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Abstract
Weuse an exact solution to the fundamentalfinite Kronig–Penneymodel with arbitrary positions and
strengths of scattering sites to show that this iconicmodel can possess topologically nontrivial
properties. By using free parameters of the system as extra dimensions we demonstrate the appearance
of topologically protected edge states as well as the emergence of aHofstadter butterfly-like
quasimomentum spectrum, even in the case of small numbers of scattering sites.We investigate the
behavior of the system in theweak and strong scattering regimes and observe drastically different
shapes of the quasimomentum spectrum.

1. Introduction

TheKronig–Penney (KP)model is one of the fundamentalmodels of solid state physics and has since its
inception [1] received significant attention. It combines predictive powerwith accessibility and has, in fact,
become a standardmodel that is taught in almost all solid state classes for undergraduate students. Despite its
underlying simplicity that neglects interactions between the particles, it is particularly well suited to describe the
behavior of electrons inmetals [2–7].More recently an experimental realization of theKP potential for ultracold
atoms in optical lattices was proposed [8] and demonstrated [9] .

One important aspect of the success of the KPmodel lies in itsflexibility. It allows to describe impurities or
disorder in an easy and straightforwardmanner by assuming the scattering potentials to be located at non-
periodic positions or having random strengths [10, 11]. Herewe present an analytical solution for the arbitrary
finite KPmodel, when all scatterers are placed at arbitrary positions and have arbitrary strengths. Due to the
generality of the presented solution, the arbitrary finite KPmodel is broadly applicable for real systems, such as
crystalsmade frommultiple atomic species, impurities in the spacial periodicity with respect to position and
scattering strength, and effects stemming fromfinite geometries. This can be used for the exact treatment of
effects that were only explored numerically before, such as localization [12–14] or the existence of topologically
nontrivial states [15, 16]. As an examplewe use the explicit solution in order to investigate appearance of the edge
states andHofstadter butterfly-like features in afinite, continuous system.

To obtain the single-particle solutions of the arbitrary finite KPmodel we use the coordinate Bethe ansatz
approach. Thismethod of solving one-dimensional quantummany-body problemswasfirst described byHans
Bethe in 1931 [17], and has since then been successfully applied to a large number of problems in lower
dimensions [18–22].

Ourmanuscript is organized as follows. In section 2we outline the solution to the arbitrary finite KPmodel
using the Bethe ansatz. For this wefirst define the problem in section 2.1 and then derive and present the explicit
expressions for the Bethe equation and the eigenfunctions, in sections 2.2 and 2.3, respectively. In section 3we
use these solutions to demonstrate the appearance of edge states in the finite KPmodel with a lattice shift as an
extra dimension. Finally, in section 4, we explore the emergence of aHofstadter butterfly-like energy spectrum
in the amplitude-modulated KPmodel.
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2. Solution of the arbitraryfiniteKPmodel

2.1.Model
Weconsider a one-dimensional system consisting of an infinite potential box of size L, inwhichM point-like
scatterers of arbitrary strengths = ¼


( )h h h, , M1 are placed at arbitrary positions = ¼

 ( )y y y, , M1 with

Î -[ ]y ,n
L L

2 2
and yn<ym for n<m (see the schematic in 1), i.e.
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We showbelow that this potential cannot, in general, be solvedwith the Bethe ansatz for a systemof point-like
interacting bosons.However, the non-interacting and the infinitely strongly interacting (Tonks–Girardeau)
limit can be solved, the latter bymaking use of the Bose–Fermimapping theorem [23, 24]. For both it is necessary
to consider only the single-particleHamiltonian and the corresponding Schrödinger equation


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The essence of the coordinate Bethe ansatz approach is that the eigenstates of any system can be represented
as a superposition of planewaveswith different quasi-momenta for each particle [25]. By taking into account all
possible scattering events one can construct a set of consistency equations, called the Bethe equations, and only
those quasi-momenta which satisfy the Bethe equations are allowed in the system.Once the quasimomenta are
determined, the energy of the system is given by a simple sumof their squares. A necessary condition for a system
to be integrable, however, is that it satisfies the Yang–Baxter relations [26, 27]. These stem from the requirement
that all of the three-body scattering processes in the system can be decomposed into a series of two-body
scattering events whose order does notmatter.

