{(A1 +A2 +A3 −A4),(A1 +A2 −A3 +A4)}=

√
3

4
({A1,A2}+ {A3,A4}) . (50)

Putting the values of Alice’s anticommuting relations from equations (46) and (47), we get {B1,B2}= 0.
Similarly, it can also be shown that {B1,B3}= 0 or {B2,B3}= 0. Thus, Bobs observables B1,B2 and B3 have
to be mutually anticommuting to obtain the optimal quantum value (E)optQ = 4

√
3. Following the argument

developed for CHSH, it can be proved that the shared state between Alice and Bob has to be a maximally
entangled state as in equation (7).

11



New J. Phys. 25 (2023) 013040 P Roy and A K Pan

5.1. Certification of multiple unsharpness parameters
Similar to the sequential CHSH scenario, for elegant Bell inequality, the average state shared between Alice
and Bobk if Alice and Bob(k−1) shares a maximally entangled state and each Bob performs a dichotomic
POVMmeasurement in the sequential scheme is

ρABk =
1

3

∑
bk∈±

3∑
yk=1

Kbk|ykρAB(k−1)
Kbk|yk (51)

where {Kbk|yk} are the Kraus operators satisfying
∑

bk
K†
bk|ykKbk|yk = I and Kbk|yk =

√
Ebk|yk .

The quantum value of elegant Bell expression due to the unsharp measurement of Bob1 irrespective of
the dimension is calculated as

(E1)Q = λ1(E)optQ . (52)

Let us assume that every sequential Bob measures same set of observables B1, B2 and B3 i.e.
∀k, Byk=1 ≡ B1 and so on. The average post-measurement state after Bob1’s unsharp measurement can be
written as

ρAB2 =
1

3

∑
b1∈{+,−}

3∑
y1=1

(
I⊗Kb1|y1

)
ρAB1

(
I⊗Kb1|y1

)
=

1

3

6α2
1ρAB1 + 2β2

1

3∑
y1=1

(I⊗By1)ρAB1(I⊗By1)

 . (53)

Using ρAB2 in equation (53), the maximum quantum value of elegant Bell expression between Alice and
Bob2 is given by

(E2)Q =max
(
Tr[ρAB2E]

)
=max

(
Tr
[
ρAB1

(
(A1 +A2 +A3 −A4)B

′
1 +(A1 +A2 −A3 +A4)B

′
2 +(A1 −A2 +A3 +A4)B

′
3

)])
.

(54)

We derive B ′
1, B

′
2 and B ′

3 as

B ′
1 = 2

(
α2
1 +

β2
1

3

)
B1 +

2

3
β2
1 (B2B1B2 +B3B1B3) ,

B ′
2 = 2

(
α2
1 +

β2
1

3

)
B2 +

2

3
β2
1 (B1B2B1 +B3B2B3) ,

B ′
3 = 2

(
α2
1 +

β2
1

3

)
B3 +

2

3
β2
1 (B1B3B1 +B2B3B2) . (55)

Equation (54) has a complete resemblance with elegant Bell inequality in equation (29) with the effective
observables of Bob are B ′

1, B
′
2 and B ′

3. However, (B
′
i )

2 ̸= I with i ∈ [3] and hence they need to be normalized.
By assuming, ω ′

i = ||B ′
i || and using the SOS approach we get

(E2)Q =max(ω1ω
′
1 +ω2ω

′
2 +ω3ω

′
3) . (56)

Optimization of quantum value of (E2)Q demands Bob’s observables B ′
1, B

′
2 and B ′

3 have to be mutually
anticommuting. It is explicitly shown in appendix B that the anticommutation {B ′

i ,B
′
j } can be written in

terms of {Bi,Bj} where i( j) ∈ 1,2,3 with i ̸= j. It is proved that {B ′
i ,B

′
j }= 0 implying {Bi,Bj}= 0 as the

parameters α1 and β1 are positive.
In other words, Bob2 also requires the anticommuting observables to obtain the maximum quantum

value of (E2)Q. We then calculate

ω ′
1 =

(
(2α2

1 +
2

3
β2
1)

2 +(
2

3
β2
1)

2
(
4+B2{B1,B2}B3{B1,B3}−B2{B1,B2}B1 −B1B3{B1,B3}+B3{B1,B3}

×B2{B1,B2}−B3{B1B3}B1 −B1B2{B1,B2}
)
+(2α2

1 +
2

3
β2
1)
2

3
β2
1

(
{B1,B2}2 + {B1,B3}2 − 4

))1/2

.

