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Abstract
The next core-collapse supernova in the Milky Way or its satellites will represent a
once-in-a-generation opportunity to obtain detailed information about the explosion of a star and
provide significant scientific insight for a variety of fields because of the extreme conditions found
within. Supernovae in our galaxy are not only rare on a human timescale but also happen at
unscheduled times, so it is crucial to be ready and use all available instruments to capture all
possible information from the event. The first indication of a potential stellar explosion will be the
arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide
an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors
with significant backgrounds so they can store their recent data. The supernova early warning
system (SNEWS) has been operating as a simple coincidence between neutrino experiments in
automated mode since 2005. In the current era of multi-messenger astronomy there are new
opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova
beyond the simple early alert. This document is the product of a workshop in June 2019 towards
design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique
advantages of prompt neutrino detection to maximize the science gained from such a valuable
event.

1. Introduction

The explosion of a star within the Milky Way Galaxy will provide us with a front row seat of physics under
conditions that could never be produced in a terrestrial experiment. While the remnants of the explosion
will be observable for many thousands of years, the information about what occurred in the core of the star
to cause the explosion will be most easily found in the first tens of seconds. It is therefore imperative that we
be able to detect the supernova as soon as it begins—if not sooner.

The familiar blast of light visible across the Universe is not really when a supernova begins: that
electromagnetic radiation starts when the shockwave from the stellar core’s collapse reaches the surface and
breaks out. Neutrinos are produced at the start of the core collapse process, and escape a supernova
explosion well before the photon emission is visible and thus provide the earliest opportunity to anticipate
the imminent appearance of a galactic supernova in time to alert observatories. The supernova early
warning system (SNEWS) is an open, public alert system that has provided the capability for such an early
warning since 2005 by combining the detection capabilities of a variety of neutrino detectors worldwide
(Antonioli et al 2004). If several detectors report a potential supernova within a small time window, SNEWS
will issue an alert to its subscribers which include astronomical observatories, neutrino detectors, and
amateur astronomers and citizen scientists. SNEWS is one of the few successful examples of
cyberinfrastructure spanning major neutrino experiments.

Since the SNEWS network was first established over a decade ago, the particle astrophysics landscape has
evolved considerably. The detection of gravitational waves by LIGO/Virgo along with electromagnetic
observations of a neutron star merger (Abbott et al 2017a), and the subsequent possible observation of
neutrinos from an active blazar by IceCube (Aartsen et al 2018) have ushered in a new era of
multi-messenger astrophysics. At the same time, neutrino detector technologies and data analysis
techniques have progressed in recent years, and the ability of detectors to detect and analyze neutrinos from
galactic supernovae in real time has improved substantially.
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In its current form, SNEWS is designed to send a prompt alert based on a simple coincidence, but its
functionality can be extended to take advantage of these recent advances. The overarching aim is to enhance
the overall science obtained from the next galactic core-collapse supernova (CCSN). These are expected to
occur rarely enough [1.63 ± 0.46/century in the Milky Way (Rozwadowska et al 2021)] that we need to
extract all the information possible from the next such CCSN to happen. Specifically, the goals of SNEWS
2.0 are to:

• reduce the threshold for generating alerts in order to gain sensitivity;

• reduce alert latency;

• combine pointing information from individual experiments and enhance it via timing triangulation;

• implement a pre-supernova alert based on the rising neutrino flux which precedes core-collapse;

• develop a follow-up observing strategy to prepare the astronomical community for the next galactic
supernova; and

• engage amateur astronomer and citizen science communities through alert dissemination and
outreach.

In this paper, we describe enhancements to SNEWS to exploit new opportunities in the era of
multi-messenger astrophysics as a means of realizing these goals. Section 1 introduces the existing network
and the overall plan. Section 2 provides background on the types of transient events that are of interest to
SNEWS and the characteristics of their signals at Earth. Section 3 describes how pointing information can
be extracted from a neutrino signal via anisotropic interactions and signal triangulation between multiple
detectors. Section 4 explores the possibility of producing an earlier warning by measuring the
pre-supernova neutrino flux from stars during silicon burning, which directly precedes core-collapse.
Section 5 is a review of the SNEWS design, how SNEWS 2.0 alerts will be disseminated, and how follow-up
observations can be incorporated, while section 6 describes the experiments involved. Finally, section 7
discusses public outreach, including how SNEWS 2.0 will interface with amateur astronomers and citizen
scientists.

1.1. Current configuration (SNEWS 1.0)
The SNEWS 1.0 system was designed to give a supernova neutrino alert that was

• Prompt, providing an alert within minutes and followup within hours;

• Positive, with less than one false alarm per century; and

• Pointing, providing a sky location if and when possible by passing along experiments’ estimates.

The design was primarily driven by the positive requirement. Only extremely high quality coincidences
could automatically trigger an alert. All other coincidences would require human intervention before an
alert could be triggered.

SNEWS (https://snews.bnl.gov) currently involves an international collaboration of supernova neutrino
detectors: Super-Kamiokande, LVD, IceCube, Borexino, KamLAND, HALO, and Daya Bay (with NOvA,
KM3NET, and Baksan testing their connections to join soon). SNEWS has been operational since 1998 and
has been running in a fully-automated mode since 2005 with near-100% up-time. The main idea of SNEWS
is to provide prompt, high-confidence alerts of nearby CCSN by requiring a burst coincidence between
detectors; this allows alarms from individual detectors to go out promptly without needing a human check.

SNEWS operates two ‘coincidence servers’: a primary server at Brookhaven National Laboratory and a
backup at the University of Bologna. The participating experiments each run their own online supernova
monitors, and run client code provided by SNEWS to send datagrams to the servers if supernova-like bursts
are observed. The minimal information provided in the client datagram is the experiment, time of the first
event of the burst, and a burst-quality parameter. Experiments may choose to provide directional and burst
size information if it is available promptly. ‘Gold’ alerts, for which input datagrams must satisfy several
quality criteria, are sent out automatically by the server to a mailing list if a coincidence within 10 s is
found. Email alerts are provided first to the other experiments and to ‘express-line’ subscribers [LIGO,
ANTARES, and the gamma-ray coordination network (GCN) (Barthelmy et al 1995)], and they are also
available by direct socket connection (NOvA and XENON1T). ‘Silver’ alerts are sent to the experiments
only.

The current SNEWS requirement for accidental-coincidence alerts is that they must occur less than once
per century. If individual input alarm rates become too high, or there are other low-quality indicators in the
input, coincidence output is demoted to ‘silver’. Single experiments may also send datagrams to SNEWS
with sufficiently well-vetted alarms to be propagated automatically as ‘individual’ alerts. Detailed
information on coincidence criteria for the configuration of SNEWS can be found in (Antonioli et al 2004,
Scholberg 2008). A weekly test alert is sent via GCN every tuesday at noon eastern.
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1.2. SNEWS 2.0
SNEWS 2.0 will be an upgrade of the SNEWS system for the age of multi-messenger astronomy. In this
environment, false alarms are acceptable, low probability events should be reported, and SNEWS will be
one of many multi-messenger alert systems. Nevertheless, SNEWS remains unique by combining data from
different neutrino observatories, and providing clear summaries of neutrino data for astronomers. This
section outlines a number of improvements which will be made using more detectors and different
techniques than the original SNEWS.

Recent additions to the suite of potential detectors for the next galactic supernova are large dark matter
detectors. Capitalizing on the recently-discovered coherent elastic neutrino-nucleus scattering (CEνNS)
(Akimov et al 2017), those detectors rely on the coherent enhancement of the neutrino cross-section for
supernova burst detection that can be probed thanks to low (<keV) energy thresholds. Those detectors
provide a flavor-insensitive detection channel and thus a total-flux measurement of the total energy going
into neutrinos, independent of, for example, uncertainties from neutrino oscillations (Lang et al 2016,
Chakraborty et al 2014). Furthermore, the combination of CEνNS and inelastic interaction channels will
help to disentangle oscillation effects. Currently, these detectors need improved understanding of
backgrounds at the lowest energies that are relevant here (Aprile et al 2014, Sorensen 2017, Sorensen and
Kamdin 2018). So far, XENON1T has a dedicated trigger following an SNEWS alert. SNEWS 2.0 aims to go
a step further to enable the integration of dark-matter detectors as inputs to SNEWS.

SNEWS 2.0 also intends to develop and provide a true pre-supernova alert—a pre-core-collapse alert.
This is based on the predicted uptick in neutrino production that accompanies the final burning stages of a
doomed star (Odrzywolek et al 2004a, Kato et al 2017, Patton et al 2017a). This alert has been implemented
in KamLAND (Asakura et al 2016), and provides a 3σ detection 48 h prior to the explosion of a 25 M� star
at 690 pc. Extending this alert to the network should expand the sensitivity to a larger fraction of the galaxy.

SNEWS 2.0 could also be used to communicate and organize planned shutdowns or downtime in each
detector to ensure that the overall supernova detection livetime is not affected, since other participating
experiments can cover.

1.3. Lowering the threshold
One general benefit of combining detectors’ data real-time would be the lowering of the effective threshold
for observing a signal. An astrophysical neutrino signal would be observable in many detectors at once, but
might be not strong enough to be significant in any one detector. Since most detectors are large enough to
be sensitive to a CCSN somewhere in our galaxy, the most obvious benefit of being able to see farther
against the inverse-square law flux suppression with distance is not as useful as it might seem at first, with
the exception of a supernova in the Magellanic clouds, where the distance is substantial and the flux is
borderline for most detectors. However, a combination of detector signals allowing for more sensitivity to
low flux would enhance the world’s ability to notice any unusually low flux events. Four important
examples of this are the pre-supernova neutrinos introduced in the previous section (elaborated on in
section 4), the neutrinos emitted at the latest times in the burst (Weishi Li et al 2020), and neutrinos from
three other types of potential transient bursts described in section 2.4. As the current range of such
detection is only hundreds of parsecs, increasing sensitivity via comparing sub-threshold signals in different
experiments will increase the number of progenitors under observation by a factor of distance cubed.

These pre-supernova neutrinos have a lower energy (∼a few MeV) and a much lower flux than CCSN
neutrinos. Being low energy, there are also more potential background events to confuse with a potential
signal. In the near future, lowering the energy thresholds and better background rejection are in the plans
for both running and planned detectors, expanding the experiments able to do so (currently, only
KAMLAND has this capability). For example, delayed coincidence with gadolinium is being implemented
Super-Kamiokande, which effectively lowers the energy threshold by the confirmation of inverse-β decay
events (Beacom and Vagins 2004). At liquid-scintillator detectors, the low energy threshold (1.8 MeV) is
achieved via good scintillation light production. The detection of keV-neutrinos will be practical via CEνNS
at large dark-matter detectors. A supernova alert with pre-supernova neutrinos has been investigated in
several recent works (Kato et al 2017, Asakura et al 2016, Raj et al 2020, Simpson et al 2019, Li et al 2020).

In addition to the developments in individual neutrino detectors, their combination via SNEWS 2.0
reduces the uncertainty of the supernova alert and effectively lowers the threshold for the alert issue.
Because the energy of pre-supernova neutrinos increases as the pre-supernova stellar core evolves, an earlier
alert is possible by combining different experiments’ sub-threshold data to provide plenty of preparation
time for the detection of other observables. This earlier alert will maximize the information to be gained
from multi-messenger astronomy, yielding information of supernovae from a different perspective.
Moreover, pre-supernova neutrinos will be one of the useful tools to prove the theory of stellar evolution
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Figure 1. Time sequence for multi-messenger signals pre- (left panel) and post- (right panel) core collapse of a non-rotating 17
M� progenitor star. Neutrinos (νe, ν̄e, and νx are shown by red, thick red, and magenta lines, respectively, where νx represents
heavy-lepton neutrinos: νμ, ντ , ν̄μ, and ν̄τ ), gravitational waves (blue line), and electromagnetic signals (black line) are shown.
Solid lines are predictions from a hydro-dynamical simulation with axis-symmetric radiation, while dashed lines are approximate
predictions. Neutrino emission prior to collapse arises from the last moments of stellar evolution, but is quickly overtaken during
collapse by the neutrino burst. The electromagnetic signal exhibits the shock breakout (SBO), plateau, and decay components.
Note that the height of the curves does not reflect the energy output in each messenger; the total energy emitted after the bounce
in the form of ν̄e, photons, and gravitational waves are ∼6 × 1052 erg, ∼4 × 1049 erg, and ∼7 × 1046 erg, respectively. The focus
of SNEWS 2.0 is to establish the neutrino burst as an alert for gravitational waves and electromagnetic followup, as shown by
arrows. Adapted from (Nakamura et al 2016).

(Kato et al 2015, Yoshida et al 2016) and long term detection over several stellar evolutionary phases and
experiments will improve the results.

2. Stellar core collapse signals

The dominant source of supernova neutrino bursts are CCSN. These type of supernova occur when a
massive (more than ∼8–10M�) star, after successively burning elements from hydrogen to silicon, forms an
inert, but growing, iron core. This core soon reaches the effective Chandrasekhar mass and collapses due to
the unmatchable strength of gravity. The collapse continues until the density reaches nuclear densities
where the equation of state stiffens and the nuclear force is able to stabilize the core against gravity. The
formation of the protoneutron star also leads to the formation of a shock wave. It is this shock wave that for
successful supernovae will traverse the star over the course of minutes to hours and unbind all but the
innermost material. CCSN emit signals in three cosmic messengers—electromagnetic emission, neutrinos,
and gravitational waves—and also cosmic rays at later times. Figure 1 shows an example of the expected
time sequence for these signals, starting from before (left panel) and after (right panel) core bounce.

While each cosmic messenger is valuable by itself, when analyzed together, they provide a comprehensive
understanding that is impossible to achieve from any single one of them alone. Multi-messenger
astrophysics had two foundational discoveries in 2017: a binary neutron star merger that produced
gravitational waves and electromagnetic radiation (Abbott et al 2017a), and the coincident detection of
high-energy neutrinos and electromagnetic emission from a blazar (Aartsen et al 2018). We expect
multi-messenger observations of the next galactic CCSN offer similar synthesis opportunities. Coordinating
timely follow-up observations that enable a true multi-messenger analysis demands rapid identification and
characterization of the neutrino signal, along with prompt broadcasting to ensure that transient emission
only detectable on short time scales is recorded. Enabling this coordination is the SNEWS2.0 raison-d’être.