Unfortunately, for larger numbers of particles and barriers, or for a non-symmetric placement of a single
barrier, the Yang–Baxter relation cannot be satisfied in the regime offinite interactions. This can be seen
straightforwardly by considering two particles with different quasi-momenta located in the same region between
two scatterers. The three-body scattering events occurwhen both particles hit the same barrier at the same time.
While these events can in principle be decomposed into the two particles scattering between themselves, and
each particle individually scatteringwith the barrier, the order inwhich the particles scatter against the barrier
matters. This is because the second particle to scatter on the barrier will be subject to a different dynamical
evolution depending on the quasi-momentumof the other particle. Consequently, the Yang–Baxter relations
cannot be fulfilled and themodel cannot be solved analytically with the Bethe ansatz forfinite interaction
strengths.

It is worth noting, however, that the interacting case was recently studied for a specific example by Liu and
Zhang [28], who considered one scatterer at the center of the infinite box (M=1, y1=0). They showed that
this system can be partially solved for two particles and arbitrary scattering strengths, by finding the eigenstates
for which the Yang–Baxter relations are satisfied.

Let us alsomention that a different approach to the single-particle problemwas recently proposed by
Sroczyńska et al [29]. In this work the authors use aGreen’s function approach to solve the problemof a single-
particlemoving in an arbitrary trapping potential which has regularized delta scatterers superposed. The
solution presented herewill coincide with the one-dimensional solution of [29] after substitution of theGreen’s
function for the infinite square well.

2.2. Bethe equations
In the followingwe outline the exact solution of equation (2), with the potential given by expression (1), using
the Bethe ansatz.We start by considering solutions for each of the regions between the scatterers, determined by
the free-particle Schrödinger equation

Figure 1. Schematic of the arbitrary finite KPmodel. The barriers are located at positions y1 to yM and have respective heights of h1,K,
hM. The regions between all scatterers (including thewalls) are denoted as  = -( )y y,n n n1 , where y0 and yM+1 are the left and the right
wall.

2

New J. Phys. 21 (2019) 013010 I Reshodko et al




-

Y
= Y

( ) ( ) ( )
m

x

x
E x

2

d

d
. 3

2 2

2

Weconstruct an ansatz for the full solution of equation (3) composed of piecewise planewaves with quasi-
momentum k as

 åY = + Q
=

+
- -( ) ( ) ( ) ( )[ ] [ ]x xe e , 4

n

M

n
k kx

n
k kx

n
1

1
i i

where q qQ º - --( ) ( ) ( )x x y y xn n n1 , with θ(x) being theHeaviside step function. Each term in the sum
corresponds to a region between two scatterers or a scatterer and the adjacent walls, Î = -( )x y y,n n n1 , andwe
have set y0=−L/2 and yM+1=L/2. This ansatz has to satisfy the boundary conditions imposed by the
scatterers andwalls, which are of the form

Y  =( ) ( )L 2 0, 5

Y = Y - +( )∣ ∣ ( )x , 6x y x yn n


Y =

Y
-

Y

 + -
( ) ( ) ( ) ( )mh
y

x

x

x

x

2 d

d

d

d
. 7n

n
x y x y

2
n n

The Bethe ansatz approach now consists of constructing equations for the quasi-momenta k, fromwhich the
energies follow as =E k m22 2 . To do so, wewillfirst construct expressions for all coefficients[ ]

n
k and  -[ ]
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by calculating for each region n the elements of the reflectionmatrix
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Starting with the boundary conditions at thewalls, we first substitute the ansatz in equation (4) into
equation (5), and obtain expressions for the first and the last elements of the reflectionmatrix of the form
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Next, the continuity and scattering conditions given in equations (6) and (7) at the jth barrier lead to
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By considering equations (11) and (12) for j=n, n−1 and taking into account that   =-[ ] [ ] [ ]
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the recursive form for the reflectionmatrix elements
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for the inner regions  =n M, 2 ...n . Together with equations (9) and (10), these expressions correspond to the
twoways of inverting the sign of the quasi-momentum k by reflecting the particle at the left or the right wall.
Thus, the two expressions for each region have to be equivalent, yielding theM+1Bethe equations that define
the allowed quasi-momenta of the system.

