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Abstract
The Bohmian trajectorymethod is employed to study electron diffraction in crystallinematerials. It
provides a fresh understanding of the process of electron diffraction, including traveling channels of
electrons and formation of diffraction patterns. By combining it with the Blochwavemethod, the
electron trajectories can be calculatedmore efficiently than the traditional wave-packet propagation
algorithm.Meanwhile, we propose amomentum expectation approachwhich is a good approx-
imationmethodwith even higher computational efficiency. Bothmethods result in intuitive and
accurate electron trajectories for the simulation of the electron backscatter diffraction (EBSD) pattern.
Excellent agreement has been obtained between the simulated trajectory distributions and the
experimental EBSDpattern fromMo (001) at 20 kV, where the Kikuchi patterns and higher order
Laue zone rings are characterized.

1. Introduction

The Bohmianmechanics is an alternative interpretation of quantummechanics, which is different from the
Copenhagen interpretation and themany-worlds interpretation. The standard quantum formalism ismostly
related toCopenhagen interpretation [1] for analyzing quantumphenomena from the perspective of probability
and statistics. On the other hand, the Bohmianmechanics proposes a deterministic way to interpret quantum
phenomenawith definite particles trajectories guided by thewave function, which allows one to understand the
quantumworldwith the familiar classical trajectory picture.

The Bohmianmechanics, first known as the pilot wave theory, was proposed by de Broglie [2, 3] even before
theCopenhagen interpretation andwas further developed byBohm [4, 5]. It gives exactly the same predictions
for all quantumphenomena as any other interpretations and is computationally friendly as has been
demonstrated [6, 7]. Because of its intuition, accuracy and efficiency, the Bohmianmechanics is recognized as a
practical computational tool to study quantumphenomena, such as, the two-split quantum interference [8],
spin system [9], identical particles [10], atom scattering [11–13], entangled photons [14], etc. Bohmian
trajectories have already been experimentally observed [15–17]withweakmeasurement technology, and the
experimental results are consistent with the calculation [18]. Thus, in recent years the Bohmianmechanics has
attractedmore research interest.

On the other hand, electron diffraction techniques [19, 20], e.g. electron backscatter diffraction (EBSD) [21]
and convergent beam electron diffraction, are significant tools for analyzing crystallinematerials with electron
microscopy [22]. These techniques can provide important crystallographic and phase information, such as grain
size and boundary characterization, global and local texture, phase identification and separation, which is
helpful to understand the properties of thematerials. Though the experimental techniques for electron
diffraction have been highly advanced, the formation process of the diffraction patterns is complicated and
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deserves to be studied furthermore. It can be expected that a dynamicmodel of the physical process of electron
diffractionwill allow us to extract additional information from the experimental results. Thus, it is necessary to
develop numerical simulations that can reproduce the formation process of the characteristic diffraction
patterns in the formof the gorgeous Kikuchi bands. TheKikuchi pattern [23, 24] is considered as being created
when the electrons are scattered by different lattice planes. It exists as series of bands geometrically following the
Bragg’s law [25]. However, a simple geometricmodel could not quantitatively explain the exact intensity
distribution. In order to obtain the intensity, several dynamicalmodels of electron diffraction have been
successfully developed; for example,Winkelmann et al [26] have developed a dynamical simulationmethod
with the Blochwave theory, and another simulation [27]was based on themulti-slicemethod [28].

In ourwork, we attempt to reproduce the electron diffraction process with quantum trajectories in a crystal
based on the Bohmianmechanics. To obtain the Bohmian trajectories, time-dependent wave-packet
propagation algorithms [29] aremostly appliedwith the use of the split operatormethod [30], themulti-slice
method [31, 32], the quantumHamilton–Jacobi equationmethod [33], etc. In thesemethods, the time-
dependent Schrödinger equation is solved by calculating the evolution of thewave function over time step by
step, which consumesmuchCPU time and computingmemory. Considering the periodicity of crystalline
materials, wefind an efficient way to calculate the Bohmian trajectories in electron diffraction process using the
Blochwave theory. In this paper,firstly, the parallel electron beamdiffraction is simulated. Thewave function,
the velocityfield and the Bohmian trajectories will be displayed to showhow a planewave is diffracted in a
crystal. Secondly, wewill present an application of this approach to the simulation of the Bohmian trajectories in
EBSD,where the landing positions of electrons on a screen are treated as a representation of the Bohmian
trajectories. In this simulation, the EBSDpatternwill be intuitively reproduced from statistical accumulation of
the points on the screen. In addition, wewill propose another newmethod called themomentum expectation
(ME) approach to calculate the Bohmian trajectories. TheME approach provides a good approximationwith
higher efficiency to simulate the final pattern of the trajectory distribution in EBSD.