2.1. Neutrinos from core collapse supernovae
The neutrino emission from a core collapse supernova in our Galaxy cannot be hidden in any way. The
neutrinos are not obscured by dust as electromagnetic signals may be, nor would failure of the explosion
mean the supernova would evade our detection: a large burst of neutrinos would still be emitted prior the
formation of a black hole. Finally, the present detection horizon for neutrinos reaches out beyond the edge
of the Milky Way. For all these reasons, neutrinos are a unique messenger to provide a compelling trigger
for an alert. Coupled with gravitational waves (whose detection will also be enhanced by the precise timing
information provided by neutrinos) and electromagnetic observations, the neutrinos will allow us to piece
together a comprehensive picture of the supernova from the moment of core collapse to supernova SBO
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and beyond. Expected features in the neutrino signal will permit us to probe a long list of topics, including:
key aspects of the supernova explosion mechanism (e.g. fluid instabilities vs core rotation), the nuclear
equation of state, the stellar radius and interior structure, explosive nucleosynthesis, the nature of the
remnant core (neutron star vs black hole), as well as answer questions about the fundamental properties of
neutrinos, and even test beyond-standard-model physics (Horiuchi and Kneller 2018). To fully develop
these prospects, it is essential the supernova be detected to the latest times possible with good flavor and
spectrum information (Weishi Li et al 2020, Nakazato and Suzuki 2020). The multi-messenger nature of the
supernova signal greatly helps in extracting this information from the neutrinos. For example, it has been
shown by (Warren et al 2020) that the neutrino emission is correlated with the gravitational wave signal
which would aid in disentangling the neutrino oscillation effects.

2.2. Gravitational wave signals from core collapse
Together with neutrinos, gravitational waves provide a unique probe of the core collapse in realtime. The
emission of gravitational waves is strongly dependent on the asymmetry of the collapsing core and the
nuclear equation of state, opening a view of the collapsing core complementary to neutrinos (Janka 2017,
Kotake 2013, Morozova et al 2018). By combining gravitational waves with neutrinos and electromagnetic
waves, key aspects of the collapse, from the spin of the collapsed core to the supernova explosion
mechanism and black hole formation, become be more robustly probed. At present, even for a conservative
prediction of the emitted gravitational wave signal, detectors such as Advanced LIGO, Advanced Virgo, and
KAGRA are able to detect CCSN gravitational waves out to a few kpc from the Earth, while future detectors
such as the Einstein Telescope can reach the entire Milky Way. The detection horizon of the circular
polarization can be significantly larger than the gravitational wave amplitude, and can also help reveal inner
dynamics (Hayama et al 2018).

Several mechanisms can generate gravitational waves during a CCSN, for a recent review see
(Abdikamalov et al 2020) and references therein. The majority of these signals have the common feature of
being short and ‘burst like’, i.e. impulsive signals lasting less than a second and very difficult to model.
These characteristics make detection more challenging. The identification of a temporal window in which
to look for the signal significantly increases the detection efficiency. Neutrinos can provide the best
temporal trigger for this gravitational wave search; indeed the neutrino signal for a galactic CCSN allows the
time of the core ‘bounce’ to be identified within a window of ∼10 ms or less (Pagliaroli et al 2009a, Halzen
and Raffelt 2009). The use of this information improves the background reduction of gravitational wave
detectors, with consequent increases of the detection capability (Nakamura et al 2016). In the case of
long-lasting GW emission due to neutron star oscillations (Radice et al 2019) the identification of the time
of the bounce through neutrinos could provide a reference point to start the search.

2.3. Electromagnetic signals
EM radiation in the first hours to days after core collapse explosion provides critical information about the
progenitor star and the overall energy budget and dynamics of the core collapse explosion. A few hours to
days after the core collapse, the supernova shock breaks out of the progenitor surface, suddenly releasing the
photons behind the shock in a flash bright in UV and x-rays, known as SBO emission. SBO has been
observed on rare occasions in extragalactic systems (Soderberg et al 2008, Gezari et al 2010, Bersten et al
2018). The SBO signal provides important information about the supernova, such as the radius, mass, and
structure of the progenitor star, and the kinematic energy associated with the rapidly expanding ejecta.
Initial observations of the gamma flux from the first moments of an SN will be also be important to help
constrain the terrestrial effects of gamma rays from historical SNe on atmospheric chemistry and climate
science (Robert Brakenridge 2020, Timothy Jull et al 2018). Knowledge of where and when to anticipate the
signal will ensure that the peak luminosity and duration of the SBO (strongest at UV and soft x-ray
wavelengths) is not lost. Even including SN1987A, the precise time between onset of core collapse and shock
break out has never been measured (Arnett et al 1989, Ensman and Burrows 1992). Prompt alert and
coordinated follow up with SNEWS 2.0 will make this possible.

2.4. Other transients
While CCSN are expected to be the dominant type of supernovae in the Milky Way, they are not the only
astrophysical sources of neutrino bursts. Bursts are also expected from type Ia supernovae (SNIae),
pair-instability supernovae (PISNe), compact object mergers, and possibly others yet unknown. There are a
number of questions, many fundamental, about these other neutrino transients so that a neutrino signal
from any one of them would represent as rich an opportunity to advance our knowledge as the signal from
a core collapse.
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2.4.1. Type Ia supernovae
The progenitor systems of type Ia supernovae and their associated explosion mechanisms remain debated.
The possible progenitors of SNIae—and the observational constraints upon the various scenarios—are
discussed extensively in Maoz, Mannucci and Nelemans (Maoz et al 2014) and Ruiz-Lapuente
(Ruiz-Lapuente 2014). Even if we accept the canonical model of a SNIa as the disruption of a
Chandrasekhar mass (1.4 M�) carbon-oxygen white dwarf, many different scenarios for how the explosion
proceeds can be found in the literature (Khokhlov 1991, Plewa et al 2004, Bravo and García-Senz 2006). We
refer the reader to Hillebrandt et al (Hillebrandt et al 2013) for a review.

The neutrino emission from a limited number of SNIa simulations has been computed (Odrzywolek
and Plewa 2011, Wright et al 2016, 2017a). Wright et al considered the most optimistic case (known as the
DDT) and a more general case (their GCD case). The number of events they expect in a 374 kt
water-Cherenkov detector from a SNIa at a distance of 10 kpc is of order 1 for the DDT case and 0.01 for
the less optimistic GCD. A SNIa would have to be within a few kpc in order to detect tens of events but the
probability the next galactic supernova is within 5 kpc is only of order 10% according to Adams et al
(Adams et al 2013).

2.4.2. Pair instability supernovae
Very massive stars can explode as a PISN if they form a carbon-oxygen core in the range of 64 M�
< MCO < 133 M� (Heger and Woosley 2002). The temperatures in these cores are sufficiently high and the
electron degeneracy sufficiently low that electron–positron pairs are created. The formation of the pairs
softens the equation of state causing a contraction of the core triggering explosive burning of the oxygen
(Barkat et al 1967, Rakavy and Shaviv 1967, Fraley 1968). The energy released is enough to unbind the
entire star leaving behind no remnant. Some models of PISNe produce very large amounts of 56Ni and PISN
are candidates for some superluminous supernovae (Smith et al 2007, Gal-Yam et al 2009, Cooke et al 2012,
Lunnan et al 2016).

The long-standing expectation of theorists is that only metal-free stars could remain sufficiently massive
to explode as PISN (Heger and Woosley 2002). However this expectation has been challenged in recent
years. (Langer et al 2007) found PISN can occur in stars with metallicities as large as Z�/3 while (Georgy
et al 2017) obtained the conditions for a PISN at near solar metallicities if they included surface magnetic
fields. Thus, theoretically at least, a PISN in the Milky Way or one of its satellites cannot be ruled out.

The rate of PISNe is uncertain because (a) observationally we lack an unambiguous method for
discriminating these kind of supernovae from the others and (b) theorists have not reached a consensus on
which masses at a given metallicity produce these kinds of events. The estimate by Langer et al is for a rate
of 10−4 yr−1 but that could be larger by an order of magnitude if the recent revisions to the progenitor are
correct.

The neutrino signals from two PISN simulations have been computed by (Wright et al 2017b). The two
models they considered were a low-mass and high-mass case so that the computed signals spanned the
range of possibilities. The flux at Earth from a ‘small’ PISN at 10 kpc was similar to the most optimistic
SNIa case i.e. around 1–2 events, but for a ‘large’ PISN at the same distance the flux was much larger,
between 50–100 events depending upon the equation of state and the neutrino mass ordering.

2.4.3. Compact object mergers
The neutrino emission from merging neutron stars has been computed by (Rosswog and Liebendörfer
2003) and the neutrino emission from a black-hole–neutron star merger simulation was computed by
(Caballero et al 2009). In both cases the neutrino emission is similar to that from a CCSN i.e. the neutrino
luminosities and mean energies are within a factor of a few of those found in core-collapse simulations),
and therefore give similar event rates in detectors. However there are differences: in a core-collapse there are
more neutrinos than antineutrinos emitted and the duration of the burst is of order 10 s. In a neutron star
merger the opposite matter–anti-matter ratio is expected and the signal lasts for 1 s unless the supermassive
neutron star can be prevented from forming a black hole. The rate of black-hole–neutron star mergers in
not known precisely but the rate of neutron star–neutron star mergers can be better estimated because
there exist a number of such systems in the Milky Way. (Abadie et al 2010) calculate the likely event rate to
be 10−4 yr−1 while (Kalogera et al 2004a, b) give the plausible range to be from 10−6 yr−1 to 10−3 yr−1.

To detect neutrinos from black-hole–neutron star and neutron star–neutron star mergers is challenging.
A promising strategy is to search for neutrinos in time-coincidence with detections of mergers in
gravitational waves, using a time window of, e.g. 1 s after each merger (Kyutoku and Kashiyama 2018, Lin
and Lunardini 2020). This strategy reduces the backgrounds very effectively so that, in fortunate
circumstances, even the detection of a single, time-coincident neutrino can be statistically significant. If
alerts from Advanced LIGO (Abadie et al 2010) (which has a distance of sensitivity to mergers of about
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Figure 2. Optical follow-up requirements for the next galactic supernova. The top panel shows a histogram of the apparent
magnitude probability distribution for the SBO signal of a galactic supernova (uncertainties not shown; see text). The bottom
panel shows the magnitude sensitivity range and fields of view (FOV) of optical telescopes: ASAS-SN, Blanco, CFHT, Evryscope,
LSST, Pan-STARRS, Subaru, and ZTF. When the optical magnitude is brighter than ∼15 mag, early detection is feasible thanks to
the wide FOV of small-aperture telescopes. However, fainter cases are more challenging since there are no >1 m telescope with a
FOV larger than ∼6◦ diameter. Therefore, this sets the target accuracy for triangulation by SNEWS 2.0. Note that for the
brightest supernovae, telescopes will need high-quality filters for accurate photometry, shown by the fading color. Adapted from
(Nakamura et al 2016).

200 Mpc) were used, a megaton water Cherenkov detector could record about 1 neutrino detection per
century (Kyutoku and Kashiyama 2018). When operating in synergy with third-generation gravitational
wave observatories, like the proposed Einstein Telescope (Punturo et al 2010), and Cosmic Explorer (Abbott
et al 2017b) (sensitivity up to redshift z ∼2), the same detector could identify of up to a few neutrinos from
mergers per decade, and start placing constraints on the parameters space already after a decade or so of
operation (Lin and Lunardini 2020).

3. Pointing to the supernova with neutrinos

While supernovae are optically highly luminous, a large fraction are anticipated to be heavily attenuated by
dust along the line of sight, typically within the disk of the Milky Way. The supernova optical signal as
observed at Earth has been estimated adopting a standard intrinsic supernova luminosity distribution,
galactic distribution for supernova occurrence, and a simple model of galactic dust extinction. According to
(Nakamura et al 2016, Adams et al 2013), the dominant fraction (some 50%) will be observable with 1–2 m
class telescopes in the optical band. An additional 10% of supernova can be observed by larger 4–8 m class
telescopes, while the faintest 25% will be as faint as 25–26 magnitudes and require dedicated observations
by the largest available telescopes (however, dust attenuation uncertainties are large in this regime, being at
least a few magnitudes). This is illustrated in the top panel of figure 2. The FOV of the relevant telescopes
typically do not cover more than several degrees in a single pointing, as shown by the rectangular boxes on
the bottom panel of figure 2. This highlights the quantitative demands for a combined rapid (in time) and
accurate (in direction pointing) alert.

In order to be an effective trigger, the neutrino alert needs to be sent faster than the delay between
neutrinos and the first electromagnetic signal, and also alert the pointing in the sky to within a few degrees.
The SNEWS 2.0 alert will be automated and sent electronically to meet the timing demands (see section 5).
Triangulation-based pointing will be implemented in SNEWS 2.0. Such pointing techniques were originally
explored in (Beacom and Vogel 1999) and further developed by (Mühlbeier et al 2013, Brdar et al 2018,
Linzer and Scholberg 2019).

An important consideration is that an alert may be associated with an event that is challenging to
observe at EM wavelengths. Possible scenarios include a distant supernova associated with large extinction
due to dust and/or formation of a black hole with a weak explosion. In these cases follow up strategies
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Figure 3. Reconstructed skymap of MC simulated Super-K supernova event direction vectors. Red points: anisotropic elastic
scatter events, blue points: IBD and other nearly isotropic events, star point: direction vector from supernova (Abe et al 2016).

informed by the neutrino alert are needed. For example, in extreme scenarios the Vera Rubin Observatory’s
field of view and photometric depth are uniquely suited (Walter et al 2019).

3.1. Anisotropic interactions
3.1.1. Water Cherenkov
Large water Cherenkov detectors (WCDs), such as Super-K and the future Hyper-K, have potentially good
supernova pointing capability through the anisotropic neutrino–electron elastic scattering (ES) interaction
(Beacom and Vogel 1999, Tomas et al 2003). The majority of supernova neutrinos interact in WCDs
through inverse beta decay (IBD). In IBD the direction of the outgoing positron is nearly random with
respect to the direction of the incoming supernova neutrino. The angular distribution of measured positron
directions from a large number of IBD events is necessary to detect (and possibly use) the small anisotropy
in the direction of the neutrino flux.

