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Abstract
The coherent control of electron beams and ultrafast electron wave packet dynamics have attracted
significant attention in electron microscopy as well as in atomic physics. In order to unify the
conceptual pictures developed in both fields, we demonstrate the generation and manipulation of
tailored electron orbital angular momentum (OAM) superposition states either by employing
customized holographic diffraction masks in a transmission electron microscope or by atomic
multiphoton ionization utilizing pulse-shaper generated carrier-envelope phase stable bichromatic
ultrashort laser pulses. Both techniques follow similar physical mechanisms based on Fourier
synthesis of quantum mechanical superposition states allowing the preparation of a broad set of
electron states with uncommon symmetries. We describe both approaches in a unified picture
based on an advanced spatial and spectral double slit and point out important analogies. In
addition, we analyze the topological charge and discuss the control mechanisms of the
free-electron OAM superposition states. Their generation and manipulation by phase tailoring in
transmission electron microscopy and atomic multiphoton ionization is illustrated on a 7-fold
rotationally symmetric electron density distribution.

1. Introduction

Spatially coherent electron probes have developed into a versatile tool for exploring the quantum nature of
matter on the atomic scale [1]. Especially electron orbital angular momentum (OAM) beams with tailored
symmetries and topologies [2–4] opened up a new degree of freedom in quantum control scenarios and
may provide selective access to additional material properties. Recently, these beams have enabled quantized
OAM transfer to atoms in electron-energy loss spectroscopy (EELS) [5, 6] and were proposed for the
characterization of chiral crystal symmetries in electron diffraction [7]. Inducing magnetic transitions in
atoms using OAM electron beams may provide a tool to probe magnetic states of matter on the nanoscale
[8]. Furthermore, electron beams with unusual topology exhibit intricate field-interaction effects, including
free-electron Landau states [9].

Optical OAM beams [10–12] already found a variety of applications ranging from fundamental physics
[13–16] to optical tweezers [17, 18] and spanners [19]. In contrast to the micrometer-sized foci of optical
OAM beams, for OAM electron beams the orbital angular momentum plays a more significant role in
electron–matter interaction, due to their nanometer-sized foci overlaping with atomic-scale quantum
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systems [20, 21]. Therefore, electron OAM states, characterized by a phase singularity, a helical phase front
and a non-vanishing topological charge � [2–4], are the subject of current research.

In recent years, several experimental techniques for the generation of high-quality OAM electron beams
were developed for transmission electron microscopy (TEM), including the application of diffraction
holograms [5, 22] and phase masks [23–27], as well as by using the quasi-monopole magnetic field of a thin
magnetic needle [28]. Furthermore, inelastic [29–37] and elastic [38–40] electron-light scattering have
been demonstrated to facilitate a detailed control of the phase structure of electron beams.

In ultrafast and attosecond spectroscopy of atoms, coherent control of photoemitted electrons was
utilized to obtain a detailed picture of light-driven strong-field ionization channels, including perturbative
[41] and non-perturbative multiphoton ionization (MPI) [42] and tunneling processes [43–45].
Polarization-tailored bichromatic (nω : mω) fields [46–51] have been established as powerful tools in
coherent quantum control [52] and were shown to address optically controlled quantum interferences
between pre-defined electron wave functions [49, 53–55]. Governed by quantum mechanical dipole
selection rules (σ±-transitions), OAM superposition states with uncommon symmetry properties have been
generated [54, 56]. By combining photoionization using pulse-shaper generated polarization-tailored laser
pulses with photoelectron tomography, unprecedented control of the 3D photoelectron angular
distributions has been demonstrated.

In this contribution, we demonstrate that a broad set of electron states can be generated by quantum
interference using holographic electron diffraction in TEM and MPI. Experimental results for the
preparation of OAM superposition states with both approaches are presented and analyzed in a unified
theoretical description. Control of the phase structure of the OAM superposition states, as well as their
symmetry and topological character are discussed.

2. Experiment

We investigate two complementary experimental approaches to generate and manipulate tailored OAM
superposition electron states, utilizing spatial phase modulation (SPM) in a transmission electron
microscope and multipath quantum interference from bichromatic MPI of atoms. A sketch of the
experimental setups, highlighting the analogies of both approaches, is shown in figure 1. The electron
distributions of the generated states are detected in momentum-space, either in the far-field in the case of
the SPM approach or by velocity map imaging (VMI) photoelectron spectroscopy.

In general, OAM superposition states, also termed mixed-OAM states, are composed of two single OAM
states with topological charges �1 = −n and �2 = m. In a two-dimensional space of polar momentum
coordinates (k, ξ), such OAM superposition states are generally described by:

Ψ(k, ξ) = G(k)
(
β eimξ + e−inξ

)
, (1)

in which G(k) is a real-valued radially depended function and β = β0eiγ a complex-valued superposition
amplitude, with β0 ∈ R+ controlling the relative amplitude of both components and γ their relative phase.
In the following, we consider β0 = 1, a discussion of the azimuthal probability currents for superpositions
with β0 �= 1 is given in section 3. The superposition phase γ is controlled by experimental means, either by
the construction of the mask in SPM, or by the optical phases of the bichromatic field in MPI, as explained
in section 3.2.

For a single OAM state eimξ with integer m �= 0, the electron density shows a doughnut-shaped,
azimuthally symmetric distribution [57, 58]. The interference in the OAM superposition state described by
equation (1) leads to a reduced azimuthal symmetry. In contrast to the electron wave function Ψ, which
belongs to the C1 point group, the probability density of the superposition state is obtained as

|Ψ(k, ξ)|2 = 2|G(k)|2 [1 + cos ([n + m]ξ + γ)] , (2)

yielding an (n + m)-fold rotational symmetry [54, 58].

