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Abstract

We theoretically analyze the efficiency of a quantum memory for single photons. The photons
propagate along a transmission line and impinge on one of the mirrors of a high-finesse cavity. The
quantum memory is constituted by a single atom within the optical resonator. Photon storage is
realized by the controlled transfer of the photonic excitation into a metastable state of the atom and
occurs via a Raman transition with a suitably tailored laser pulse, which drives the atom. Our study is
supported by numerical simulations, in which we include the modes of the transmission line and we
use the experimental parameters of existing experimental setups. It reproduces the results derived
using input—output theory in the corresponding regimes and can be extended to compute dynamics
where the input—output formalism cannot be straightforwardly applied. Our analysis determines the
maximal storage efficiency, namely, the maximal probability to store the photon in a stable atomic
excitation, in the presence of spontaneous decay and cavity parasitic losses. It further delivers the form
of the laser pulse that achieves the maximal efficiency by partially compensating parasitic losses. We
numerically assess the conditions under which storage based on adiabatic dynamics is preferable to
non-adiabatic pulses. Moreover, we systematically determine the shortest photon pulse that can be
efficiently stored as a function of the system parameters.

1. Introduction

Quantum control of atom—photon interactions is a prerequisite for the realization of quantum networks based on
single photons as flying qubits [ 1, 2]. In these architectures, the quantum information carried by the photons is
stored in a controlled way in a stable quantum mechanical excitation of a system, the quantum memory [3-7]. In
several experimental realizations the quantum memory is an ensemble of spins and the photon is stored in a spin
wave excitation [3]. Alternative approaches employ individually addressable particles, such as single trapped atoms
orions [8, 9]: here, high-aperture lenses [ 10] or optical resonators [ 11] increase the probability that the photon
qubit is coherently transferred into an electronic excitation. In addition, schemes based on heralded state transfer
have been realized [10, 12—14], and fiber-coupled resonators coupled to single atoms have been used to perform
SWAP gates [15, 16]. Most recently, storage efficiencies of the order of 22% have been reported for a quantum
memory composed by a single atom in an optical cavity [ 17]. This value lies well below the value one can extract
from theoretical works on spin ensembles for photon storage [18]. This calls for a detailed understanding of these
dynamics and for elaborating strategies to achieve full control of the atom—photon interface at the single atom level.

The purpose of this work is to provide a systematic theoretical analysis of the efficiency of protocols for a
quantum memory for single photons, where information is stored in the electronic excitation of a single atom
inside a high-finesse resonator. The qubit can be the photon polarization [9, 19], or a time-bin superposition of
photonic states [20], and shall then be transferred into a superposition of atomic spin states.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. Storage of a single photon in the electronic state of a single atom confined inside an optical resonator. (a) The photon
wavepacket propagates along a transmission line and impinges onto a cavity mirror. (b) The single photon is absorbed by the cavity,
which drives the atomic transition |g) — |e). An additional laser couples to the atomic transition |r) — |e). The dynamics of storage
is tailored by optimizing the functional dependence of the laser amplitude on time, (#): ideally, the atom undergoes a Raman
transition to the final state |r) and the photon is stored. We analyze the storage efficiency including the spontaneous decay with rate
of the excited state and photon absorption or scattering at the cavity mirrors via an incoherent process at rate Kjos,. Further parameters
are defined in the text.

The scheme is illustrated in figure 1: a photon propagating along a transmission line impinges on the cavity
mirror, the storage protocol coherently transfers the photon into a metastable atomic state, here denoted by |r),
with the help of an external laser. The protocols we analyze are based on the seminal proposal by Cirac etal [1].
Here, we first compare adiabatic protocols, originally developed for atomic ensembles in bad cavities [19, 21] as
well as a protocol developed for any coupling regime for a single atom [20]. We then extend the protocol of [21]
to quantum memories composed of single atoms confined inside a high-finesse resonator. We investigate how
the storage efficiency is affected by parasitic losses at the cavity mirrors and whether these effects can be
compensated by the dynamics induced by the laser pulse driving the atom. We finally extend our study to the
non-adiabatic regime, and analyze the efficiency of storage of broadband photon pulses using optimal control.

This manuscript is organized as follows. In section 2 we introduce the basic model, which we use in order to
determine the efficiency of the storage process. In section 3 we analyze the efficiency of protocols based on
adiabatic dynamics in presence of irreversible cavity losses. In section 4 we investigate the storage efficiency
when the photon coherence time does not fulfill the condition for adiabatic quantum dynamics. Here, we use
optimal control theory to determine the shortest photon pulse that can be stored. The conclusions are drawn in
section 5. The appendices provide further details of the analyzes presented in section 3.

2.Basic model

The basic elements of the dynamics are illustrated in figure 1. A photon propagates along the transmission line
and impinges on the mirror of a high-finesse cavity. Here, it interacts with a cavity mode at frequency w,. The
cavity mode, in turn, couples to a dipolar transition of a single atom, which is confined within the resonator. We
denote by |g) the initial electronic state in which the atom is prepared, it is a metastable state and it performs a
transition to the excited state |e) by absorbing a cavity photon. The relevant atomic levels are shown in subplot
(b): they are two metastable states, |¢) and |r), which are coupled by electric dipole transitions to a common
excited state |e) forming a A level scheme. Transition |r) — |e) is driven by alaser, which we model by a
classical field.

In order to describe the dynamics of the photon impinging onto the cavity mirror we resort to a coherent
description of the modes of the electromagnetic field outside the resonator. The incident photon is an excitation
of the external modes, and it couples with the single mode of a high-finesse resonator via the finite transmittivity
of the mirror on which the photon is incident.