2. Theory

2.1. Blochwave theory
In the Bohmian trajectory theory the trajectories are guided by thewave function. In order to obtain thewave
function, we start with solving the Schrödinger equation for a periodic crystal potential. Thewave function of
incident electrons inside the periodic potential of a perfect crystal is expressed as a superposition of Blochwaves,
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where A j( ) and k j( ) are respectively the amplitude and thewave vector of the Blochwave b k r, .j( )( ) In the time-
independent Schrödinger equation,
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whereU r( ) is a periodic potential and can be expanded as a Fourier series,
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by substituting equations (1) and (3) into equation (2), the renowned dynamical equation of Bethe [34] is
obtained as
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0
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0= + is the electronwave vector inside the crystal and k 0 is the electronwave vector in the
vacuum. Then the vector k j( ) is decomposed as,

k K n, 5j jl= + ˆ ( )( ) ( )

where n̂ is the unit normal vector of the surface. By substituting equation (5) into equation (4), the equation is
converted into an eigenvalue equation [35] in the formof

I H D C 0, 6j j j2l l+ - =[( ) ] ( )( ) ( ) ( )

where I is a unitmatrix, H n K g2 ,gg = +ˆ · ( ) H 0,gh = D g K g2 ,gg
2= - - · D U ,gh g h= - and C j( ) is a

column vector containing the Fourier coefficients C .j
g
( ) Equation (6) can be solved by a standardmethod [36].

However, for high-energy electrons, it is a good approximation [36, 37] to keep only the linear term and ignore
the high-order term; then the eigenvalue equation is rewritten as,
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Blochwaves A j( ) can be obtained from
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where Cj
1- is the jth element in the first columnofmatrix C ,1- which is demonstrated [38] by Sheinin et alWith

the coefficients solved above, the total wave function is obtained as:

A Cr K n g rexp i . 10
j

j j j

g
gå åy l= + +( ) [ ( ˆ ) · ] ( )( ) ( ) ( )

Inelastic scattering can be also consideredwhen extending the potential to be complex,
U(r)=URe(r)+iUIm(r). Thus, the coefficients A ,j( ) C j

g
( ) and the eigenvalues jl( ) all become complex. To

calculate the inelastic scattering processes, thermal diffuse scattering [39, 40] is evaluated using theDebye–
Waller factor [41–43], and other excitations [44] are accounted for by inelasticmean free path (IMFP) [45]. The
imaginary part of the complex potential can be calculated by the FSCATT subroutine [46]. Thewave function
obtained is then used to calculate the Bohmian trajectory. In this paper, we consider twomethods for the
calculation of the Bohmian trajectory. Thefirst one is based on the traditional Bohmianmechanics and the
second one is derived from theME approach.

2.2. Bohmianmechanics
In Bohmianmechanics, there exist both quantumwaves and point-like particles guided by thewave functions.
For large population of particles, the Bohmianmechanics gives exactly the same result as Copenhagen
interpretation. This paper discusses the trajectory representation of electron diffraction in a crystal togetherwith
the particle velocity field.

Thewave function tr,y ( ) is complex so that it can be expressed in the polar form,
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where R tr,( ) is the amplitude and S tr,( ) is the phase. Then the time-dependent Schrödinger equation,
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The real part, equation (13), is analogous to the classical Hamilton–Jacobi equation, where S m22( ) andU
respectively stand for kinetic energy and classical potential, and Q t R mRr, 22 2= - ( ) is interpreted as
quantumpotential, which is nonlocal. The particle velocity can thus be defined as,
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Notice that R2 represents the probability density t t Rr r, , ,2 2r y= =( ) ∣ ( )∣ therefore, the equation (14) for
the imaginary part can be rewritten as the continuity equation,
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where J vr= is the probability flow. This equationwasfirstly introduced in the hydrodynamic interpretation of
quantummechanics byMadelung [47]. The continuity equation here guarantees that the information of the
quantum system can be computed fromquantum trajectories at any time.