2.1. Spatial phase modulation of electron beams
For the generation of OAM electron beams in a TEM, we utilize a hologram-based approach [5, 59–61]
(experimental sketch in figure 2(a)), in which a diffraction mask M is derived from the superposition of an
apertured plane wave circR(r)eik0x and a real-space target electron wave function

Φ(r,φ) = circR(r) ·
(
eimφ · eiκSPM + e−inφ

)
, (3)

2
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Figure 1. Schematic experimental setups. (a) In the SPM approach, a tailored holographic mask is illuminated by a spatially
coherent electron beam in a transmission electron microscope. OAM superposition electron states are formed via far-field
diffraction. (b) In the MPI approach, the interaction of a pulse-shaper generated ultrashort polarization-tailored
supercontinuum with sodium atoms simultaneously drives two pre-selected ionization channels, leading to the generation of a
superposition photoelectron state, which is detected in a VMI spectrometer. Both approaches result in electron states with a
7-fold rotationally symmetric electron density.

yielding the real-valued mask function

M(r,φ) = circR(r) · |
(
eimφ · eiκSPM + e−inφ

)
+ eik0x|2. (4)

Here, circR(r) is the circular aperture function with radius R and κSPM a relative phase. By illuminating this
mask with an electron plane wave, the mask’s diffraction pattern Γ(kx, ky) (cf figure 1(a)) is formed in the
far-field:

Γ(k, ξ) = |F{M}|2. (5)

As shown in appendix A, F{M} consists of a central component and two side lobes at distances ±k0 in
kx−direction. Following the general principle of holography, the Fourier transform of the real-space target
state, F{|Φ(r,φ)|2}, and its complex conjugate are forming the side lobes. For a given reciprocal distance
k∓ = keq around the center of the first diffraction order of the reference wave, the phase behavior of the
Fourier-transformed target wave follows equation (1). Moreover, for k∓ ≈ keq the probability density of the
superposition state can be approximated by

|ΨSPM(k∓, ξ∓)|2 ≈ 2|GSPM(k∓)|2
[
1 + cos

(
[n + m] ξ∓ + γ

)]
, (6)

in which GSPM(k∓) is a function governed by the choice of the circular aperture radius, k∓ and ξ∓ denote
shifted momentum coordinates and γ = κSPM ± (m − n) π

2 (cf appendix A). As an example, we show in
figure 2(a) the amplitude and phase of the numerical 2D-Fourier transform of a mask structure for m = 4
and n = 3.

Experimentally, we utilized a binarized version of the calculated mask M (binarization threshold at half
intensity maximum), which we fabricated by focused ion beam milling of a 30 nm gold thin film on a
silicon nitride membrane (15 nm thickness). In the cut-through sections of the mask, the electron wave is
transmitted. Non-cut sections result in wave components scattered by large angles and are subsequently
blocked by apertures. For the hologram, we chose k0 = 15 μm−1 and an aperture diameter of 3.7 μm. The
mask is illuminated by an electron beam with large coherence length (coherence length: dc =

λ
2α =1.74 μm,

angular spread: 2α = 1.44 μrad) formed in a transmission electron microscope (JEOL JEM-2100F, 200 kV
acceleration voltage). Using the post-specimen imaging lens system, the diffraction pattern of the mask is
projected on the detector (GATAN Orius SC600 charge-coupled device (CCD) camera; effective camera

3
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Figure 2. Concepts for the generation of OAM superposition electron states utilizing SPM and MPI. (a) In the SPM approach, a
holographic mask (middle) is generated by mixing a plane-wave reference state with a target electron state, which is chosen here
as a superposition of two OAM states (bottom). The calculated electron intensity and phase distribution in the far-field (top)
reveal a mixed-OAM state with 7-fold rotational symmetry within the first diffraction orders (real-space mask diameter: 3.7 μm,
scale bar: 10 μm−1). (b) A tailored CRCP bichromatic laser field (bottom) addresses predefined quantum pathways in the
multiphoton excitation of sodium atoms (middle) and leads to a mixed-OAM photoelectron state composed of two torus-shaped
single OAM states (top). The interference of the two quantum paths can be interpreted as a spectral double slit, as opposed to the
advanced spatial double slit in (a).

length: 300 m), giving access to the spatial profile of the probability density of the electron state (cf
figure 1).

2.2. Quantum interference in multiphoton ionization
In the ultrafast bichromatic MPI approach, sodium atoms are ionized with polarization-tailored
bichromatic laser pulses [51] to induce interference of pre-selected electron wave functions [54, 62–64].
Here, we consider atomic MPI (with Np photons) from the sodium 3s ground state (figure 2(b)) using
counter-rotating circularly polarized (CRCP) bichromatic propeller-type pulses (shown in figures 2 and 3)
to generate OAM superposition states, yielding the photoemitted electron wave function in spherical
momentum coordinates (k, ξ,ϑ) as

