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Abstract
We theoretically analyze the efficiency of a quantummemory for single photons. The photons
propagate along a transmission line and impinge on one of themirrors of a high-finesse cavity. The
quantummemory is constituted by a single atomwithin the optical resonator. Photon storage is
realized by the controlled transfer of the photonic excitation into ametastable state of the atom and
occurs via a Raman transitionwith a suitably tailored laser pulse, which drives the atom.Our study is
supported by numerical simulations, inwhichwe include themodes of the transmission line andwe
use the experimental parameters of existing experimental setups. It reproduces the results derived
using input–output theory in the corresponding regimes and can be extended to compute dynamics
where the input–output formalism cannot be straightforwardly applied. Our analysis determines the
maximal storage efficiency, namely, themaximal probability to store the photon in a stable atomic
excitation, in the presence of spontaneous decay and cavity parasitic losses. It further delivers the form
of the laser pulse that achieves themaximal efficiency by partially compensating parasitic losses.We
numerically assess the conditions underwhich storage based on adiabatic dynamics is preferable to
non-adiabatic pulses.Moreover, we systematically determine the shortest photon pulse that can be
efficiently stored as a function of the systemparameters.

1. Introduction

Quantumcontrol of atom–photon interactions is a prerequisite for the realizationof quantumnetworks basedon
single photons asflying qubits [1, 2]. In these architectures, the quantum information carried by the photons is
stored in a controlledway in a stable quantummechanical excitationof a system, the quantummemory [3–7]. In
several experimental realizations thequantummemory is an ensemble of spins and the photon is stored in a spin
wave excitation [3]. Alternative approaches employ individually addressable particles, such as single trapped atoms
or ions [8, 9]: here, high-aperture lenses [10]oroptical resonators [11] increase theprobability that thephoton
qubit is coherently transferred into an electronic excitation. In addition, schemes based onheralded state transfer
have been realized [10, 12–14], andfiber-coupled resonators coupled to single atomshave beenused to perform
SWAPgates [15, 16].Most recently, storage efficiencies of theorder of 22%have been reported for a quantum
memory composed by a single atom in anoptical cavity [17]. This value lieswell below the value one can extract
from theoreticalworks on spin ensembles for photon storage [18]. This calls for a detailed understanding of these
dynamics and for elaborating strategies to achieve full control of the atom–photon interface at the single atom level.

The purpose of this work is to provide a systematic theoretical analysis of the efficiency of protocols for a
quantummemory for single photons, where information is stored in the electronic excitation of a single atom
inside a high-finesse resonator. The qubit can be the photon polarization [9, 19], or a time-bin superposition of
photonic states [20], and shall then be transferred into a superposition of atomic spin states.
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The scheme is illustrated infigure 1: a photon propagating along a transmission line impinges on the cavity
mirror, the storage protocol coherently transfers the photon into ametastable atomic state, here denoted by ñ∣r ,
with the help of an external laser. The protocols we analyze are based on the seminal proposal byCirac et al [1].
Here, wefirst compare adiabatic protocols, originally developed for atomic ensembles in bad cavities [19, 21] as
well as a protocol developed for any coupling regime for a single atom [20].We then extend the protocol of [21]
to quantummemories composed of single atoms confined inside a high-finesse resonator.We investigate how
the storage efficiency is affected by parasitic losses at the cavitymirrors andwhether these effects can be
compensated by the dynamics induced by the laser pulse driving the atom.Wefinally extend our study to the
non-adiabatic regime, and analyze the efficiency of storage of broadband photon pulses using optimal control.

Thismanuscript is organized as follows. In section 2we introduce the basicmodel, whichwe use in order to
determine the efficiency of the storage process. In section 3we analyze the efficiency of protocols based on
adiabatic dynamics in presence of irreversible cavity losses. In section 4we investigate the storage efficiency
when the photon coherence time does not fulfill the condition for adiabatic quantumdynamics. Here, we use
optimal control theory to determine the shortest photon pulse that can be stored. The conclusions are drawn in
section 5. The appendices provide further details of the analyzes presented in section 3.

2. Basicmodel

The basic elements of the dynamics are illustrated infigure 1. A photon propagates along the transmission line
and impinges on themirror of a high-finesse cavity. Here, it interacts with a cavitymode at frequency wc. The
cavitymode, in turn, couples to a dipolar transition of a single atom,which is confinedwithin the resonator.We
denote by ñ∣g the initial electronic state inwhich the atom is prepared, it is ametastable state and it performs a
transition to the excited state ñ∣e by absorbing a cavity photon. The relevant atomic levels are shown in subplot
(b): they are twometastable states, ñ∣g and ñ∣r , which are coupled by electric dipole transitions to a common
excited state ñ∣e forming aΛ level scheme. Transition ñ  ñ∣ ∣r e is driven by a laser, whichwemodel by a
classical field.

In order to describe the dynamics of the photon impinging onto the cavitymirror we resort to a coherent
description of themodes of the electromagnetic field outside the resonator. The incident photon is an excitation
of the externalmodes, and it couples with the singlemode of a high-finesse resonator via the finite transmittivity
of themirror onwhich the photon is incident.

In this sectionwe provide the details of our theoreticalmodel and introduce the physical quantities which are
relevant to the discussions in the rest of this paper.