(57)

Using {Bi,Bj}= 0, we get ω ′
1 = 2(α2

1 −
β2
1
3 ). Similarly, we find ω ′

2 = ω ′
3 = ω ′

1 .
Putting the values of ω ′

1 , ω
′
2 and ω

′
3 , the maximum quantum value of the elegant Bell expression (E2)Q

can be obtained from equation (56) as

12
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Figure 3. Optimal trade-off between quantum bound of elegant Bell inequality of Bob1 and Bob2 is shown by the solid green
curve while the shaded portion gives the suboptimal range. The solid orange line is for classical bound for the same two observers.

(E2)Q = 2

(
α2
1 −

β2
1

3

)
(E)optQ .

By inserting the values of α1 and β1, we have (E2)Q in terms of unsharpness parameter as

(E2)Q =
1

3

(
1+ 2

√
1−λ21

)
(E)optQ . (58)

Note that, the maximum values of (E1)Q and (E2)Q in equations (52) and (58) are dependent only on the
unsharpness parameter λ1 as (E)optQ is common. Writing (E2)Q in terms of (E1)Q we get

(E2)Q =
4√
3

1+ 2

√√√√1−

(
(E1)Q

(E)optQ

)2
 . (59)

It can be seen for equation (59) that if Bob1 extracts more information then the quantum value of (E1)Q
increases and consequently decreases the value of (E2)Q and hence there is a trade-off between the values of
(E2)Q and (E1)Q. Figure 3 represents the optimal trade-off relation written in equation (59) where the green
curve shows the quantum values where each point on its surface certifies a unique value of unsharpness
parameter λ1. For (E1)Q = (E2)Q = 12(4+

√
3)/13≈ 5.291, both the Bob1 and Bob2 gets equal advantage

as shown by the blue point on the surface of the curve which uniquely certifies the value of sharpness

parameter λ1 = (
√
57+ 24

√
3)/13≈ 0.763.

Similarly, the quantum value of elegant Bell expression between Alice and Bob3 can be calculated as
(E3)Q = Tr[ρAB3(E)] where ρAB3 is the average state shared between Alice and Bob3. Then, the elegant Bell
expression between Alice and Bob3 can be re-written as

(E3)Q = Tr
[
ρAB1

(
(A1 +A2 +A3 −A4)B

′ ′
1 +(A1 +A2 −A3 +A4)B

′ ′
2 +(A1 −A2 +A3 +A4)B

′ ′
3

)]
(60)

where B ′ ′
1 , B

′ ′
2 and B ′ ′

3 are explicitly defined in appendix C.
Now, we can use the SOS approach as mentioned earlier to obtain the optimal value of (E3)Q. But,

(B ′ ′
i )2 ̸= I and hence needs to be normalised. By considering ω ′ ′

1 = ||B ′ ′
1 ||, ω ′ ′

2 = ||B ′ ′
2 || and ω ′ ′

3 = ||B ′ ′
3 ||

and by using the SOS approach we obtain

(E3)Q =max(ω1ω
′ ′
1 +ω2ω

′ ′
2 ++ω3ω

′ ′
3 ) . (61)
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Figure 4. Optimal trade-off between quantum bound of elegant Bell inequality of Bob1, Bob2 and Bob3. The black point on the
three-dimensional graph indicates the point which certifies the unsharpness parameters λ1 and λ2 when quantum values of all
three sequential Bobs are considered to be equal.

Note that, B ′ ′
i and B ′ ′

j with i( j)i̸=j ∈ {1,2,3} can again be proved to be mutually anticommuting. That is,
Bob3 requires the anticommuting observables to obtain the optimal quantum value. Using the

anticommutation relation we then calculate ω ′ ′
1 = 4(α2

1 −
β2
1
3 )(α

2
2 −

β2
2
3 ). Similarly, we find ω ′ ′

2 = ω ′ ′
3 = ω ′ ′

1 .
The quantum value for Alice and Bob3 can be written as

(E3)Q = 4

(
α2
1 −

β2
1

3

)(
α2
2 −

β2
2

3

)
max

(
ω1 +ω2 +ω3

)
(62)