Fortunately, a few percent of the interactions are due to elastic scatter of the supernova neutrinos from
electrons. The outgoing electrons are preferentially forward-scattered and the reconstructed direction of the
scattered electron is correlated to the direction of the incoming neutrino. The angular distribution of
measured electron directions from ES shows a strong correlation with the direction of the neutrino flux.
The magnitude of the anisotropy varies with neutrino energy and flavor. However, since the ES cross
sections are small, a large detector mass is required to measure enough ES interactions for direction finding.
At present WCDs cannot accurately differentiate between IBD and ES interactions, although adding
increasing amounts of gadolinium to Super-K will improve this. Thus, the high ratio of IBD to ES
interactions reduces the signal-to-noise ratio of the direction signal, as shown in figure 3.

In a large WCD the direction of the neutrino flux (and therefore the supernova direction) may be found
by analyzing the energies and direction vectors of the electrons/positrons, reconstructed from the
Cherenkov ring for each event. For example, the current Super-K real-time supernova burst monitor
performs SN direction finding using a maximum likelihood method (Abe et al 2016). The direction and
energy of each event is used to calculate the likelihood of a given supernova direction and event reaction
channel based on a probability density function determined from supernova neutrino flux models and
Super-K MC simulations. The supernova direction angles, and other parameters, are varied until the total
likelihood is maximized. The pointing accuracy for a supernova at 10 kpc is estimated using a modern
supernova model to be 4.3◦–5.9◦ (68.2% C.L.) covering all combinations of neutrino oscillations and mass
orderings. This will improve to 3.3◦–4.1◦ for the fully doped SK-Gd.

The accuracy of supernova direction finding based on the anisotropy of ES events depends on the
number of events. This varies with detector volume, supernova distance, neutrino oscillations and
supernova mass and neutrino emission mechanisms. The coming Mtonne-scale WCDs, such as
Hyper-Kamiokande, will also have improved direction finding due to increased statistics in the ES channel.
The pointing accuracy for Hyper-K is expected to be 1◦–1.3◦ (Abe et al 2018).

The introduction of small amounts of gadolinium into the water volume of WCDs will allow accurate
tagging of individual IBD events. Thus, direction finding routines could de-weight or exclude the IBD
events, potentially increasing the speed and pointing accuracy. Super-K will be implementing such an
upgrade in the near future.
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Figure 4. Angular uncertainty (68% C.L.) as a function of a galactic supernova distance for different existing and proposed
detectors along, with their associated masses (Fischer et al 2015).

3.1.2. Liquid argon
Liquid argon time projection chambers (LArTPC) detectors have the ability to do fine-grained tracking of
the final-state particles, and, like WCDs, can exploit the intrinsic directionality of anisotropic interactions in
the detector. Ability to tag different interaction channels also helps. ES interactions on electrons with
well-known energy dependence can be used, as well as the charged-current νe absorption interactions on
40Ar. The latter have a relatively weak anisotropy but large statistics.

Unlike water Cherenkov signals, the tracked electrons have a head-tail ambiguity that results in about
half of them with a fake reconstructed backwards direction. This ambiguity can be resolved statistically
using sophisticated reconstruction techniques. Improvement by using the directionality of bremsstrahlung
gammas, which are emitted preferentially in the electron travel direction, has been demonstrated in DUNE.
Using a likelihood technique with the ensemble of electron scattering and νeCC events, DUNE has
demonstrated about 5◦ pointing for a 10 kpc supernova signal (Abi et al 2020a).

3.1.3. Liquid scintillator
Liquid scintillator and WCDs alike are mostly sensitive to IBD interactions—the major difference between
the two being that such interactions are considered a background for supernova pointing in the latter while
they are considered a signal in the former. Indeed, while considered isotropic at first order, the positron and
neutron emitted after an IBD interaction both possess a slight energy-dependent anisotropy (Strumia and
Vissani 2003). At the energies of interest for supernova neutrino detection, the positron quickly deposits its
energy and therefore most of the anisotropy is carried away by the neutron, always emitted in the forward
direction. Although this appears to be similar to the forward emission of an electron in ES, detecting a
neutron direction is arduous in large scintillator detectors. In the vast majority of cases, only the position of
the neutron capture vertex after thermalization and diffusion can be determined. For each IBD interaction,
a direction vector, starting at the reconstructed positron vertex and ending at the reconstructed neutron
capture vertex, can be defined. Due to the smearing caused by the neutron transport after its creation, a
single IBD vector is not sufficient to efficiently reconstruct its neutrino incoming direction. However, the
analysis of thousands or more of IBD interactions can help reconstruct the statistical direction of an
incoming neutrino flux, as demonstrated by the CHOOZ collaboration with about 2700 events (Apollonio
et al 2000).

Such an analysis can be performed to determine the expected direction of a supernova-induced neutrino
flux, as shown in (Fischer et al 2015). In this study, the statistical nature of the supernova direction
reconstruction through IBD anisotropy was exploited by combining the direction vectors of all IBD
interactions from several liquid scintillator-based detectors, existing or proposed. While the pointing
capabilities of individual existing detectors, shown in figure 4, are no match for the accuracy of Super-K,
their combination, as well as the introduction of JUNO in a near future, provides non-negligible pointing
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information. With the addition of JUNO to the existing large liquid scintillator detectors, supernova
pointing accuracy through IBD interactions could reach 12 degrees (68% confidence level (C.L)) for a
supernova located 10 kpc away.

It is worth noting that efforts are underway to extract directional information from the small amount of
Cherenkov light which leads the largely isotropic scintillation light (Aberle et al 2014). The CHESS
experiment found that a time resolution of 338 ± 12 ps (FWHM) was required for reasonable efficiency in
separating the two light components in a mixture of LAB with 2 g L−1 PPO (Caravaca et al 2017). An
alternative to fast PMT’s is to slow the emission of scintillation light (e.g. (Wang and Chen 2020, Biller et al
2020)), which is possible with different scintillators and fluors. Finally, the different spectra of the two
components may be exploited using dichroic filters (Kaptanoglu et al 2019, 2020). Such ideas may be
exploited in future liquid scintillator detectors, or upgrades of current ones.

3.2. Triangulation
In triangulation, the time delays of neutrino events observed between detectors at different geographical
locations are used to infer the direction of the supernova. For a pair of detectors i and j, the delay between
them Δtij is defined as follows:

Δtij = �dij · �n/c, (1)

where �dij is the vector connecting two detector sites and �n is the unit vector defining the direction of the
CCSN. The vector �n is calculated from the right ascension, α, declination, δ, of the source in the geographic
horizontal coordinate system, and the event Greenwich mean sidereal time, γ, expressed as an angle
(Coleiro et al 2020):

�n = (− cos(α− γ) cos δ,− sin(α− γ) cos δ,− sin δ). (2)

For simplicity, in recent studies (Brdar et al 2018, Linzer and Scholberg 2019, Coleiro et al 2020) γ has been
fixed to 0◦; we note that the results are expected to be qualitatively insensitive on the choice of such
parameter, especially for supernovae in the galactic center (where α is large). For a known Δtij and �dij,
equation (1) defines a cone that has a thickness 2δ(cos θij) due to the uncertainty δ(Δtij). Typically, Δtij ≈
30 ms for pairs of neutrino detectors since the Earth diameter corresponds to a time delay of ∼40 ms. The
uncertainty δ(Δtij) can be evaluated for each detector pair as in (Linzer and Scholberg 2019, Coleiro et al
2020); or as δ(Δtij) = Max(δti, δtj), where δti, δtj are each detector uncertainties defined independently as
in (Brdar et al 2018). The probability that a test position in the sky (α, δ) coincides with the equatorial
coordinates of the CCSN can be evaluated with the following χ2 function:

χ2
ij(α, δ) =

(
Δtij(α, δ) −Δtdata

ij

δ(Δtij)

)2

, (3)

the minimum of the function gives the best estimate for the angles (α, δ) for the searched CCSN location in
the sky.

Different detector pairs can be combined into a total χ2 by summing each contribution:

χ2(α, δ) =
i<j∑
i,j

χ2
ij(α, δ). (4)

The χ2(α, δ) function is converted into a p-value, p(α, δ) = p(χ2(α, δ) � χ2
min), which is the probability of

observing a χ2 smaller or equal to the minimum χ2 value obtained scanning all possible directions (α, δ).
The 90% C.L. error box of the source localization area is determined as a collection of all points on the sky
with a p-value p(α, δ) < 0.9.

Figure 5 shows the results of some early studies (Linzer and Scholberg 2019) performed using the time
of arrival of the first events of a burst in each detector simulated with SNOwGLoBES, and correcting for
biases due to relative event rates in each detector. This method is quite robust against flux uncertainties.
This approach requires additional data processing for long-string Cherenkov detectors, such as IceCube and
KM3NeT, where an event-by-event reconstruction is not feasible.

The authors of (Brdar et al 2018) have demonstrated that by fitting the temporal shape of the neutrino
flux, the uncertainty on the supernova onset time, δt, decreases in comparison to what was reported in
earlier studies (Beacom and Vogel 1999) where, in the absence of results from supernova simulations that
we have nowadays, simple forms for the event rates were assumed. See also (Hansen et al 2020) for a recent
timing analysis.

Figure 6 shows the 1σ regions of supernova directions constrained by several two-detector
combinations. The left and right panel correspond to the case of core-collapse into a neutron star and black
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Figure 5. Left: sky area determined at 1σ by combining IceCube timing information with Super-K, assuming normal hierarchy
and the (Hudepohl 2014) model for a supernova at 10 kpc. The true direction is shown with a black dot. Right: sky area
determined by combining IceCube, DUNE, JUNO, and Hyper-K (Linzer and Scholberg 2019).

Figure 6. Regions constrained at 1σ CL by two-detector combinations, adopted from reference (Brdar et al 2018). The left and
right panels show scenarios of the supernova core-collapse into a neutron star or a black hole, respectively. All regions expectedly
overlap at the supernova location (black dot) which are set in the galactic center.

Table 1. A summary of supernova neutrino arrival time uncertainties (δt)
estimated in reference (Brdar et al 2018). In the second and third columns, the
main detection channel as well as the target are shown for each of the experiments
listed in the first column. The next (last) two columns show the δt values for the
galactic supernova core-collapse into a neutron star (black hole).

Experiments Major process Target δt (ms) δt (BH)

Super-K νe + p → e+ + n 32 kt H2O 0.9 0.14 ms
JUNO νe + p → e+ + n 20 kt CnHm 1.2 0.19 ms
DUNE νe +

40Ar → e− + 40K∗ 40 kt LAr 1.5 0.18 ms
NOνA νe + p → e+ + n 14 kt CnHm 1.4 0.24 ms
CJPL νe + p → e+ + n 3 kt H2O 3.8 0.97 ms
IceCube Noise excess H2O 1 0.16 ms
ANTARES Noise excess H2O 100 32 ms
Borexino νe + p → e+ + n 0.3 kt CnHm 16 5.5 ms
LVD νe + p → e+ + n 1 kt CnHm 7.5 2.4 ms
XENON1T Coherent scattering 2 t Xe 27 10 ms
DARWIN Coherent scattering 40 t Xe 1.3 0.7 ms

hole, respectively. Table 1 summarizes arrival time uncertainties for a number of present and future
neutrino detectors, for neutron star and black hole final states. The advantage of this method is most
evident in cases with rapid temporal variation, in particular the sharp cut-off in the flux arising from the
formation of a black hole. Namely, it was found in (Brdar et al 2018) that a small fraction of events around
the cut-off chiefly determines the timing uncertainty in this scenario (while the events around the onset
were also considered, their effect turned out to be marginal for obtaining δt in the performed statistical
analysis). The disadvantage of the applied fit is its dependence on the theoretical prediction of the flux.

Ideally, one would want to exploit advantages of both first-event method (Linzer and Scholberg 2019)
and the χ2 fit of the full-spectrum (Brdar et al 2018). For instance, including the first couple of events in the
fit (or last few events in case of the black hole scenario), would be less model-dependent than the latter and
statistically more robust than the former.

In order to reduce model dependency for the χ2 fit of the full light-curve, direct matching of the detected
neutrino light-curves has been explored in (Coleiro et al 2020) using two different techniques to evaluate
the signal arrival time and its uncertainty: χ2 and normalized cross-correlation. The results reproduced in
figure 7 and table 2 show that an uncertainty area of ∼70 deg2 (at 1σ level) in the sky can be achieved when
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Figure 7. Confidence area in equatorial coordinates for a CCSN at the galactic center (black dot) computed using triangulation
between four detectors: IceCube, KM3NeT/ARCA, Hyper-Kamiokande and JUNO. Their position is indicated with the black
squares. Figure from (Coleiro et al 2020).

Table 2. Uncertainty δt in milliseconds obtained with the chi-square method using average background subtraction
and unity normalization of the detector neutrino light-curves. The detector pairs are listed in row and column
names.

KM3NeT/ARCA Super-Kamiokande Hyper-Kamiokande JUNO

IceCube 6.65 ± 0.15 1.95 ± 0.04 0.55 ± 0.01 1.95 ± 0.04
KM3NeT/ARCA — 7.4 ± 0.2 6.70 ± 0.15 7.4 ± 0.2
Super-Kamiokande — — — 2.75 ± 0.06
Hyper-Kamiokande — — — 1.99 ± 0.04

combining four current and near-future detectors sensitive to IBD (IceCube, KM3NeT-ARCA,
Hyper-Kamiokande and JUNO). Techniques for further data-driven optimization, once the supernova has
been observed, have also been investigated. Systematic effects will be explored using detailed core collapse
supernova explosion models and more realistic detector descriptions.

4. Presupernova neutrinos

Several days before core collapse begins, neutrino production in the core and inner shells of the star
increases dramatically, as nuclear fusion proceeds through its final stages of carbon, oxygen and silicon
burning. These pre-supernova neutrinos are due to enhanced thermal emission (Odrzywolek et al 2004a, b,
Odrzywolek and Heger 2010)—as the temperature inside the star increases progressively—and to beta
processes involving a large network of nuclear species (Kato et al 2017, Patton et al 2017a, b). The emissivity
is dominated by νe and ν̄e (the flux of non-electron neutrino species will be comparable after flavor
conversion inside the star); their energy spectra are typically sub-MeV, with a peak at ∼1–3 MeV in the last
hours of the emission (figure 8).