In this section we provide the details of our theoretical model and introduce the physical quantities which are
relevant to the discussions in the rest of this paper.
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2.1. Master equation
The state of the system, composed of the cavity mode, the atom, and the modes of the transmission line, is
described by the density operator p. Its dynamics is governed by the master equation (A = 1)

Oip = —i[H (1), pl + Laishs &)

where Hamiltonian H () describes the coherent dynamics of the modes of the electromagnetic field outside the
resonator, of the single-mode cavity, of the atom’s internal degrees of freedom, and of their mutual coupling.
The incoherent dynamics, in turn, is given by superoperator L 4, and includes spontaneous decay of the atomic
excited state, at rate 7y, and cavity losses due to the finite transmittivity of the second cavity mirror as well as due
to scattering and/or finite absorption of radiation at the mirror surfaces, at rate £jos;.

We first provide the details of the Hamiltonian. This is composed of two terms, H (t) = Hgeaqs + Hi(t). The
first term, Heqs, describes the coherent dynamics of the fields in absence of the atom. It reads

. At n At
Hgs = Y (wWk — wo)by b + Y A(@'by + by a), 2
k k

. . . r AT -
and is reported in the reference frame of the cavity mode frequency w.. Here, operators by and b, annihilate and

create, respectively, a photon at frequency wy, in the transmission line, with [y, I;kTr] = k- The modes by are
formally obtained by quantizing the electromagnetic field in the transmission line and have the same
polarization as the cavity mode. They couple with strength A to the cavity mode, which is described by a
harmonic oscillator with annihilation and creation operators a and af, where [4, a"] = 1and
(4, bl = [4, I;,j ] = 0.In the rotating-wave approximation the interaction is of beam-splitter type and conserves
the total number of excitations. The coupling ) is related to the radiative damping rate of the cavity mode by the
rate K = LA (w.) /¢, with A (w,) the coupling strength at the cavity-mode resonance frequency [22] and L the
length of the transmission line. Note that  is the cavity decay rate because of transmission into the transmission
line and is necessary for the storage, while ks, is the decay rate into other modes and is only detrimental.

The atom—photon interaction is treated in the dipole and rotating-wave approximation. The transition
|g) — |e) couples with the cavity mode with strength (vacuum Rabi frequency) g. Transition |r) — |e) is driven
by a classical laser with time-dependent Rabi frequency €2(#), which is the function to be optimized in order to
maximize the probability of transferring the excitation into state |r). The corresponding Hamiltonian reads

Hy = 6|r)(rl — Ale)el + [gle)gl 4 + Q®)le)(r] + h.c], 3)

where A = w. — w, is the detuning between the cavity frequency w, and the frequency w, of the |g) — |e)
transition, while § = w, + wy — w is the two-photon detuning which is evaluated using the central frequency
wy, of the driving field )(#). Here, we denote by w, = (E, — E,)// the frequency difference (Bohr frequency)
between the state |r) (of energy E,) and the state |g) (of energy E,). Unless otherwise stated, in the following we
assume that the condition of two-photon resonance 6 = 0 is fulfilled.

The irreversible processes that we consider in our theoretical description are (i) the radiative decay at rate -y
from the excited state |e), where photons are emitted into free field modes other than the modes 5k introduced in
equation (2), and (ii) the cavity losses at rate k), due to absorption and scattering at the cavity mirrors and to the
finite transmittivity of the second mirror. We model each of these phenomena by Born—Markov processes

described by the superoperators £ and L, , respectively, such that L4, = £, + L, and
L9 = V@IENel PleNed — le)el p — pleel), )
‘cfilossi) = K‘IOSS(Zﬁi)a% - ﬁ.’-fli) - ﬁaTﬁ)‘ (4b)

Here, |€,) is an auxiliary atomic state where the losses of atomic population from the excited state |e) are
collected.

2.2. Initial state and target state
The model is one-dimensional, the transmission line is at x < 0, and the cavity mirror is at position x = 0. The
single incident photon is described by a superposition of single excitations of the modes of the external field [23]

|wsp> = Z gkI;kJrlvac>> (5)
k

where |vac) is the vacuum state and the amplitudes & fulfill the normalization condition 37,|&[* = 1. For the
studies performed in this work, we will consider the amplitudes

_ [T gpeitke-wore
& /2L [ dee Eunlt) (6)
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with cthe speed oflight, L the length of the transmission line, and

1 2t
En(t) T sech( T ) 7)
the input amplitude at the position x = 0, with T the characteristic time determining the coherence time T; of
the photon, T, = 7T /4+/3 (see definition in equation (10)). Our formalism applies to a generic input envelope,
nevertheless the specific choice of equation (7) allows us to compare our results with previous studies, see
[19-21]. The total state of the system at the initial time t = ¢ is given by the input photon in the transmission
line, the empty resonator, and the atom in state |¢). In particular, the dynamics is analyzed in the interval
t € [, t],with; < 0,8 > Oand|t], t, > T, such that (i) at the initial time there is no spatial overlap between
the single photon and the cavity mirror and (ii) assuming that the cavity mirror is perfectly reflecting, at t = t,
the photon has been reflected away from the mirror.

The initial state is described by the density operator p(to) = [¢0)(¢o|, where

|w0> = |g> ® |0>c ® stp>’ (8)

and |0). is the Fock state of the resonator with zero photons.

Our target is to store the single photon into the atomic state |r) by shaping the laser field Q(#). When
comparing different storage approaches, it is essential to have a figure of merit characterizing the performance of
the process. In accordance with [21] we define the efficiency 7 of the process as the ratio between the probability
to find the excitation in the state [¢)1) = |r) ® |0). ® |vac) at time t and the number of impinging photons
between t; and £, namely

£ = (Yrlp®1Yr)
INCRGIRY

where t > t; and the denominator is unity for t — #,. We note that states |t) and |¢)r) are connected by the
coherent dynamics via the intermediate states |¢) ® [0), ® |vac)and|g) ® |1), ® |vac). These states are
unstable, since they can decay via spontaneous emission or via the parasitic cavity losses. Moreover, the incident
photon can be reflected off the cavity. The latter is a unitary process, which results in a finite probability of
finding a photon excitation in the transmission line after the photon has reached the mirror. The choice of (%)
shall maximize the transfer |¢)y) — |t¢r) by minimizing the losses as well as reflection at the cavity mirror.