Next we prove that all these Bethe equations are equivalent. For this we represent the process of reflecting a
particle as a sequence of scattering events at each barrier, denoted by the elements of the scatteringmatrix





º +
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k
, 15n
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1

and reflections against the left and right wall, denoted by[ ]k
1 and +

[ ]
M
k

1. For example, reflecting the particle
from the rightmost region,  +M 1, the Bethe equation can bewritten as
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It is easy to see that bymultiplying both sides of the equation by the inverse scatteringmatrices in the appropriate
sequence, one can reconstruct similar equations for all other regions.
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Consequently, we only need one Bethe equation for the single variable k, andwe choose the one that assumes
the particle to be in the rightmost region, as it has the simplest form given by
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By unwrapping the this recursive expression, we can then construct the Bethe equation for any given values of
the systemparameters, which can be algebraically simplified to
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The sum is over all ordered sets of n scatterer indices, i.e. (p1,K, pn), andwe have also defined = -y L 2p0
and

=
+

y L 2pn 1
. The Bethe equation constructed in this way is an algebraic transcendental equation, whose roots

can generally only be found via numericalmethods or analyticalmethods for small number of roots [30].

2.3. Thewavefunction
From equations (11) and (12)we can also obtain an explicit recursive expression for the elements of the
scatteringmatrix of the form
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for n=1...M. A similar expression can be obtained for  -[ ]
n

k , however there is no need to calculate it explicitly,
as it can always be reconstructed from [ ]

n
k and the reflectionmatrix.

We therefore have everything to express all coefficients of the ansatz wavefunction in equation (4) in terms
of[ ]k

1 as
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The remaining coefficient[ ]k
1 is in principle fixed by normalization of thewavefunction. The explicit formof

the coefficients is then given by
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For practical purposes we define =[ ] 1k
1 and later renormalize all coefficients [ ] [ ]
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whereR and I denote the real and imaginary parts.
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3.Nontrivial topology and boundary states

Since nowwe have access to all single-particle states of the system,wewill apply our solution for the cases of
equidistant scatterers of equal and varying heights. Our results are detailed in section 3.1 and 3.2, respectively.

For both cases we study the emergent topology of the bands. Even though topological effects generally
require higher dimensions, it has been shown that in certain one-dimensional systems additional degrees of
freedom can be used as a virtual second dimension—a superspace [31]. The Fermi–Hubbardmodel with
modulated on-site energy [16], and the non-interacting systemwith trigonometric potential [32] provide
examples for nontrivial topology studied in 1+1 dimensions. A nontrivial topology ismarked by a nonzero
topological invariant, such as the first Chern number in the case of two dimensional systems [33, 34].

To have a second periodic parameter that can be considered as a virtual dimension, we apply a shiftΔ to the
scatterers with respect to thewall of the box.

First we use our analytical solution for thefinitemodels. Plotting the energies with respect to the shiftΔ, we
find in-gapmodes connecting the bands.We then investigate the appearance of edge states for two paradigmatic
structures: a uniform lattice and a superlattice. In both cases the superspace is realized by a relative shift of the
lattice of scatterers with respect to the box (see 2).

3.1. Equidistant scatterers of equal heights
Wefirst consider a set of equidistant scatterers of equal height hn=h>0 for n=1,..,M and introduce a shift
in the barrier positionsΔä [−1, 1]with respect to thewalls of the box

= - + +
D -⎜ ⎟⎛

⎝
⎞
⎠ ( )y

L
n

L

M2

1

2
. 27n

To simplify the presentation of our results, wewill use natural units,m=ÿ=1, fromnowon. The energy
spectrum as a function ofΔ is shown infigure 3(a), where one can clearly see the appearance of in-gap states
between the bands, even in the case of a rather small number of barriers.We also show the probability density of
thefirst two edge states as a function ofΔ, demonstrating localization of the twowavefunctions (figures 3(b),
(c)). The strongest localization of thewavefunction is achieved for k values in themiddle of the band gap
(D =  1