The total energy emitted in pre-supernova neutrinos is weak, orders of magnitude below the energy of
the post-collapse burst. Therefore, its detectability is limited to nearby stars, at distances up to ∼1 kpc (see,
e.g. (Yoshida et al 2016, Patton et al 2017a, b)). There are about 40 supernova-ready stars (stars that are
already in the supergiant stage) within this radius from Earth, the best known of which are Betelgeuse and
Antares. The detection of pre-supernova neutrinos will thus be a much rarer event than the detection of a
supernova burst; considering its exceptional character, every possible measure should be put in place the
ensure it is not missed. A pre-supernova alert, made hours before the collapse, would provide precious extra
time to prepare multi-messenger observations of the collapse and ensure all detectors are taking data (in
neutrinos and gravitational waves, and possibly exotic particles, like the axion) and of the explosion of the
star. It would be especially important if the collapsing star has already shed its envelope and is left with a
relatively low mass, resulting in a short time [possibly under 1 h, see, e.g. (Müller et al 2019)] between the
collapse and the explosion.

A methodology for a pre-supernova alert has been implemented in KamLAND (Asakura et al 2016). It is
estimated that it could provide a 3σ detection 48 h prior to the explosion of a 25 M� star at 690 pc.
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Figure 8. Equatorial coordinates of supernova-ready blue and red supergiant stars within ∼1 kpc of Earth [adapted from
(Mukhopadhyay et al 2020)].

Extending this alert to those experiments in the network with low enough thresholds should expand the
sensitivity to a larger fraction of the galaxy. At this time, the potential to identify the progenitor
star—possibly using a combination of directional neutrino detections and theoretical priors—has not yet
been studied. In the near future, Super-Kamiokande will be loaded with gadolinium to improve its neutron
tagging efficiency. Once completed, its sensitivity to pre-supernova neutrinos is expected to be similar to
that of KamLAND (Simpson et al 2019).

Large direct dark matter detection experiments based on argon and xenon can constitute efficient
pre-supernova detectors (Raj et al 2020), because of scalable fiducial volumes as well as very low thresholds.
Due to heavy nuclear targets, these experiments can take full advantage of coherent neutrino–nucleus
scattering from pre-supernova neutrinos, allowing to bypass the kinematic threshold limiting IBD
scattering to neutrinos with energies above 1.8 MeV as well as sensitivity to all neutrino flavors. Hence, large
dark matter detectors can provide complementary pre-supernova neutrino information to that of dedicated
neutrino experiments.

5. The SNEWS alert and followup

The science of SNEWS depends upon developing and sustaining a software stack with a number of separate
but interrelated components:

• A neutrino data aggregator

• A platform for analyzing this data to generate alerts

• A system for tracking and updating alerts from SNEWS 2.0 and member experiments

• A system for combining and summarizing alerts intelligently

• A system for distributing and archiving alerts

Aggregating neutrino data: SNEWS 1.0 has a long track record of receiving certified, confidential burst
alerts from neutrino detectors. These alerts currently contain very little information about the burst, but it
should be straight-forward to expand the types of information that can be reported. For example, neutrino
‘light curves’ for triangulation calculations, neutrino–electron scattering directional error boxes, and
constant time-series of significances to allow detection of sub-threshold bursts or pre-SN neutrinos.

Analyzing burst data: because SNEWS receives certified data from a large number of experiments, it can
serve as a platform for performing analyses that are enhanced by combining information from multiple
detectors. The data of course belong to those experiments not to SNEWS, and it is vital that the
experiments are happy with the way their data are being used and credited. Any specific combination
analysis could be considered a ‘virtual experiment’. Before an analysis is implemented, each detector
participating in a given virtual experiment will have signed MOUs with SNEWS and the other detectors
involved in that analysis, so that exactly who is sharing what and what the output will look like is carefully
defined in advance. Some examples of these virtual experiments would be the SNEWS burst trigger itself, a
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pre-supernova neutrino trigger, a triangulation-based pointing algorithm, and combining skymaps from
multiple pointing methods.

Tracking and updating alerts: as new information comes in, either updates and refinements from a
previously reporting experiment or late-arriving measurements from a different experiment, the alert will
be updated.

Combining and summarizing alerts: in the event of a galactic supernova, there will be many
observation reports coming in very quickly on a number of alert networks. In this case, the goal for SNEWS
2.0 should be to quickly summarize the information from the neutrino community so that it is digestible
for the astronomy community. In particular, SNEWS should have a mechanism for intelligently combining
sky maps from multiple experiments without human intervention.

5.1. Real-time algorithmics
A new suite of software beyond the existing SNEWS coincidence server will need to be designed, written,
tested, commissioned, and sustained. The success of SNEWS depends on having robust and reliable
cyberinfrastructure, which requires developing and supporting intracollaboration code from SNEWS itself
while leveraging other prior MMA investments when applicable. For instance, the scalable
cyberinfrastructure to support multi-messenger astrophysics (SCIMMA) project (https://scimma.org/)
(Chang et al 2019) is already developing tools for general purpose multi messenger astronomy software
infrastructure, including user management and messaging backend that could be leveraged for SNEWS 2.0.
SNEWS and SCIMMA have created a joint prototype, replicating SNEWS 1.0 functionality using
SCIMMA’s ‘Hopskotch’ toolkit. Other software infrastructure also exist that SNEWS can integrate into,
especially to provide machine-readable output to facilite follow-up observations; e.g. the astrophysical
multimessenger observatory network (AMON; (Smith et al 2013)).

To ensure the provenance of message origin, SNEWS incorporates software infrastructure to facilitate
digital certificate generation, signing, distribution, and revocation for the purpose of signing and encrypting
neutrino event messages. Messages not signed and encrypted with a valid client certificate are ignored and
discarded. This software will need to be upgraded for the enhanced trigger. Effort needs to be made to
ensure reliable time synchronization throughout the participating instruments and analysis hosts.
Monitoring and alerting to system time deviations as well as host, network, and detector down times will be
developed.

The triangulation calculations will require access to adequate computation resources in order to process
incoming neutrino event messages to generate alerts in a timely manner. Investigation will need to be
undertaken to determine the adequacy of existing compute infrastructure for this purpose. Should it prove
inadequate, software systems will be developed to leverage additional, existing compute resources for this
purpose. Standard software libraries and programming practices will be utilized to the fullest extent
possible.

Finally, given the rarity of the occurrence of events this system is designed to detect, end-to-end online
testing will need to be integrated into the software design. It should be possible to fully test and verify the
system without affecting the live monitoring for neutrino event messages.

5.2. Multimessenger follow-up
The part of the long-standing SNEWS project which has always been about true multi-messenger
astrophysics has been exploiting the ∼hours head start neutrinos have on electromagnetic radiation, to
provide astronomers across the electromagnetic spectrum with an early warning, so they can make the best
use of the once-in-a-career event of a galactic supernova. The existing simple coincidence of experimental
neutrino triggers has no directional information. Currently, only Super-K has any directional sensitivity to
[10–100]MeV neutrinos, via the forward nature of neutrino-electron scattering. This analysis can be
published via SNEWS, but not automatically. In the SNEWS 2.0 coincidence network, an automated
analysis of the fine timing signals in various detectors has the possibility of producing intersecting error
bands on the sky. This can provide direction for astronomers to start looking and thus enhances the
prospect that very early light from a supernova, just as the shock breaks out through the photosphere, can
be recorded in multiple wavelengths.

Notably, modern transient surveys are now capable of promptly mapping large regions of sky on rapid
timescales. In the case of GW170817, an extensive observing campaign of facilities covering the
electromagnetic spectrum was able to discover optical counterpart to the merger within 11 h using 31 deg2

localization provided by the Advanced LIGO and Advanced Virgo detectors. The Zwicky Transient Facility
(ZTF), operating in the northern hemisphere, uses custom-built wide-field camera on the Palomar 48 inch
Schmidt that provides a 47 deg2 field of view capable of mapping the entire visible sky in ≈4 h to a limiting
magnitude of r ∼21 mag (Bellm et al 2019). Soon, the Rubin Observatory operating the Legacy Survey of
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Space and Time (LSST) will be operational. The LSST camera will have a field of view of 9.6 deg2. Though
smaller than ZTF, LSST will have substantially improved sensitivity, reaching r ≈ 24 mag in a single 10 s
exposure. Wide-field imaging at near-infrared wavelengths is also now possible [e.g. Palomar Gattini-IR;
(Moore et al 2016)]. These individual facilities, along with networks of telescopes already familiar with how
to effectively coordinate multi-messenger follow up (e.g. Global Relay of Observatories Watching Transients
Happen [Kasliwal et al 2019); Global Rapid Advanced Network Devoted to the Multi-messenger Addicts
(Agayeva et al 2020)] can provide precise localization at optical and near-infrared wavelengths that other
ground- and space-based observatories sensitive to emission from the supernova across the electromagnetic
spectrum can act upon.

Additionally, gravitational wave astronomy is now a reality. Gravitational waves also escape the nascent
supernova promptly. However, unlike merging compact objects, the expected signal of a core collapse
supernova in gravitational waves is highly dependent upon asymmetries in the matter distribution. A
symmetric collapse, even if nearby, could make very little signal in gravitational wave detectors, but
whatever signal it does provide will be an important component to understanding the supernova itself.
Knowing the detailed neutrino ‘light curve’ as soon as possible will help the gravitational wave community
to unravel what they are seeing in their detectors, facilitating rapid followup campaigns. In particular, by
using the same analysis used to do triangulation, SNEWS 2.0 can provide, to the GW community, the
temporal window in which to look for the GW signal. The gain that this information produces has been
investigated in (Nakamura et al 2016) for a CCSN located in the galactic center and emitting the GW signals
of figure 1. The observation of the CCSN with neutrinos from Super-K alone allows the identification of a
time window of 60 ms around the time of the bounce where the GW signal is expected; the SNEWS 2.0
triangulation goal (section 3.2) hopes to identify this time to an order of magnitude tighter precision. By
using this information the SNR of the GW signal increases from ∼3.5 to ∼7.5 (for 60 ms precision),
expanding the gravitational detection horizon. This is especially important for GW from CCSN, since the
amplitude of the GW from CCSN are a strong function of the asymmetry in the collapse, and so could be
weak even for a galactic SN.

With the detection of gravitational waves, and a better understanding of the mechanism of collapse of
the supernova, it could thus be possible to measure the absolute mass of the neutrino via the time difference
of detection between the two signals (e.g. (Vissani et al 2010)).

5.3. Alert broadcasting and optimized observing strategies
The existing SNEWS project relies on a mailing list of interested individuals and direct connections to
experiments (such as NOvA and XENON1T) and projects (GCN) to promulgate any alert to the wider
community. SNEWS2.0 will take advantage of new infrastructure for rapid dissemination (see section 5.1).

Established communication networks (Astronomer’s Telegram, LIGO–Virgo Collaboration Alerts) will
also be part of the dissemination network. Broadcasting of alerts with the SNEWS 2.0 mobile app will reach
both professional and public audiences.

Alerts under SNEWS 2.0 will be accompanied by suggestions for optimized observing strategies and
alerts to suitable facilities. Given the wide range of phenomena that may trigger an alert and the short
turn-around time for response, pre-planned strategies for coordinated response of facilities are necessary to
avoid missed scientific opportunities that may result from observers acting independently. Detection,
location, and information regarding explosion type (e.g. formation of neutron star vs black hole) will
inform follow-up strategies and ensure that it is optimized to maximize scientific return. Strategy
suggestions will leverage the recommender engine for intelligent transient tracking (REFITT) being
developed at Purdue University (Sravan et al 2020). REFITT is an artificial intelligence transient inference
and strategy engine that designs and co-ordinates optimal follow-up of supernova events in real-time.
Having observing strategies that leverage an observing alliance of professional and amateur observers that
join the SNEWS 2.0 response network will maximize use of available technological resources while reducing
redundancy and missed observing opportunities, enabling the extraction of as much science as possible,
particularly during the first few hours following core collapse.

5.4. Latency
Another challenge concerns timing latency. While the delay time between the neutrino emission and the
first electromagnetic signal (arising from the SBO) is typically considered to be on the scale of hours, as it
was in SN1987A, this is only true for the supernova explosion of supergiant stars such as the one shown in
figure 1. However, not all massive stars end their lives as supergiants, and the delay time may be much less.
The delay time has dependencies on multiple parameters including the stellar interior structure and
explosion energy, but is largely driven by the stellar envelope radius which the shock wave must cross before
it can burst out of the star’s photosphere.
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Figure 9. Estimated latency (horizontal axis) for an example configuration of SNEWS 1.0 including the set of experiments most
likely to be in the network in 2021. Each experimental curve is the probability of an alert from that experiment arriving at
SNEWS at the given time and being one of the first two experiments to do so (Abe et al 2016, Acero et al 2020, Agafonova et al
2008, Wei et al 2016). The combined curve is the probability of an SNEWS alert being formed.

In the local Universe, some 25% of CCSN are types Ib or Ic (Li et al 2011), indicating that the progenitor
stars have shed their hydrogen and/or helium envelopes prior to explosion. These stars, known as
Wolf–Rayet stars, have radii that are some ∼1/100 compared to supergiants, thus reducing the time delay
between neutrino emission and first light to a mere minutes. This places stringent requirements on
real-time analysis, on the release of the neutrino trigger information, and on established follow-up
strategies. The inputs to the present SNEWS network will need to be upgraded in order to meet these
stringent requirements, which will require dedicated inter-experiment coordination and collaboration.