= 4

(
α2
1 −

β2
1

3

)(
α2
2 −

β2
2

3

)
(E)optQ . (63)

Writing (E3)Q in terms of the unsharpness parameters λ1 and λ2 we get

(E3)Q =
1

9

(
1+ 2

√
1−λ21

)(
1+ 2

√
1−λ22

)
(E)optQ (64)

which can be generalised for Alice and any arbitrary kth Bob (Bobk) as

(Ek)Q =
1

3k

k−1∏
i=1

√
3
(
1+ 2

√
1−λ2i

)
(E)optQ . (65)

Further, (E3)Q can be simplified in term of (E1)Q, (E2)Q as

(E3)Q =
1

9
(1+∆1)

(
1+

√
4+ 4∆1 −∆2

1+∆1

)
(66)

where∆1 = 2

√
1−

(
(E1)Q
(E)optQ

)2
and∆2 =

√
3(E1)Q
4

.

Optimal trade-off between quantum bound of elegant Bell inequality of Bob1, Bob2 and Bob3 are given
by equation (66) and plotted in figure 4. The brown cube represents the preparation non-contextual bound
showing no trade-off. The three-dimensional semi-paraboloid over the cube represents the trade-off between
quantum bound. For sharp measurement of Bob3 with λ3 = 1, each point on the surface of the semi
paraboloid in figure 4 uniquely certifies λ1 and λ2. The black point on the surface of the semi paraboloid
uniquely certifies λ1 = 0.644 and λ2 = 0.763 for (E1)Q = (E2)Q = (E3)Q = 4.462.
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5.2. DI self-testing statement in sequential scenario
Thus, the optimal triple {(E1)Q,(E2)Q, (E3)Q} uniquely certifies the states shared between Alice and of
Bob1, Bob2 and Bob3, their observables, and the unsharpness parameters of Bob1 and Bob2. The self-testing
statements are the following,

(a) Alice performs the sharp measurement of her observables in any arbitrary local dimension, satisfying
the functional relations in equation (45).

(b) Bob1 performs unsharp measurement corresponding to three observables that are mutually
anticommuting in any arbitrary local dimension. The set of observables of Bob2 and Bob3 are the same.

(c) Alice and Bob1 share a maximally entangled state in any arbitrary dimension.
(d) The optimal triple pair {(E1)Q,(E2)Q,(E3)Q} certifies the unsharpness parameters λ1 and λ2 which, in

turn, self-tests the shared state between Alice, Bob1, Bob2 and Bob3 respectively. As shown in figure 4,
each point on the surface of semi-paraboloid self-tests unique values of unsharpness parameters
λ1 and λ2.

5.3. Robust certification of unsharpness parameters
Similar to the sequential CHSH scenario, for sub-optimal violation of elegant Bell expression, the certifiable
range of λ1 from equations (52) and (58) can be calculated as

(E1)Q

(E)optQ

< λ1 <

√√√√1− 1

4

(
3(E2)Q

λ2(E)optQ

− 1

)2

. (67)

Equation (67) shows that for the optimal quantum value of (E)optQ , the lower bound of λ1 depends only on

the maximum quantum value of (E1)Q. Since, (E)optQ is 4
√
3, for violating the elegant Bell inequality Bob1

requires (E1)Q > 4, which fixes lower bound of unsharpness parameter as (λ1)min ≈ 1/
√
3≈ 0.57. Any value

of λ1 ∈ [1/
√
3,1] therefore provides the quantum advantage for Bob1.

The upper bound of unsharpness parameter λ1 is a function of λ2 and the maximum quantum value of
(E2)Q. To get advantage for Bob2, two sequential Bob requires (E1)Q,(E2)Q > 4. Considering Bob2 performs
sharp measurement (λ2 = 1), the upper bound on the unsharpness parameter i.e. (λ1)max from

equation (67) is calculated as (λ1)max =
√√

3/2≈ 0.93. Thus, when both Bob1 and Bob2 get quantum
advantage, the interval 0.57< λ1 < 0.93 can be certified.

Now, the range of λ1 becomes more restricted if the quantum advantage is further extended to Bob3
which demands (E1)Q,(E2)Q,and (E3)Q > 4. In such a case, from equations (52) and (64), the interval of λ1
is narrower down to 0.57< λ1 < 0.77 which requires a more efficient experimental realization.