©

2.3. Relevant quantities

The transmission line is here modeled by a cavity of length L, with a perfect mirror atx = —L. The second
mirror atx = 0 coincides with the mirror of finite transmittivity, separating the transmission line from the
optical cavity. The length L is chosen to be sufficiently large to simulate a continuum of modes for all practical
purposes. This requires that the distance between neighboring frequencies is smaller than all characteristic
frequencies of the problem. The smallest characteristic frequency is the bandwidth of the incident photon,
which is the inverse of the photon duration in time. Since the initial state is assumed to be a single photonina
pure state, the latter coincides with the photon coherence time T, [24] which is defined as

T. = (t?) — (1)? (10)

with (t*) = ftz t¥|Ein(t) |>dt, and

f

2}
ft [En(®)Pdt =1 — &, (11)

wheree < 107 for the choice || = t, = 6T, and L = 12¢T,. The modes of the transmission line are standing
waves with wave vector along the x axis. For numerical purposes we take a finite number N of modes around the
cavity wave number k. = % Their wave numbers are

nm
ky = ke + —, 12
7 (12)

whilen = —(N — 1)/2, ..., (N — 1) /2, and the corresponding frequencies are w, = ck,. We choose Nand L
so that our simulations are not significantly affected by the finite size of the transmission line and by the cutoff in
the mode number N. We further choose N in order to appropriately describe spontaneous decay by the cavity
mode. This is tested by initializing the system with no atom and one cavity photon and choosing the parameters
so to reproduce the exponential damping of the cavity field.

Note that a single mode of the cavity is sufficient to describe the interaction with a single photon if the
photon frequencies lie in a range which is smaller than the free spectral range of the cavity and is centered around
the frequency of the cavity mode. In this work we choose the central frequency of the photon to coincide with the
cavity mode frequency w;, = w, and the spectrally broadest photon we consider (figures 5 and 6) spans about

4
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16 x 2m MHz around the cavity frequency w.. A cavity of 1 cm has a free spectral range of about 15 x 27 GHz
which is three orders of magnitudes larger than the bandwidth of the photon. This justifies the approximation to
asingle mode cavity. The employed formalism can be applied to photons with other center frequencies as well, if
the number of modes N is chosen sufficiently large and their center is appropriately shifted (see equation (12)).

Since the free field modes are included in the unitary evolution, it is possible to constantly monitor their
state. The photon distribution in space at time ¢ is given by

N
P(x, t) = % > pum(Dsin (n%x) sin (m%x), (13)
nm=1

where p,,,,(£) = Tr{p()|1,}(1,] }and |1,) = b] |vac).
A further important quantity characterizing the coupling between cavity mode and atom is the cooperativity
C, whichreads[21]

c=%. (14)

The cooperativity sets the maximum storage efficiency in the limit in which the cavity can be adiabatically
eliminated from the dynamics of the system [21], which corresponds to assuming the condition

~CT. > 1. (15)

In this limit, in fact, the state |g) ® |1), ® |vac) can be eliminated from the dynamics. Then, the efficiency
satisfies 7(t) < 7)., where the maximal efficiency 1, reads [21]

C

T =T (1o
The maximal efficiency 7)., is reached for any input photon envelope &;,(#) and detuning A, provided the
adiabatic condition (15) is fulfilled.
In our study we also determine the probability that the photon is in the transmission line,
B () :;Tr{f?(t)llkﬂlkl}, 17)
the probability that spontaneous emission occurs,
R(t) = Tr{p(1)1&) (&1} (18)
and finally, the probability that cavity parasitic losses take place,
Ploss(t) = Tr{p(1)Ig, Oc, vac)(g; Oc, vac| }. 19)

By means of these quantities we gain insight into the processes leading to optimal storage.

3. Storage in the adiabatic regime

In this section we determine the efficiency of storage protocols derived in [19-21] for the setup of [17] in the
adiabatic regime. We then analyze how the efficiency of these protocols is modified by the presence of parasitic
losses at rate x),s. In this case, we find also an analytic result which corrects the maximal value of equation (16).

We remark that in [19-21] the optimal pulses €2(#) were analytically determined using input—output theory
[25].In[19, 21] the authors consider an atomic ensemble inside the resonator in the adiabatic regime. This
regime consists in assuming the bad cavity limit x > gand thelimit yT. C > 1. The first assumption allows one
to adiabatically eliminate the cavity field variables from the equations of motion, the second assumption permits
one to eliminate also the excited state |e). In [20] a single atom is considered and there is no such adiabatic
approximation, but the coupling with the external field is treated using a phenomenological model.

Here we simulate the full Hamiltonian dynamics of the external field in the transmission line and consider a
quantum memory composed of a single atom inside a reasonably good cavity. The parameters we refer to in our
study are the ones of the setup of [17]:

(g, K, 7) = (4.9, 2.42, 3.03) x 2m MHz, (20)

corresponding to the cooperativity C = 3.27 and to the maximal storage efficiency 1, = 0.77. When we
analyze the dependence of the efficiency on yor , we vary the parameters around the values given in
equation (20).