ΨMPI(k, ξ,ϑ) ∝ ψm,m(k, ξ,ϑ) · eiκMPI + ψn,−n(k, ξ,ϑ), (7)

using
ψl,m(k, ξ,ϑ) = iNpRl(k)Pl,m[cos (ϑ)]eimξ , (8)

with the radial part Rl(k) of the continuum wave function (determined by the Npth order spectrum of the
laser pulse), the associated Legendre polynomials Pl,m[cos(ϑ)] and the phases iNp from Npth order
perturbation theory (for details see appendix B and [54]). The relative phase κMPI is adjusted by optical
phases introduced by the pulse shaper [51, 65] and the polarization–rotation optics. The two wavefunction
components in equation (7) originate from the 3- and 4-photon–ionization channels and interfere in the
same energy window (about 0.5 eV) of the continuum states, as depicted in figure 2(b), resulting in the
superposition of two OAM electron states ψn,−n(k, ξ,ϑ) and ψm,m(k, ξ,ϑ) with topological charges �1 = −n
and �2 = m, respectively. The target states are addressed via σ±-transitions due to the left and right circular
polarized (LCP/RCP) laser electric fields, for which the respective quantum numbers are determined by
selection rules (Δl = 1, Δm = ±1). As discussed in appendix B, around ϑ = π

2 , the momentum–space
wave function in equation (7) factorizes and follows equation (1). Hence, the electron wave function
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Figure 3. Experimental mixed-OAM electron states. (a) The electron intensity distribution formed by far-field diffraction of a
holographic spatial gold mask reveals a 7-fold rotationally symmetric electron density in the diffraction sidebands (3.7 μm
aperture diameter, k0 = 15 μm−1, (m = 4, n = 3), scale bar = 10 μm−1). (Inset) Transmission electron micrograph of the
employed holographic mask (30 nm gold on 15 nm silicon nitride membrane; scale bar: 1 μm). (b) The measured electron
density projections and the corresponding 3D tomographic reconstruction of mixed-OAM electron states, generated from MPI
of sodium atoms with tailored (3ω : 4ω) laser fields (ϕr = ϕb = ϕce = 0), reveals also a 7-fold rotationally symmetric
photoelectron distribution. (Inset) The experimentally determined cross-correlation trajectory of the bichromatic laser field [50].

exhibits a phase structure in the (kx, ky)-plane similar to the spatially phase modulated electron beam in the
TEM. As a consequence, the resulting electron density around ϑ = π

2 can be written as

|ΨMPI(k, ξ,ϑ)|2 ≈ 2|GMPI(k)|2 [1 + cos ([n + m] ξ + γ)] , (9)

in which GMPI(k) = Rn(k)Pn,−n[cos(ϑ)] and γ = κMPI + (m − n) π
2 + mπ in full analogy to equation (6).

For the experimental implementation of MPI-based electron state generation and characterization, we
combine bichromatic polarization pulse shaping (more details of the experimental setup are given in [50])
with a VMI based photoelectron tomography [66–68] sketched in figure 1. Near-infrared femtosecond
pulses from a multipass chirped pulse amplifier (FEMTOLASERS Rainbow 500, CEP4 module, Femtopower
HR, 3 kHz repetition rate; λ0 = 790 nm, 1.0 mJ pulse energy) with actively stabilized carrier–envelope
phase (CEP) are employed to seed a neon-filled hollow-core fiber for the generation of an octave-spanning
white light supercontinuum (WLS). The white light pulses are modulated in the frequency domain using a
home-built 4f polarization pulse shaping setup [51, 69, 70], which consists of a dual-layer liquid crystal
spatial light modulator (LC-SLM; Jenoptik SLM-640d) in combination with a custom polarizer. For the
conversion from linear to counter-rotating circular polarization, we utilize a superachromatic
λ/4-waveplate at the shaper output. The generated bichromatic (3ω : 4ω) CRCP field (cf inset figure 2(b)),
consisting of a red (λr = 880 nm, Δtr ≈ 25 fs, LCP) and blue (λb = 660 nm, Δtb ≈ 25 fs, RCP) component,
is CEP-stabilized using an external active stabilization loop [53]. To this end, an f –2f interferometer is
implemented, fed by an additional (ω : 2ω)-field extracted from the spectral edges of the WLS. The
bichromatic fields are focused into the interaction region of a VMI spectrometer (peak intensity I0 ≈ 2 ×
1012 W cm−2) filled with sodium vapor. The photoelectron wave packets created by atomic MPI are
projected onto a position-sensitive 2D detector consisting of a Chevron micro-channel-plate (MCP) and a
phosphor screen and are recorded by a CCD camera. For tomographic reconstruction of the 3D
photoelectron momentum distribution (PMD) the input pulse sequence is rotated around the laser
propagation direction by using a superachromatic λ/2-waveplate [67, 68]. Each PMD was retrieved from 45
projections, measured with an angular step size of δφ = 4◦, employing the Fourier slice algorithm [71].
Note that the VMI detection scheme, results in a projection of the PMD which scales linearly in the radial
direction with the electron energy. Therefore, the displayed MPI results show a non-linear radial
dependence, as compared to the SPM results.

3. Results and discussion

3.1. Generation of mixed-OAM states
The experimental OAM superposition states generated by SPM and MPI are compared in figure 3 for m = 4
and n = 3. Both, the intensity distribution in the first-order sidebands in SPM (figure 3(a)) and the MPI
results (figure 3(b)), show a 7-fold rotationally symmetric flower-petal-like structure, as expected from
equation (2). Due to the phase singularity of OAM states at k± = 0, the intensity of the OAM superposition

5
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vanishes at the center in both cases. We note that the radial behaviors of the SPM- and MPI-generated
states, depending on the mask aperture via GSPM(k) and the radial part of the atomic wave function in
GMPI(k) respectively, are different in the SPM and MPI cases. Furthermore, in the TEM approach the
generated mixed-OAM states exhibit no kz-dependence, whereas in MPI an additional ϑ-dependence is
introduced via Pn,−n[cos(ϑ)]. It is instructive to further consider the symmetries of the spatial mask M and
the electric field distribution in the MPI light field. The mask M can be explicitly expressed as