As an example of the risk inherent in the current system, figure 9 shows an estimate of the probability as
a function of time that an SNEWS alert is issued for a set of participating experiments similar to that
expected in late 2020 or 2021: NOvA, Super-Kamiokande, IceCube, HALO, KamLAND and KM3NeT.
Estimated livetimes and galactic coverage for each participant have been used to produce this estimate,
along with available information for latency, or reasonable estimates when this is not available. Each
experiment’s curve in this figure is the probability of it being one of the first two to send its trigger to
SNEWS, since the latency of the current SNEWS system is driven by how long it takes two experiments to
report a supernova, forming a coincidence. The calculation of these probabilities is done by a toy Monte
Carlo, drawing supernova distances from the distribution of progenitors, combining this with published
experimental sensitivity curves and livetime fractions, and then drawing a latency from a distribution
corresponding to published experimental trigger reaction times. NOvA, KM3NeT and HALO typically send
their triggers to SNEWS in under a minute. If two of these experiments are live and the supernova is near
enough (all three of these fast experiments also have a limited range), a very rapid alert can be issued.
Otherwise, the alert is much slower and the probability of sending it does not reach 99% until nearly
20 min after the neutrino burst. This delay is partly a consequence of the SNEWS 1.0 requirement of
once-per-century false alarm rates, which imposes a high burden on individual experiments to vet their
data, sometimes involving human intervention. Tolerance of a higher false alarm rate is therefore essential
to delivering timely alerts.

5.5. Data sharing
The extent to which experiments share data will be key to how much we can learn from the next galactic
CCSN. In the current version of SNEWS, experiments send a packet stating that they have seen something
consistent with a burst of supernova neutrinos at some time. If multiple experiments see a burst within 10 s,
an alert will be issued (section 1.1). More information exchanged would make the most of this rare
opportunity. For example, individual experiments’ neutrino ‘light curves’ may provide the quickest, albeit
rough, triangulation (section 3.2) which can help prepare telescopes set up for electromagnetic
observations. Features evident only in the combined light curves may also influence follow-up strategy (see
section 5.3), and a precise neutrino arrival time can help define a gravitational wave search in the case of
spherical symmetry producing smaller waves (section 5.2).

Extensive data sharing may be even more important for the detection of low-flux events such as SNIa,
pair instability SNe, and pre-supernova neutrinos, which may yield only marginally significant signals in
any individual experiment. If experiments share rolling updates of their ‘pre-supernova significance’, their
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Figure 10. The three example tiers of data sharing, increasing in complexity (and usefulness) from left to right, as described in
section 5.5.

combination would increase the sensitive range and advance warning time for the explosion, and indeed
provide important information on the dynamics within the supernova progenitor (see section 1.3).

Participating experiments will choose the degree of data sharing that they are most comfortable with.
Functional levels of data sharing for a given detector can be divided into three example tiers:

(a) Alert tier: the detector sends a message to SNEWS 2.0 indicating that it sees above-threshold activity.
Detectors could also send status messages to indicate whether they are taking data or not; the status
messages are used to evaluate the joint significance of coincident activity, and can also be used to avoid
collective down-times.

(b) Significance tier: in addition to sending alert tier messages, the detector sends messages indicating the
signal significance and other aggregate characteristics of current observations (or null observations),
e.g. a p-value for background or signal (such as the ‘pre-supernova significance’), or a skymap of
p-values when relevant. These messages can be sent periodically or when the significance changes
rapidly (albeit below the threshold of the alert tier).

(c) Timing tier: in addition to alert and significance tier messages, the detector sends information related
to the time series underlying the significance tier information. The time series may consist of individual
event information (such as time stamps and energy), or a distribution of events binned in time, as
appropriate for the detector. Different interaction channels are sent in different time series.

Individual detectors may opt to share at different tiers for pre-supernova and supernova data. In the case
of pre-supernova data, it is clear that significance tier sharing allows SNEWS 2.0 to extend sensitivity
beyond what each individual experiment can manage, while timing tier sharing could provide further
information on what may be expected from the subsequent burst.

For supernova data, the alert tier is similar to what is already done in the original SNEWS. Significance
tier sharing enables pointing back to the supernova, since it is at this level detectors might share derived
quantities such as a common t0 or a pointing based on anisotropic interactions. The drawback is that such
derivations may take considerable time, introducing a latency which could limit its usefulness. Timing tier
sharing, on the other hand, is intended to gather information which is available with low latency and from
which a rough pointing can be derived; this could help telescopes prepare their observation strategies,
which can then be refined with further data (some of which may fall under significance tier sharing). As
mentioned earlier, timing tier data sharing may also reveal features which would be important in
multi-messenger follow-up.

All the data shared with SNEWS remains the property of the originating experiment, and each
experiment will have its own connection with the SNEWS server which will be private from all other users.
SNEWS will store different categories of shared data for the following periods of time: one month, for all
alert tier data, and overall p-values under the significance tier, in order to catch irregularities; 48 h, for
pre-supernova data under significance and timing tiers; and 1 h, for supernova data under significance and
timing tiers (figure 10).
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Figure 11. An example flowchart of how the new SNEWS 2.0 network might function. Each neutrino experiment will contribute
to one or more streams of information. The server will collate, buffer, and sort that information, which analysis plugins will
operate on to produce various outputs.

5.6. Walkthrough example
While the details of the implementation are still being developed, a block diagram of the flow of an
improved SNEWS 2.0 network is shown in figure 11. Each experiment can contribute to one or more data
streams, e.g. a time series of the significance of a supernova neutrino signal over time in that experiment, or
a traditional alert to be used to form a coincidence, as in the original SNEWS. In the event of an alert, extra
information to be used in triangulation could be sent, or neutrino ‘lightcurves’, distance estimates, or other
useful items.

The server itself will sort, collate, and buffer the incoming information, making it available to analysis
plugins that operate on that data. One plugin will combine significance time series to search for signals that
might be sub-threshold in any given experiment. Another might combine t0’s to calculate direction from
triangulation, or take and combine maps of error boxes on the sky from experiments capable of finding
direction in their neutrino signals.

Outputs will also be varied. The traditional SNEWS email alert list will be maintained. Multiple
thresholds of alarms will be available. Also, machine readable outputs formatted for use by existing
multi-messenger astronomy networks will be provided, to allow automated followups of any signals
detected in neutrinos.

6. Supernova-neutrino sensitive detectors

There are a growing number of detectors sensitive to neutrinos from a galactic supernova. They vary widely
in size, detection strategy, and sensitivity. This section provides an overview of the capabilities of
experiments that might contribute to the future efforts described above. This whitepaper simply describes
possibilities, the details of any given experiment’s participation in SNEWS 2.0 would be defined at a later
date in a formal MOU.

6.1. Water Cherenkov detectors
WCDs are based in the instrumentation of a mass of water with photomultiplier tubes. The principle is
exploited in two different detector designs. The first, oriented to low-energy neutrinos, is based on water
tanks located in an underground laboratory. This is the case for the current Super-Kamiokande and the
future Hyper-Kamiokande experiment. The second makes use of long strings (hundreds of meters) of
optical modules to instrument a natural environment, like the Antarctic ice (IceCube), a deep sea site
(KM3NeT) or a lake (Baikal). These detectors are primarily aimed to high energy atmospheric and
astrophysical neutrinos and can reach the cubic kilometre scale.

WCDs are mainly sensitive to electron antineutrinos interacting via IBD with the protons in water.
Secondary channels are ES on electrons and interactions with oxygen nuclei.

6.1.1. Super-Kamiokande
The Super-Kamiokande detector consists in a cylindrical stainless-steel tank of 39 m diameter and 42 m
height, filled with 50 kt of pure water (Fukuda et al 2003). It is optically separated into an inner detector
instrumented with 11 146 Hamamatsu R3600 50 cm diameter hemispherical PMTs (facing inward and fixed
at approximately 2.5 m from the wall) and an outer detector instrumented with 1885 Hamamatsu R1408
20 cm diameter hemispherical PMTs (facing outward and fixed at 2 m from the wall). For supernova
detection, only events in the inner detector are used, corresponding to a mass of 32 kt.
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The detector is located in the Mozumi mine in the Gifu prefecture, Japan. It lies under Mt. Ikeno
(Ikenoyama) with a total of 2.700 mwe mean overburden. Data taking began in April, 1996 and has been
separated (at the time of the writing) into six periods from SK-I to SK-V, plus SK-Gd starting in July, 2020.
SK-Gd is the first period where gadolinium sulfate is dissolved in the tank (0.02% at first). This allows the
detection of a delayed signal from neutron capture on gadolinium following IBDs.

Supernova neutrinos are mainly detected through the IBD channel (ν̄e + p → e+ + n, ∼4–8 K events
at 10 kpc) but ESs on electrons (ν + e− → ν + e−, ν̄ + e− → ν̄ + e−) and interactions on oxygen
(νe +

16O → e− + X, ν̄e+
16O → e+ + X) are also detected (with respectively ∼120–250 and ∼80–250

events at 10 kpc).
The current real-time supernova system only uses events in the SK fiducial volume (inner detector

volume reduced by 2 m from the walls, leading to a fiducial volume of 22.5 kt) and with visible energy
greater than 7 MeV51. For each selected event, a 20 s time-window is opened backward in time. The total
number of selected events Ncluster in this time window is computed, as well as the variable D that identifies
the dimension of the vertex position distribution (D ∈ {0, 1, 2, 3}, corresponding respectively to point-,
line-, plane- and volume-like distributions) (Abe et al 2016).

If Ncluster � 60 events and D = 3, a ‘golden’ warning is generated, without needing any combination
with other detectors before worldwide announcement. If 25 � Ncluster < 60 events and D = 3, a ‘normal’
warning is generated and is sent to Super-Kamiokande experts as well as to SNEWS for combination.
‘Golden’ and ‘normal’ warning correspond respectively to 100% supernova detection efficiency at the Large
Magellanic Cloud and at the Small Magellanic Cloud. The direction of the supernova event can be
recovered using the ESs with a typical angular resolution of 3◦–5◦ (depending on supernova model) for an
event at 10 kpc (Abe et al 2016) and is announced independently by the collaboration in a later notice.

6.1.2. Hyper-Kamiokande
The Hyper-Kamiokande detector will be located 8 km south of Super-Kamiokande, under the peak of
Mt. Nijuugo with an overburden of 1.750 mwe. It will be conceptually very similar to the
Super-Kamiokande detector, with an enlarged volume of 260 kt (217 kt fiducial for supernova),
instrumented with ∼40 000 inward-facing 50 cm diameter PMTs and ∼6 700 outward-facing 20 cm
diameter PMTs (Abe et al 2018).

The 50 cm PMTs for the inner detector are the newly developed Hamamatsu R12860 model, which
improves the timing resolution and detection efficiency by a factor of 2 compared to the model used in
Super-Kamiokande. Alternative designs are currently under consideration, which use ∼20 000 50 cm
diameter PMTs, complemented with several thousand multi-PMT modules, each consisting of multiple
7.7 cm diameter PMTs. An alternative design for the outer detector, which uses a larger number of 7.7 cm
diameter PMTs to increase the granularity at reduced cost, is also under development (Zsoldos 2020).

For a supernova located at 10 kpc, O(10–100k) IBDs and O(1k) electron scatterings are expected in the
detector, allowing precise determination of the energy and time profile of the event, as well as a pointing
accuracy of about 1◦–1.5◦ (Abe et al 2018). By using the reconstructed time and energy of all events,
Hyper-Kamiokande will be able to distinguish clearly between different supernova models even at distances
of up to 60–100 kpc (Migenda 2020).

A special trigger for supernovae is currently being designed for the Hyper-Kamiokande DAQ system and
the experiment is expected to start data taking in 2027.

6.1.3. IceCube
The IceCube Neutrino Observatory is an array of 5160 digital optical modules (DOMs) instrumenting 1
km3 of clear Antarctic ice at the geographic South Pole (Aartsen et al 2017). The DOMs are deployed on 86
strings, with 60 DOMs per string, at depths ranging from 1.450 m to 2.450 m below the surface of the ice
sheet. The strings have an average nearest-neighbor separation of 125 m, and on each string the DOMs are
spaced vertically by 17 m. The detector records the Cherenkov light produced by cosmic ray muons and the
charged particles created by neutrinos interacting in the ice, and uses the relative timing of direct and
indirect Cherenkov photons to reconstruct the energies and arrival directions of the cosmic muons and
neutrinos.

The sparse geometry of IceCube is optimized to reconstruct the arrival directions of neutrinos with
energies between 10 GeV and 10 PeV (Aartsen et al 2017), so the detector cannot be used to reconstruct
tracks from the O(10 MeV) neutrinos produced in CCSNe. However, IceCube is sensitive to the positrons
generated during the IBD of ν̄e, which arrive over ∼10 s during the accretion and cooling phases of a CCSN
(Abbasi et al 2011). The optical absorption length in the ice is >100 m, so the effective volume of each

51 This effectively reduces the number of expected events by ∼30% with respect to the previous paragraph.
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DOM is several 100 cubic meters. The positrons produced in the ice during the ν̄e burst are therefore
observable as a rise in the background count rates in the DOMs over a period of 0.5 s to 10 s.

Depending on the mass of the stellar progenitor, IceCube will record 105 to 106 photoelectrons from a
supernova located 10 kpc from Earth, enabling detailed measurements of the neutrino light curve (Abbasi
et al 2011, Cross et al 2019). If the light curve has significant time structure, such as a cutoff in the ν̄e flux
due to the creation of a black hole, IceCube can provide limited pointing toward the source with a
resolution Δψ ≈ 10◦–100◦, depending on distance and model assumptions. The DOM counts can also
constrain the shape and average energy the ν̄e spectral energy distribution with a resolution of ΔE/E >25%
(Köpke 2018).

Construction of IceCube finished in 2011, and since 2015 the trigger-capable live time of the detector
has averaged 99.7% per year. IceCube thus provides a critical high-uptime monitor for CCSNe in the Milky
Way and Magellanic Clouds. A realtime monitor tracks the photoelectron rates in the IceCube DOMs in
with a resolution of 2 ms. The monitor performs a moving-average search for a collective rise in the DOM
rates in sliding bins of 0.5 s, 1.5 s, 4 s, and 10 s (Abbasi et al 2011), as well as an unbinned search for
significant changes in the collective count rate (Cross and BenZvi 2018). When a statistically significant
increase in the DOM counts is observed, an alert is sent to SNEWS with a latency of ∼5 min. The software
also buffers the full DOM waveforms in a 600 s window around the time of the alert. The buffered
waveforms are not limited by the 2 ms resolution of the online system, and can be used for detailed model
fits of the CCSN light curve (Köpke 2018).