Figure 1. Storage of a single photon in the electronic state of a single atom confined inside an optical resonator. (a)The photon
wavepacket propagates along a transmission line and impinges onto a cavitymirror. (b)The single photon is absorbed by the cavity,
which drives the atomic transition ñ  ñ∣ ∣g e . An additional laser couples to the atomic transition ñ  ñ∣ ∣r e . The dynamics of storage
is tailored by optimizing the functional dependence of the laser amplitude on time,Ω(t): ideally, the atomundergoes a Raman
transition to thefinal state ñ∣r and the photon is stored.We analyze the storage efficiency including the spontaneous decaywith rate γ
of the excited state and photon absorption or scattering at the cavitymirrors via an incoherent process at rate kloss. Further parameters
are defined in the text.
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2.1.Master equation
The state of the system, composed of the cavitymode, the atom, and themodes of the transmission line, is
described by the density operator r̂. Its dynamics is governed by themaster equation (ÿ=1)

r r r¶ = - +ˆ [ ˆ ( ) ˆ ] ˆ ( )H ti , , 1t dis

whereHamiltonian ˆ ( )H t describes the coherent dynamics of themodes of the electromagnetic field outside the
resonator, of the single-mode cavity, of the atom’s internal degrees of freedom, and of theirmutual coupling.
The incoherent dynamics, in turn, is given by superoperator dis, and includes spontaneous decay of the atomic
excited state, at rate γ, and cavity losses due to the finite transmittivity of the second cavitymirror as well as due
to scattering and/orfinite absorption of radiation at themirror surfaces, at rate kloss.

Wefirst provide the details of theHamiltonian. This is composed of two terms, = +ˆ ( ) ˆ ˆ ( )H t H H tfields I . The
first term, Ĥfields, describes the coherent dynamics of the fields in absence of the atom. It reads

å åw w l= - + +ˆ ( ) ˆ ˆ ( ˆ ˆ ˆ ˆ) ( )
† † †

H b b a b b a , 2
k

k k k
k

k k kfields c

and is reported in the reference frame of the cavitymode frequency wc. Here, operators b̂k and ˆ †
bk annihilate and

create, respectively, a photon at frequency wk in the transmission line, with d=¢ ¢[ ˆ ˆ ]
†

b b,k k k k, . Themodes b̂k are
formally obtained by quantizing the electromagnetic field in the transmission line and have the same
polarization as the cavitymode. They couple with strength lk to the cavitymode, which is described by a
harmonic oscillator with annihilation and creation operators a and †a , where =[ ˆ ˆ ]†a a, 1 and

= =[ ˆ ˆ ] [ ˆ ˆ ]
†

a b a b, , 0k k . In the rotating-wave approximation the interaction is of beam-splitter type and conserves
the total number of excitations. The couplingλk is related to the radiative damping rate of the cavitymode by the
rate k l w= ∣ ( )∣L cc

2 , with l w( )c the coupling strength at the cavity-mode resonance frequency [22] and L the
length of the transmission line. Note thatκ is the cavity decay rate because of transmission into the transmission
line and is necessary for the storage, while kloss is the decay rate into othermodes and is only detrimental.

The atom–photon interaction is treated in the dipole and rotating-wave approximation. The transition
ñ  ñ∣ ∣g e couples with the cavitymodewith strength (vacuumRabi frequency) g. Transition ñ  ñ∣ ∣r e is driven

by a classical laser with time-dependent Rabi frequencyΩ(t), which is the function to be optimized in order to
maximize the probability of transferring the excitation into state ñ∣r . The correspondingHamiltonian reads

d= ñá - D ñá + ñá + W ñá +ˆ ∣ ∣ ∣ ∣ [ ∣ ∣ ˆ ( )∣ ∣ ] ( )H r r e e g e g a t e r h.c. , 3I

where w wD = - ec is the detuning between the cavity frequency wc and the frequencyωe of the ñ - ñ∣ ∣g e
transition, while d w w w= + -r L c is the two-photon detuningwhich is evaluated using the central frequency
wL of the drivingfieldΩ(t). Here, we denote by w = -( )E Er r g the frequency difference (Bohr frequency)
between the state ñ∣r (of energyEr) and the state ñ∣g (of energy Eg). Unless otherwise stated, in the followingwe
assume that the condition of two-photon resonance δ=0 is fulfilled.

The irreversible processes that we consider in our theoretical description are (i) the radiative decay at rate γ
from the excited state ñ∣e , where photons are emitted into free fieldmodes other than themodes b̂k introduced in
equation (2), and (ii) the cavity losses at rate kloss due to absorption and scattering at the cavitymirrors and to the
finite transmittivity of the secondmirror.Wemodel each of these phenomena by Born–Markov processes
described by the superoperators g and kloss

, respectively, such that   = +g kdis loss
and

 r g x r x r r= ñá ñá - ñá - ñág ˆ ( ∣ ∣ ˆ∣ ∣ ∣ ∣ ˆ ˆ∣ ∣) ( )e e e e e e a2 , 4e e

 r k r r r= - -k ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ) ( )† † †a a a a a a b2 . 4lossloss

Here, x ñ∣ e is an auxiliary atomic state where the losses of atomic population from the excited state ñ∣e are
collected.

2.2. Initial state and target state
Themodel is one-dimensional, the transmission line is at x<0, and the cavitymirror is at position x=0. The
single incident photon is described by a superposition of single excitations of themodes of the external field [23]

åy ñ = ñ∣ ˆ ∣ ( )
†

b vac , 5
k

k ksp

where ñ∣vac is the vacuum state and the amplitudes k fulfill the normalization condition å =∣ ∣ 1k k
2 . For the

studies performed in this work, wewill consider the amplitudes

 ò= w

-¥

¥
- ( ) ( )( )c

L
t t

2
d e 6k

kc ti
in

c
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with c the speed of light, L the length of the transmission line, and

 = ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )t

T

t

T

1
sech

2
7in

the input amplitude at the position x=0, withT the characteristic time determining the coherence timeTc of
the photon, p=T T 4 3c (see definition in equation (10)). Our formalism applies to a generic input envelope,
nevertheless the specific choice of equation (7) allows us to compare our results with previous studies, see
[19–21]. The total state of the system at the initial time t=t1 is given by the input photon in the transmission
line, the empty resonator, and the atom in state ñ∣g . In particular, the dynamics is analyzed in the interval
Î [ ]t t t,1 2 , with <t 01 , >t 02 and ∣ ∣t t T,1 2 c, such that (i) at the initial time there is no spatial overlap between

the single photon and the cavitymirror and (ii) assuming that the cavitymirror is perfectly reflecting, at =t t2

the photon has been reflected away from themirror.
The initial state is described by the density operator r̂ y y=( ) ∣ ⟩⟨ ∣t0 0 0 , where

y yñ = ñ Ä ñ Ä ñ∣ ∣ ∣ ∣ ( )g 0 , 8c0 sp

and ñ∣0 c is the Fock state of the resonatorwith zero photons.
Our target is to store the single photon into the atomic state ñ∣r by shaping the laser fieldΩ(t).When

comparing different storage approaches, it is essential to have afigure ofmerit characterizing the performance of
the process. In accordancewith [21]wedefine the efficiency η of the process as the ratio between the probability
tofind the excitation in the state y ñ = ñ Ä ñ Ä ñ∣ ∣ ∣ ∣r 0 vacT c at time t and the number of impinging photons
between t1 and t, namely