2
), showing that the in-gap states indeed live on the edges. The density becomes stretched over the

whole box for the shift valueswhen the in-gap states approach the bulk bands, e.g. forD  0. This indicates
that here the edgemodes submerge in the bulk. The slope of the energy of the edge states as a function of the shift
Δ denotes their velocities: the edgemodeswith positive slope have positive velocity, and the ones with negative
slope have negative velocity. Fromfigures 3(b) and (c) it is clear that the edgemodeswith opposite velocities, i.e.
traveling in opposite directions, are located on the opposite sides of the system, signaling that indeed these
boundary states are chiral. In the second gapwe have two edgemodes on both sides. Fromfigure 3 it is evident
that those on the same side propagate in the same direction, and therefore cannot cancel each other. In-gap
chiral edgemodes suggest the presence of nontrivial topology. In order to prove this, we numerically calculate
theChern number of the first two energy bands in the systemwith periodic boundary conditions using the
method described in [35]. TheChern number is a topological invariant connected to the Berry phase and defined
as ò ò d= ¶ - ¶

p d d d( )c k A Ad d
k k k

1

2
, where k is the quasi-momentum in x direction and δ is the lattice shift.

f f= á ¶ ñ( )∣ ( )A k k k ki , ,k k1 2 1 21 1
and f f= á ¶ ñ( )∣ ( )A k k k ki , ,k k1 2 1 22 2

are the Berry connections withf(k1, k2) being
the occupied Bloch state [33, 34]. A topologically nontrivial systemwill have a non-zero integer Chern number.
Our numerical calculation of theChern numbers for the first two energy bands are shown infigure 3, and are
both equal to one. According to the bulk-boundary correspondence, the number of edgemodes in the gap has to
be related to the sumof theChern numbers of the bands up to the given gap. In the first gapwe have two edge
modes, with positive and negative velocities, located on the opposite ends and corresponding to c1=1. In the
second gap the number of edgemodes becomes two for both sides, reflecting a total Chern number c2=2, and
so on.

Figure 2. Schematic of the arbitrary finite KPmodel with equidistant barriers of equal height h. The superspace is realized by
introducing a lattice shiftΔ, which displaces the barriers to newpositions (dotted lines).
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3.2. Equidistant scatterers of non-uniformheights
While superlattice-type structures aremore complicated, they can still be treated straightforwardly using the
above solution.Here we consider again a systemof equidistant scatterers (see equation (27)), but with
alternating heights h={0.4, 1.4}. As expected, the energy spectrumbecomesmore complicatedwith additional
gaps appearing (see 4), which are due to the existence of two different sub-lattices [36]. Adiabatically altering the
heights of the potentials does not close the gaps observed for the uniform case, therefore the topology of the
bands cannot change. The chiral boundary states and the topological properties are robust against perturbing
the systemwith potentials of randomheights, as shown infigure 5.

4.Hofstadter butterfly and cocoon spectra

Another characteristic topological effect is the appearance of a fractal pattern in the energy spectrumof a system
[37]. This was first predicted byHofstadter for electrons on an infinite 2D lattice in the presence of amagnetic
field, where the particles experience a phase shiftf due to themagnetic field after a full loop over a lattice
plaquette. Such an energy spectrumhas since then become known as aHofstadter butterfly due to its distinct
shape. For finite systems, however, the fractal nature of the energy spectrum is known to be lost [38–40], but the

Figure 3. (a)Energy spectrum as a function of the shiftΔ for a system of 11 equidistant barriers of height h=0.4 in a box of size
L=11. The numbers in the bandgaps c1 and c2 are the Chern numbers of the underlying band. The green and black lines indicate the
first two edge states with quantumnumbers 22 and 11, whose densities are shown in (b) and (c), respectively. The dashedwhite lines
indicate the positions of the scatterers.
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overall shape of the butterfly is preserved, with states appearing in the bandgaps. In one-dimensional systems
similar effects can be observedwhen using a superspace[16, 41], and herewewill investigate theHofstadter
butterfly-like quasi-momentum spectrumof the arbitrary finite KPmodel as it emerges with increasing
numbers of scatterers.