Again, if sequential Bobs up to Bob3 get the quantum advantage, the range of λ2 can be calculated from
equations (58) and (64) as

3(E2)Q

ξ1(E)optQ

< λ2 <

√√√√1− 1

4

(
9(E3)Q
ξ1

− 1

)2

(68)

where ξ1 =
(
1+ 2

√
1−λ21

)
. Equation (68) shows that both the upper and lower bound of λ2 are dependent

on λ1. Thus, the range 0.65< λ2 < 0.87 can be certified. Further, from equation (64) the lower bound of
(λ3)min is calculated as,

(λ3)min =
9(E3)Q

ξ1

(
1+ 2

√
1−λ22

)
(E)optQ

≈ 0.78. (69)

Now, considering Bob1, Bob2 and Bob3 implement their unsharp measurements with lower critical
values of unsharpness parameters at their respective sites, from equation (65) we get (E4)Q = 3.84, i.e. Alice
and Bob4 cannot violate elegant Bell inequality, thereby will not provide any quantum advantage over
preparation non-contextual bound.

6. Summary and discussion

The precise control of quantum devices plays a crucial role in the development of quantum technologies.
Therefore, developing elegant protocols for certifying quantum devices is indispensable in quantum
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information theory. In this work, we provided DI self-testing of unsharp instruments based on two Bell
inequalities, viz., the CHSH inequality and the elegant Bell inequality. Note that the optimal quantum
violation of a Bell inequality uniquely self-tests the state and the observables. We discussed that such a
violation does not certify the post-measurement states, and hence self-testing the unsharp instrument is not
possible in that way. We demonstrated that the sequential Bell test by multiple independent observers on one
side of the Bell experiment enables the self-testing of post-measurement states, which, in turn, uniquely
self-tests the unsharp instruments. The optimal quantum violation of CHSH inequality can be achieved only
for sharp measurement, and for unsharp measurement, one obtains the sub-optimal value. Notably, the
sub-optimal quantum value may also arise due to the nonideal preparation of the state or the inappropriate
choices of the local observables. However, as explicitly discussed in [52], the primary criticism regarding DI
self-testing of unsharp measurement through a Bell test arises from Naimark’s theorem, which states that any
non-projective measurement can be viewed as a projective measurement in a higher-dimensional Hilbert
space. Since there is no bound on dimension in DI self-testing, one can always argue that the sub-optimal
quantum violation arises from the inappropriate choice of observables in higher-dimension and not from
the unsharp measurement.

By providing the dimension-independent optimization of the sequential Bell test, we provided a scheme
for self-testing of unsharp instruments. As mentioned, the sequential sharing of nonlocality by multiple
independent observers plays a crucial role in our work. Crucially, such a sharing of quantum correlation
without assuming the dimension of the system has not hitherto been discussed. Here, we impose no bound
on the dimension of the system, and the quantum devices are taken as black boxes. We introduced an elegant
SOS approach enabling us to derive the maximum quantum values in the sequential Bell test. We note here
that the semi-DI certification of the unsharp instruments in a sequential prepare-measure scenario was
demonstrated in [53] by using a qubit system. In [53], the authors leave DI self-testing of an unsharp
instrument as an open question which is now provided in our work.

We first considered the sequential sharing of CHSH nonlocality where Alice always performs sharp
measurement and an arbitrary k number of sequential Bobs (Bobk) who perform unsharp measurements on
their local sub-system. If the first observer (Bob1) performs a sharp projective measurement, the
entanglement between Alice and Bob1 will be lost, and there is no chance that Alice and Bob2 will violate the
CHSH inequality. On the other hand, if Bob1 performs an unsharp measurement, a sufficient residual
entanglement may remain to exhibit the violation of CHSH inequality between Alice and Bob2. In such a
case, we jointly maximized the sub-optimal quantum advantages for both sequential observers and
demonstrated that there exists a trade-off relation between the two sequential quantum violations. The
sub-optimal quantum violations form an optimal pair which eventually self-tests the unsharp instrument of
Bob1 along with the entangled state and the observables of Alice, Bob1 and Bob2. In the CHSH scenario, at
most, two sequential Bobs can share the nonlocality, and hence only one unsharpness parameter can be
self-tested.