The IceCube detector is currently being upgraded with two new strings instrumented with multi-anode
DOMs (Ishihara 2019, Classen et al 2019), which if deployed in large numbers can improve constraints on
the CCSNe neutrino average energy to ΔE/E ≈ 5% (Lozano Mariscal 2018). A build-out of the detector to
8 km3 and ∼10 000 optical modules (IceCube Gen-2), planned for the late 2020s, will more than double the
photocathode area in the detector (Aartsen et al 2019).

6.1.4. KM3NeT

Is a research infrastructure under construction in the Mediterranean Sea. It comprises two deep-sea
neutrino detectors, ORCA, located offshore Southern France, optimized for neutrino oscillation studies and
ARCA, located offshore Sicily, optimized for neutrino astronomy. They respectively focused on neutrino
oscillations and astrophysics. KM3NeT detectors are arrays of multi-PMT DOMs. The two sites will be
instrumented with over 6000 DOMs for a total of about 200 000 PMTs. KM3NeT DOMs are arranged in
vertical detection lines of 18 DOMs, which are deployed at depths between 2500–3,400 m to form a
three-dimensional array (Adrián-Martínez et al 2016).

KM3NeT sensitivity to CCSN neutrinos on the tens-of-MeV energy scale is mainly achieved through the
detection of IBD interaction products in the proximity of the DOMs. A supernova neutrino burst is
expected to produce an increase in the coincidence rate between different PMTs on the same optical
module. The number PMTs detecting a photon in coincidence can be used to discriminate the signal from
the natural backgrounds, namely bioluminescence, 40K-dominated radioactive decays and atmospheric
muons (Adrián-Martínez et al 2020).

To achieve the best detection sensitivity, a selection based on coincidences with at least six hit PMTs is
defined. The background from atmospheric muons is reduced by rejecting events which are correlated over
multiple DOMs. This reduces the expected background rate below 1 Hz per detection unit. With this
selection, the signal expectation for the accretion phase of a CCSN exploding at 10 kpc is between 50 and
250 events for a 115-lines instrumented block. This selection is used for the sensitivity estimation and
implemented in the real-time KM3NeT supernova trigger.

The KM3NeT detectors will be sensitive beyond the galactic center, reaching the coverage of ∼90%–95%
of progenitors in the Galaxy. Both the online and offline searches are applied within a time window of
500 ms, covering the accretion phase. For the real-time trigger, data is sampled with a frequency of 10 Hz.
The expected detection horizon for a false alert rate compatible with the SNEWS requirement varies
between 13 and 26 kpc, depending on the considered flux model.

For the purpose of CCSN astrophysics studies, the signal statistics can be improved using a selection of
all coincidences (two or more hit PMTs on a DOM) at the cost of a lower purity. With a complete detector
at each site (one instrumented block in ORCA and two in ARCA), KM3NeT is expected to collect 20–50
000 events (see table 4). It will be able to study the neutrino light-curve for signatures of time-dependent
patterns, the determination of the arrival time of the burst and the characterization of the neutrino
spectrum (Colomer et al 2019).

The effective mass of a KM3NeT 115-lines instrumented block is 40–70 kt for all coincidences and 1–3
kt for coincidences with six or more hit PMTs.
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The KM3NeT real-time supernova search is currently operational with a dedicated data processing
pipeline, running on the already connected detection units. Alerts can be sent within 20 s from the
generation of the corresponding data off-shore. The triggering capability under SNEWS requirements
already reaches sensitivity to progenitors closer than 4.5–8.5 kpc. This horizon will increase in the near
future with the deployment of new detection lines.

6.2. Scintillator detectors
6.2.1. Baksan
The Baksan underground scintillation telescope was one of the detectors which observed neutrinos from
SN1987A (Alekseev et al 1987) and is still operational, having continuously watched for SN neutrinos from
1980 till the present (Novoseltsev et al 2020). The experiment is at a depth of 850 mwe in the Baksan Valley,
Kabardino-Balkari, Russia. The experiment’s 330 t of liquid scintillator is primarily sensitive to positrons
produced by IBD, and is divided into two independent sub-detectors operating in coincidence with each
other. The detector elements are grouped by background rate (and thus threshold), with ‘D1’ having 130 t
at an 8 MeV threshold and a background rate of 0.02 Hz, and ‘D2’ 110 t at 10 MeV and 0.12 Hz. This
arrangement further reduces the already low background rate, contributing to the detector’s long-term
stability and >90% uptime. In event of a supernova, the remaining 90 t of scintillator would also record
events, but this section has a background rate of 1.4 Hz so is excluded from the online SN trigger. The
detector and its supernova trigger are detailed in (Novoseltsev et al 2020). A future 10 kt detector is under
development, to be placed at a depth of 4800 mwe (Petkov et al 2020).

6.2.2. LVD
The large volume detector (LVD) is a modular 1 kt liquid scintillation detector and consists of an array of
840 counters located underground (minimal depth 3000 mwe), in the INFN Gran Sasso National
Laboratory (Italy). It has been designed to study neutrinos from CCSN mainly through IBD interactions
(Aglietta et al 1992). The detector modularity allows the experiment to achieve a very high duty cycle,
essential in the search of unpredictable sporadic events, typically greater than 99% over more than 20 years.
LVD has been in operation since 1992, after a short commissioning phase, with an active mass increasing
from 300 t to 1000 t at the time of completion in 2001. The experiment is approaching the
decommissioning phase planned for the end of 2020, after almost 30 years of continuous operations.

During these years, as shown in (Agafonova et al 2015), LVD has been monitoring the entire Galaxy. The
number of expected neutrino events in LVD from a CCSN have been evaluated via a parameterised model
based on a maximum likelihood procedure based on the SN1987A data assuming energy equipartition and
normal mass hierarchy for neutrino oscillations (Pagliaroli et al 2009b). The resulting average ν̄e energy is
Ēν̄e = 14 MeV, for a Eb = 2.4 × 1053 erg total energy SN. At a reference distance of 10 kpc, we expect a total
of 300 events, 88% due to IBD. The burst search, i.e. the search of cluster of events in the time series of
triggers, is performed on a pure statistical basis as explained in detail in (Agafonova et al 2015).

LVD is a founding member of the SNEWS project and it has been participating in the on-line operations
since the beginning in 2005 together with the SuperK and SNO detectors (Antonioli et al 2004).

6.2.3. Borexino
Is an ultra-pure liquid organic scintillation detector designed to study solar neutrinos (Alimonti et al 2009)
in real time. There are two main interaction channels, namely ES on electrons and IBD, by which neutrinos
are seen. In case of a supernova, observation of other processes becomes important including ES on protons
and various reactions on carbon. Nevertheless it is reasonable due to low statistics to organize alarm
datagram generation for SNEWS based on searching for IBD event bursts and/or point-like event excesses.

Despite the relatively small mass of the target (278 t) and therefore the quite limited event numbers
from nearby supernovae compared to other modern detectors, Borexino is a rather sensitive apparatus
because of very low background levels. If the Borexino SN alarm is the result of searching for an excess of
point-like events, the respective mean background rate is O(0.01 Hz) above 1 MeV. Since the alarm is
generated based on the IBD analysis, the background level is even lower. For example, only 154 golden IBD
candidates were found in a live time of approximately 9 years in the last geo-neutrino investigation with
Borexino (Agostini et al 2020). Such low background conditions were achieved thanks to a number of
features of the detector, its special location and applied methods of data analysis. To begin with, Borexino is
placed in the underground laboratory (LNGS) under a thick layer of rocks that provide the shielding against
cosmogenic background equivalent 3800 mwe and therefore the muon flux is decreased up to (3.432 ±
0.003) × 10−4 m−2 s−1 (Agostini et al 2019). There are no nuclear power plants in Italy and the mean
weighted distance of the reactors from the LNGS site is more than 1000 km, resulting in a low antineutrino
background in the detector. Other reasons for the low background rates are concentric multilayer shielding
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and ultra-radiopurity of all materials. The complex selection and refinement of the detector materials,
accurate assembling guarantee extremely low levels of 238U and 232Th contamination that are less than
<9.4 × 10−20 g g−1 (95% C.L.) and <5.7 × 10−19 g g−1 (95% C.L.) respectively (Agostini et al 2020).

The light yield in Borexino is approximately 500 photoelectrons (p.e.) per 1 MeV and the energy
resolution scales as ∼5%/

√
E (MeV) (Alimonti et al 2009). Borexino is a position sensitive detector. The

absolute errors of the reconstructed coordinates x, y, z for a point-like event in the target are virtually the
same and depend on the energy as ∼10 cm/

√
E (MeV). To classify the events, pulse shape discrimination

methods are actively applied.
Since the main DAQ of the Borexino detector (‘LABEN’) was designed for spectroscopy of solar

neutrinos with energies in the sub-MeV energy range, a special additional data acquisition system based on
flash ADCs (‘FADC’) was designed to record neutrinos with energies up to ∼50 MeV from supernovae.
Both systems are working and will continue to function until the end of the experiment.

Borexino joined the SNEWS community in 2009. Originally there were two independent modules for
the LABEN data analysis and generation the alarms: the Echidna online supernova monitor and the
Princeton supernova monitor. Currently only the latter is operational. The Borexino experiment is
approaching its end. The data taking is planned to stop in 2021.

6.2.4. KamLAND
Kamioka liquid scintillator anti-neutrino detector (KamLAND) is an experiment to detect ν̄e signals using
1000 t of ultra pure liquid scintillator. The KamLAND detector occupies the former site of the Kamiokande
experiment in the Kamioka mine (2700 mwe overburden). A spherical balloon of 13.0 m diameter is
suspended in the center of the KamLAND detector and filled with 1000 t ((1171 ± 25) m3) of ultra pure LS.
Scintillation photons are detected by 1325 fast 17-inch aperture Hamamatsu PMT custom-designed for
KamLAND, and 554 20-inch PMTs inherited from Kamiokande. The PMT array are attached inside on the
spherical stainless steel tank of 18.0 m diameter. The outside of the tank is a water Cherenkov detector for
veto with approximately 3000 m3 of pure water and 140 high-QE PMTs (Ozaki and Shirai 2017). Event
vertex and energy reconstruction is based on the timing and charge distributions of scintillation photons. In
2013, they are estimated to be ∼12 cm/

√
E (MeV) and 6.4 %/

√
E (MeV), respectively (Gando et al 2013).

The main channel for supernova neutrinos in KamLAND is ν̄e via IBD. 200–300 events are expected
from a galactic supernova at 10 kpc. Because of delayed coincidence measurements with temporal and
spatial correlation between the positron and neutron events resulting from IBD, very low backgrounds for
ν̄e are possible. KamLAND uses this channel for supernova alarms. If the online process finds two IBD
events during 10 s, KamLAND will send an supernova alert to the SNEWS server.

The proton recoil (ν + p → ν + p) is one of the unique features in LS detectors (Beacom et al 2002).
This channel provides a chance to study the total energy, temperature (Beacom et al 2002) and
reconstruction of the νx spectrum (Dasgupta and Beacom 2011). Since this channel does not have
background rejections like the delayed coincidence measurements, low-background measurements are
required. KamLAND had performed a purification campaign from 2007 to 2009, enabling measurements of
supernova neutrinos using proton recoils. In the current configuration of the KamLAND trigger, the
expected number of events is about 60 with assumptions of total luminosity of 3 × 1053 erg and 〈Eνe〉 = 12
MeV, 〈Eν̄e〉 = 15 MeV, and 〈Eνx 〉 = 18 MeV.

It is also possible to detect neutrinos emitted before collapse (‘pre-supernova neutrinos’) using IBD.
KamLAND is able to detect pre-supernova neutrinos from nearby stars, such as Betelgeuse and Antares,
before their cores collapse. The background rate of low energy IBD in KamLAND is typically 0.1 event/day.
This strongly depends on the reactor on/off status in Japan since the main background is neutrinos emitted
from reactors. Even if the expected cumulative number of IBD events from a pre-supernova in a 48 h period
is only a few, the background is low enough that this is a statistically significant detection (Asakura et al
2016). With a latency of about 25 min, this detection significance is open for authorized users. If a detection
significance is larger than 3σ (approximately three IBD events in the last 48 h), the KamLAND
collaboration has a special meeting to discuss the result. Based on that discussion, KamLAND will send a
message to The Astronomer’s Telegram. The connection from KamLAND to The gamma-ray coordinates
network and SNEWS 2.0 will be implemented.

KamLAND is planning new electronics and DAQ systems which will improve the latency of supernova
alarms. To better measure proton recoils with a low energy threshold, the trigger threshold will be changed
just after the detection of the first 10 events.

Unfortunately, supernova neutrino observations in KamLAND has a small conflict to KamLAND-Zen,
an experiment to search for neutrino-less double-beta decay of 136Xe with the existing KamLAND detector.
In 2011, an inner balloon with a 3.08 m diameter was installed in the center of the KamLAND detector
(Gando et al 2012). Xe-loaded LS was filled in the inner balloon. Because of double-beta decays of 136Xe and
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backgrounds from the balloon materials, an additional cut for ν̄e analysis (Gando et al 2013) is applied. In
2018, an updated inner balloon with a 3.84 m diameter was installed. Improvements of the analysis
methods are being studied to maximize the sensitivity to supernova neutrinos.

6.2.5. JUNO
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment (An
et al 2016). It primarily aims to determine the neutrino mass ordering using reactor antineutrinos. The
facility is under construction in Jiangmen city, Guangdong province, China and expected to start data
taking in 2022. The detector consists of a central detector, a water Cherenkov detector and a muon tracker,
deployed in a laboratory 700 m underground (∼1800 mwe). The central detector is a 20 kt liquid organic
scintillation (LS) detector with a designed energy resolution of 3%/

√
E(MeV), with a goal to reach a rather

low detection energy threshold of 0.2 MeV with a conservative PMT dark noise rate of 50 kHz (Fang et al
2020), limited by the intrinsic radioactive background mainly from 14C in the LS.