When simulating electron diffraction in a crystal, thewave function is obtained as equation (10), thuswith
the definition in equation (15) the velocity field of electrons can be calculated as,
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Then the Bohmian trajectories are calculated by integral of the velocity.
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In Bohmianmechanics, the amplitude information and the phase information of the total wave function are
all contained in the Bohmian trajectories. Thismeans that the trajectories obtained should be able to describe the
details that how electrons are dynamically diffracted in a crystallinematerial. The Bohmian velocity calculated in
periodic potential is a function of the particle position r and thewave vectorK inside the crystal, which indicates
that electronswith different incident directions and energies follow different trajectories. Besides the simple
incident cases, thismethod can also deal with some complex situations whenmoving electrons are at different
incident conditions. As an example, the simulation of Bohmian trajectories in EBSDwill be further discussed in
section 3.2.

2.3.ME approach
In EBSD simulation, whatwe aremainly concerned about is how the trajectories distribute on the phosphor
screen rather than how they propagate from the crystal to the screen. Accordingly, we have developed another
approach namedME approach.Without performing the velocity integration, this approach gives the same
trajectory distribution as the traditional Bohmianmechanicsmethod introduced above. Therefore, it is better in
efficiency and computation cost.

In theME approach theMEs of different diffracted beams are calculated, in this way the final trajectory
distribution can be directly obtained. Thewave function is transformed intomomentum space,

p r k r r
1

2
d exp i . 18

3 2 òj
p

y= -( )
( )

( · ) ( ) ( )

Based on thewave function in the formof equation (10)wehave,
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then theME is accordingly obtained from the integral,
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The averaged velocity is defined as mv p ,á ñ = á ñ which describes the average electron diffraction process in
the lattice.With these equations the trajectory distribution in EBSD can be evaluated.

3. Results and discussion

To simulate the electron diffraction in a periodic potential, we take a thinmolybdenum crystal as an example
without loss of generality.Molybdenum is a body-centered cubic crystal with a lattice constant of 0.31468 nm.
TheDebye–Waller factor is 0.23 Å2, which is calculated using a fourth-degree polynomial [48]. Calculation is
performed for incident electrons at energy of 20 keV, and IMFP is 25.1 nmobtained from the TPP-2M
formula [45].

3.1.Diffraction of normal incident parallel electron beams
For the sake of observation and analysis, wefirst consider the case of normal incidence along the negative x-axis
direction in the crystal (figure 1). Ideally, the Blochwavemethod can yield accurate results ifmany reflected
beams are included. In practice, a certain number of reflected beams should be selected to avoid very large
matrices, which consume calculation time andmay cause numerical instabilities, based on the criteria [49, 50]
using the Bethe perturbation scheme. LAPACK is utilized here to solve the eigenvalue equation, equation (8),
and to obtain thewave function.

After all the coefficients in equation (10) are solved, the velocity field is acquired from equation (17). Figure 2
shows how the velocity field evolves along electron trajectory. The velocitymainly follows the electron incident
direction. Figure 2(b) displays specifically the velocity field in the x–y plane at the bottom face of the lattice (i.e.
the green rectangle area infigure 2(a)). The component of the velocity along the incident direction, v , ismuch
larger than the perpendicular component, v ,^ because of the high energy of the incident electrons.

To understand how the velocityfield evolves over time, we nowneglect vand focus on the distribution of
vertical velocity, v ,^ in y–z plane at different x-positions. Considering the translational symmetry, the vertical
velocity distribution can be described in a single unit cell. Infigures 3(a)–(d), four y–z planes (red squares) are
selected in a cell (the 11st cell counted from the initial incident unit cell). On these planes the normalized vertical
velocityfield is shown by arrows, and the contourmap represents the probability density calculated from the
wave function; the velocity is seen regularly distributed under themodulation of the lattice potential. In
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principle, the continuity equation, equation (16), governs the relationship between the probability density ρ and
the velocityfield v. Infigure 3, such relationship is expressed as the regular and symmetrical distribution of ρ and
v .^ Simpler wave functions are calculated by reducing the number of the Fourier expansion items infigures 3(e)
and (f), where this relationship is easier to observe.