We extend our treatment to the sharing of preparation contextuality based on the elegant Bell inequality.
We demonstrated that the preparation contextuality can be shared up to a maximum of three sequential
Bobs. We jointly maximized the sub-optimal sequential quantum values by using the SOS approach without
assuming the dimension of the system. There is a trade-off between the three sub-optimal quantum values
for Bob1, Bob2, and Bob3 violating the elegant Bell inequality. Three sub-optimal quantum values form an
optimal triple which in turn self-tests the unsharp instruments of Bob1 and Bob2. In the process of
maximization of the sub-optimal values, the entangled state and the observables of Alice and of Bob1, Bob2,
and Bob3 are self-tested.

We note that due to unavoidable losses and imperfection in the actual experimental scenarios, the unique
certification of the unsharpness parameter is not possible. In such a case, we provided an analysis of robust
certification so that a range of the unsharpness parameter can be certified. The more perfect the actual
experiment, one can achieve more accurate the certification of the unsharpness parameters.

We conclude by proposing the following future direction and potential applications. Our work can be
further generalized to self-test an arbitrary number of unsharp instruments based on the quantum violation
of a family of preparation non-contextual inequalities proposed in [74]. It can be interesting to study the
sequential sharing of preparation contextuality by multiple numbers of observers on one side of the Bell
experiment. Using the SOS approach one can simultaneously maximize the sub-optimal quantum values
corresponding to the independent sequential observers. This can be an interesting line of future study. Our
work has immediate application in generating a higher amount of DI-certified randomness. In a recent work,
based on the sequential sharing of nonlocality by using the two-qubit entangled state, the generation of a
higher amount of randomness was proposed [5], which is experimentally tested in [77]. The self-testing
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protocol provided here can be used to generate a higher amount of DI-certified randomness. This calls for
further study.
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Appendix A. Calculation to show that every sequential Bob requires same set of
observables

Here we show that the set of observables require for achieving the maximum quantum violation for Bob1
and Bob2 are the same. Let Bob1 performs measurement of B1 and B2 on his local subsystems upon receiving
input y1 ∈ {1,2} on the entangled state ρAB1 , and Bob2 upon receiving input y2 ∈ {1,2} performs
measurements of the observables B3 and B4 on a state ρAB2 producing outputs b2 ∈ {−1,+1}. Putting ρAB2

from equation (13), we can explicitly write the CHSH expression between Alice and Bob2 as

(B2)Q = Tr

[
ρAB1

((
A1 +A2

)
B̄+

(
(A1 −A2)

¯̄B
)]

(A1)

where B̄= 2α2
1B3 +β2

1

(
B1B3B1 +B2B3B2

)
and ¯̄B= 2α2

1B4 +β2
1

(
B1B4B1 +B2B4B2

)
.

By writing equation (A1) in terms of the unsharpness parameter and rearranging, the CHSH expression
can be written as

(B2)Q = Tr

[
ρAB1

(
γ1

(
(A1 +A2)B3 +(A1 −A2)B4

)
+
γ ′
1

2

(
(A1 +A2)(B1B3B1 +B2B3B2)+ (A1 −A2)(B1B4B1 +B2B4B2

))]
(A2)

where γ1 =
1

2
(1+

√
1−λ21) and γ

′
1 =

1

2
(1−

√
1−λ21).

The first term in equation (A2) has the form of CHSH inequality where B3 and B4 can be proved as
mutually anticommuting by the SOS approach. Since γ1 > γ ′

1 , we can then write

(B2)Q ⩽ γ1 max
(
||(A1 +A2)||+ ||(A1 −A2)||

)
+

γ ′
1

2

(
(A1 +A2)(B1B3B1 +B2B3B2)+ (A1 −A2)(B1B4B1 +B2B4B2)

)
.

(A3)

It is simple to show that {(B1B3B1 +B2B3B2),(B1B4B1 +B2B4B2)}= 0 which requires B1 = B3 and B2 = B4,
and in turn {B1,B2}= 0.