^

ò
h

y r y
=

¢ ¢
( ) ⟨ ∣ ( )∣ ⟩

∣ ( )∣
( )t

t

t td
, 9T T

t

t
in

2

1

where t>t1 and the denominator is unity for t→t2.We note that states y ñ∣ 0 and y ñ∣ T are connected by the
coherent dynamics via the intermediate states ñ Ä ñ Ä ñ∣ ∣ ∣e 0 vacc and ñ Ä ñ Ä ñ∣ ∣ ∣g 1 vacc . These states are
unstable, since they can decay via spontaneous emission or via the parasitic cavity losses.Moreover, the incident
photon can be reflected off the cavity. The latter is a unitary process, which results in afinite probability of
finding a photon excitation in the transmission line after the photon has reached themirror. The choice ofΩ(t)
shallmaximize the transfer y yñ  ñ∣ ∣ T0 byminimizing the losses as well as reflection at the cavitymirror.

2.3. Relevant quantities
The transmission line is heremodeled by a cavity of length L, with a perfectmirror at x=−L. The second
mirror at x=0 coincides with themirror offinite transmittivity, separating the transmission line from the
optical cavity. The length L is chosen to be sufficiently large to simulate a continuumofmodes for all practical
purposes. This requires that the distance between neighboring frequencies is smaller than all characteristic
frequencies of the problem. The smallest characteristic frequency is the bandwidth of the incident photon,
which is the inverse of the photon duration in time. Since the initial state is assumed to be a single photon in a
pure state, the latter coincides with the photon coherence timeTc [24]which is defined as

= á ñ - á ñ ( )T t t 10c
2 2

with òá ñ º ∣ ( )∣t t t tdx
t

t x
in

2

1

2 , and

ò e= -∣ ( )∣ ( )t td 1 , 11
t

t

in
2

1

2

where ε<10−5 for the choice = =∣ ∣t t T61 2 c and =L cT12 c. Themodes of the transmission line are standing
waveswithwave vector along the x axis. For numerical purposes we take afinite numberN ofmodes around the
cavity wave number = wk

cc
c . Their wave numbers are

p
= + ( )k k

n

L
, 12n c

while = - - ¼ -( ) ( )n N N1 2, , 1 2, and the corresponding frequencies are w = ckn n.We chooseN and L
so that our simulations are not significantly affected by thefinite size of the transmission line and by the cutoff in
themode numberN.We further chooseN in order to appropriately describe spontaneous decay by the cavity
mode. This is tested by initializing the systemwith no atomand one cavity photon and choosing the parameters
so to reproduce the exponential damping of the cavity field.

Note that a singlemode of the cavity is sufficient to describe the interactionwith a single photon if the
photon frequencies lie in a rangewhich is smaller than the free spectral range of the cavity and is centered around
the frequency of the cavitymode. In this workwe choose the central frequency of the photon to coincide with the
cavitymode frequency w w=p c and the spectrally broadest photonwe consider (figures 5 and 6) spans about

4
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p´16 2 MHz around the cavity frequency wc. A cavity of1 cm has a free spectral range of about 15×2π GHz
which is three orders ofmagnitudes larger than the bandwidth of the photon. This justifies the approximation to
a singlemode cavity. The employed formalism can be applied to photonswith other center frequencies aswell, if
the number ofmodesN is chosen sufficiently large and their center is appropriately shifted (see equation (12)).

Since the free fieldmodes are included in the unitary evolution, it is possible to constantlymonitor their
state. The photon distribution in space at time t is given by

å r
p p

=
=

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( )P x t

L
t n

L
x m

L
x,

2
sin sin , 13

n m

N

nm
, 1

where r r= ñá( ) { ˆ ( )∣ ∣}t tTr 1 1nm m n and ñ = ñ∣ ∣†b1 vacn kn
.

A further important quantity characterizing the coupling between cavitymode and atom is the cooperativity
C, which reads [21]

kg
= ( )C

g
. 14

2

The cooperativity sets themaximum storage efficiency in the limit inwhich the cavity can be adiabatically
eliminated from the dynamics of the system [21], which corresponds to assuming the condition

g  ( )CT 1. 15c

In this limit, in fact, the state ñ Ä ñ Ä ñ∣ ∣ ∣g 1 vacc can be eliminated from the dynamics. Then, the efficiency
satisfies h h( )t max where themaximal efficiency ηmax reads [21]

h =
+

( )C

C1
. 16max

Themaximal efficiency ηmax is reached for any input photon envelope  ( )tin and detuningΔ, provided the
adiabatic condition (15) is fulfilled.

In our studywe also determine the probability that the photon is in the transmission line,

å r= ñá( ) {ˆ ( )∣ ∣} ( )P t tTr 1 1 , 17r
k

k k

the probability that spontaneous emission occurs,

r x x= ñá( ) {ˆ ( )∣ ∣} ( )P t tTr , 18s e e

andfinally, the probability that cavity parasitic losses take place,

r= ñá( ) {ˆ ( )∣ ∣} ( )P t t g gTr , 0 , vac , 0 , vac . 19c closs

Bymeans of these quantities we gain insight into the processes leading to optimal storage.

3. Storage in the adiabatic regime

In this sectionwe determine the efficiency of storage protocols derived in [19–21] for the setup of [17] in the
adiabatic regime.We then analyze how the efficiency of these protocols ismodified by the presence of parasitic
losses at rate kloss. In this case, wefind also an analytic result which corrects themaximal value of equation (16).