Supernova detection is one of the major purposes for JUNO. Given the large fiducial mass and low
energy threshold of the LS detector, JUNO is able to register all flavors of O(10 MeV) supernova burst
neutrinos with relatively high statistics. For a typical CCSN at 10 kpc, there could be ∼5000 events from the
IBD (golden) channel, ∼2000 events from neutrino–proton ES, more than 300 events from
neutrino–electron ES, as well as charged current and neutral current interactions of neutrinos on 12C nuclei
expected in JUNO (Lu et al 2016). IBD events with anisotropic prompt and delayed signals could determine
the supernova pointing with an uncertainty of O(10◦) (Apollonio et al 2000). By combining all these
channels, JUNO has the unique opportunity to provide flux information and to reconstruct the energy
spectrum of νx (νμ, ντ and νμ, ντ ) supernova burst neutrinos (Li et al 2018, 2019).

For the nearby galactic CCSN within ∼1 kpc, JUNO is also sensitive to the O(1 MeV) pre-supernova
neutrinos via IBD and neutrino-electron ES, thanks to its low energy threshold. The IBD events could be
clearly distinguished using the coincidence signals, while the neutrino–electron interaction of
pre-supernova suffers from the high rate of background induced by the radioactivity of detector materials
and cosmogenic isotopes. Therefore, the pre-supernova could be monitored online with the IBD candidates
in JUNO, including possibly pointing information once a large number of the IBD events are accumulated
(Li et al 2020). In addition, 2 GB DDR3 memory will be embedded on the global control units in the
front-end electronics design of JUNO (Pedretti et al 2018), to buffer the rapid increase of events from
supernova burst neutrinos from a nearby galactic CCSN.

Currently the real-time monitor strategy for both supernova burst neutrinos and pre-supernova
neutrinos is under progress in JUNO, which consists of prompt monitor on hardware and DAQ monitor.
The experiment is capable of providing the supernova alerts as well as the pre-supernova ones to SNEWS in
the near future.

6.2.6. SNO+

The SNO+ experiment is a liquid scintillator detector situated 2092 m underground at SNOLAB (Andringa
et al 2016). It reuses much of the infrastructure of the SNO detector, which first demonstrated flavor
conversion in 8B solar neutrinos, including the 12 m-diameter acrylic vessel (AV) containing the active
material, and some 9300 PMTs arranged in a geodesic support structure with a diameter of approximately
17.8 m. The flat rock overburden provides (5890 ± 94) mwe shielding and reduces the cosmic muon flux to
63 muons per day through an 8.3 m-radius circular area.

The main goal of SNO+ is to observe neutrinoless double-β decay of the 130Te nucleus. Tellurium will
be dissolved in a cocktail of linear alkylbenzene (LAB) and 2,5-diphenyloxazole (PPO). The expected light
yield is over 400 PMT hits per MeV. In addition to the new infrastructure needed to handle and purify
liquid scintillator, upgrades have been made to the buffered readout electronics, cover gas system, and
calibration systems using LED, laser, and radioactive sources. The trigger readout window is roughly 400 ns
and is essentially deadtime-less. SNO+ began taking data with an AV filled with water in may 2017. Over
the course of 2020, SNO+ is replacing the water in the AV with 780 t of scintillator, and soon after expects
to load the detector with 0.5% (by mass) of tellurium, resulting in 1330 kg of the target isotope. Techniques
for increasing the Te load are promising.

As with other liquid scintillator experiments, SNO+ will be sensitive to IBDs and neutrino elastic
scatters off electrons. The high IBD efficiency, combined with a very low background rate, will be exploited
to add to the SNEWS pre-supernova alert. In addition, the low background rate makes it possible to observe
ES off protons. Though the energy deposit from such scatters is highly quenched, they may represent nearly
half of the neutrinos observed from a supernova at SNO+, and are an important channel for
flavor-agnostic neutral current interactions. Table 3 illustrates yields from different interaction channels for
a lower, conservative light yield of 200 hits per MeV (i.e. less than half of the expected light yield given
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Table 3. Illustrative neutrino interaction yields, from (Andringa
et al 2016), for 780 t of LAB–PPO and a supernova at 10 kpc. The
supernova model releases 3 × 1053 erg equally partitioned among
all neutrino flavors and considers no flavor changing
mechanisms. The NC νp yield will be reduced to 118.9 ± 3.4 if
the trigger threshold is set at 0.2 MeV. The uncertainties quoted
here include only cross section uncertainties (the Standard Model
cross section uncertainty on νe ES is less than 1%).

Reaction Yield

NC: νp → νp 429.1 ± 12.0

CC: νep → e+n 194.7 ± 1.0

CC: νe
12C → e+ 12Bgs 7.0 ± 0.7

CC: ν12
e C → e−12Ngs 2.7 ± 0.3

NC: ν12C→ ν ′12C∗(15.1 MeV) 43.8 ± 8.7

CC/NC: ν12C → 11C or 11B + X 2.4 ± 0.5

νe ES 13.1

above). Efforts are also underway to investigate whether different fluors can help distinguish directional
Cherenkov light (e.g. (Biller et al 2020)).

6.2.7. NOvA
The NOvA experiment consists of two segmented liquid scintillator detectors. They are functionally
identical, and mainly differ by mass and location. The 300 t near detector is located at Fermilab, near
Chicago, at a depth of 100 m. The 14 kt far detector is located near Ash River, Minnesota, and sits on the
Earth’s surface with a modest barite overburden. The detectors are composed of hollow extruded PVC cells
3.9 cm × 6.6 cm in cross-sectional area, which are connected together to form planes. The planes are glued
together to form the full body of the detector, alternating between vertical and horizontal orientations to
allow for reconstruction in three dimensions. The PVC cells are filled with a mixture of mineral oil and
pseudocumene. Scintillation photons produced by the passage of charged particles through the cells bounce
off of the highly-reflective cell walls until they are absorbed by a wavelength-shifting fiber. The fiber is
looped through the length of the cell, with both ends terminating on the same channel of an avalanche
photodiode.

IBD (ν̄e + p → e+ + n) is the most common interaction mode for supernova neutrinos in the NOvA
detectors, followed by ES on electrons, and neutral current interactions on carbon nuclei. Detection
threshold is ∼8–15 MeV, depending on how close to the readout the energy deposition occurred, meaning
many of the expected interactions will be detectable.

There are several challenges to reconstructing supernova neutrinos with NOvA. Due to its size, the far
detector will see many more neutrino interactions than the near detector, but it is on the surface and subject
to a cosmic ray muon rate of ∼148 kHz. It is easy to identify and veto the muons themselves with software,
along with the Michel electrons that are often produced at the end of stopping tracks, but identifying the
spallation products they leave in their wake is more difficult.

The NOvA DAQ employs a buffered readout system that allows for continuous readout of the detector.
In its current configuration, the DAQ writes 45 s of continuous data to disk in the event of a supernova
trigger. NOvA subscribes to SNEWS and issues a supernova trigger for any SNEWS alert. A data-driven
supernova trigger has also been developed and running on both detectors since November 2017 (Acero et al
2020). This data-driven trigger removes known backgrounds and groups hits into candidate IBD
interactions. A supernova will manifest as a sudden increase in the rate of IBD candidates, which then
slowly returns back to baseline.

A time series of IBD candidates is constructed in real time and compared against two hypotheses, one
which represents the background only and another which represents a signal superposed on the
background. A log likelihood ratio is computed, which is then converted into a signal significance. Several
models for the signal shape, including a flat one, have been tested for this method, and they all show similar
discrimination power. With this method, NOvA can identify a potential supernova signal in a
model-independent way. A trigger is issued when the signal significance exceeds a threshold, which is
currently chosen to be 5.6 σ and corresponds to an SNEWS-inspired false alarm rate of one per
week.
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6.3. Lead-based detectors
6.3.1. HALO
The helium and lead observatory (HALO) utilizes lead-based detection, and has been operating at SNOLAB
since 2012. HALO consists of 79 t of lead, instrumented with 3He neutron counters. These counters have a
very low background rate, which allows sufficient trigger discrimination for HALO to be used in the
SNEWS network.

Lead-based neutrino detection is possible through charged current or neutral current interactions with
lead nuclei. The charged current interactions are: νe +

208Pb → 207Bi + n + e− and
νe +

208Pb → 206Bi + 2n + e−. Their kinematic threshold energies (weighted over the isotopic abundances)
are 10.2 MeV and 18.1 MeV, respectively. The neutral current interactions: νe +

208Pb → 207Pb + n and
νe +

208Pb → 206Pb + 2n have weighted threshold energies 7.4 MeV and 14.4 MeV, respectively. Because
these interactions have different cross sections and thresholds the number of 1n and 2n events depends of
the incident neutrino energy. The neutrons that result from these interactions can travel some distance
through the lead; they are thermalized by collisions with the lead and with the polyethylene moderator
prior to being captured by 3He gas in the proportional counters. Lead-based neutrino detectors are sensitive
primarily to electron neutrinos, because ν̄e charged-current reactions are strongly suppressed via Pauli
blocking.

The relatively small lead mass of HALO limits its effectiveness for studying supernovae from distances
beyond ∼5 kpc.

6.3.2. Future lead-based detectors
HALO-1kT is a proposed upgrade to HALO to be sited at LNGS which would leverage 1000 t of lead from
the decommissioned OPERA experiment in order to create a low cost and low maintenance neutrino
detector. The much larger target mass will greatly increase the sensitivity to supernova neutrinos. The lead
will be instrumented with a 28 × 28 array of 3He detectors, comprising 10 000 L atm of 3He. The greatly
increased target mass should allow detection of supernova at much greater distances. The major advantage
of these lead-based detectors is the very low maintenance and high livetime, which could allow them to
maintain continuous operation for decades. Supernova neutrino detection would be a primary mission for
HALO-1kT, with the expectation of a multiple decade long uninterrupted search for supernovae.

RES-NOVA (Pattavina et al 2020) aims to obtain a large SN signal in a lead detector using a small
amount of very low-background archaeological lead, allowing the lowering of the threshold and giving
sensitivity to the higher-rate CEνNs interactions.

6.4. Liquid noble dark matter detectors
Noble liquids are one of the leading targets for dark matter direct detection efforts, assuming that dark
matter is composed of weakly interacting massive particles (WIMPs). In the currently planned future noble
liquid detectors, the active volume of liquid is hosted in a dual-phase time projection chamber (TPC)
containing also a gas pocket of the same target material above the active volume. The two volumes are
separated by a drift-electron extraction grid positioned just below the liquid surface, thus establishing the
uniform drift region in the active liquid volume and the electroluminescene in the gaseous volume.

When the incident particle, WIMP as well as supernova neutrinos, scatters on the noble liquid atom, the
recoil energy goes into phonons (not detected), scintillation light that is detected by the photosensors and
called the S1 signal, and ionization electrons. The ionization electrons are drifted by an electric field parallel
to the axis of the chamber towards the grid at the top of the detector, where they are extracted into a region
of the gaseous noble element and accelerated, emitting a delayed photon signal from electroluminescence,
called S2 and also recorded by the photosensors. As the average neutrino energy is ∼10 MeV, the dominant
cross section in liquid nobles is from the CEνNs interaction, which allows for a flavor-insensitive detection.
Low thresholds achievable with S2-only signals allow for detection of type Ia supernova neutrinos (Raj
2020) in addition to the core-collapse neutrinos which are the usual supernova neutrino burst targets
(section 2.4.1).

6.4.1. Global argon dark matter collaboration
The Global argon dark matter collaboration’s aim is the direct detection of WIMPs in liquid argon (LAr).
Strong exclusion limits for WIMP-nucleon spin-independent interactions have already been set by the
running detectors, DarkSide-50 (50 kg of LAr) (Agnes et al 2018) and DEAP-3600 (3279 kg of LAr) (Ajaj
et al 2019). In order to improve the sensitivity, a future detector’s target mass must be scaled up to tonnes
and be extremely radiopure. Hence, the upcoming multi-tonne detectors, DarkSide-20k (DS-20k) (47 t
LAr) and Argo (300 t LAr), will be built with radiopure materials including underground argon as the
detection target (Agnes et al 2016), and use silicon photomultipliers rather than PMTs for photon detection.
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Based on an analysis done with an input supernova neutrino flux from the Garching group simulation for a
27 M� progenitor mass following the LS220K equation of state (Mirizzi et al 2016), DS-20k will be capable
of observing ∼340 neutrino events after selection cuts at a distance of 10 kpc. This shows that DS-20k will
be capable of observing the neutrino signal from such a CCSN with more than 5σ significance up to 40
kpc(Agnes et al 2020).

6.4.2. Xenon
The LZ and XENON Collaborations aim for the direct detection of WIMPs, but using liquid xenon (LXe)
TPCs (Akerib et al 2020a, Aprile et al 2017). The XENON1T experiment, with about 2 t of active target
mass, has set the most stringent limits on WIMP cross-sections for masses above 6 GeV (Aprile et al 2018).
It has also measured the half life of 124Xe decaying via two-neutrino double electron capture, the rarest
decay process to have ever been directly measured (Aprile et al 2019a). Through its lifetime, XENON1T has
been directly connected with SNEWS in order to receive alarms and promptly save any related data of
interest for later analysis (Aprile et al 2019b).

The future LZ and XENONnT detectors will have about 6 to 7 t of active target mass (Akerib et al 2020a,
Aprile et al 2020). Detectors of this size are sensitive to extremely rare decay processes such as neutrinoless
double beta decay (Akerib et al 2020b) and will be able to observe the neutrino signal from a CCSN with a
27 M� progenitor happening anywhere in the Milky Way with 5σ significance (Lang et al 2016). Such a
supernova at 10 kpc will produce 350 neutrino interactions in total in the active volume of LZ (Khaitan
2018). More specifically, for a threshold of ∼3 detected electrons, the number of supernova neutrino events
for the 27 M� supernova progenitor with the LS220 EoS is 17.6 events/tonne over the first 7 s post bounce
(Lang et al 2016). Both the LZ and XENON collaborations are currently developing a real-time supernova
trigger to be incorporated in their detectors and data framework, aiming to actively contribute to SNEWS in
the near future (Khaitan 2018).

A next-generation xenon detector, such as the one proposed by the DARWIN collaboration (Aalbers
et al 2016), will further increase the sensitivity to CCSN. It is expected to discern with 5σ significance such
an event from a 27 M� progenitor beyond 60 kpc and possibly distinguish between different supernova
models and progenitor masses for a close supernova event (Lang et al 2016, Aalbers et al 2016).