To further explore howparallel electron beams are diffracted in a crystal, the Bohmian trajectories are
simulated. Assuming the uniformdistribution of the initial electron trajectories landing on the crystal surface,

Figure 1. Lattice ofMo (b.c.c). The incident direction of electrons is perpendicular to the lattice surface.

Figure 2. (a) Schematic diagramof 3D velocity field (blue arrows). (b) 2D velocity field in the x–y plane (lattice coordinate system).

5
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the Bohmian trajectories are calculated from the integral of the velocity field. Figure 4(a) is a schematic of our
model which consists of 50 unit cells. The blue arrows indicate that themain propagation direction of the
Bohmian trajectories is along the negative x-axis inside a crystal while the positive x-axis represents the vacuum

Figure 3.Vertical velocity field and probability density distribution in the y–z planes for different x-positions: (a) 0.25; (b) 0.5; (c) 0.75;
(d) 1.0 to the surface of the 11st unit cell; velocity field and probability density calculated from (e) 73; (f) 153; (d) 213 reciprocal vectors.
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region. The trajectories are diffracted into different directions andwill form a regular distribution in any y–z
sectionwhen passing through the lattice, as is shown infigure 4(b). The distributions in y–z planes illustrate the
proportional relationship between the probability density and the trajectory distribution. The evolution of the
trajectories in 3D space is displayed in figure 4(d). It is evident that under themodulation of the lattice potential,
many channels are formed along the atom column inside the crystal throughwhich the trajectories are easier to
pass. Specifically, the trajectories converge towards the channels but never intersect. Infigure 4(c), which
provides a side view along the incident direction, two regions are separated by a red square. Inside the square, the
trajectories converge towards the center channel and the distance from the center determines the speed of the
convergence, which is also indicated infigure 4(e). Similarly, outside the square the trajectories converge
towards the corner channels. Different colored balls represent the sequential intersections of the trajectories
with a series of y–z planes in theirmotion history at depth from10 to 50 a0, which can be easily observed from the
top view displayed infigure 4 (e). Overall, the trajectories closer to the channels converge in the first few lattices,
and then begin to diverge near the tenth lattice and finally converge again.While the trajectories distant from the
atom columns convergemore slowly. A 3Dperspective infigure 4(f) illustrates the evolving of the trajectories
around a channel. Thismotion of parallel electron beams is in fact aweakened electronic Talbot effect. The
Talbot effect is that, when a planewave is incident upon a periodic diffraction grating, the image of the grating is
repeated at regular distances away from the grating plane. TheTalbot effect of photons and atoms is widely
known. A simulation of the atomic Talbot effect based onBohmianmechanics is discussed in [13]. However, the
electronic Talbot effect [51] is not easy to be observed in crystal because inelastic processes will weaken such an
effect.Without electron inelastic scattering the trajectories will periodically repeat between convergence and
divergence along the propagation direction, i.e. the Talbot effect, as is shown infigure 4(g). But under the
influence of inelastic processes the electronswillfinally converge and pass through the channels.

In this simulation, we present some results regarding the diffraction of normal incident parallel electron
beams calculatedwith the Bohmian theory by the Blochwavemethod. It shows the relationship between the
probability density and the velocityfield as well as the trajectories. The detailed process of electron diffraction is
reproduced intuitively. In particular, theweakened electronic Talbot effect and the channels of electron beams

Figure 4. (a) Schematic of trajectories propagation direction (blue arrows) in a lattice for the following figures. (b) 2D trajectories (red
dots) and probability density distributions in y–z plane. (c) Side view of trajectories evolution along x-axis. (d) 3D trajectories
diffraction in a lattice by including inelastic scattering. (e)Top view of trajectories evolution (in x–y plane) in (d). (f)Trajectories
passing through a channel in (d). (g)Top view of trajectories evolution (in x–y plane)without considering inelastic processes. All
figures are displayed in a lattice coordinate system.
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in crystal are very interesting. In theory, as an alternative formalism of quantummechanics, the Bohmian
mechanics gives a better understanding of the physical process beyond the standard formalism inwhich the
importance of probability density is highly emphasizedwhile phase is despised sometimes.While in thismethod
the velocityfield is directly calculated fromphase, thus it presents unique advantages especially when employed
to quantum coherence, interference and diffraction. Accordingly the Bohmian type of analysis can givemore
intuitive information by allowing us to observe the evolution of each individual trajectory with no need of a
probabilistic description.