We remark that in [19–21] the optimal pulsesΩ(t)were analytically determined using input–output theory
[25]. In [19, 21] the authors consider an atomic ensemble inside the resonator in the adiabatic regime. This
regime consists in assuming the bad cavity limitκ?g and the limit g T C 1c . Thefirst assumption allows one
to adiabatically eliminate the cavity field variables from the equations ofmotion, the second assumption permits
one to eliminate also the excited state ñ∣e . In [20] a single atom is considered and there is no such adiabatic
approximation, but the couplingwith the externalfield is treated using a phenomenologicalmodel.

Here we simulate the full Hamiltonian dynamics of the external field in the transmission line and consider a
quantummemory composed of a single atom inside a reasonably good cavity. The parameters we refer to in our
study are the ones of the setup of [17]:

k g p= ´( ) ( ) ( )g , , 4.9, 2.42, 3.03 2 MHz, 20

corresponding to the cooperativityC=3.27 and to themaximal storage efficiency ηmax=0.77.Whenwe
analyze the dependence of the efficiency on γ orκ, we vary the parameters around the values given in
equation (20).

3.1. Ideal resonator
Wefirst review the requirements and results of the individual protocols of [19–21] and investigate their
efficiency for a single-atomquantummemory. Theworks of [19–21] determine the formof the optimal pulseΩ

5
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(t) for cavities with cooperativitiesC�1. The optimal pulse is found by imposing similar, but not equivalent
requirements. In [19, 20] the authors determineΩ(t) by imposing impedancematching, namely, that there is no
photon reflected back by the cavitymirror. In [21] the pulseΩ(t)warrantsmaximal storage, namely,maximal
probability of transferring the photon into the atomic excitation ñ∣r . The latter requirement corresponds to
maximizing the storage efficiency η defined in equation (9).

In detail, in [19] the authors determine the optimal pulse W( )t that suppresses back-reflection from the
cavity andwarrants that the dynamics follows adiabatically the dark state of the system composed by cavity and
atom. For this purpose the authors impose that the cavityfield is resonantwith the transition ñ  ñ∣ ∣g e , namely
Δ=0. They further require that the coherence timeTc is larger than the cavity decay time, kT 1c . Under
these conditions the optimal pulse W = W( ) ( )t tF reads



 òk
W =

+ ¢ ¢ -
( )

( )

∣ ( )∣ ∣ ( )∣
( )t

g t

c t t t2 d
, 21

t

t
F in

1 in
2

in
2

1

where c1 regularize W ( )tF for t t1. Thework in [20] imposes the suppression of the back-reflected photon
without any adiabatic approximation and finds the optimal pulse W = W( ) ( )t tD , which takes the form



 ò

g

kr k
W =

+ +

+ - -¢ ¢
( )

( ) ( ˙ ( ) ( ))

∣ ( )∣ ∣ ( )∣ ( )
( )

/
t

g t F t F t g

t t t D t2 2 d
, 22

t

t
D in

0 in
2

in
2

1

with

  òg= ¢ ¢ +( ) ∣ ( )∣ ∣ ( )∣ ( )t t t t2 d . 23
t

t
2 2

1

and   k= -( ) ˙ ( ) ( )t t tin in . Coefficient r0 accounts for a small initial population in the target state ñ∣r and it is
relevant in order to avoid divergences in equation (22) for t→t1, see [20] for an extensive discussion. The pulse
W ( )tF of equation (21) can be recovered from equation (22) by imposing the conditions

 g+ =˙ ( ) ( ) ( )t t a0, 24

 kr- + =∣ ( )∣ ( )t c b2 . 241
2

0 1

The control pulse W ( )tD can be considered as a generalization of W ( )tF since it is determined by solely imposing
quantum impedancematching.

In [21] the authors determine the amplitude W( )t thatmaximizes the efficiency η. This condition is not
equivalent to imposing impedancematching. In fact, while in the case of impedancematchingmajor losses
through the excited state ñ∣e are acceptable in order tominimize the probability of photon reflection, in the case
ofmaximum transfer efficiency η those losses are detrimental and thus have to beminimized. The optimal pulse
W = W( ) ( )t tG is determined for a generic detuningΔ by using an analyticalmodel based on the adiabatic
elimination of the excited state ñ∣e of the atom and of the cavity field in the bad cavity limit k  g . It reads






ò
ò

g
g g

W =
+ + D

+
¢ ¢

´ -
D
+

¢ ¢
⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )

∣ ( )∣
( )

∣ ( )∣ ( )t
C

C

t

t t
C

t t
1 i

2 1
d

exp i
2 1

ln d . 25

t

t t

t
G in

in
2

in
2

1

1

In the limit inwhich the adiabatic conditions are fulfilled, this control pulse allows for storagewith efficiency
hmax, equation (16). This efficiency approaches unity for cooperativities C 1.

We start by integrating numerically themaster equation for a single atom(1) after setting k = 0loss , namely,
by neglecting parasitic losses.We determine the storage efficiency at the time t2, whichwe identify by taking
t T2 c for different choices of the control field W = W W W, ,G F D inHamiltonian (3). Numerically, t2

corresponds to the time the photonwould need to be reflected back into the initial position, assuming that the
partially reflectingmirror is replaced by a perfectmirror. Our numerical simulations are performed for a single
atom in a resonator in the good cavity limit.