M = circR(r)

[
3 + 2 cos([n + m]φ+ κSPM)

+ 4 cos

(
(n − m)φ− κSPM + 2k0x

2

)
cos

(
(m + n)φ+ κSPM

2

)]
(10)

using equation (4). Despite the low symmetry of the mask function, the overall lobular structure of the
mask, depicted in figure 3(a), follows a 7-fold rotational symmetry due to the second term in equation (10).
The high-frequency mask components (third term in equation (10)) are formed by a spatial beating
between the target wave function and the reference plane wave, yielding the OAM sidebands in the
diffraction pattern of the mask. In the MPI scenario, the time-dependent CRCP optical electric field E(t)
with commensurable frequencies nω and mω and equal envelopes E0(t) is given by

E(t) =
√

2E0(t) cos

(
(n + m)

2
ωt

)⎛
⎜⎜⎝

cos

(
(n − m)

2
ωt

)

sin

(
(n − m)

2
ωt

)
⎞
⎟⎟⎠ , (11)

and contains an expression describing the beating, similar to the corresponding expression in equation (10).
Projecting the trace of the temporally evolving electric field vector onto the transverse polarization plane,
results in a propeller-shaped curve with Sopt-fold rotational symmetry, given by Sopt = (n + m)/ gcd(n, m),
where gcd(n, m) denotes the greatest common divisor of n and m [54]. A measured polarization profile of
the generated phase-stable (3ω : 4ω) CRCP field is depicted in the inset of figure 3(b) (for more
experimental details see [50]), highlighting the similarity to the corresponding mask structure shown in the
inset of figure 3(a). The close similarity suggests to interpret the diffraction mask in figure 2(a) as an
advanced double slit analogously to the spectral double slit [41] in the MPI framework (cf figure 2(b)).

For a more detailed discussion of the topological properties of the OAM superposition state from
equation (1), we consider the probability current j of the evolved real-space electron wave function [72],
yielding [3, 55–57, 73]

j =
�

m


[
Ψ∗∇Ψ

]
∝ |Ψ|2 m − n

2
eξ +O(β0 − 1) ≈ ρ

m − n

2
eξ , (12)

at a certain radius k, with the probability density ρ and O(β0 − 1) denoting terms proportional to (β0 − 1).
Although the resulting electron density is a static structure, i.e. a standing wave, j does not vanish for
n �= m. The probability current shown in figure 2(b), top panel is curling around the center of the structure
in azimuthal direction eξ with an angular spatial frequency ωξ ∝ m−n

2 and an amplitude determined by ρ.
For MPI, this observation is rationalized by the fact, that during photoionization, the probability current

is driven by the electric field. The angular frequency of the laser electric field of a propeller-pulse with equal
field amplitudes is given by ωΦ = m−n

2 ω which does not change within the pulse [74, 75] (cf appendix B)
and therefore ωΦ(m, n) ∝ ωξ(m, n). In the single color case both angular frequencies vanish, since m = n
[54, 58, 76]. In general, the topological charge of the superposition state, �(n, m;β0) [3] is a function
discontinuously depending on the parameter β0 (cf appendix C). In the specific case of β0 = 1, the
topological charge takes a fractional value � = m−n

2 , leading to a discontinuous topological charge in the
experiment, depending on the respective amplitudes of the different OAM states in the superposition. For
β0 �= 1, the topological charge of the superposition state is given by the topological charge of the OAM state
with the larger weight in equation (1). However, small variations around β0 = 1 do not affect the wave
packet structure since Ψ and j are continuous functions of β0.

Finally, we note that for single OAM states eimξ the topological charge m can be experimentally
determined by applying an astigmatic defocus and counting the resulting number of intensity minima
[77, 78]. A similar approach for the OAM superposition states only leads to a complex interference pattern
with the number of intensity minima not directly connected to the topological charge.

3.2. Manipulation and control of OAM superposition states
The orientation of the flower-petal-like electron density is determined by the phase γ (cf equation (2)). In
the experimental SPM approach, γ is set by the factor κSPM in the mask design. In figure 4(a), we show the

6



New J. Phys. 22 (2020) 103045 K Eickhoff et al

Figure 4. Phase control of OAM superposition electron states. (a) Calculated diffraction masks (3.7 μm aperture diameter, k0 =
15 μm−1) and corresponding far-field electron intensities for different azimuthal phases κSPM = 0,π/2,π. The magnified first
diffraction order (bottom), shows a rotation of Γ(−1) by κSPM/7. Field-of-view in zoom-in: 15 μm−1. (b) Measured photoelectron
density in the MPI approach for different optical phases ϕr = ϕb = ϕce = 0 (left), ϕr = ϕb = 0 and ϕce = π (middle) as well as
ϕr = ϕce = 0 and ϕb = π

3 (right).

simulated electron density profile in the diffraction pattern for κSPM = 0,π/2 and π, corresponding to
γ = π/2,π and 3π/2. A rotation of the first-order sideband Γ(−1) around the respective center by an angle
γ/(n + m) is visible (cf equation (6)). According to Friedel’s law applicable for real-valued masks, the
diffraction pattern remains inversion symmetric independent of κSPM [79, 80] (cf figure 5(a)). Notably, the
approach does not correspond to a simple mask rotation, which would cause the whole diffraction pattern
to rotate around its center at k = 0.