3.2.QuantumTrajectories in EBSD
The Blochwave-Bohmian approachwill be useful to treatmore complex electron diffractionwhen electron
beams are emitted into different directions. Here we use it to simulate EBSD as an example. The existing
simulationmodels for EBSD is summarized in [21, 52]. A dynamical simulation based on the Blochwave theory
proposed byWinkelmann et al [26] is used to compute the EBSDpattern. In the dynamicalmethod, the intensity
distribution of the diffraction pattern is obtained from the probability density. Figure 5(a) shows the simulated
pattern fromMo (001) at 20 kV; theKikuchi patterns and the higher order Laue zone (HOLZ) rings aremarked
by the arrows. An experimental EBSDpattern [53] is illustrated infigure 5(b). Infigure 5(c), the simulated EBSD
pattern and the experimental pattern are shown to agree with each other; they both serve as comparison against
our trajectory approaches.

As discussed in [54], it is a good approximation to consider that the coherence shall be destroyed by the
inelastic process and, thus, the incoming and outgoing diffraction processes do not interfere. EBSD is the
outgoing beamdiffraction formed by electronswhich are emitted into all directions from a point source inside
the crystal. This process is previously simulated based on the reciprocity principle [54, 55], which states that the
detected intensity of awave on the phosphor screen originating from a point source inside the crystal, is equal to
the observed intensity at the point detector inside the crystal, after diffraction of an incomingwave from the
screen. Thus the outgoing beamdiffraction is transformed into incoming beamdiffraction. But in the present
approaches we can simply and directly realize it by launching initial trajectories homogeneously into spherical
directions.

The calculated Bohmian trajectories in EBSD are shown infigure 6. The electron trajectories at different
emission directions are diffracted through the crystal lattice; they form a point distributionwhen theyfinally
reach the screen. This is similar to the two-slit single-electron experiment [56], where an interference pattern is
seen gradually formedwith growing population of electrons hitting a phosphor screen. In our simulation of
EBSD, by increasing the number of the trajectories gradually (herewe calculate 102, 103, 104 and 105

Figure 5.EBSDpatternwith [100] and [311]HOLZ rings fromMo (001) at 20 kV. (a) Simulated pattern using the dynamicalmethod;
(b) experimental pattern [53] JohnWiley& Sons. © 2007WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim; (c)matching the
simulated patternwith the experimental pattern.
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Figure 6. (a)Evolution of 100 quantum trajectories from crystal to the screen. Point distribution on the screen calculated byBohmian
mechanicsmethod for number of trajectories: (b) 102; (c) 103; (d) 104; (e) 105 trajectories. (f)Anti-color image of point distribution of
trajectories in (e) andmixedwith 30% intensity of EBSDpattern infigure 5(a).
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trajectories), the diffraction pattern is similarly formed from a few points on the screen to a full diffraction
pattern (figures 6(a)–(e)).

As discussed previously, there is a proportional relationship between the probability density and the
trajectory distribution. This indicates that the characteristics of a diffraction pattern calculated fromprobability
density should also be found in a trajectory distribution pattern. Tofind such detailed features, denser
trajectories are calculated. Infigure 6(e) the Kikuchi patterns andHOLZ rings appear with 105 trajectories. To
comparewith the intensity of the simulated EBSDpattern, infigure 6(f) the black andwhite color is reversed to
give an anti-colormonochrome imagewhich is furthermixedwith 30% intensity of the ESBDpattern in
figure 5(a). It is shown that the trajectories are consistent with the contrast of the EBSDpattern, especially the
structure of Kikuchi bands andHOLZ rings. However, this simple point representation of density distribution
cannot truly display the intensity; therefore, the number of electron trajectories in each pixel of an image is
counted to acquire the true statistical trajectory density distribution, which is displayed infigure 7(d).

The results above are calculated using the Bohmianmechanics approach.We have also calculated the
distribution using theME approach. Figure 7(a) shows the point distribution of 105 trajectories simulated using
theME approach; the anti-color image is displayed infigure 7(b)which presents very similar distributionwith
that calculated by Bohmianmechanics infigure 6(f). Then 107 trajectories are calculated in order to get the
trajectory density distribution or EBSDpattern using bothmethods: figure 7(c) using theME approach and
figure 7(d) using the Bohmianmechanics. TheKikuchi pattern and theHOLZ rings show similar features in
bothfigures.