Themodel we are considering consists of equidistant barriers at positions yn=−L/2+anL, with a=1/
(M+1). The heights of the scatterers aremodulated by a periodic function

pf= + - +⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( )h h h h ancos 2

1

2
. 28n min max min

2

The scattering potential is periodic inf (with periodf0≡(M+1)/2), andf therefore plays the role of the
flux fromHofstadter’s original study.Note that ourmodel describes a continuous system,whereas the original
argumentwasmade for a system in the tight-binding approximation [37].

Wewillfirst study the case of all positive scatterers, andfix the heights of the scatterers to vary between
hmin=0.1 and hmin=1.5.We thenfind the quasimomentum spectrum forfä[0,f0] and show it in 6(a) for
M=17 scatterers. One can see that the spectrum is symmetric around k=0 and splits into bands, whosewidth
depends on theminimum scatterer strength hmin. Each of these bands has a shape that resembles aHofstadter
butterfly, but this shape becomes less pronounced in higher bands due to the finite height of the scatterers. The
gradual emergence of the butterfly-like shapewith increasing the number of scatterers can be seen in 7.One can
also see that in each band the statewith the largest absolute value of quasimomentum is fully flat and

Figure 4. Same asfigure 3, but for a system of 11 equidistant barriers of alternating heights h={0.4, 1.4}.
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corresponds to a delocalized state with p= +( )k M l L1l
flat , where l=±1,±2,K is the band index. This

state has nodes exactly where the scatterers are located and its energy is therefore not affected by them.
Let usfinally study the case which also includes negative values for the scatterers’ strengths.We limit

ourselves toweak negative scatterers to avoid the presence of bound states.
The quasimomentum spectrum forM=17 scatterers withminimumandmaximum strengths

hmin=−0.5 and hmax=0.5 is shown infigure 6(b). The two spectra infigures 6(a) and (b) are very similar,
especially for k values close to the band-edge, which confirms again that the properties of the systems aremostly
determined by the position distribution of the scatterers rather than their changes in strength.While the
butterfly structure in this weakly-scattering, finite-sized systemhas not yet fully developed, one can see a
prominent cocoon-shaped feature appearing around k=0 in the case where scatterers have negative aswell as
positive strengths.

5. Conclusions

Wehave used the coordinate Bethe ansatz to derive an analytical solution of the finite KPmodel with delta
scatterers of arbitrary heights positioned at arbitrary points within a box. The concise formof these solutions

Figure 5. Same asfigure 3, but for an example of a systemof 11 equidistant barriers of randomheights varying from hmin=0.1 to
hmax=1.4.
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allows to treatmany problems that were only accessible numerically until now in an exact way and is likely to
give insight intomany problems in solid state physics, such as impurities,finite systems, or disordered systems.

We showed that the bands of theKPmodel with uniform equidistant scatterers become topologically
nontrivial upon applying a shift in the potential which represents a second virtual dimension. As a consequence
of nontrivial topology, we observe chiral edgemodes collapsing the gap in the analytical solution of ourfinite KP
model. Introducing randomdistortion in the heights of the scatterers, the gap remains open and the topology of
the bands prevails.

We have also demonstrated the appearance of aHofstadter butterfly-like quasimomentum spectrumwith
modulated scatterer heights, as well as the presence of a cocoon-shaped feature in the spectrum in the case when

Figure 6. (a)Hofstadter butterfly-likemomentum spectrum in a systemwhere all scatterer heights are positive. Themodulation

period is given by f = +M
0

1

2
, and the seventeen scatterer heights in this example vary between hmin=0.1 and hmax=1.5. (b) Same

as above, but for a systemwith scatterer heights varying between hmin=−0.5 and hmax=0.5. The large circular feature in the center
(a cocoon) is not present in the positive scatterers-only system,while the iconicwings are just developing.

Figure 7.Quasimomentum spectra for systemswith an increasing number of scatterers, whose heights aremodulated according to
equation (28). In all cases, hmin=0.1 and hmax=2.1.
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the scatterers can be both positive and negative. The solutionwe present can be readily applied to studies of
localization in various distributions of the barrier heights and positions, in solid state and in optical lattices.
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