Figure 2 display the efficiency and the losses as a function ofκ, γ, and of the coherence timeTc of the photon
(and thus of the adiabatic parameter gT Cc ). Each curve corresponds to the different control pulses in the
Hamiltonian(3) according to the three protocols. In subplot(a)we observe that the efficiency reachedwith the
pulse W ( )tG corresponds to themaximum theoretical efficiency hmax, while the efficiencywith WD is the
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smallest. In subplot(b) it is visible that the control pulse W ( )tG warrants themaximum efficiency even down to
values ofκ of the order of k ~ g 5. Subplot(c) displays the efficiency as a function of the adiabatic parameter
gT Cc : the protocol W ( )tG reaches themaximum theoretical efficiency hmax for gT C 20c , while the other
protocols have smaller efficiency for all values ofTc. Figures 2(d)–(f) report the probability that the photon is
reflected back into the transmission line, equation (17). It is evident that protocol WD perfectly suppresses the
back reflection probability in every regime here considered. However in the non-adiabatic regime (subplots (c),
(f), (i), gT C 20c ) the protocol WD, as well as the protocol WF, requires an increasingmaximumRabi frequency
for decreasingTc. At the value of about g »T C 3.74c the Rabi frequency is so high that it is not anymore
manageable by our numerical solver, for this reason the plots for the protocols WD and WF are reported for

gT C 3.74c . The same happens for small values ofκ, subplots (b)(e)(h): in this case the plots for the protocols
WD and WF are reported for k p´0.3 2 MHz. The diverging Rabi frequency can be avoided by an
appropriate choice of the parameters c1 and ρ0 in equations (21) and(22), respectively. Figures 2(g)–(i) report
the losses via spontaneous emission of the atom, equation (18): while these losses are acceptable in order to
minimize the back-reflected photon, they are detrimental for the intent of populating the target state ñ∣r .
Protocol WD, which perfectly suppresses the back reflected photon, has the highest losses via spontaneous
emission, which in the end leads to a lower efficiency η. Protocol WG in turn, has the lowest radiative losses and it
allows for the transfer with themaximal efficiency hmax. Protocol W

F tries tominimize reflection of the photon at

the cavitymirror. However, since WF is derivedwith some approximations, it does not suppress completely the
reflection and its final efficiency is between the ones of the other two protocols.

An important general result of this study is that the bad cavity limit is not essential for reaching themaximal
efficiency as long as the dynamics is adiabatic: the relevant parameter is in fact the cooperativity.

Figure 2.Comparison between the protocols of [19–21]. (Upper row) Storage efficiency η, equation (9), (central row) probability that
the photon is reflected Pr, equation (17), and (bottom row) probability of spontaneous emission, equation (18), evaluated at time
=t T62 c by integrating numerically equation (1) for k = 0loss . The quantities are reported as a function of (left column) the decay rate

γ from the excited state (for k k= 0 and =T Tc c
0), (central column) the decay rateκ of the cavity field (for γ=γ0 and =T Tc c

0) and
(right column) the coherence time of the photon Tc (in units of g( )C1 and forκ=κ0 and γ=γ0). The three different lines WF, WD,
and WG refer to the evolutionwith the respective control pulse (see equations (21), (22), (25), respectively). The dotted lines in panels
(a)–(c) correspond to themaximumefficiency h = +( )C C1 , equation (16). Here, k g p= ´( ) ( )g , , 4.9, 2.42, 3.03 2 MHz0 0 and

m=T 0.5 sc
0 . The input pulse  ( )tin is given in equation (7), at the initial time = -t T61 c the pulse has negligible overlapwith the

cavitymode. The transmission line has length k= ( )L cT cmax 12 , 15c and 211 equispacedmodes.With this choice the frequency
range of themodes included in the simulation is about 40κ around the cavity frequency wc.
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3.2. Parasitic losses
The protocols so far discussed assume an ideal optical resonator. In this sectionwe analyze how their efficiency is
modified by the presence of parasitic losses, here described by the superoperator kloss

in equation (4b). In
particular, we derive themaximal efficiency the protocols can reach as a function of k > 0loss .

Wefirst numerically determine the efficiency of the individual protocols as a function of kloss for
m=T 0.5 sc . Figure 3(a) displays η for W = W W W, ,G D F. It is evident that the effect of losses is detrimental, for

instance it leads to a definite reduction of themaximal efficiency from η=0.77 down to η=0.68 for
k k~ 0.1loss . This result can be improved by identifying a control field W = WX which compensates, at least
partially, the effects of these parasitic losses. The control field W ( )tX is derived in section 3.3 using the input–
output formalism: it corresponds to performing the substitution k k k + loss in the functional form W ( )tG of
equation (25). Specifically, it reads

Figure 3.Efficiency of storage protocols in the adiabatic regime as a function of the rate of parasitic losses kloss (in units ofκ). (a)
Storage efficiency, equation (9), (b) the probability that the photon is reflected, equation (17), (c) the probability of spontaneous decay,
equation (18), and (d) the probability of parasitic losses, equation (19), evaluated at time =t T62 c and for

k g p= ´( ) ( )g , , 4.9, 2.42, 3.03 2 MHz, m=T 0.5 sc . The other parameters are the same as in figure 2. The lines WX , WF, WD, and
WG refer to the evolutionwith the respective control pulse (resp. equations (26), (21), (22), (25)). The dotted line in (a) corresponds to
the value of h¢max , equation (28).
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When the control pulse W ( )tX is used, the efficiency of the process corresponds to themaximal efficiency h¢max ,
which is now given by

h
k

k k
¢ =

+
¢

+ ¢
( )C

C1
. 28max

loss

Clearly, h h¢
max max, while the equality holds for k = 0loss .

By inspecting the numerical results, we note that the efficiency obtained using WX is always higher than the
one reached by the other protocols. Even though for some values of kloss the efficiencies using different control
fieldsmay approach the one foundwith WX, yet the dynamics are substantially different. This is visible by
inspecting the probability that the photon is reflected, the radiative losses, and the parasitic losses, as a function
of kloss as shown infigures 3(b)–(d), respectively: each pulse distributes the losses in a different way, with W ( )tX

interpolating among the different strategies in order tomaximize the efficiency.
Figure 4 shows the evolution of the system for m=T 0.5 sc . Figure 4(a) displays the envelope in time ∣ ( )∣tin

2

for the photon given in equation (7), which is the one used also in this simulation. Figure 4(b) displays the
control pulse shapes of the protocols WF, WG, WD, of [19–21] and WX derived in this work (the pulse shapes are
given analytically in equations (21), (22), (25), (26)). Figure 4(c) shows the population of the states and the losses
during the evolutionwhen the atom is driven by W ( )tX . The efficiency of the transfer, equation (9), corresponds
to the population of the state ñ∣r , rrr. For the parameters of [17] thefinal efficiency is h h» ¢ »( )t 0.6532 max .