3.1.1deal resonator
We first review the requirements and results of the individual protocols of [ 19—-21] and investigate their
efficiency for a single-atom quantum memory. The works of [19-21] determine the form of the optimal pulse 2

5
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(t) for cavities with cooperativities C > 1. The optimal pulse is found by imposing similar, but not equivalent
requirements. In [19, 20] the authors determine 2(f) by imposing impedance matching, namely, that there is no
photon reflected back by the cavity mirror. In [21] the pulse €2(¢) warrants maximal storage, namely, maximal
probability of transferring the photon into the atomic excitation |r). The latter requirement corresponds to
maximizing the storage efficiency 7 defined in equation (9).

In detail, in [19] the authors determine the optimal pulse 2(¢) that suppresses back-reflection from the
cavity and warrants that the dynamics follows adiabatically the dark state of the system composed by cavity and
atom. For this purpose the authors impose that the cavity field is resonant with the transition |g) — |e), namely
A = 0. They further require that the coherence time T is larger than the cavity decay time, k7. 2 1. Under
these conditions the optimal pulse 2(t) = QF(¢) reads

g&in(t)

QF () = -
\/q + 26 [N 1€ PAY — €D

) 2D

where ¢, regularize QF(t) for t — #;. The work in [20] imposes the suppression of the back-reflected photon
without any adiabatic approximation and finds the optimal pulse Q(¢) = QP(¢), which takes the form

g€in(t) + (E(1) + 1F(1) /g

QP = : :
200+ 25 [ 1€Y' — 1EP — D0

(22)

with
D) = 2y [ 1FEPAY + IFOP, (23)

and F(t) = En(t) — kEn(t). Coefficient P, accounts for a small initial population in the target state |r) and it is
relevant in order to avoid divergences in equation (22) for t — ¢, see [20] for an extensive discussion. The pulse
QF(t) of equation (21) can be recovered from equation (22) by imposing the conditions

F@) +vF@®) =0, (24a)

—|F®) > + 2kp, = a. (24b)

The control pulse QP(¢) can be considered as a generalization of QF () since it is determined by solely imposing
quantum impedance matching.

In [21] the authors determine the amplitude §2(¢) that maximizes the efficiency 7. This condition is not
equivalent to imposing impedance matching. In fact, while in the case of impedance matching major losses
through the excited state |e) are acceptable in order to minimize the probability of photon reflection, in the case
of maximum transfer efficiency 7 those losses are detrimental and thus have to be minimized. The optimal pulse
Q(t) = QS(¢) is determined for a generic detuning A by using an analytical model based on the adiabatic
elimination of the excited state |e) of the atom and of the cavity field in the bad cavity limit £ >> g.Itreads

_ 0+ O+ &

Q) -

t
X exp —iLln |Ein () [2dt | (25)
2’}/(1 + C) 41

In the limit in which the adiabatic conditions are fulfilled, this control pulse allows for storage with efficiency
Nima €quation (16). This efficiency approaches unity for cooperativities C > 1.

We start by integrating numerically the master equation for a single atom (1) after setting Kj,s = 0, namely,
by neglecting parasitic losses. We determine the storage efficiency at the time t,, which we identify by taking
t, > T. for different choices of the control field Q = Q6, OF, QP in Hamiltonian (3). Numerically, t,
corresponds to the time the photon would need to be reflected back into the initial position, assuming that the
partially reflecting mirror is replaced by a perfect mirror. Our numerical simulations are performed for a single
atom in a resonator in the good cavity limit.

Figure 2 display the efficiency and the losses as a function of k, 7, and of the coherence time T of the photon
(and thus of the adiabatic parameter +71; C). Each curve corresponds to the different control pulses in the
Hamiltonian (3) according to the three protocols. In subplot (a) we observe that the efficiency reached with the
pulse Q6(#) corresponds to the maximum theoretical efficiency 7,,., while the efficiency with QP is the
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Figure 2. Comparison between the protocols of [19-21]. (Upper row) Storage efficiency 7, equation (9), (central row) probability that
the photon is reflected P,, equation (17), and (bottom row) probability of spontaneous emission, equation (18), evaluated at time
t, = 67T; by integrating numerically equation (1) for Kj,s = 0. The quantities are reported as a function of (left column) the decay rate
7 from the excited state (for & = kgand T, = T?), (central column) the decay rate « of the cavity field (for y = ypand T, = T) and
(right column) the coherence time of the photon T, (in units of 1/(7C) and for & = kgandy = 7). The three different lines QF, QP,
and QC refer to the evolution with the respective control pulse (see equations (21), (22), (25), respectively). The dotted lines in panels
(a)—(c) correspond to the maximum efficiency 7 = C/(1 + C), equation (16). Here, (g, ko, ) = (4.9, 2.42, 3.03) x 2 MHz and
T2 = 0.5 ps. The input pulse &;,(¢) is given in equation (7), at the initial time #, = —6T; the pulse has negligible overlap with the
cavity mode. The transmission line haslength L = max(12cT;, 15¢/x)and 211 equispaced modes. With this choice the frequency
range of the modes included in the simulation is about 40« around the cavity frequency wk.