6.5. Liquid argon time projection chamber neutrino detectors
The detection of a supernova neutrino burst through the νe +

40Ar → e− + 40K∗ channel is especially
interesting due to the enhanced sensitivity to the electron–neutrino flux, which is complementary to the
dominant electron–antineutrino flux from other detectors. LArTPCs drift ionization charge created by
particle tracks through LAr volumes; the drifted charged is measured in a 2D plane projection using various
possible readout methods. The relative drift arrival times of the measured charges then provide the third
dimension for track reconstruction. LAr also scintillates at 128 nm, and these fast scintillation photons can
also be measured to determine position along the drift direction as well as a measure of energy deposition.
LArTPCs do not require energies above the Cherenkov threshold and with sufficiently fine-grained readout
can provide precision particle track reconstruction.

The future DUNE very large LArTPC experiment has the detection of neutrinos from a CCSN within
our galaxy as one of its primary science goals, but the data taking with the first module is not expected
before 2026. In the meantime, a series of smaller LArTPCs already or soon to be in operation represent our
best chance to detect supernova neutrinos in argon. Among these, the Fermilab Short-Baseline Neutrino
program experiments MicroBooNE (Acciarri et al 2017) (taking neutrino beam data since October 2015)
and SBND (Antonello et al 2015) (expected to begin data taking in 2021) are pioneering a novel approach
for the detection of the supernova neutrinos. Due to their active masses (90 t for MicroBooNE, 112 t for
SBND), only tens of events are expected for a canonical CCSN at 10 kpc. Their location near surface
exposes them to a large flux of cosmic rays of a few kHz, making triggering on the supernova neutrinos very
challenging. For these reasons, the MicroBooNE and SBND detectors, rather than sending alerts to SNEWS,
are instead SNEWS consumers, using the ‘gold’ alert as DAQ trigger. In order to accommodate the latency
of the SNEWS alert, both experiments feature a continuous readout of the TPC (Abratenko et al 2020),
which is written to disk for several hours and subsequently deleted if no SNEWS alert is received.

6.5.1. DUNE
The deep underground neutrino experiment (DUNE) is a 40 kt (fiducial mass) LArTPC detector, made of
four 17 kt (10 kt fiducial) modules to be constructed underground in South Dakota. There are two designs
under consideration for the DUNE far detector TPCs: a ‘single-phase’ design that features horizontal drift
along with readout comprising one charge-collection wire plane and two induction wire plane with 5 mm
pitch, and a ‘dual-phase’ design that features vertical charge drift and charge amplification and collection at
a top gas-phase interface. Both designs also feature scintillation photon detection. DUNE expects around
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Table 4. Estimated interaction rates for the detectors (those in operation at the time of writing
are bolded) described here for three different models at 10 kpc, s11.2c and s27.0c from (Mirizzi
et al 2016) that form neutron stars and s40 from (O’Connor 2015) which forms a black hole. The
two numbers given are the total events over all channels using SNOwGLoBES assuming adiabatic
MSW oscillations only for the normal mass ordering (left number) and the inverted mass order
(right number). For liquid scintillator experiments, the elastic proton scattering channel is not
included; see the individual detector sections for more details on the rates of this interaction. For
the string detectors, the mass is given as an effective mass based on 27.0 M� and the normal mass
ordering, for details on the calculation, please see https://doi.org/10.5281/zenodo.4498941.

Experiment Type Mass (kt) Location 11.2 M� 27.0 M� 40.0 M�

Super-K H2O/ν̄e 32 Japan 4000/4100 7800/7600 7600/4900
Hyper-K H2O/ν̄e 220 Japan 28K/28K 53K/52K 52K/34K
IceCube String/ν̄e 2500∗ South Pole 320K/330K 660K/660K 820K/630K
KM3NeT String/ν̄e 150∗ Italy/France 17K/18K 37K/38K 47K/38K
LVD CnH2n/ν̄e 1 Italy 190/190 360/350 340/240
KamLAND CnH2n/ν̄e 1 Japan 190/190 360/350 340/240
Borexino CnH2n/ν̄e 0.278 Italy 52/52 100/97 96/65
JUNO CnH2n/ν̄e 20 China 3800/3800 7200/7000 6900/4700
SNO+ CnH2n/ν̄e 0.78 Canada 150/150 280/270 270/180
NOνA CnH2n/ν̄e 14 USA 1900/2000 3700/3600 3600/2500
Baksan CnH2n/ν̄e 0.24 Russia 45/45 86/84 82/56
HALO Lead/νe 0.079 Canada 4/3 9/8 9/9
HALO-1kT Lead/νe 1 Italy 53/47 120/100 120/120
DUNE Ar/νe 40 USA 2700/2500 5500/5200 5800/6000
MicroBooNe Ar/νe 0.09 USA 6/5 12/11 13/13
SBND Ar/νe 0.12 USA 8/7 16/15 17/18
DarkSide-20k Ar/any ν 0.0386 Italy — 250 —
XENONnT Xe/any ν 0.006 Italy 56 106 —
LZ Xe/any ν 0.007 USA 65 123 —
PandaX-4T Xe/any ν 0.004 China 37 70 —

3000 νeCC events from a 10 kpc supernova, providing a νe sensitivity which complements the ν̄e ability of
most other detectors. ES on electrons and ν̄eCC events are also expected. NC nuclear excitations which
produce deexcitation gammas are also expected, although the cross sections are currently poorly known.
Preliminary studies based on full simulation and reconstruction chains indicate thresholds for efficient
reconstruction of between 5–10 MeV neutrino energy and energy resolution of around 20% (Abi et al
2020a, b). The tracking capability of the TPC enables pointing to the supernova at the several degree
level—see section 3.1.2.

6.6. Detection in other low-background detectors
6.6.1. The nEXO experiment
nEXO is a proposed neutrinoless double-beta decay (0νββ) experiment which aims to employ 5 t of LXe,
enriched to 90% in the target isotope 136Xe, inside a cylindrical time-projection chamber (TPC). Both
xenon scintillation light (175 nm wavelength) as well as ionization charge signals will be recorded in the
detector using silicon photo-multipliers (Gallina et al 2019) and specialized charge-readout tiles (Jewell et al
2018), respectively. The simultaneous detection of scintillation and ionization signals allows for
reconstruction of an event’s energy, position, and multiplicity. The TPC and its cryostat will be located in a
1.5 kt water tank instrumented with up to 125 PMTs. These PMTs will detect Cherenkov radiation from
traversing muons and allow for a veto to subsequent cosmogenic backgrounds. This muon veto is referred
to as the nEXO outer detector. Monte Carlo work is being undertaken to optimize PMT placement, develop
a trigger scheme, define water-purity requirements, and investigate background contributions from the
outer detector. Details of the nEXO project and the Outer Detector are described in (Al Kharusi et al 2018);
nEXO’s projected sensitivity to 0νββ is discussed in (Albert et al 2018).

While being optimized for the search for 0νββ, the sizable mass of xenon and water allows for the
detection of SN neutrinos from within the galaxy. The 1.5 kt of water in the outer detector is expected to
have a typical response of ∼250 neutrino interactions [calculated using the GVKM model (Gava et al 2009)]
for a supernova event at a distance of 10 kpc. The dominant interaction channel will be inverse-beta decay,
as expected for a water Cherenkov detector. Supernova neutrinos will also interact with nEXO’s xenon
volume. The TPC is being optimized to detect β-like events around the 136Xe Q-value of 2.46 MeV. Thus, νe

charged current interactions producing excited 136Cs will be detectable via the nucleus’ gamma
de-excitation. For supernovae at 2 kpc, the expected event rate of this interaction channel is ∼5 events over
a few seconds. Slightly lower rates are expected for the neutral current inelastic scatters that will produce
excited 136Xe nuclei. However, the majority of supernova-neutrino interactions in the LXe will be through
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the CEνNs channel. Here, we expect on the order of 100 supernova neutrino interactions from a GVKM
supernova at 10 kpc, as calculated using methods found in (Lang et al 2016; Abe et al 2017) and cross
sections adopted from (Pirinen et al 2018). These CEνNs events are unlikely to trigger data acquisition
readout on their own due to the small number of ionization electrons being generated; nevertheless, by
employing a buffered readout system and receiving an SNEWS trigger, nEXO could store this data.

6.7. Detection estimates
For reference, we have compiled estimates of the number of detected events in each of the above neutrino
detection experiments for three representative models of the neutrino emission from CCSN in table 4. The
models span the range of the expected diversity in massive stars, however, due to the initial mass function of
massive stars, the lower mass models are expected to dominate the population of CCSN. The 11.2 M� and
27.0 M� presupernova models are taken from (Woosley et al 2002) and modeled in (Mirizzi et al 2016) (the
precise models are LS220-s11.2c and LS220-s20.0c and they are taken from the Garching CCSN Data
archive https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/). The models are simulated until ∼7 s after
core bounce. The 40.0 M� presupernova models is taken from (Woosley and Heger 2007) and modeled in
(O’Connor 2015) until black hole formation at ∼540 ms after core bounce. Unless otherwise noted, we
include estimates for each detector using SNOwGLoBES (Beck et al 2016) and assume MSW neutrino
oscillations via the adiabatic approximation for the normal and inverted mass ordering. All channels
included in SNOwGLoBES are included in the total.

7. Amateur astronomer engagement

The next galactic CCSN will be a once-in-a-lifetime event. Amateur astronomers will play a vital role in
identifying and observing the optical component of the explosion in real time when it appears in the sky.
Because SNEWS is designed to provide an early warning of the appearance of such an explosion, the
interface between SNEWS and the astronomical community—and particularly amateur astronomers—is
critically important. We aim to reinforce these connections and provide the community with information
and resources to ensure they are ready to receive SNEWS alerts and participate in the global effort to spot
the optical signal. This outreach effort will be guided by three broad thrusts, as described below: awareness,
preparedness, and follow-up.

7.1. Thrusts of amateur astronomer engagement
7.1.1. Thrust 1: awareness
Because amateur astronomers will play such an important role in the optical observation of the next galactic
supernova, SNEWS intends to strengthen its relationship with the global amateur astronomical community
in the coming months and years. The reason is simple: astronomers can only participate if they know that
SNEWS exists. This effort will involve reaching out to groups, attending conferences, and engaging with
individuals on social media. Cultivating these community connections will be an ongoing process which
will support the important goal of maintaining and maximizing observational readiness.

7.1.2. Thrust 2: preparedness
To prepare the amateur astronomical community to respond quickly and effectively to a neutrino-indicated
galactic supernova, it is critical to provide training and guidance regarding how to receive and interpret
SNEWS alerts, and what to do when those alerts arrive.

SNEWS maintains a public mailing list that is used to distribute alert notifications in the event of a
supernova-like neutrino burst, and anyone can subscribe at the official SNEWS website (https://snews.bnl.
gov/). Alert emails distributed to the list are PGP-signed for authenticity. SNEWS also plans to develop
additional notification vectors in order to maximize the reach of our alerts to the community. These will
likely include utilizing existing multi-messenger networks, such as the AMON mentioned in section 5.3.

In addition to connecting astronomers to the alert system, SNEWS will develop and distribute materials
to teach subscribers about the information products available within the alerts and how that information
will be updated as subsequent observations are made, so that amateur astronomers are able to easily and
quickly identify potential supernova candidates associated with a coincident neutrino burst.

7.1.3. Thrust 3: follow-up
When the day finally arrives, the initial SNEWS alert may contain little or no pointing information. It will
therefore be up to the professional and amateur astronomy communities to identify and report the precise
right ascension and declination of the supernova as it becomes visible. Time will be of the essence; it is
imperative that clear and simple reporting mechanisms exist and that observers are aware of them. SNEWS
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will develop and distribute training materials so that alert subscribers can familiarize themselves with the
follow-up reporting process before and during a galactic supernova event.

7.2. Assessing observational readiness
Galactic CCSN events are sufficiently rare that most of us will likely only have one opportunity in our lives
to observe one. It is therefore of critical importance that the process of disseminating alert information to
the astronomical community and facilitating the reporting of real-time follow-up observations be as robust
as possible. To characterize this, SNEWS will conduct occasional drills. A drill would involve sending a test
alert to SNEWS subscribers which closely resembles a real SNEWS alert and implores subscribers to
immediately begin their search for a transient object in the night sky. The transient object would, of course,
not be a real supernova, but some other point-like transient source in the sky, and the alert would be clearly
labeled as a test.

In fact, such a drill was once conducted in February of 2003 (Sky and Telescope 2003). A test alert was
distributed to Sky & Telescope AstroAlert subscribers, which provided right ascension and declination
coordinates, an uncertainty radius, and a note that the expected magnitude was unknown. Subscribers were
encouraged to scan the sky with their eyes, binoculars, and telescopes, and to report any suspected
candidates through a web form. The transient test object in this case was the asteroid Vesta, which was
successfully identified by six of the 83 submitted reports.

Each drill will be a valuable case study of our ability to minimize the time between receiving an early
sign of an imminent supernova and performing the first optical observations of the explosion. There is
much to learn from such a simulation which will allow us to identify potential blind spots and bottlenecks
in the process and to mitigate them. For example, the distribution of contributed observations could allow
us to identify regions of the world where more engagement between SNEWS and the community is needed.
We hope that these drills will also provide valuable feedback to the astronomical community and empower
it to identify potential areas for improved training or resource development regarding these types of
observations.

SNEWS aims to provide the earliest warning of an imminent galactic supernova, and our ability as a
community to identify its precise location in the sky as soon as the optical signal arrives will rely on a global
corps of amateur astronomers and their observational expertise. Such timely localization will be vitally
important for maximizing the scientific potential of this rare event. Engaging with the amateur astronomer
community and providing the training and access to resources necessary to carry out this vital task is
essential to the mission of SNEWS.

8. Summary

The SNEWS is one of the oldest multi-messenger astronomy networks, set up to provide advance warning
of the next galactic core collapse supernova by forming a coincidence between multiple neutrino detectors
around the world. However, it is also a system which has not yet made a live observation, because such
supernovae occur only a few times per century. Today, multi-messenger astronomy is a burgeoning field
across many messengers, and experience gained from successes in simultaneous detection of gamma ray
bursts, gravitational waves, and ultra-high energy neutrinos can be applied to creating a new ‘SNEWS 2.0’
network which will deliver more neutrino-based information and do so reliably and promptly, to enable the
best science possible from the next nearby supernova.
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