In the next subsectionwe report the derivation of WX and h¢max bymeans of the input–output formalism.

3.3.Maximal efficiency in presence of parasitic losses
In this sectionwe generalize the adiabatic protocol of [21] in order to identify the control field thatmaximizes
the storage efficiency and to determine themaximum storage efficiency one can reach. The derivation presented
in this section is based on the input–output formalism and it delivers equations (26) and (28).

Wefirst justify the result for equation (28) using a time reversal argument applied in [21, 26]. Let us consider
retrieval of the photon, assuming the atom is initially in state ñ∣r and there is neither external nor cavity field.
Then, in order to retrieve the photon, the control pulse W( )t shall drive the transition ñ  ñ∣ ∣r e such that at the
end of the process the state ñ∣r is completely empty. The excited state ñ∣e dissipates the excitationwith probability

+ ¢( )C1 1 , while it can emit into the cavitymodewith probability ¢ + ¢( )C C1 .When the cavitymode is
populated, a fraction k k k+( )loss loss is lost, while the fraction k k k+( )loss is emitted via the couplingmirror
into the transmission line. From this argument onefinds that the probability of retrieval is given by
equation (28). Using the time reversal argument, this is also the efficiency of storage.

We nowderive this result as well as W ( )tX starting from the retrieval process and then applying the time
reversal argument. For this purpose, we restrict the dynamics to theHilbert space composed by the states

 ñ ñ ñ ñ{∣ ∣ ∣ ∣ }g e r g k N, 1 , vac , , 0 , vac , , 0 , vac , , 0 , 1 : 1c c c c k . In the probability is not conserved due to
leakage via spontaneous decay and via parasitic cavity losses. Therefore, a generic state in takes the form

f ñ = ñ + ñ + ñ + å ñ∣ ( ) ( )∣ ( )∣ ( )∣ ( )∣t c t g e t e r t r t g, 1 , vac , 0 , vac , 0 , vac , 0 , 1c c c k k c k , it evolves according to a
non-HermitianHamiltonian and its normdecays exponentially with time [27].We assume that at the initial
time =t t1 the probability amplitude ( )r t1 equals 1, while all other probability amplitudes vanish. The equations
ofmotion for the probability amplitudes read

k k k= - - - +˙( ) ( ) ( ) ( ) ( ) ( )c t ge t t c t ai i 2 , 29in loss

g= D - - - W˙( ) ( ) ( ) ( ) ( ) ( ) ( )e t e t gc t t r t bi i i , 29

*= - W˙ ( ) ( ) ( ) ( )r t t e t ci , 29

wherewe used theMarkov approximation and the input–output formalism [25].We now assume the bad-cavity
limit k  g and adiabatically eliminate the cavity field from the equations ofmotion (which corresponds to
assuming »˙( )c t 0 over the typical time scales of the other variables). In this limit the input–output operator
relation,  k= -ˆ ( ) ˆ ( ) ˆ ( )t a t ti 2out in , takes the form
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 g
k k
k k

= +
-
+

( ) ( ) ( ) ( )t G C e t t2 , 30out
loss

loss
in

where

k k k= +( )G loss

andC is given in equation (14). This equation has to be integrated together with the equations

g g= D - + - W -˙( ) [ ( )] ( ) ( ) ( ) ( ) ( )e t GC e t t r t G C ti 1 i 2 , 31in

*= - W˙ ( ) ( ) ( ) ( )r t t e ti . 32

Our goal is to determine the retrieval efficiency assuming that at time t=0 there is no input photonic excitation,
thus  =( )t 0in at all times. Using these assumptions, the above equations can be cast into the form

g+ = - + ¢(∣ ( )∣ ∣ ( )∣ ) ( )∣ ( )∣ ( )
t

e t r t C e t
d

d
2 1 . 332 2 2

Figure 4.Dynamics of storage. (a)Photon envelope ∣ ( )∣tin
2, equation (7), as a function of time. (b)Time dependence of the control

pulses W ( )tF , W ( )tG , W ( )tD , and W ( )tX (resp. equations (21), (25), (22), (26)). (c)Time evolution of the diagonal elements of the
densitymatrix when the atom is driven by WX . The curves are the population rrr of state ñ∣r , the population ρee of state ñ∣e , the
probability that there is one photon in the cavity raa, the probability that the photon is in the transmission line Pr, equation (17), the
probability of spontaneous decay, equation (18)Ps, and the probability of cavity parasitic losses P loss, equation (19). The parameters
are k g k p= ´( ) ( )g , , , 4.9, 2.42, 3.03, 0.33 2 MHzloss ,Δ=0 and m=T 0.5 sc .
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The probability that no excitations are left in the atom at time >t 02 ( t T2 c) is the retrieval efficiency
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Bymeans of the time reversal argument, this is also the storage efficiency.
The outputfield can be analytically determined by adiabatically eliminating the excited state from

equations (30). This leads to the expression
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Integrating the norm squared of equation (35) one obtains
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We solve equation (36) tofind W∣ ( )∣t , while the phase of W( )t can be determined from equation (35). Finally, we
obtain the control pulse W ( )tX

retr which retrieves the photonwith efficiency h¢max . It reads
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Using the time reversal argument, the control pulse *W = W -( ) ( )t T tX X
retr stores the time reversed input

photonwith *  h= - ¢( ) ( )t T tin out max and = -T t t2 1, and it takes the form given in equation (26). This
pulse has the same form as the pulse of equation (25), where nowC has been replaced by ¢C (or
equivalently k k k + loss).

3.4. Photon retrieval
The generation of single photonswith arbitrary shape of thewavepacket envelope in atom–cavity systems has
been discussed theoretically in [21, 28] and demonstrated experimentally in [29, 30].