smallest. In subplot (b) it is visible that the control pulse Q2% (t) warrants the maximum efficiency even down to
values of k of the order of k ~ g/5. Subplot (c) displays the efficiency as a function of the adiabatic parameter
7T C: the protocol Q6(t) reaches the maximum theoretical efficiency 7, for YT. C 2 20, while the other
protocols have smaller efficiency for all values of 1;. Figures 2(d)—(f) report the probability that the photon is
reflected back into the transmission line, equation (17). It is evident that protocol 2P perfectly suppresses the
back reflection probability in every regime here considered. However in the non-adiabatic regime (subplots (¢),
), (i), YI. C < 20) the protocol 2P, as well as the protocol QF, requires an increasing maximum Rabi frequency
for decreasing T;. At the value of about 4T; C & 3.74 the Rabi frequency is so high that it is not anymore
manageable by our numerical solver, for this reason the plots for the protocols QP and QF are reported for
~1.C Z 3.74. The same happens for small values of x, subplots (b)(e)(h): in this case the plots for the protocols
QP and QF are reported for k 2> 0.3 x 2w MHz. The diverging Rabi frequency can be avoided by an
appropriate choice of the parameters ¢; and p, in equations (21) and (22), respectively. Figures 2(g)—(i) report
the losses via spontaneous emission of the atom, equation (18): while these losses are acceptable in order to
minimize the back-reflected photon, they are detrimental for the intent of populating the target state |r).
Protocol 2P, which perfectly suppresses the back reflected photon, has the highest losses via spontaneous
emission, which in the end leads to a lower efficiency 7. Protocol QG in turn, has the lowest radiative losses and it
allows for the transfer with the maximal efficiency 7),,,,. . Protocol QF tries to minimize reflection of the photon at
the cavity mirror. However, since 2F is derived with some approximations, it does not suppress completely the
reflection and its final efficiency is between the ones of the other two protocols.

An important general result of this study is that the bad cavity limit is not essential for reaching the maximal
efficiency as long as the dynamics is adiabatic: the relevant parameter is in fact the cooperativity.
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Figure 3. Efficiency of storage protocols in the adiabatic regime as a function of the rate of parasitic losses ko5 (in units of k). (a)
Storage efficiency, equation (9), (b) the probability that the photon is reflected, equation (17), (c) the probability of spontaneous decay,
equation (18), and (d) the probability of parasitic losses, equation (19), evaluated at time t, = 6T; and for
(g, K, 7) = (4.9, 2.42, 3.03) X 2w MHz, T, = 0.5 us. The other parameters are the same as in figure 2. The lines 2%, QF, OP, and
QG refer to the evolution with the respective control pulse (resp. equations (26), (21), (22), (25)). The dotted line in (a) corresponds to
the value of nim ,equation (28).

3.2. Parasiticlosses

The protocols so far discussed assume an ideal optical resonator. In this section we analyze how their efficiency is
modified by the presence of parasitic losses, here described by the superoperator £, _in equation (40). In

particular, we derive the maximal efficiency the protocols can reach as a function of kjoss > 0.

We first numerically determine the efficiency of the individual protocols as a function of i for
T. = 0.5 ps. Figure 3(a) displays  for Q = Q6, QP, OF Itis evident that the effect of losses is detrimental, for
instance it leads to a definite reduction of the maximal efficiency from n = 0.77 down to = 0.68 for
Kloss ~ 0.1r. This result can be improved by identifying a control field 2 = QX which compensates, at least
partially, the effects of these parasitic losses. The control field X (¢) is derived in section 3.3 using the input—
output formalism: it corresponds to performing the substitution £ — £ + Kjo in the functional form QS (¢) of

equation (25). Specifically, it reads
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QX(t) — ’Y(l + C/) +/1A t 5in(t) % eXP(—lﬁ In ft |8in(t/)|2dt/]) (26)
V2 + ) \/f ()2 ya1+C) Iy
3]

with the modified cooperativity

2

c=—2= @7)
V(K + Kloss)
When the control pulse X (¢) is used, the efficiency of the process corresponds to the maximal efficiency n;nax ,
which is now given by
K C’
My = ——— . (28)

K+ Kloss 1 + C’

Clearly, 77'

max

< Nyaye While the equality holds for ks = 0.

By inspecting the numerical results, we note that the efficiency obtained using QX is always higher than the
one reached by the other protocols. Even though for some values of k), the efficiencies using different control
fields may approach the one found with QX, yet the dynamics are substantially different. This is visible by
inspecting the probability that the photon is reflected, the radiative losses, and the parasitic losses, as a function
of Kjoss as shown in figures 3(b)—(d), respectively: each pulse distributes the losses in a different way, with QX (¢)
interpolating among the different strategies in order to maximize the efficiency.

Figure 4 shows the evolution of the system for T, = 0.5 ps. Figure 4(a) displays the envelope in time | £;,(¢) |?
for the photon given in equation (7), which is the one used also in this simulation. Figure 4(b) displays the
control pulse shapes of the protocols QF, 26, QP, of [19-21] and QX derived in this work (the pulse shapes are
given analytically in equations (21), (22), (25), (26)). Figure 4(c) shows the population of the states and the losses
during the evolution when the atom is driven by Q% (¢). The efficiency of the transfer, equation (9), corresponds
to the population of the state |r), p,,.. For the parameters of [17] the final efficiency is 7 (t,) ~ ninax ~ 0.653.

In the next subsection we report the derivation of Q¥ and /by means of the input—output formalism.

3.3. Maximal efficiency in presence of parasitic losses

In this section we generalize the adiabatic protocol of [21] in order to identify the control field that maximizes
the storage efficiency and to determine the maximum storage efficiency one can reach. The derivation presented
in this section is based on the input—output formalism and it delivers equations (26) and (28).

We first justify the result for equation (28) using a time reversal argument applied in [21, 26]. Let us consider
retrieval of the photon, assuming the atom is initially in state |r) and there is neither external nor cavity field.
Then, in order to retrieve the photon, the control pulse €2(¢) shall drive the transition |r) — |e) such thatat the
end of the process the state |r) is completely empty. The excited state |e) dissipates the excitation with probability
1/(1 4+ C"), while it can emit into the cavity mode with probability C’/(1 + C’). When the cavity mode is
populated, a fraction Kjss /(K + Kioss) 15 lost, while the fraction k/(k + Kjoss) is emitted via the coupling mirror
into the transmission line. From this argument one finds that the probability of retrieval is given by
equation (28). Using the time reversal argument, this is also the efficiency of storage.