Similarly, in the MPI approach, γ is controlled by optical phases via the parameter κMPI (cf
equation (9)), given by κMPI = −mϕr + nϕb − (m − n)ϕce + (m + n)ζ (for details see appendix B), with
the respective relative phases ϕr/b of the red and blue component of the bichromatic laser field, the
carrier–envelope phase ϕce and the relative angle ζ/2 of the λ/2-waveplate [54]. Similar to the SPM
approach, the resulting photoelectron density is rotated by an angle of κMPI/(n + m). To highlight the
analogy, three experimental examples of rotational phase control are depicted in figure 4(b) for the optical
phases ϕr = ϕb = ϕce = 0 (left), ϕce = π (middle) and ϕb = π

3 (right). Furthermore, the control of the
spatial rotation is not only accessible via relative spectral phases of the field but also by the adjustment of a
λ/2-waveplate resulting in a rotation of the whole bichromatic laser field in the polarization plane (see e.g.
equation (6) in [67]). In fact, this feature is crucial for the tomographical reconstruction of the full 3D
PMD [56, 63, 81, 82]. Importantly, not only optical but also quantum phases accumulated during the
photoemission process result in a rotation of the detected electron density [64, 73]. Hence, the MPI
approach further enables to study imprinted time-dependent dynamics of quantum systems, e.g., due to
spin–orbit coupling [63] or Rydberg states [64, 83]. Moreover, it has been demonstrated that the
photoelectron wave packet’s symmetry is also controlled via the laser intensity as the interaction evolves
from the perturbative to the strong-field regime [76, 84]. Recently, spiral shaped electron wave packets
(electron vortices) in MPI [54–56, 58, 73, 76, 88] have attracted significant attention. These vortices have a
k-dependent phase due to the time-evolution of the wave packet [85].

In electron wave optics, spatial control of electron beams by magnetic lenses is conveniently described by
spatial phase masks applied in the back focal plane of the imaging lens [86, 87]. The corresponding phase
masks typically exhibit k-dependent phase functions. For example, the effect of a non-aberrated circular
symmetric magnetic lens can be described by a phase mask eiCk2

with C ∈ R, resulting in a converging
parabolic wavefront [86, 87]. In the holographic TEM approach utilized here, an equivalent k-dependent
phase function γ(k) can be imprinted onto the diffracted electron wave by choosing a more sophisticated
mask design. In particular, the holographic mask is calculated by applying the (inverse) Hankel transform of
the respective targeted k-dependence in position space. For this reason we choose the mth order normalized
Hankel transform of eiCk2

e−
1
2 C2k2

and the nth order normalized Hankel transform of e−
1
2 C2k2

as complex
amplitudes for the respective partial states eimφ and e−inφ, respectively (for more details see appendix A).
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Figure 5. Generalized mixed-OAM electron states. OAM superposition states are accessible both in the SPM and MPI approach
utilizing adapted mask geometries or time-delayed bichromatic ionization pulses, respectively. (a) Experimentally measured (top
left and zoom in for Γ(−1) (right)) and calculated (bottom left) far-field electron intensity scattered from an adapted mask. For
the mask manufacturing (TEM image (top center): mask diameter: 5.3 μm), a phase-factor eiCk2

and a Gaussian envelope e−
1
2 C2k2

were incorporated (C =−0.22 μm2, C2 = 0.17 μm2, see text and appendix A for details). The calculated phase distribution
exhibits a spiral-shaped radial structure (bottom center). (b) The measured photoelectron momentum distribution of sodium
atoms using a (3ω : 4ω) pulse sequence with a time-delay τ =−20 fs applied to the blue pulse, exhibits tilted lobes in the
flower-petal structure. The temporally delayed pulse sequence and the Ex –Ey projection of the corresponding laser electric field’s
polarization profile are shown in the inset. Both for the SPM and MPI approach, the k-dependent phase factor in the OAM
superposition states results in the lobes of the electron density profile being inclined relative to the radial direction.

Experimental and calculated results for the far-field electron diffraction pattern and phase-distribution are
shown in figure 5(a), exhibiting a spiral-shaped electron distribution.

In the MPI approach, a similar k-dependent phase appears during the time-evolution of the wave
packets when an additional time-delay τ (applied to the blue pulse) is introduced between the two spectral
components in the bichromatic field [54, 58, 76]. This delay yields γ(k) = γ0 +

�τ
2m k2, where γ of

equation (1) is denoted as γ0. The resulting photoelectron density is displayed in figure 5(b), showing a
pronounced tilt of the petal lobes relative to the radial direction. The time-delay leads to a τ -dependent
radial component of the probability current j along with a radial dependence of the interference term,
giving rise to the spiral shape [88]. The tilt angle of the lobes increases for larger time delays. In contrast to
the PMD, for sufficiently large time-delays, i.e. when the delay exceeds the pulse duration, the spectral
components in the bichromatic fields are temporally separated, such that the polarization profile is circular
and does not show the propeller-type structure in the polarization plane. Hence, in the multiphoton regime
the symmetry of the wave packet is completely described by the quantum interference of states with
different angular momenta and not fully determined by the optical field structure. For a vanishing
time-delay the photoelectron wave packet symmetry generally maps the field symmetry when the difference
between both photonicities (n and m) equals 1, i.e., when the wave packet exhibits an odd (n + m)-fold
rotational symmetry, as discussed in references [54–56]. While the MPI technique enables radial control via
the Npth order laser electric field’s spectrum, the holographic TEM approach can be extended to other
radial phase dependencies, allowing advanced transverse control of the resulting electron distribution.