In [1, 26] it has been pointed out that photon storage and retrieval are connected by a time reversal
transformation. This argument has profound implications. Consider for instance the pulse shape W( )t which
optimally stores an input photonwith envelope  ( )tin . This pulse shape is the time reversal of the pulse shape

*W = W -( ) ( )t T tretr which retrieves a photonwith envelope * = -( ) ( )t T tout in (here = -T t t2 1). In this
case, the storage efficiency is equal to the efficiency of retrieval and is limited by the cooperativity through the
relation in equation (28).We have numerically checked that this is fulfilled by considering adiabatic retrieval and
storage of a single photon through 5 nodes, consisting of 5 identical cavity–atom systems.We applied W ( )tretr for
the retrieval and the corresponding W( )t for the storage.Within the numerical error, we verified that the storage
efficiency of each retrieved photon remains constant and equal to the one of the first retrieved photon.

4. Beyond adiabaticity

In this sectionwe analyze the efficiency of storage of single photon pulses in the regime inwhich the adiabaticity
condition equation (15) does not hold. Our treatment extends to single-atomquantummemories the approach
thatwas applied to atomic ensemble in [31, 32] and allows us to identify theminimumcoherence time scale of
the photon pulse for which a given target efficiency can be reached.

Our procedure is developed as follows.We use the von-Neumann equation, obtained from equation (1)
after setting g k= = 0loss , and resort to optimal control theory for identifying the control pulse W = W( ) ( )t topt

thatmaximizes the storage efficiency for g k= = 0loss . Specifically, wemake use of theGRAPE algorithm [33]
implemented in the libraryQuTiP [34].We then determine the storage efficiency of the full dynamics, including
spontaneous decay and cavity parasitic losses, by numerically integrating themaster equation (1) using the pulse
W ( )topt .We show that the dynamics due to W ( )topt significantly differs from the adiabatic dynamics, and thereby
improve the efficiency for short coherence times.

Figure 5 displays the storage efficiency η as a function of the photon coherence timeTc when the control
pulse is W ( )tX , equation (26), andwhen instead the control pulse is found bymeans of the numerical procedure
specified above, whichwe denote by W ( )topt . The storage efficiency is reported for g k= = 0loss and for
g k p= ´( ) ( ), 3.03, 0.33 2 MHzloss . The results show that optimal control, in thewaywe implement it, does
not improve themaximal value of the storage efficiency, which seems to be limited by the value of h¢max ,
equation (28).We remark that this behavior is generally encounteredwhen applying optimal-control-based
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protocols toMarkovian dynamics [35]. Nevertheless, the protocols identified using optimal control extend the
range of values ofTc, where themaximal efficiency is reached, down to values where the adiabatic condition is
not fulfilled.We further find that the optimized pulse we numerically identified in absence of losses provides an
excellent guideline for optimizing the storage also in presence of losses.

In order to get insight into the optimized dynamics we analyze the time dependence of the control pulse as
well as the dynamics of cavity and atomic state populations for m=T 0.009 sc , namely, when the dynamics is
non-adiabatic. Figure 6(a) shows the time evolution of the pulse W ( )topt resulting from the optimization
procedure in the non-adiabatic regime; the pulse W ( )tX is shown for comparison. The efficiency of the transfer
(when the losses are neglected)with the control pulse WX is h h» <0.07X

max because the process is non-
adiabatic, while the efficiency reachedwith the optimized pulse W ( )topt is h » 0.63opt . The value of the solid
green line at =t t2 infigures 6(b) and (c) corresponds to the leftmost point infigure 5 for the casewithout losses.
A double bump in the cavity population is visible infigure 6(b): this is due to the Jaynes–Cummings dynamics,
and is thus the periodic exchange of population between the atomic excited state ñ∣e and the cavity field. In
figure 6(a) it is noticeable that the intensity of the optimized pulse exhibits a relatively high peakwhen the
photon is impinging on the cavity. It corresponds to away to perform impedancematching in order tomaximize
the transmission at themirror, and it is related to the same dynamics which gives rise to the divergence of W ( )tF

and W ( )tD which is foundwhen they are applied in the non-adiabatic regime. After this the intensity of the
control pulse vanishes and then exhibits a secondmaximumwhen the population of the excited state reaches the
maximum:we verified that the area about this second ‘pulse’ corresponds to the one of aπ pulse, thus
transferring the population into state ñ∣r .

We now investigate the limit of optimal storage. For this purpose we determine the lower boundTc
min to the

coherence timeTc of the photon, for which a given efficiency h h= tr can be reached. For each value of g andTc

we optimize the control pulse usingGRAPE. For each gwe determine η as a function ofTc and then extract
h h= { ( ) }T T Tmin :Tc

min
c c trc .We then analyze how theminimumcoherence timeTc

min scales with the
vacuumRabi frequency g.

Figure 7 displays theminimumphoton coherence timeTc
min required for reaching the storage efficiency (a)

h = 0.99tr and (b) h = 2 3tr as a function of the coupling constant g.We observe two behaviors, separated by the

value k=g : For kg , in the bad cavity limit, we extract the functional behavior g kµ =T C g1c
min 2. On

the contrary, in the good cavity limit, k>g , wefind that kµT 1c
min : the limit to photon storage is here

determined by the cavity linewidth. The general behavior as a function of g interpolates between these two limits.
This result shows that the photon can be stored as long as its spectral width is of the order of the linewidth of the
dressed atomic state.