We now derive this result as well as 2X(¢) starting from the retrieval process and then applying the time
reversal argument. For this purpose, we restrict the dynamics to the Hilbert space H composed by the states
{lg, 1., vac), le, O, vac), |r, O, vac), |g, O, 1x): 1 < k < N}.In H the probability is not conserved due to
leakage via spontaneous decay and via parasitic cavity losses. Therefore, a generic state in H takes the form
lo@®)) = c()|g, 1., vac) + e(t)le, O, vac) + r(t)|r, O, vac) + > E(1)|g, O, L), itevolvesaccordingtoa
non-Hermitian Hamiltonian and its norm decays exponentially with time [27]. We assume that at the initial
time t = 4 the probability amplitude r (#) equals 1, while all other probability amplitudes vanish. The equations
of motion for the probability amplitudes read

é(t) = —ige(t) — V2K En(t) — (K + Kioss) (1), (29a)
é(t) = (1A — y)e(t) — ige(t) — iQt)r (), (29b)
() = —iQ*()e(t), (29¢)

where we used the Markov approximation and the input—output formalism [25]. We now assume the bad-cavity
limit x >> g and adiabatically eliminate the cavity field from the equations of motion (which corresponds to
assuming ¢ (t) ~ 0 over the typical time scales of the other variables). In this limit the input—output operator
relation, &, (t) = iN2ka(t) — Ein(t), takes the form

9
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Figure 4. Dynamics of storage. (a) Photon envelope |£;,(t) |, equation (7), as a function of time. (b) Time dependence of the control
pulses QF(t), Q6(t), QP(t), and QX(¢) (resp. equations (21), (25), (22), (26)). (c) Time evolution of the diagonal elements of the
density matrix when the atom is driven by QX. The curves are the population p,, of state |r), the population p,, of state |e), the
probability that there is one photon in the cavity p,,, the probability that the photon is in the transmission line P,, equation (17), the
probability of spontaneous decay, equation (18) P, and the probability of cavity parasitic losses Pjogs, equation (19). The parameters
are (g, K, Y, Kloss) = (4.9, 2.42, 3.03, 0.33) x 2r MHz, A = Oand T, = 0.5 us.

Eoul®) = GYNICe() + 8, (1), (30)

Rloss

where
G = k/(K + Kloss)
and Cis given in equation (14). This equation has to be integrated together with the equations
¢(t) = 1A — v(1 + GO)e(t) — iQ)r(t) — GJ27CEn(1), (31

(1) = —iQ*()e (). (32)

Our goal is to determine the retrieval efficiency assuming that at time t = 0 there is no input photonic excitation,
thus &;,(¢) = 0 atall times. Using these assumptions, the above equations can be cast into the form

%ue(tw FIrOR = —2¢( + C)le. (33)

10
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The probability that no excitations are left in the atom at time ¢, > 0 (¢, > T.)is the retrieval efficiency

/ f2 2 -GC’ GC’
= Eutzdt:2G2Cf e(t)|?dt = e + [rO)P]: = .
- fh|ot(>| 1€ [ le@Pdt = TS eOF + IrOF: =
By means of the time reversal argument, this is also the storage efficiency.
The output field can be analytically determined by adiabatically eliminating the excited state from
equations (30). This leads to the expression

Eout(t) = L/%ﬂCﬂL X exp ( f t %dt’). (35)

iA—y(1+C) L AA — (1 + C)

(34)

Integrating the norm squared of equation (35) one obtains

c Y —2v(1 + C’ t
(Gl + C’) f (ol )PdE = 1 = exp[vz(l 1(0)2 +)A2fﬁ IQ(t/)Izdt/]' G0

We solve equation (36) to find |€2(#) |, while the phase of 2(¢) can be determined from equation (35). Finally, we
obtain the control pulse QX .(¢) which retrieves the photon with efficiency n;nax .Itreads

7(1 + C/) —iA gout(t)

eretr(t) = X exp (1—
e \/ [ 1tenpar 2y E
t

In j; 2(|€out(t’)|2/n,;ax)dt’)- (37)

Using the time reversal argument, the control pulse QX(¢) = QX (T — t) stores the time reversed input
photonwith E,(t) = £5 (T — t) / \ /n:nax and T = t, — t;, and it takes the form given in equation (26). This
pulse has the same form as the pulse of equation (25), where now Chas been replaced by C’ (or

equivalently K — K + Kjoss)-

3.4. Photon retrieval
The generation of single photons with arbitrary shape of the wavepacket envelope in atom—cavity systems has
been discussed theoreticallyin [21, 28] and demonstrated experimentally in [29, 30].

In[1, 26] it has been pointed out that photon storage and retrieval are connected by a time reversal
transformation. This argument has profound implications. Consider for instance the pulse shape €2(¢) which
optimally stores an input photon with envelope &;,(¢). This pulse shape is the time reversal of the pulse shape
Qreer(t) = Q*(T — t) which retrieves a photon with envelope . (t) = EX(T — t) (here T = t, — ). In this
case, the storage efficiency is equal to the efficiency of retrieval and is limited by the cooperativity through the
relation in equation (28). We have numerically checked that this is fulfilled by considering adiabatic retrieval and
storage of a single photon through 5 nodes, consisting of 5 identical cavity—atom systems. We applied €., (¢) for
the retrieval and the corresponding €)(¢) for the storage. Within the numerical error, we verified that the storage
efficiency of each retrieved photon remains constant and equal to the one of the first retrieved photon.

4. Beyond adiabaticity

In this section we analyze the efficiency of storage of single photon pulses in the regime in which the adiabaticity
condition equation (15) does not hold. Our treatment extends to single-atom quantum memories the approach
that was applied to atomic ensemble in [31, 32] and allows us to identify the minimum coherence time scale of
the photon pulse for which a given target efficiency can be reached.