4. Conclusion and outlook

In this paper, we presented the generation and manipulation of OAM superposition electron states using
tailored holographic spatial masks in a TEM and shaper-generated bichromatic laser pulses for atomic MPI.
Both approaches, were interpreted in the physical picture of an advanced double-slit in either the spatial or
spectral domain, resulting in electron density distributions with a 7-fold rotational symmetry. Further
control aspects, including a rotational or radial phase control, were demonstrated, unifying the theoretical
concepts commonly employed in electron wave optics and in the ultrafast coherent control of photoelectron
wave packets, respectively. So far, we focused on a comparison of both approaches. However, fascinating
perspectives arise when both experimental techniques are combined. For example multiphoton
photoemission from atomic systems may also be useful for the generation of phase structured electron
wavefronts in transmission electron microscopy, similar to recent work in ultrafast electron diffraction
[89–91]. In addition, the MPI technique can be extented to molecular MPI [92–95] giving rise to molecular
OAM states in photoionization. Since, the rotation and the symmetry of the generated OAM states is
affected by the atomic or molecular system itself, such an approach enables the precise measurement of
quantum phase shifts, similar to [64], and Stark-shifts [84]. Finally, the uncommon 7-fold rotationally
symmetric electron density of the OAM states demonstrated here may be useful for attaining enhanced
sensitivity in scanning low-loss electron energy spectroscopy of plasmonic particles with related
symmetries.
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Appendix A. Diffraction pattern of holographic TEM mask

In this section, we derive the far-field diffraction of the tailored TEM mask, containing OAM superposition
states. Following the holographic mask approach in [5], we construct a mask function given by

M(r,φ) = circR(r)|eimφ eiκSPM + e−inφ + eik0x|2, (A.1)

with variables as introduced in the main text. Equation (A.1) can be written as a sum of four terms,
M = M0 +M1 +M2 +M3, with

M0 = 3 circR(r), (A.2)

M1 = circR(r)
(
ei(m+n)φ eiκSPM + e−i(m+n)φ e−iκSPM

)
, (A.3)

M2,3 = circR(r)e±ik0x
(
e±inφ + e∓imφ e∓iκSPM

)
. (A.4)

Rearranging M in terms of cosine functions yields equation (10). The far-field diffraction of the electron
wave transmitted through the mask is described by the mask’s 2D Fourier transform

F{M}(kx, ky) =

∫
R2
M(x, y) e−i(kxx+kyy) dx dy, (A.5)

which is given in polar coordinates (r,φ) by [96]

F{ f }(k, ξ) =

∫ ∞

0

∫ π

−π

f (r)e−irk cos(ξ−φ)r dr dφ, (A.6)

with k = |k| and the polar angle of the transverse momentum ξ = arctan(ky/kx). For non-radially
symmetric functions f(r), one can use an angular Fourier decomposition [96]

f (r) = f (r,φ) =
∞∑

q=−∞
fq(r)eiqφ. (A.7)

With the 2D Fourier transform of equation (A.7)

f̃ (k) =
∞∑

q=−∞
2πi−q eiqξ

∫ ∞

0
fq(r)Jq(kr)r dr, (A.8)

we directly obtain the Fourier transformed components of the diffraction mask in equations (A.2)–(A.4)

M̃0 = 6πI0(k) = 6π
R

k
J1(kR), (A.9)

M̃1 = 4πI(m+n)(k)(−i)(m+n) cos ((m + n)ξ + κSPM) , (A.10)

M̃2,3 = 2π
(

i−m e∓imξ∓ e∓iκSPM Im(k∓) + i−n e±inξ∓ In(k∓)
)
. (A.11)

We note that M̃2,3 accounts for both side lobes in the diffraction pattern, which are equal to the Fourier
transform (or its complex conjugate) of the real-space target function, shifted by −k0 (+k0) in the
kx-direction in reciprocal space, respectively. In deriving equations (A.9)–(A.11), we used the identity
J−n(kr) = (−1)nJn(kr) and a short hand notation for the nth order Hankel transform of circR(r)

In(k) =

∫ R

0
Jn(kr)r dr, (A.12)

with the nth order Bessel function of the first kind, Jn(kr). In addition, we introduced shifted frequency
coordinates

k∓ =
√

(kx ∓ k0)2 + k2
y and ξ∓ = arctan

(
ky

kx ∓ k0

)
, (A.13)
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Figure A.1. Accuracy of the holographically generated electron wave field with respect to the target wave. (a, b) Calculated
electron diffraction pattern with (a) and without (b) considering mixing terms (cf equations (5) and (A.15), 3.7 μm aperture
diameter, no mask binarization applied, k0 = 30 μm−1, (m = 4, n = 3), scale bar: 10 μm−1). The targeted vortex structures with
7-fold rotational symmetry are described by |M̃2/3|2. (c) Phase distribution map of (a) in the far-field and zoom-in for the first
diffraction order. Equation (A.18) factorizes for k∓ ≈ keq around the first diffraction pattern, resulting in an approximate phase
behavior as contained in equation (1). (d) Wave function phase along circular paths marked in (c) for k∓ = keq (blue) and
k∓ = 0.8keq (red), showing a step-like behavior following the analytical expression as derived from equation (1) (black dashed).

originating from the Fourier shift theorem

(A.14)

For an approximation of the diffraction pattern, we neglect in the following the mixing terms M̃jM̃∗
k ,

i.e.