5. Conclusions

Wehave analyzed the storage efficiency of a single photon by a single atom inside a resonator.We have focused
on the good cavity limit and shown that, as in the bad cavity limit, the storage efficiency is bound by the
cooperativity and themaximal value it can reach is given by equation (16).We have extended these predictions
to the case inwhich the resonator undergoes parasitic losses. For this case we determined themaximal storage
efficiency for an adiabatic protocol as well as the corresponding control field, respectively, given in equation (28)
and equation (26). Numerical simulations show that protocols based on optimal control theory do not achieve

Figure 5. Storage efficiency η at t=t2 as a function of the coherence time of the single-photon pulse Tc (in units of g -( )C 1). The
legenda indicates the pulses used in the numerical integration of equation (1). The parameters are k p= ´( ) ( )g , 4.9, 2.42 2 MHz,
the lines labeled ‘with losses’ refer to the efficiency of the process when g k p= ´( ) ( ), 3.03, 0.33 2 MHzloss , otherwise
g k= = 0;loss = - =t t T62 1 c. The other parameters are given infigure 2.
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Figure 6. (a)Photon envelope ∣ ( )∣tin
2, equation (7), and optimized pulse W ( )topt as a function of time (the initial guess pulse W ( )tX is

shown for comparison). Subplots (b) and (c)display the time evolution of the diagonal elements of the densitymatrixwhen the atom
is driven by WX and Wopt , respectively. The curves are the population rrr of state ñ∣r , the population ree of state ñ∣e , the probability that
there is one photon in the cavity raa, and the probability that the photon is in the transmission line Pr, equation (17). The parameters
are k p= ´( ) ( )g , 4.9, 2.42 2 MHz, g k= = D = 0loss and m=T 0.009 sc , thus the regime is non-adiabatic as g» ( )T C0.57c . At
=t t2 the population rrr gives h ( )t2 . In this case the systemhas been simulated for a longer time interval: = - =t t T152 1 c.

Figure 7.Minimumphoton coherence time Tc
min as a function of g (in units ofκ). The coherence time Tc

min is the lower bound to the
coherence time of photonswhich can be storedwith efficiency (a) h = 0.99tr and (b) h = 2 3tr for g k= = D = 0loss . The vertical
dotted line shows the value k p= = ´g 2.42 2 MHz. The data in the region kg and kg have been fittedwith the functions

k=( )f g a g1
2 and k= ¢( )f g a2 , respectively.
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higher storage efficiencies than h¢max . Nevertheless they can reach this upper bound even for spectrally-broad
photonwave packets where the dynamics is non-adiabatic, as long as the spectral width is of the order of the
linewidth of the dressed atomic state.

Our analysis shows that the storage efficiency is limited by parasitic losses. Nevertheless, we have
demonstrated that these can be partially compensated by the choice of an appropriate control field. This result
has been analytically derived for adiabatic protocols, yet it shows that extending optimal control theory to
incoherent dynamics could provide new tools for efficient quantummemories.
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Appendix. Input–output formalism

In input–output formalism [25] the equation ofmotion are
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where s = ñáˆ ∣ ∣j kjk are atomic operators and F̂a, F̂ee, F̂ge and F̂er are Langevin noise operators [36]. The input
operator for the quantum electromagnetic field is
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= + =

-¥

¥
- -ˆ ( ) ˆ ( ) ( )( )t

Lc
b k k t t k

2
e , d , A2kc t t

cin 2
i

1
1

here =ˆ ( )b k t t, 1 is the annihilation operator of themode k at the initial time =t t1. The input–output relation is
given by

 k= -ˆ ( ) ˆ ( ) ˆ ( ) ( )t a t ti 2 . A3out in

The equations ofmotion for M 1atoms in the cavity take the same form as equations (A1)when one
performs the replacement s s å =ˆ ˆjk i

N
jk
i

1 [21]. In this case, one canmake the approximations sá ñ »˜ ( )t Mgg ,

s s sá ñ » á ñ » á ñ =˜ ( ) ˜ ( ) ˜ ( )t t t 0rr ee er , where rá ñ =· ( ·)Tr 0 and r0 is the initial state. Then, the set of equations (A1)
reduces to the equations ofmotion of a single photon given in equations (29).

We note that the quantum impedancematching condition imposed by the authors of [19] consists in taking
 = =( ) ˙ ( )t t 0out out , according towhich the formof the control pulse WF, equation (21), is found.

A.1. Effect of photon detuning on storage
The protocol W ( )tG does not have any restriction onΔ: for everyΔ there is a pulse W ( )tG that allows for storage
with efficiency hmax (within the adiabatic regime), see equation (25). Figure A1 displays the storage efficiency and
the losses for each protocol as a function ofΔ, as expected the protocol W ( )tG performs in the sameway for any
values ofΔ.

A time-dependent phase c( )t of the control pulse W = W c( ) ∣ ( )∣ ( )t t e ti can be implemented as a two-photon
detuning
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d c= ˙ ( ) ( )t . A4

In fact, by applying the unitary transformation c= - ñáˆ ( ) ( ∣ ∣ ( ))U t r r texp i , the transformedHamiltonian is

¢ = ¢ +ˆ ˆ ˆH H HI fields, where

c¢ = ñá - D ñá + ñá + W ñá +ˆ ( )∣ ∣ ∣ ∣ ( ∣ ∣ ˆ ∣ ( )∣∣ ∣ ) ( )H t r r e e g e g a t e r h.c. . A5I

For W ( )tG wehave



ò
c

g
=

-D
+ ¢ ¢

 ( )
( )

· ∣ ( )∣
∣ ( )∣

( )t
C

t

t
a

2 1 det
A6

t

t
G in

2

in
2

1

g
=

-D W
D + +

∣ ( )∣
( )

( )t

C
b

1
. A6

G 2

2 2 2

Recall that also W∣ ( )∣tG depends onΔ. This can be understood in terms of AC Stark shift: one-photon detuning
D ¹ 0 is a shift of the control laser out of resonance for the transition ñ - ñ∣ ∣r e and thereby induces anACStark
shift on the levels ñ∣e and ñ∣r of the atom; thus the condition of two-photon resonance does not hold anymore. In
order to restore the latter, changes in frequency of the carrier and/or of the cavity and/or of the atomic levels are
needed and they appear as a two-photon detuning in theHamiltonian. This also explains why the reflected
photon probability for the protocols W ( )tF and W ( )tD (see figure A1), which do not take into account the one-
photon detuning, increases with increasingΔ: the input photon sees the systemout of resonance and hence it is
mostly reflected. Equation (A6b) gives the energy shift as a function of the Rabi frequency of the control pulse.
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