Our procedure is developed as follows. We use the von-Neumann equation, obtained from equation (1)
after setting v = Kjos = 0, and resort to optimal control theory for identifying the control pulse Q(¢) = Q°P'(¢)
that maximizes the storage efficiency for v = ks = 0. Specifically, we make use of the GRAPE algorithm [33]
implemented in the library QuTiP [34]. We then determine the storage efficiency of the full dynamics, including
spontaneous decay and cavity parasitic losses, by numerically integrating the master equation (1) using the pulse
QOPY(t). We show that the dynamics due to 2°P(¢) significantly differs from the adiabatic dynamics, and thereby
improve the efficiency for short coherence times.

Figure 5 displays the storage efficiency 7 as a function of the photon coherence time T: when the control
pulseis QX(t), equation (26), and when instead the control pulse is found by means of the numerical procedure
specified above, which we denote by Q2°P'(¢). The storage efficiency is reported for v = £j,ss = 0 and for
(7> Kioss) = (3.03, 0.33) x 27 MHz. The results show that optimal control, in the way we implement it, does
not improve the maximal value of the storage efficiency, which seems to be limited by the value of n:nax ,
equation (28). We remark that this behavior is generally encountered when applying optimal-control-based

11
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Figure 5. Storage efficiency nat t = t,asa function of the coherence time of the single-photon pulse T; (in units of (YC)™!). The
legenda indicates the pulses used in the numerical integration of equation (1). The parameters are (g, k) = (4.9, 2.42) x 27 MHz,
the lines labeled ‘with losses’ refer to the efficiency of the process when (7, Kioss) = (3.03, 0.33) X 2m MHz, otherwise

Y = Kioss = 0; 1, = —f = 61;. The other parameters are given in figure 2.

protocols to Markovian dynamics [35]. Nevertheless, the protocols identified using optimal control extend the
range of values of 1¢, where the maximal efficiency is reached, down to values where the adiabatic condition is
not fulfilled. We further find that the optimized pulse we numerically identified in absence of losses provides an
excellent guideline for optimizing the storage also in presence of losses.

In order to get insight into the optimized dynamics we analyze the time dependence of the control pulse as
well as the dynamics of cavity and atomic state populations for T. = 0.009 ps, namely, when the dynamics is
non-adiabatic. Figure 6(a) shows the time evolution of the pulse {2°P(¢) resulting from the optimization
procedure in the non-adiabatic regime; the pulse Q% (t) is shown for comparison. The efficiency of the transfer
(when the losses are neglected) with the control pulse Q% is n* ~ 0.07 < 7, because the process is non-
adiabatic, while the efficiency reached with the optimized pulse 2°P(¢) is °P* & 0.63. The value of the solid
green lineat t = t, in figures 6(b) and (c) corresponds to the leftmost point in figure 5 for the case without losses.
A double bump in the cavity population is visible in figure 6(b): this is due to the Jaynes—Cummings dynamics,
and is thus the periodic exchange of population between the atomic excited state |e) and the cavity field. In
figure 6(a) it is noticeable that the intensity of the optimized pulse exhibits a relatively high peak when the
photon is impinging on the cavity. It corresponds to a way to perform impedance matching in order to maximize
the transmission at the mirror, and it is related to the same dynamics which gives rise to the divergence of QF ()
and QP(t) which is found when they are applied in the non-adiabatic regime. After this the intensity of the
control pulse vanishes and then exhibits a second maximum when the population of the excited state reaches the
maximum: we verified that the area about this second ‘pulse’ corresponds to the one of a 7 pulse, thus
transferring the population into state |r).

We now investigate the limit of optimal storage. For this purpose we determine the lower bound T™" to the
coherence time T; of the photon, for which a given efficiency 7 = 7,, can be reached. For each value of gand T;
we optimize the control pulse using GRAPE. For each g we determine 1 as a function of T; and then extract
Tmin — ming {T:: n(T) > 71, }. We then analyze how the minimum coherence time T™" scales with the
vacuum Rabi frequency g.

Figure 7 displays the minimum photon coherence time T,™™™ required for reaching the storage efficiency (a)
N, = 0.99 and (b) n,, = 2/3 asafunction of the coupling constant g. We observe two behaviors, separated by the
value ¢ = k:For ¢ < K, in the bad cavity limit, we extract the functional behavior T™" o 1/9C = x/g2 On
the contrary, in the good cavity limit, g > &, we find that T™" o 1/x: the limit to photon storage is here
determined by the cavity linewidth. The general behavior as a function of g interpolates between these two limits.
This result shows that the photon can be stored as long as its spectral width is of the order of the linewidth of the
dressed atomic state.

5. Conclusions

We have analyzed the storage efficiency of a single photon by a single atom inside a resonator. We have focused
on the good cavity limit and shown that, as in the bad cavity limit, the storage efficiency is bound by the
cooperativity and the maximal value it can reach is given by equation (16). We have extended these predictions
to the case in which the resonator undergoes parasitic losses. For this case we determined the maximal storage
efficiency for an adiabatic protocol as well as the corresponding control field, respectively, given in equation (28)
and equation (26). Numerical simulations show that protocols based on optimal control theory do not achieve

12



10P Publishing

New J. Phys. 20 (2018) 105009

L Giannelli et al

27 xMHz)

control puls

populations

optimized populations

8
n
(a) n: X

1 ——— t L
[ Qop 6
| : ........ |5in|2
I : L
H 4
1

E

f

~
pre | .
F /
==== Pee \ :
- N/
- 8
—_—— P ,’ )‘ \os
A L W
;! AN
ra N -

S v M e o S v e
o [\ ot ~ o o \V] ot ~
(=) (S o ot o o (S o [
1 1 1 1 1 1 1 1 1

—0.1 0.0 0.1
time (us)