Γ = |F{M}|2 =
3∑

j=0

|M̃j|2 +
3∑

j,k=0
j�=k

M̃jM̃∗
k ≈

3∑
j=0

|M̃j|2. (A.15)

This approximation is valid in the limit of sufficiently large k0, compared to the widths of the
Fourier-transforms of the apertured real-space target wave and its autocorrelation function M̃0 + M̃1. In
figure A.1, the calculated diffraction pattern is shown with and without considering the mixing terms. For
the chosen parameters, a weak interference between M̃1 and M̃2,3 is visible, resulting in a small distortion
of the target wave formed in the side lobes. The main contributions to the diffraction pattern amount to

|M̃0|2 = 36π2I2
0 (k) = 36π2 R2

k2
J2

1 (kR), (A.16)

|M̃1|2 = 8π2I2
(n+m)(k) (1 + cos [2(n + m)ξ + 2κSPM]) , (A.17)

|M̃2,3|2 = 4π2
(
I2

n (k∓) + I2
m(k∓) + 2In(k∓)Im(k∓) cos

[
(n + m)ξ∓ + κSPM ± (m − n)

π

2

])
. (A.18)

The first term |M̃0|2 describes the zeroth diffraction order, surrounded by a structure with c2(n+m)

rotationally symmetric density, given by |M̃1|2. The targeted mixed-OAM states with cn+m-rotational
symmetry occur in the first diffraction orders and are described by the terms of Γ(∓1)(k, ξ) ≡ |M̃2,3|2,
shifted by ∓k0 in the kx-direction.

Notably, the Fourier transform of the apertured real-space target-wave contains a superposition of two
OAM states, with the same topological charges as in the real-space target function. However, their relative
amplitudes change with the reciprocal space distance k∓, due to the different k∓-dependence of the
functions In,m(k∓). For m = 4 and n = 3, both functions are equal for keq = 3.43 μm−1 (R = 1.85 μm), so
that at this specific reciprocal space radius, the phase behavior of the Fourier-transformed target wave
follows exactly equation (1) with β0 = 1 (cf figures A1(c) and (d)).

A more pronounced agreement with the target momentum wave function (cf equation (1)) and the
holographically generated side lobes can be achieved by implementing different radially-dependent
functions fq(r) (cf equation (A.7)) in the construction of the holographic mask. In particular, a specific
radial dependence G(k) can be achieved by choosing the normalized (inverse) Hankel transform of qth
order Hq for the angular decomposition terms fq. We employ this concept for the generation of a

superposition state with a k-dependent relative phase eiCk2
between the OAM components combined with a

10
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Gaussian radial dependence e−
1
2 C2k2

, shown in figure 5. Here, the holographic mask is calculated as

M(r,φ) =
∣∣∣e4iφ · H4 { eiCk2

e−
1
2 C2k2 }+ e−3iφ · H3 { e−

1
2 C2k2 }+ eik0x

∣∣∣2
(A.19)

for m = 4 and n = 3. Note that the imprinted phase singularity in the diffraction side lobes together with
the employed mask binarization results in a vanishing probability density around k∓ = 0. Furthermore the
thresholding inherent in the binarization scheme results in a finite mask extension.

Appendix B. Laser electric field and photoelectron momentum distribution in the
MPI approach

In this section, we discuss the electric field (symmetry) properties and quantum dynamics of MPI on
sodium atoms for mixed-OAM states. The electric field for CRCP pulse sequences to generate n vs m
electron mixed-OAM states is given by [97, 98]

E−(t) = E−
r (t) + E−

b (t)

= e1Er(t)e−i(ωrt+ϕr+ϕce) + e−1Eb(t)e−i(ωbt+ϕb+ϕce)

= e1Er(t)e−i(nωt+ϕr+ϕce) + e−1Eb(t)e−i(mωt+ϕb+ϕce), (B.1)

using the polarization vectors e1 =
1√
2

(
1
i

)
for LCP and e−1 =

1√
2

(
1
−i

)
for RCP, the respective field

amplitudes Er/b(t), the relative phases ϕr/b, the carrier–envelope phase ϕce and the frequencies
ω = ωb

m = ωr
n . For equal envelopes Eb(t) = Er(t) ≡ E0(t) and without the phases we find

E−(t) = E0(t)
(

e1 e−inωt + e−1 e−imωt
)
. (B.2)

Therefore the real-valued laser electric field is given by

E(t) = Re{E−(t)} =
1√
2
E0(t)

(
cos (nωt) + cos (mωt)
sin (nωt) − sin (mωt)

)

=
√

2E0(t) cos

(
(n + m)

2
ωt

)⎛
⎜⎜⎝

cos

(
(n − m)

2
ωt

)

sin

(
(n − m)

2
ωt

)
⎞
⎟⎟⎠ , (B.3)

using Φ = arctan
(

Ey

Ex

)
= n−m

2 ωt leads to an azimuthal velocity Φ̇ = n−m
2 ω. Note that the MPI with the blue

field component (ωb = mω) corresponds to a photonicity of Nblue
p = n, while the one for the red

component (ωr = nω) leads to Nred
p = m to ensure interband interferences. Hence, the excitation with an

(nω : mω) field leads to m vs n photon processes [54]. For this reason we rewrite the azimuthal velocity

ωΦ(m, n) =
m − n

2
ω, (B.4)

which is shown to be constant within such a propeller-type polarization profile. Here n and m now
represent the respective photonicities Np. This can be associated with an induced azimuthal probability
current j in the resulting photoelectron wave packet (cf appendix C).

A rotation of our bicircular field around an angle ζ , i.e. using a λ/2-waveplate under ζ/2, is represented
by

R(ζ)(e1Er + e−1Eb) = e1Er e−iζ + e−1Eb eiζ , (B.5)

with R(ζ) as the active rotation matrix in mathematical positive direction and the respective polarization
vectors e±1.