Appendix B. Detailed calculation for sequential quantum value of elegant Bell
expression for Alice and Bob2

To derive optimal quantum value of the elegant Bell expression written in equation (54) we require the
(unnormalized) observables to be B ′

1, B
′
2 and B ′

3 mutually anticommuting. We show that {B ′
i ,B

′
j }= 0 implies

{Bi,Bj}= 0 where i, j= 1,2,3 with i ̸= j.
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{B ′
1,B

′
2} (B1)

= 4

(
α2
1 +

β2
1

3

)2

{B1,B2}+
4
3
β2
1

(
α2
1 +

β2
1

3

)(
B1B3{B2,B3}+B2B3{B1,B3}+B3{B1,B3}B2 +B3{B2,B3}B1

)

+

(
2
3
β2
1

)2(
{B1,B2}3 − 3{B1,B2}−B1B3{B2,B3}−B2{B1,B2}B2 −B1{B1,B2}B1 −B3{B2,B3}B1

−B3{B1,B3}B2 −B2B3{B1,B3}+B2{B1,B2}B3{B2,B3}+B3{B2,B3}B2{B1,B2}+B3{B1,B3}B1{B1,B2}

+B1{B1,B2}B3{B1,B3}+B3{B1,B2}B3

)
(B2)

The co-efficients α1 > 0, β1 ⩾ 0. So, the above expression can only be zero when {Bi,Bj}= 0 where
i( j) ∈ 1,2,3.

To derive the optimal quantum value of (E2)Q in the equation (54) we use SOS approach where
ω ′
i = ||B ′

i || with i ∈ {1,2,3} where ||.||2 is the Euclidean norm of a vector. The optimal quantum value of
(E2)Q can be obtained as

(E2)
opt
Q =max(ω1ω

′ +ω2ω
′
2 +ω3ω

′
3) = 2

(
α2
1 −

β2
1

3

)
(E)optQ (B3)

Appendix C. Detailed calculation for the sequential quantum value of elegant Bell
expression for Alice and Bob3

The average reduced state for Alice and Bob3 is calculated by using equation (51) as

ρAB3 =
1
3

∑
b2∈{+,−}

3∑
y2=1

(
I⊗Kb2|y2

)
ρAB2

(
I⊗Kb2|y2

)
= 4
(
α2
1α

2
2 +

β2
1β

2
2

3

)
ρAB1 +

4
3

(
α2
1β

2
2 +β2

1α
2
2

) 3∑
y2=1

(I⊗By2)ρAB1(I⊗By2)+
4β2

1β
2
2

9

×
(
B1B2ρAB1B2B1 +B2B1ρAB1B1B2 +B1B3ρAB1B3B1 +B3B1ρAB1B1B3 +B2B3ρAB1B3B2 +B3B2ρAB1B2B3

)
(C1)

The quantum value of elegant Bell expression between Alice and Bob3 from equation (C1) is given by

(E3)Q =max
(
Tr
[
ρAB1

(
(A1 +A2 +A3 −A4)B

′′
1 +(A1 +A2 −A3 +A4)B

′′
2 +(A1 −A2 +A3 +A4)B

′′
3

)])
where

B ′ ′
1 =

(
4α2

1α
2
2 +

4β2
1β

2
2

3
+

4α2
1β

2
2

3
+

4β2
1α

2
2

3

)
B1 +

(
4α2

1β
2
2

3
+

4β2
1α

2
2

3
+

4β2
1β

2
2

9

)
(B2B1B2 +B3B1B3)

+
4β2

1β
2
2

9
(B1B2B1B2B1 +B1B3B1B3B1 +B3B2B1B2B3 +B2B3B1B3B2), (C2)

B ′ ′
2 =

(
4α2

1α
2
2 +

4β2
1β

2
2

3
+

4α2
1β

2
2

3
+

4β2
1α

2
2

3

)
B2 +

(
4α2

1β
2
2

3
+

4β2
1α

2
2

3
+

4β2
1β

2
2

9

)
(B1B2B1 +B3B2B3)

+
4β2

1β
2
2

9
(B2B1B2B1B2 +B2B3B2B3B2 +B3B1B2B1B3 +B1B3B2B3B1), (C3)

B ′ ′
3 =

(
4α2

1α
2
2 +

4β2
1β

2
2

3
+

4α2
1β

2
2

3
+

4β2
1α

2
2

3

)
B3 +

(
4α2

1β
2
2

3
+

4β2
1α

2
2

3
+

4β2
1β

2
2

9

)
(B1B3B1 +B2B3B2)

+
4β2

1β
2
2

9
(B3B1B3B1B3 +B3B2B3B2B3 +B2B1B3B1B2 +B1B2B3B2B1). (C4)

It can also be proved that {B ′ ′
i ,B

′ ′
j }= 0 with i, j= 1,2,3 provided {Bi,Bj}= 0.
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