Figure 7. (a)Point distribution for 105 trajectories by theME approach; (b) anti-color image of (a); (c) trajectory density distribution
with 107 trajectories by theME approach. (d)Trajectory density distributionwith 107 trajectories by the Bohmianmechanics.
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Tomeasure the similarity between figures 5(a) and 7(c) and (d), the 2D image cross-correlation is calculated
and shown infigure 8, where the EBSDpattern simulated by the dynamicalmethod (figure 5(a)) is used as a
reference. The image cross-correlation returns amatrix of correlation coefficients. Themaximumvalue
indicates the best relative location between the two graphs for comparison, where the two patternsmost
resemble each other. In our surfacemap of the cross-correlationmatrix infigure 8, two sharp peaks appearwhen
the dynamically simulated EBSDpattern coincides with the trajectory density distribution patterns, which
quantitatively verifies that both theME approach and the Bohmianmechanicsmethodmatchwell with the
dynamicalmethod. Although both the patterns of trajectory density distribution look the same, the quantitative
peak heights show that theME approach has a better agreement with the details of the diffraction pattern in
figure 5(a).

Compared to the dynamicalmethod, the trajectory approaches have fewer nested loops in programming so
that they can save computing time andmemorywhen the number of Fourier expansion items is large formore
accurate calculation. Besides, in equation (20) of theME approach, there are only additions andmultiplications
while there are exponentiations and divisions in the other two approaches. Thus, theME approach enables
better computation efficiency. A computation time test of the threemethods under the same condition is
depicted infigure 9.When the number of reciprocal vector is small, the running time of the threemethods is
quite close. But as the size ofmatrices increases, the trajectorymethods show significant advantages in
computation efficiency.When the number of reciprocal vector grows to 213, which is enough for accurate EBSD
simulation, the Bohmianmethod and theME approach take only a quarter and one tenth of the calculation time
comparedwith the usual EBSDdynamical simulation, respectively.

Figure 8. Image cross-correlation between EBSDpattern simulated by the dynamicalmethod (figure 5(a)) and the trajectory density
distribution pattern calculatedwith theME approach (figure 7(c)) (the left surfacemap); image cross-correlation between EBSD
pattern simulated by the dynamicalmethod (figure 5(a)) and the trajectory density distribution pattern calculatedwith the Bohmian
mechanics (BM) (figure 7(d)) (the right surfacemap).

Figure 9.The calculation time for computing the EBSDpattern by three differentmethods.
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4. Conclusions

The Bohmian trajectory theory is an alternative description of the quantumprocess from a different perspective
with theCopenhagen interpretation but ismore intuitive. In this paper, we have developed a Blochwavemethod
to study electron diffraction in a periodic potential by calculating Bohmian trajectories. In addition, we have
proposed anMEapproachwhich ismore efficient to obtain the distribution of the Bohmian trajectories in EBSD
simulation. These twomethods consumemuch less computing time andmemory but give the same accurate
results comparedwith the dynamicalmethod. From the first simulation of the normal incident parallel electron
beams, the probability density is significantly related to the velocity field, i.e. a relationship exists between the
evolution of thewave function and trajectories. The velocity field and the Bohmian trajectories illustrate how
electrons are dynamically diffracted in crystal. It is fascinating that the electronic Talbot effect is weakened by
inelastic processes and electronswillfinally convergewhile traveling along the channels. In the second
simulation, we applied the twomethods to the simulation of Bohmian trajectories in EBSD,which ismore
complex. The formation process of EBSDpattern is demonstrated to start from a few points on a screen to afinal
full imagewith the characteristic Kikuchi bands andHOLZ rings, which is similar to a single-electron
experiment. Bohmianmechanics and theME approach thus allowus to have a deeper understanding aswell as
to acquire quantitative information of electron diffraction froma trajectory perspective rather than from
probability density. Technically, electron, photon and proton diffraction techniques can all be studiedwith these
methods. Besides the application in the simulation of EBSD, it is expected to contribute to the study of
crystallographic defects by the abnormal propagation of the trajectories.
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