In the following we derive that these polarization-shaped bichromatic fields with commensurable
frequencies enable, via preselected σ±-transitions (spectral double slit), the generation of OAM states
described by equation (1). The perturbative description of the MPI (with Np photons) of sodium atoms
leads to equation (8) in momentum spherical coordinates (k, ξ,ϑ) [54–56]. The factor iNp represents the
phase from Npth order perturbation theory [99–101]. Together with optical phases and the rotation angle ζ
of a λ/2-waveplate (cf equation (B.5)) we find for σ±-transitions with Np photons

ψ̃l,±m(k, ξ,ϑ) = ψl,±m(k, ξ,ϑ)e−iNp(ϕr/b+ϕce)e±iNpζ . (B.6)
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Since solely σ±-transitions are discussed (cf figure 2(b)) we denote Np ≡ m. This leads to the photoelectron
wave function of the superposition state

ΨMPI(k, ξ,ϑ) = ψ̃m,m(k, ξ,ϑ) + ψ̃n,−n(k, ξ,ϑ)

∝ ψm,m(k, ξ,ϑ)eiκMPI + ψn,−n(k, ξ,ϑ), (B.7)

with
κMPI = −[mϕr − nϕb + (m − n)ϕce − (m + n)ζ]. (B.8)

Further simplification is achieved by the approximations Pl+1,l+1 ≈ (−1)Pl,l for the associated Legendre
polynomials around ϑ = π

2 and the radial part Rl+1 ≈ Rl assuming Gaussian envelopes, leading to

ΨMPI(k, ξ,ϑ) ≈ Rn(k)Pn,n[cos(ϑ)]
(
im(−1)m−n eimξ eiκMPI + in(−1)n e−inξ

)
∝ Rn(k)Pn,n[cos(ϑ)]

(
eimξ eiγ + e−inξ

)
, (B.9)

and identifying γ = κMPI + (m − n) π
2 + mπ. Within the approximation of ϑ ≈ π

2 , introduced above, we
find

ΨMPI(k, ξ,ϑ) ≈ GMPI(k)
(
eimξ eiγ + e−inξ

)
, (B.10)

with GMPI(k) = Rn(k)Pn,n[cos(ϑ)] and therefore an analogous description to equation (1). The resulting
electron density is given by

|ΨMPI|2 ≈ |GMPI(k)|2 [1 + cos ([m + n] ξ + γ)] , (B.11)

in agreement with equation (2).

Appendix C. Quantum mechanical properties of mixed-OAM states

The topological charge along with the probability current j and the expectation value of the z-component of
the orbital angular momentum 〈Lz〉 are key quantities describing the properties of the OAM superposition
states realized in both experiments. The probability current [57]

j =
�

m


[
Ψ∗∇Ψ

]
=

�

m
ρ · ∇ arg(Ψ) ∝ ρω (C.1)

describes the flow of probability-density ρ in the system. The angular frequencies ω ∝ ∇arg(Ψ) are
associated with the angular group velocity of the wave function. Hence, we find for equation (1)

j ∝ |Ψ|2 (m − n)

2k
eξ +O(β0 − 1) ≈ ρ

m − n

2
eξ , (C.2)

with the azimuthal group velocity ωξ ∝ m−n
2 . Note that this velocity corresponds to the angular velocity of

the laser electric field in equation (B.4), i.e.,

ωξ(m, n) ∝ ωΦ(m, n). (C.3)

A further analogy can be drawn by the investigation of the expectation value of the angular momentum in
z-direction 〈Lz〉. For the general superposition state in equation (1) we find

〈Lz〉 = 〈Ψ|Lz|Ψ〉 ∝ β2
0 m − n

1 + β2
0

≈ m − n

2
+O(β0 − 1). (C.4)

This result is in agreement with the integrated probability current in azimuthal direction, given by

∫ 2π

0
(j)ξdξ ∝ β2

0 m − n

1 + β2
0

≈ m − n

2
+O(β0 − 1) (C.5)

and representing an azimuthal velocity of the electron density. Another quantity which is commonly
discussed in this context is the topological charge �, describing the accumulated phase following a contour C
and defined as [3]

2π� =

∮
C
∇ arg(Ψ) · dk, (C.6)
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Figure C.1. Calculated expectation value of the z component of the angular momentum 〈Lz〉 (red) and the topological charge �
(violet) as a function of the amplitude factor β0 for an OAM superposition state with m = 4 and n = 3.

where C is a contour enclosing the phase singularity. Combining equation (1) with equation (C.6) using
β0 ∈ R+ we get

∇ arg(Ψ) =
β0(m − n) cos((m + n)ξ) − β2

0 n + m

(β2
0 + 2β0 cos((m + n)ξ) + 1)k sin(ϑ)

(C.7)

and find

� =
1

2π

∫ 2π

0
∇ arg(Ψ)dξ =

1

2π

∫ 2π

0

(m − n)

2

m−β2
0 n

β0(m−n) + cos([m + n]ξ)

1+β2
0

2β0
+ cos([m + n]ξ)

dξ. (C.8)

With (m + n) ∈ N it can be written as

� =
1

2

(
sgn

[
1 − β2

0

]
(m + n) − (n − m)

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m ; β0 < 1
m − n

2
; β0 = 1

−n ; β0 > 1.

(C.9)

This piecewise behavior differs from the ones of 〈Lz〉 or j and is depicted in figure (C1) exemplarily for
m = 4 and n = 3.
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