Figure 6. (a) Photon envelope |€;,(t) |*, equation (7), and optimized pulse Q°P(¢) as a function of time (the initial guess pulse QX (¢) is
shown for comparison). Subplots (b) and (c) display the time evolution of the diagonal elements of the density matrix when the atom
is driven by QX and Q°Pt, respectively. The curves are the population p,, of state |r), the population p,, of state |e), the probability that
there is one photon in the cavity p,,, and the probability that the photon is in the transmission line P,, equation (17). The parameters
are (g, k) = (4.9, 2.42) X 2w MHz, 7 = Kios = A = 0and T, = 0.009 s, thus the regime is non-adiabaticas T ~ 0.57/(7C). At
t = 1, the population p,, gives 7)(¢,). In this case the system has been simulated for alonger time interval: t, = —f; = 15T..

photon coherence time (ps)

photon coherence time (us)

—_
(=]
1

—
(==}
=}
1

_
<
l

—

b
(&
|

— fit fi(g)
=== fit f2(g)
..... g=kK
* T‘:nin
———————————— 200000000008

—
(=]
=]
1

_
<
l

—
i
]
|

g (units of k)

Figure 7. Minimum photon coherence time T™" as a function of g (in units of x). The coherence time T™™ is the lower bound to the
coherence time of photons which can be stored with efficiency (a) 1, = 0.99 and (b) 7, = 2/3 for ¥ = Kiess = A = 0. The vertical
dotted line shows the value g = k = 2.42 x 2w MHz. The datain theregion ¢ < x and g >> « have been fitted with the functions

fi(®) = ar/g*and f,(g) = a’/k, respectively.
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higher storage efficiencies than 1)/ . Nevertheless they can reach this upper bound even for spectrally-broad
photon wave packets where the dynamics is non-adiabatic, as long as the spectral width is of the order of the
linewidth of the dressed atomic state.

Our analysis shows that the storage efficiency is limited by parasitic losses. Nevertheless, we have
demonstrated that these can be partially compensated by the choice of an appropriate control field. This result
has been analytically derived for adiabatic protocols, yet it shows that extending optimal control theory to
incoherent dynamics could provide new tools for efficient quantum memories.
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Appendix. Input—output formalism

In input—output formalism [25] the equation of motion are

b= —ighy — V2K En(t) — (5 + Kpa)d() + £,
by = 190058 — g7 O
by = 1Q(E) Gy — Q) Gre
bre = —igBug@ + a8y — 1018,
+ iQ%(t) Gre — Y0 + s
bge = 1ABy + ig(Gre — Gpg)@ — (1) G
- g&ge + B,
by = —1AGy + igd5y + 195(1) (G — Bie)
+ = o+ hy

by = 1800 @ — 1Q%() B (A1)

where & = | j)(k| are atomic operators and E,E,, l:jge and E, are Langevin noise operators [36]. The input
operator for the quantum electromagnetic field is

En(t) = /ZL—;Z j: ” e k=) k + k., t = 1)dk, (A2)

here b (k, t = 1) is the annihilation operator of the mode k at the initial time ¢ = #. The input—output relation is
given by

Eout(t) = IN2Ra(t) — Ein(t). (A3)

The equations of motion for M >> 1atoms in the cavity take the same form as equations (A1) when one
performs the replacement & — Zfi 1 &]?k [21]. In this case, one can make the approximations (&, (t)) ~ M,
(G (1)) =2 (B (1)) & (G (1)) = 0, where (-) = Tr(p,)and p, is the initial state. Then, the set of equations (A1)
reduces to the equations of motion of a single photon given in equations (29).

We note that the quantum impedance matching condition imposed by the authors of [19] consists in taking

Eoutt) = Eou(t) = 0,according to which the form of the control pulse QF, equation (21), is found.

A.1. Effect of photon detuning on storage
The protocol 26(¢) does not have any restriction on A: for every A there is a pulse Q6(¢) that allows for storage
with efficiency 7, ,, (within the adiabatic regime), see equation (25). Figure A1 displays the storage efficiency and
the losses for each protocol as a function of A, as expected the protocol 6(#) performs in the same way for any
values of A.

A time-dependent phase x (¢) of the control pulse () = |Q(t)|eX® can be implemented as a two-photon
detuning
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as a function of the single photon detuning A and at time t,. The parameters are (g, x, ) = (4.9, 2.42, 3.03) x 2w MHz, T, = 0.5 us.
The input photon &;,(¢) is defined as in equation (7). See figure 2 for further details.

6= X (). (A4)
In fact, by applying the unitary transformation U (t) = exp(—ilr)(r| x(¢)), the transformed Hamiltonian is
A = HI/ + Hgoqs, where

A = x01r)rl — Ale)el + (gle)gl @ + 1) le)r] + h.c.). (A5)
For Q6(t) we have
. —A |Ein(t)
G(r) = - (A6a)
* 20 +0) [ IEat) det! ’
—AQ°(H) (A6b)

A2+ ,}/2(1 4 C)Z :
Recall that also |26(¢) | depends on A. This can be understood in terms of AC Stark shift: one-photon detuning
A = 0isashift of the control laser out of resonance for the transition |r) — |e) and thereby induces an AC Stark
shift on thelevels |e) and |r) of the atom; thus the condition of two-photon resonance does not hold anymore. In
order to restore the latter, changes in frequency of the carrier and/or of the cavity and/or of the atomic levels are
needed and they appear as a two-photon detuning in the Hamiltonian. This also explains why the reflected
photon probability for the protocols QF(¢) and Q2P(¢) (see figure A1), which do not take into account the one-
photon detuning, increases with increasing A: the input photon sees the system out of resonance and hence it is
mostly reflected. Equation (A6D) gives the energy shift as a function of the Rabi frequency of the control pulse.
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